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Quantum Entanglement and the Commumcatlon
Complexlty of the Inner Product Functlon

Richard Clevel* Wlm van Dam2 Michael N1elseu a.nd_ Alain Tapp**

-} University of Ca.lga.ry _
2 University of Oxford and CWI, Amsterdam?
* Los Ala.mos National Laboratory and University of New Mexxco
- * Umvers:t.e de Moatreai”

Ahstract We consider the commumcatlon complexity of the bmary in-
ner product function in & variation of the two-party scenario where the
parties have an @ priori supply of particles in an entangled quantum
state. We prove linear lower bounds for both exact protocols, as well as
. for protocols that determine the answer with bonnded-error probability.
" Qur proofs employ a navel kind of “quantum” reduction from multibit
communication problems to the problem of computing the inner prod-
uct. The commnunication required for the former problem can then be
bounded by an application of Holevo’s theorem. We also give a specific
example of a probabilistic scenario where entanglement reduces the com-
- munication complexity of the inner product function by one bit.

1 Introductlon and Summary of Results

~ The commumcatmn complezity of a function f {0 1}" x {0,1}* - {0 1} is
defined as the minimum amount of communication necessary among two parties,
. conventionally referred to as Alice and Bob, in order for, say, Alice to acquire
. the value of f(z,y), where, initially, Alice is given = and Bob is given y. This
. scenario was introduced by Yao [15] and has been widely studied (see [12] for a
survey). There are a number of technical choices in the model, such as: whether
the communication cost is taken as the worst-case (z,y), or the average-case
(2: ¥} with respect to some probablhty distribution; whether the protocols are
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deterministic or probabilistic (and, for probabilistic protocols, whether the par-
ties have independent random sources or a shared ra.ndom sou:ce], and, What
- correctness probability is required.
The communication complexity of the inner pmduct m.odulo two (IP) func-
tion .

1P(z,y) ='$1§1 + I+ Tayn mod2 | {1)

is fairly well understood in the above “classical” models. For worst-case inputs
and deterministic errorless protocols, the cornmunication complexity is n and, for -
randomized protocols (with either an independent or a shared random source),
umformly distributed or worst-case inputs, and with correctness proba.blllty s4+E
required; the communication complexity is n — O(log(1/¢)) [6] (seé also [12])

In 1993, Yao [16] introduced a variation of the above classical communica-

tion complexity scenarios, where the parties communicate with qubiis, rather
than with bits. Protocols in this model are at least as powerful as probabilistic
protocols with independent randoin sources. Kremer [11] showed that, in this
meodel, the commumcatlon comple:nty of IP is £2(n), whenever the required cor-
" rectness probability is = + € for a consta.nt € > 0 (Kremer attributes the proof -
‘methodology to Yao). ST - _ o
Cleve and Buhrman [7] (see also [5]) introduced ahother variation of the
classical communication complexity scenario that also involves quantum infor-
mation, but in a different way. In this model, Alice and Bob have an initial -
. supply of particles in an entangled quantum state, such as Finstein-Podolsky-
“Rosen (EPR) pairs, but the communication is still in terms of classical bits. They
~showed that the entanglement enables the communication for a specific problem’
to be reduced by one bit. Any protocol in Yao's qubit model can be simulated - '
by a protocol in' this entanglemeént model with at most a factor two increase
‘in comrmunication; each qubit can be “teleported” [3] by sending two classical
bits in conjunction with an EPR pair of entanglement. On the other hand, we -
are aware of no similar simulation of protocols in the entanglement model by
protocols in the qublt. model and, thus, the enta.nglement model is potentla.lly '
. stronger.

