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How does the classical phase-space structure for a composite system relate to the entanglement character-

istics of the corresponding quantum system? We demonstrate how the entanglement in nonlinear bipartite

systems can be associated with a fixed-point bifurcation in the classical dynamics. Using the example of

coupled giant spins we show that when a fixed point undergoes a supercritical pitchfork bifurcation, the

corresponding quantum state—the ground state—achieves its maximum amount of entanglement near the

critical point. We conjecture that this will be a generic feature of systems whose classical limit exhibits such a

bifurcation.

DOI: 10.1103/PhysRevA.71.042303 PACS numberssd: 03.67.Mn, 03.65.Ud, 05.45.2a

I. INTRODUCTION

With the advent of quantum-information theory, entangle-
ment is now regarded as a physical resource that can be
utilized to perform numerous quantum computational and
communication tasks f1g. This has led to the study of the
entanglement characteristics of various systems, and in turn,
of how these characteristics relate to more fully understood
properties of the system. Such studies are twofold
beneficial—further elucidating the nature of entanglement as
well as providing a different approach to the study of com-
plex, quantum many-body systems.

One area where such an approach has had some success is
in the study of quantum phase transitions sQPTsd—
qualitative changes in the ground state of a multipartite sys-
tem induced by the variation of some external parameter f2g.
There have been many recent studies relating entanglement
and QPTs ssee f3–9gd.

Generally it has been found that in infinite systems that
undergo a quantum phase transition at a critical parameter
value l=lc, the entanglement as a function of l is a maxi-
mum at lc. Several examples include sid the single-site en-
tanglement and the next-nearest-neighbor concurrence of the
transverse Ising chain f3–5g salthough the nearest-neighbor
concurrence does not have its maximum value at l=lc, its
first derivative with respect to l does f4gd, siid the entropy of
entanglement of half of a XXZ spin chain in a magnetic field
f6g, and siiid the entropy of entanglement of a single qubit
with a bath of oscillators sthe spin-boson modeld f7g. Such
systems demonstrate a correspondence between quantum
critical phenomena and entanglement.

A QPT corresponds to a qualitative change in the ground
state as a system parameter is varied. In the classical regime,
minimum energy coordinates correspond to elliptic sstabled
fixed points. As a parameter in the system is varied, fixed
points may undergo bifurcation f10g—a loss of stability, the
emergence of new fixed points—at some critical value of the
parameter. This corresponds to a qualitative change in the
phase-space structure of the system.

In this article we consider the ground state of a system
whose classical limit exhibits a bifurcation where a single
elliptic fixed point loses its stability while two new elliptic
points emerge—a so-called supercritical pitchfork bifurca-
tion. Elliptic fixed points can be associated with the ground
state of the quantized system. Subsequently we expect to see
some signature of the classical bifurcation in the quantum
ground state, around the critical point. We argue that this
signature is a peak in the entanglement with respect to the
bifurcation parameter.

Schneider and Milburn alluded to such a correspondence
in their work on the Dicke model f11g. It was shown that the
entanglement in the steady state of this system is a maximum
for the parameter value corresponding to a bifurcation of the
fixed points in the corresponding classical dynamics. It was
conjectured that the loss of stability of a classical fixed point
due to such a bifurcation will generically be associated with
entanglement in the steady state of the full quantum system.
We show that it is specifically the pitchfork nature of this
bifurcation that is responsible for the peak in the ground-
state entanglement.

To demonstrate this, we use the example of coupled giant
spins. This system is motivated by a proposed physical
implementation for quantum computation f12g. In this pro-
posal, qubits are realized by magnetic clusters—nanometer-
scale molecular clusters that have all the attributes of meso-
scopic systems such as angular momentum and magnetic
moment. Two qubit gates are constructed by the coupling of
the clusters via superconducting quantum interference de-

vices sSQUIDsd, as shown in Fig. 1.
The strength of the coupling is dependent upon the super-

current induced in the loop by one spin and the field this
produces at the other site f12g. This field induces a rotation
about the z axis of one cluster with frequency proportional to
the z component of the angular momentum of the other clus-
ter. In this way, we can imagine the system as a set of “spin-
ning tops” coupled via a nonlinear interaction, described by

Ĥint= Ĵz ^ Ĵz.
The article is organized as follows: In Sec. II we introduce

the coupled-tops model. We begin with a review of the clas-
sical dynamics based on Skellett and Holmes f13g, focusing*Electronic address: hines@physics.uq.edu.au
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on the bifurcation analysis. This is followed by a calculation
of the ground-state entanglement for the quantum system, as
the bifurcation parameter is varied. Here the link between the
ground-state entanglement and the bifurcation is first estab-
lished. Using the Husimi distribution sor Q functiond to rep-
resent the ground state in phase space, we demonstrate how
the structure of the ground state is related to the classical
fixed points. The aim of Sec. III is to explain the observed
behavior and argue its generality. We finish with a discussion
of our results and future directions.

II. THE COUPLED-TOPS MODEL

The simplest Hamiltonian describing the coupled tops is a
generalization of the N=2 case of the transverse field quan-
tum Ising model, i.e.,

Ĥ = vĴx ^ Î + vÎ ^ Ĵx +
x

j
Ĵz ^ Ĵz s1d

where the angular momentum operators Ĵa satisfy the SUs2d
commutation relations fĴx , Ĵyg= iĴz sand cyclic permutationsd.
Setting m=x /v, results in a one-parameter Hamiltonian

Ĥ = Ĵx1 + Ĵx2 +
m

j
Ĵz1Ĵz2 s2d

where we make use of the notation Ĵa1= Ĵa ^ Î and Ĵa2= Î

^ Ĵa, a=x ,y ,z, such that the subscript 1 s2d refers to sub-
system 1 s2d.

The squares of the total angular momentum of the indi-
vidual tops,

Ĵi
2 = Ĵxi

2 + Ĵyi
2 + Ĵzi

2 , s3d

satisfy

fĴ1
2,Ĥg = fĴ2

2,Ĥg = 0, s4d

and so are constants of the motion. Here the tops are identi-

cal, such that Ĵ1
2= Ĵ2

2= jsj+1d. This allows the system to be

represented in the basis of tensor products of the Ĵz eigen-

states, uj ,ml ^ uj ,nl;um ,nl, where −jøm ,nø j. Note that
the coupling term in the Hamiltonian is scaled with j, to

allow the classical limit to be taken. For j=
1

2 , the Hamil-
tonian s1d is analogous to the quantum Ising model for two
spins, studied in Ref. f14g.

Interestingly, the square of the total angular momentum of
the system,

Ĵ2 = Ĵ1
2 + Ĵ2

2 + 2Ĵ1 · Ĵ2, s5d

is not a constant of the motion. The reason is that an external
control is required to couple the tops. In our motivating ex-
ample this is the circuit that inductively couples the tops.
This is similar to the situation for two interacting qubits. A
general two qubit gate, such as a controlled-NOT gate does
not conserve total angular momentum either sthough the gate
can fix the singlet and triplet subspacesd. Again this is due to
external interactions that control the gate.

The classical analog of this system has been rigorously
studied by Skellett and Holmes f13g. We now derive the
semiclassical limit of Hamiltonian s2d, showing its corre-
spondence to the model of Ref. f13g, and review the key-
points of this analysis relevant to our work.

A. Classical description

The semiclassical limit of the coupled-tops system corre-
sponds to the limit of j→`. To obtain the semiclassical

model, we express the classical coordinates as Laa= kĴaal / j.

In the limit, this allows the factorization of all moments, i.e.,

kĴx1Ĵz1l / j2→Lx1Lz1 sfor details see the Appendixd. The clas-

sical equations of motion are obtained from the Heisenberg
operator equations of motion by taking expectation values
and applying the factorization rule above. The corresponding
semiclassical Hamiltonian is

E = Lx1 + Lx2 + mLz1Lz2 s6d

where E= kĤl / j with the spherical constraint Lxi
2 +Lyi

2 +Lzi
2

=1.
The analysis of the corresponding classical system f13g

has shown that the nonlinearity of the interaction term leads
to chaotic motion for given parameter ranges and initial con-
ditions. More relevant in this context is the existence of a
supercritical pitchfork bifurcation, at a critical value of the
coupling parameter. From Ref. f13g for the semiclassical sys-
tem, the critical value is mc=1. Below this critical value the
dynamics of the system is predominantly regular while
above the phase space is mixed, with extensive regions of
chaotic motion.

The fixed points of the system are found by setting the
equations of motion to zero, to determine the coordinates
where the phase space flow is zero. From Skellett and
Holmes f13g, there are four solutions which exist for all val-
ues of the coupling parameter m, given by

Lx1 = ± 1, Lx2 = ± 1, Lz1 = Ly1 = Lz2 = Ly2 = 0. s7d

At the critical value mc=1 the two fixed points at Lx1=Lx2

=1 and Lx1=Lx2=−1 bifurcate, resulting in the emergence of

FIG. 1. sColor onlined A schematic diagram of the coupled qubit

realization of Ref. f12g. The magnetic clusters sthe qubitsd are

coupled to superconducting loops of micro-SQUIDs and arranged

in a one-dimensional lattice. Josephson junction switches are used

in the coupling circuits, as shown.
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a further four fixed points, located at

Lx1 = Lx2 =
1

m
, Lz1 = Lz2 = ±Î1 −

1

m2 ,

Ly1 = Ly2 = 0, s8d

Lx1 = Lx2 = −
1

m
, Lz1 = − Lz2 = ±Î1 −

1

m2 ,

Ly1 = Ly2 = 0, s9d

which exist for all m.1. The stability of the fixed points is
determined by analysis of the eigenvalues of the linearized
matrix about each fixed point f10g.

In Ref. f13g, it was shown that the two fixed points s7d
with Lx1=−Lx2 are unstable for all values of m. The points,
Lx1=Lx2= ±1 are stable for m,1, becoming unstable at mc.
The emergent fixed points are all stable. This implies that the
bifurcations occurring at Lx1=Lx2= ±1 are supercritical
pitchfork bifurcations, as illustrated in Fig. 2.

Since the total angular momenta of the two tops are con-
served, their dynamics of each are constrained to the unit
sphere, in angular momentum space. It is possible to refor-
mulate the dynamics in terms of spherical polar
coordinates—the polar angle from the positive Lzi axis, 0
øuiøp, and the azimuthal angle in the Lxi-Lyi plane sfrom
the positive Lxi axisd, 0øfiø2p. These coordinates give the
angular momentum components via

Lxi = sin ui cos fi,

Lyi = sin ui sin fi, s10d

Lzi = cos ui.

For all fixed points Ly1=Ly2=0, which in spherical polar
coordinates corresponds to f1 ,f2=0 or p. Thus, we can
view the fixed points as lying on the unit circle in the Lxi

-Lzi planes, characterized by the polar angles ui. For m below
the critical coupling there are two stable fixed points, both of
which lie at the “equator” of these unit circles sui=p /2d at

Lx1=Lx2=1 sf1=f2=0d and at Lx1=Lx2=−1 sf1=f2=pd.
Following the notation used by Skellett and Holmes f13g, we
denote the two states by s→→d and s←←d, respectively,
corresponding to the direction of the angular momentum
vector.

For m greater than the critical value, there are four stable
fixed points, whose positions are shown in Fig. 3.

The points labeled A and B correspond to Eq. s8d and
points C and D to Eq. s9d. Clearly as m→`, ui→0 sin Fig.
3d and, in the pictorial sarrowd notation of above, we have
the four fixed points at the “poles” of the spheres, in the four
combinations s↑↑d, s↑↓d, s↓↑d, and s↓↓d, all of which are
stable.

The semiclassical analysis we have presented here is just
a brief summary of those aspects most relevant for this paper.
For an in-depth analysis of the classical dynamics of this
system we again refer the reader to Skellett and Holmes f13g.

The bifurcating fixed point at Lx1=Lx2=−1 sfor m,mcd is
the minimum energy point and so corresponds to the quan-
tum ground state. We now consider the quantum regime, and
the entanglement between the spins as a function of the cou-
pling strength m.

B. Ground-state entanglement

The ground state is computed by direct numerical diago-
nalization of the Hamiltonian s2d. The entanglement measure
we employ is the entanglement of formation, which, for pure
bipartite states, is equivalent to the entropy of entanglement
f1,15g

Ssrid = − Trsri log rid s11d

where ri=Trisrd is the reduced density operator and the log

is to base 2.
The case of j=1/2, i.e., a two-site transverse field Ising

model, was considered by Gunlycke et al. f14g. It was shown
in this case that the ground-state entanglement is zero for
zero coupling sm=0d then increases as the coupling in-

creases, to asymptote to the maximal value of 1 as m→`.
For j.1/2, the entanglement of the ground state with

respect to the interaction strength m takes on a different char-
acteristic ssee Fig. 4d.

For m=0, the ground state is simply a tensor product of

the minimal Ĵxi weight states, u−j ,−jlx, which is separable.
As m→`, the ground state approaches the superposition,
suj ,−jl+ u−j , jld /Î2, so the entanglement still asymptotes to

FIG. 2. sColor onlined The pitchfork bifurcation at mc=1 for Lz1.

The elliptic sstabled fixed points are centers, indicating that close to

the fixed point, the motion is periodic, while the hyperbolic sun-

stabled point is a saddle. This diagram is the same for both values of

Lx1=Lx2= ±1.

FIG. 3. The four stable fixed points for m.1. As m→`,

u1 ,u2→0, resulting in fixed points with angular momentum solely

in the Lz directions, denoted s↑↑d, s↑↓d, s↓↑d, and s↓↓d.
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1. However, for j.1/2 the entanglement now peaks at a
finite value of m. The height of this peak grows with the
value of j and will approach infinity in the limiting case.

We let mqc denote the quantum critical parameter, defined
as the coupling value at which the ground state entanglement
is maximum. Figure 5 shows the limiting behaviour of mqc.
For larger j, the maximum entanglement occurs near the bi-
furcation point and in the limit j→`, the quantum critical
point approaches the classical bifurcation point,

mqc → mc. s12d

In the semiclassical limit, the quantum critical point corre-
sponding to maximum ground-state entanglement is the clas-
sical bifurcation point.

To understand how the fixed-point structure manifests in
the quantum regime, we need to consider the structure of the
quantum state in phase space.

C. Ground state in phase space

Fundamental to any comparison of classical and quantum
dynamics is some notion of the quantum analog of a classical
joint phase-space probability distribution. We choose the Hu-
simi or Q function f16g as the appropriate quantum analog of
the classical phase-space density, following Refs. f17–22g.

For systems described in spherical phase space, Appleby
f23g demonstrated that the positive operator valued measure-

ment sPOVMd for optimal simultaneous measurements of an-

gular momentum components is given by Êszd= uzlkzu, where

uzl are the SUs2d, coherent states f24g,

uzl = s1 + uzu2d−jezĴ+uj,− jl s13d

with uj ,−jl the lowest-weight eigenstate of Ĵz and z, the ste-
reographic projection of the sphere onto the plane,

zsu,fd = e−if tan
u

2
. s14d

The probability distribution for measurements defined by this
POVM is the angular momentum representation Q function,
which for pure state r= uclkcu is

Qcszd = TrfrÊszdg = zkzuclz2. s15d

For our bipartite system we define the two-body Q func-
tion in terms of the coherent states

uzl = uz1l ^ uz2l . s16d

Since the Q function for the coupled tops is in four phase-
space dimensions, we may only display cross sections
graphically. We have calculated the f1=f2=p cross section
of the ground-state Q function for various values of the cou-

FIG. 4. sColor onlined Variation in the entropy

of entanglement of the ground state with respect

to the coupling strength m and the total sub-

system angular momentum j. Note that as the

system becomes more classical as j increases the

peak in the entanglement versus m becomes more

evident.

FIG. 5. sColor onlined The variation in the quantum critical

parameter mqc, the value of m for maximum ground-state entangle-

ment, with total angular momentum j. In the classical limit, j→`,

mqc approaches the classical critical parameter, where the bifurca-

tion occurs.
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pling strength m. This cross section was chosen since this is
the plane in which the bifurcating fixed points are located.

As evidenced in Fig. 6, the structure of the ground state in
phase space is intimately related to the fixed-point structure
and bifurcation. For small m, the Q distribution of the ground
state is localized around the fixed point at u1=u2=p /2 which
is elliptic for m,mc. For m much larger, beyond the bifur-
cation, the Q distribution is twin peaked, localized around
the two emergent elliptic fixed points. Put simply, in these
two extremes, the distribution is localized around the elliptic
fixed points. In between, the distribution is spread between
the three fixed points and it is this region in which the degree
of entanglement is greatest. In fact, we will argue that the
entanglement is maximum when the distribution is at its
most delocalized f25g.

Under this assumption, the maximum ground-state en-
tanglement will occur when m is above but close to the criti-
cal point. This is when the Q distribution is at its most delo-
calized, smeared between the three fixed points. As j

becomes very large, and the Heisenberg uncertainty limit al-
lows for a higher degree of localization of the distributions,
this quantum critical point approaches the classical bifurca-
tion point. In this semiclassical regime, the greatest delocal-
ization occurs closer and closer to the bifurcation, as j→`.

For this simple coupled-tops model we have demonstrated
that the entanglement characteristics of the ground state can
be associated with the supercritical pitchfork bifurcation. To
validate and generalize this result, we need to consider why
the ground-state Q distribution is related to the fixed-point
structure, and how this structure corresponds to the degree of
entanglement.

III. THE GROUND-STATE Q FUNCTION AND

ENTANGLEMENT

There has been considerable effort in relating quantum
eigenstates to classical phase-space structures sfor example,
see f26–28gd. The Einstein-Brillouin-Keller sEBKd approxi-
mation f29g provides for a semiclassical quantization of clas-
sically integrable systems, whereby eigenstates are identified
with closed loops around invariant tori in phase space. For

nonintegrable systems, the Gutzwiller trace formula allows
for semiclassical approximations of energy spectra, but not
the structure of the corresponding eigenstates f29g.

For systems exhibiting mixed phase space, while no gen-
eral quantization procedure exists, there is an understanding
that eigenstates can be separated into regular and irregular or
chaotic f30g sand in-between or hierarchical f28gd groups.
Regular states are supported by classical tori obeying EBK
quantization, whereas chaotic states are associated with cha-
otic phase-space regions. In the Husimi representation, regu-
lar states are seen as localized on regular trajectories,
whereas chaotic states are somewhat evenly distributed over
the chaotic region of phase space f31g.

Classically, the minimum energy trajectories correspond
to elliptic sstabled fixed points. Thus, it would seem reason-
able to infer that the quantum ground state would be local-
ized around such points.

The aim of this section is to demonstrate that for Hamil-
tonians whose classical analog exhibits sminimal energyd el-
liptic fixed points, the Q function of the ground state is
peaked on the phase-space coordinates corresponding to such
fixed points. This statement has nontrivial consequences
when the classical Hamiltonian displays a bifurcation of
fixed points, which, in the quantum regime, will correspond
to a qualitative change in the structure of the ground-state
phase-space distribution. Subsequently, we relate the struc-
ture of the Q function to entanglement properties.

A. Ground-state Q function and fixed points

In reformulating quantum mechanics in phase space, the
coherent states provide a natural phase-space structure for a
given quantum system, as well as useful distributions based
in the coherent-state representation f32g, two of which we
briefly discuss now.

An operator Ô can be expressed in the diagonal form

Ô =E OPszduzlkzudmszd s17d

called the P representation, where uzl sin complex variable zd
are the coherent states and dmszd is the corresponding mea-

sure. The density operator is given by

FIG. 6. sColor onlined The f1=f2=p cross

sections of the ground-state Q function for a cou-

pling strength m equal to sad 0, sbd 0.7, scd 1, sdd
1.184, sed 1.25, and sfd 1.55, for j=14. The x and

y axes correspond to u1 and u2, respectively. The

entanglement of formation is 0 for sad, approxi-

mately 1 for sfd, and maximum for sdd, when the

distribution is the most delocalized. We see that

as the fixed point bifurcates, so does the ground-

state Q distribution, from the single-peaked to the

twin-peaked structure.
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r =E Pszduzlkzudmszd . s18d

The Q representation of an operator is defined as

Ô → OQszd = kzuÔuzl s19d

and the density operator in the representation is denoted by
Qszd. The statistical average of an operator in the two repre-

sentations is given by

kÔl = TrsrÔd =E QszdOPszddmszd =E PszdOQszddmszd .

To determine the ground state of a given Hamiltonian Ĥ

in this phase-space formulation we seek the distribution that
minimizes the average energy, i.e., determine the distribution
Qszd that minimizes

kĤl =E QszdHPszddmszd s20d

for a given HPszd.
Upper and lower bounds on the ground-state energy E0

are determined by minimizing the Q and P representations of
the Hamiltonian f32g,

min
z

HQszd ù E0 ù min
z

HPszd . s21d

In the semiclassical limit fi.e., "→0 for Heisenberg-
Weyl, J→` for SU s2d coherent statesg of the appropriately
scaled Hamiltonian, both the Q and P representations con-
verge to the classical Hamiltonian Hszd. So the problem of

finding the ground state in the phase-space representation as
we approach the semiclassical limit reduces to finding the
distribution Qszd, minimizing the functional

FfQszdg =E dmszdQszdHszd s22d

where Hszd is the semiclassical Hamiltonian. This distribu-

tion must satisfy

E dmszdQszd = 1, 0 ø Qszd ø 1, s23d

as well as the uncertainty principle, which excludes the pos-
sibility of d functions.

Let us consider a suitably scaled Hamiltonian with semi-
classical limit Hszd, which exhibits a global minimum at z

=z0. This requires that

U ]H

]z
U

z0

= U ]H

]z̄
U

z0

= 0 s24d

and

SU ]
2H

]z ]z̄
U

z0

D2

− U ]
2H

]z2 U
z0

U ]
2H

s]z̄d2U
z0

. 0. s25d

This corresponds to an elliptic fixed point in the phase-space
portrait of the classical dynamics. Taylor-expanding Hszd
about the fixed point gives

Hsz, z̄d = Hsz0,z0
*d + uz − z0u2U ]

2H

]z]z̄
U

z0

+
1

2
sz − z0d2U ]

2H

]z2 U
z0

+
1

2
sz̄ − z̄0d2U ]

2H

s]z̄d2U
z0

+ shigher-order termsd

which can be written as

Hsz, z̄d < Hsz0,z0
*d + fz − z0 z̄ − z0

*gDFz − z0

z̄ − z0
*G ,

where

D = 3U
]

2H

]z2 U
z0

U ]
2H

]z]z̄
U

z0

U ]
2H

]z]z̄
U

z0

U ]
2H

s]z̄d2U
z0

4 , s26d

such that detsDd,0. In other words, to second order around

the elliptic fixed point, Hsz , z̄d is parabolic, with minimum at

z0.
Now consider the minimization problem of Eq. s22d. If

the system under investigation has only a solitary global
minimum, since Qszd takes only positive values, the distri-

bution that minimizes Eq. s22d will be as sharply peaked as
possible on the coordinates of the minima. The ground-state
Q function will be peaked on the coordinates of the fixed
point.

What if there are more than one sdegenerated global
minima? In this case, consider expansions around each of the
fixed points zk following s26d. We are interested in the
ground state in a semiclassical regime where the Q functions
can be highly localized. We thus approximate H as a piece-
wise sum of the expansions around each of the degenerate
fixed points. The functional s22d is thus written as the sum-
mation

FfQszdg = o
k

E
Rk

dmszdQkszdHkszd s27d

where Hkszd is the expansion around the fixed point zk and

Qkszd is the distribution defined in the phase-space region

Rk. Minimizing each term in this summation gives in turn a
piecewise-defined distribution, sharply peaked around the
coordinates of each of the fixed points.

The above statements are by no means rigorous. We are
considering the problem in a semiclassical regime, which
allows us to take simple approximations for the Hamiltonian,
and simplifies the structure of the corresponding ground-state
Q functions. However, as we take the semiclassical limit
s"→0, j→`d, the Q function will merge smoothly from a

true quantum ground-state distribution to the more semiclas-
sical structure described above.

As we move in the other direction, from the semiclassical
to the quantum, we expect to observe remnants of the semi-
classical structure. The Q function, while perhaps not sharply
peaked, will be concentrated around the fixed-point coordi-
nates.
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These observations lead us to make the following conjec-
ture.

Conjecture 1 (fixed-point correspondence). Let Ĥ be a
Hamiltonian whose classical analog is defined as Hsx ,x*d
= kxuĤuxl, where huxlj is the set of coherent states corre-

sponding to the topology of the phase space of Hsx ,x*d.
Then the Husimi distribution of the ground state of Ĥ will be
concentrated around the phase-space coordinates correspond-
ing to the fixed pointssd of H.

While we have not provided a rigorous proof of this state-
ment, we have argued above that such a notion is indeed
plausible.

This conjecture by no means provides detailed informa-
tion about the ground state, but instead provides a guideline
for the phase-space structure of the ground state. As in Ref.
f32g, where the use of the Q representation of the Hamil-
tonian as a guide to studying ground-state phase transitions
was advocated, this guideline become most useful when the
fixed points vary according to some critical parameter, i.e.,
bifurcation. This can provide for a variational approach to
approximating the ground state via coherent states ssee Ref.
f32gd.

For our purposes, this link between fixed points and the
phase-space structure can provide a qualitative understand-
ing of the effect of the bifurcation on the ground-state en-
tanglement. The connection to entanglement is made via the
work of Sugita f25g, which we now discuss.

B. Entanglement and the Q function

When dealing with Q functions for composite systems,
there are several ways to generalize the idea of coherent
states to many-body systems. In the next section, we follow
Sugita f25g by constructing coherent states based on the
single-particle transformation group. This means the coher-
ent states are independent-particle states and hence sepa-
rable, allowing the entanglement to be related to the structure
of the Q function.

Sugita f25g constructs the many-body coherent states
based on the single-particle transformation group, following
the group-theoretical construction of Perelomov f24g. As an
illustrative example, consider a system of n qubits sbasis
states u↑l, u↓ld. The local unitary sor single-particled transfor-
mation group is SUs2d^n. Coherent states are generated by

applying this group to the lowest-weight state u↓ l^n. In this
way, we generate all spured separable states. From this defi-
nition, coherent states are thus equivalent to separable states.
We note that our arguments in the above section easily apply
to the multiparty case when the coherent states are general-
ized in this way.

From this definition, Sugita argues that a separable state is
represented by a localized wave packet in phase space. Since
coherent states are the most localized states in the Husimi
representation, it is argued that delocalization of the Husimi
distribution implies correlation—hence entanglement—
between the particles. This delocalization can be measured
by the Rényi-Wehrl entropy, which represents the effective
volume occupied by the Husimi distribution.

The majority of Ref. f25g is devoted to constructing ex-
plicit formulas for the Rényi-Wehrl entropy in terms of the
moments. The calculation of the moments is simplified via a
group-theoretical construction. When applied to a system of
two qubits, it is shown that the concurrence f33g may be
expressed in terms of the second moment of the Q function.
More strikingly, when applied to a system of three qubits, the
expression for the moment contains all three bipartite con-
currence terms, as well as the three tangle. In this way this
measure captures all classes of entanglement, not only bipar-
tite or otherwise.

Applying the results of Sugita to explain the entanglement
behavior we observe is now straight forward. Well below the
critical parameter, the ground-state Q function will be local-
ized around the solitary fixed point, and hence have low
degree of entanglement. At the other limit, well above the
critical parameter, the ground state consists of a superposi-
tion of two well-separated sand hence almost orthogonald
states. For a bipartite system, this implies that the entangle-
ment of formation will be 1. In between these two limits the
distribution is spread between the three fixed points, with a
greater degree of entanglement. As j becomes very large, and
the distributions may be more localized, the point at which
the ground-state distribution is most delocalized will move
closer toward the bifurcation point.

In this way, it is the pitchfork structure of the bifurcation
that is vital. The loss of stability of the original fixed point,
coupled with the emergence of two degenerate stable points,
as opposed to a single emergent point, which is the case for
other classes of bifurcation, results in the characteristic peak
in the ground-state entanglement.

We argue that this result should hold for a general bipar-
tite system, and put forth the following conjecture.

Conjecture 2 (ground-state entanglement). Consider a

quantum Hamiltonian Ĥsgd which depends smoothly on a

parameter g and which acts on a bipartite Hilbert space
V1sPd ^ V2sPd. The parameter P allows one to take a well-

defined classical limit. Suppose that Hsgd is the well-defined

classical limit of Ĥsgd and that there is a supercritical pitch-

fork bifurcation of the fixed points at the critical parameter
g=gc. Let the von Neumann entropy S be the measure of
entanglement. Then Ssgd, the entanglement of the ground

state of Ĥsgd, is a maximum with respect to g at gqcsPd
where gqcsPd→gc in the classical limit.

IV. SUMMARY

We have illustrated how the entanglement in the ground
state of a simple coupled-tops model can be associated with
a bifurcation of the classical fixed points. Following this ob-
servation, we have argued why this result should be general-
izable to any quantum system with an appropriate classical
limit which exhibits a pitchfork bifurcation.

We have already found other instances where our conjec-
ture holds. In particular, for the Dicke model studied in Ref.
f34g. This system exhibits a QPT, which corresponds to the
bifurcation. This system is the subject of a future article f35g.

The classical bifurcation having a signature—namely, the
entanglement spike—in the quantum regime is not that sur-
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prising. Most classical characteristics arise in the quantum
regime, although the signature here, entanglement, is
uniquely quantum. Here we have a correspondence between
the classical and quantum in stationary states of the system.
Predominantly, quantum-classical correspondence has been
considered with respect to the dynamics, especially in the
case of chaotic systems sfor example, f36–40gd. The dynami-
cal generation of entanglement is argued to be related to the
underlying chaos in many-body systems—classical chaos
implies a greater degree of entanglement. The simple
coupled-tops system offers an excellent test bed for further
investigation into the relation between chaos and entangle-
ment due to its rich sclassicald dynamical structure.
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APPENDIX: SEMICLASSICAL LIMIT

To take the appropriate semiclassical limit we first con-

sider the correlation function between two operators X̂ , Ŷ,

kX̂,Ŷl = kX̂Ŷl − kX̂lkŶl , sA1d

also known as the covariance. In our case, all operators are
elements of the SUs2d group of total angular momentum op-
erators. The scaling of the covariance with respect to the
total angular momentum eigenvalue Îjsj+1d is

kX̂,Ŷl = O„Îjsj + 1d… , sA2d

i.e., the covariance is of order not exceeding j. Conversely,

both kX̂Ŷl and kX̂lkŶl are O(jsj+1d). Reexpressing Eq. sA1d
and dividing through by jsj+1d yields

kX̂Ŷl
jsj + 1d

=
kX̂l

Îjsj + 1d

kŶl
Îjsj + 1d

+ OS 1

Îjsj + 1d
D . sA3d

Taking the limit of j→`, meaning Îjsj+1d→ j, gives

kX̂Ŷl
j2 <

kX̂l
j

kŶl
j

. sA4d

Thus defining variables as the expectation values

Laa =
kĴaal

j
, sA5d

which are simply real numbers, allows the expectation values
of products of operators to be factorized in the semiclassical
limit. The semiclassical dynamics are then obtained from the
Heisenberg operator equations of motion by replacing the
operators in the above differential equation with these expec-
tation values. Similarly, the semiclassical Hamiltonian E is
obtained by taking the expectation value of the Hamiltonian,
scaling by 1/ j,

E =
kĤl

j
= Lx1 + Lx2 + mLz1Lz2. sA6d
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