In this paper we consider the communication comple}aty of IP in two scenar-
ios: with prior entanglement and qubit commumca.tlon, and with prior entangle-
. ment and classical bit communication. As far as we know, the proof methodology

- of the lower bound in the qubit communication model without prior entangle-
. ment {11} does not carry over to either of these two models. Nevertheless, we
show £2{n} lower bounds in these models. '
To state our lower bounds more precisely, we introduce the followmg notation.
Let f : {0, 1}" % {0, 1}“ -+ {0, 1} be a communication problem. First, for the case
of ezact protocols (i.e, those where no error probability is permitted), let Q~(f)
and C*(f) denote the communication complexities in the respective settings of
‘qubit communication atid classical bit communication (the * superscripts are
intended to highlight the fact that prior entanglement is available). Second, for
" the case of bounded-error protocols, in which Alice acquires the correct answer .




with probability at least % -+ ¢, for. > 0, let QZ(f} and C:(f) detiote the
communication complexities in the respective settings of qubit communication
and classical bit communication. With this notation, our results are:

Q(IP) = [n/2] : : @
Qi{IPy 2 2'n - - . o {3)
.C'UP) =n : : . (4)
CX{IP) > 2¢*max(1,8¢%)n — L. (5}

Note that all the lower bounds are £2{r) whenever ¢ is held constant. Also, these
- results subsume the lower bounds in [11], since the qubit model defined by Yao
: [16] differs from the bounded-error qubit model deﬁned above only in that it
does not permit a prior entanglement.
- Our lower bound proofs employ a novel kind of “quantum” reductwn be-
. tween protocols, which reduces the problem of communicating, say, n- bits of
_information to the IP probl_em It is noteworthy that, in classical terms, there -
is'no such reduction between the two problems. The appropriate cost associated
" with communicating n bits is then lower-bounded by the followmg nonstandard
a.pphca.tlon of Holevo’s theorem : ;

Theorem 1: Suppose that Bob possesses n blts of information, and wants to
convey this information to Alice. Suppose that Alice and Bob possess an arbi-
- trary prior entanglement and qubit communication in either direction is allowed.
~ Then, regardless of the prior entanglement and qubit communication from Alice.
. to Bob, Bob must send at least [n/2] qubits to Alice. More generally, for Alice
" "to obtain m bits of mutual information with respect to Bob's n bits, Bob must
.- send at least {'m/2'| qubits to Alice.

- A shght generalization of Theorem lis descnbed and proven in the Append.lx.

~ Finally, with respect to the guestion of whether quantum entanglement can
ever be advantageous for protocols computing IP, we present a curious proba-
bilistic scenario with n = 2 where prior eni:a.nglement ena.bles one bit of commu-
'nlca.tlon to be saved. :

2 'Bbunds'-'for Exact _Qubii.: Protocols

In this section, we consider exact qubit protocols computing IP, and prove
Eq. {2}. Note that the upper bound follows from so-called “superdense cod-
ing” [4}: by sending [n/2] qubits in conjunction with [n/2] EPR pairs, Bob can
transmit his n classical bits of input to Alice, enabling her to evaluate IP. For
- the lower bound, we con31der an arbitrary exact qubit protocol that computes
- IP, and convert it (in two stages) to a protocol for which Theorem 1 applies.

‘For conveniencé, we use the following notation. If an m-qubit protocol con-
sists of m; qubits from Alice to Bob and ms qubits from Bob to Alice then we
. refer to the prot.ocol as an (ml,mz) qublt protoco]




2.1 Converting Exact Protocols into Clean Form

A clean protocol is a special kind-of qubit, protocol that follows the general spirit -
of the reversible programming paradigm in a quantum setting. Namely, one in
which all qubits in¢ur no net change, except for one, which contains the answer.

In g‘enera,l, the initial state of a qubit protocol is of the form '

lea 13!1)!0 O)lgsﬁB)th 1yﬂ>|0.. ’0}j 0 o (6)
A]mesqublts en® ° Bob’s qubits R

© . where i@A 3} is i:he state of the enta.ngled qublts shared by Alice and Bob; and the

|0,...,0) states can be regarded as “ancillas”. At each turn, a player performs
some transformation (which, without loss of generality, can be assumed to be
‘unitary) on all the qubits in hm/ her possession and then sends a suhset of these
qubits to the other player. Note that, due to the communication, the qubits
possessed by each player varies during the execution of the protocol.

We say that a protocol which exactly computes a function f(z, y) i3 clean 1f

" when executed on the u:nt.lal state

szl Ol amlgt o sdlOsens0) (7))
r_eéults in the final state _ _ ' '
IZ+f(:r,y))Iz1, .,xn)IO [%B)th-- ,yn)IO ' 50 0 (8)

- The “input”, the ancilla, and 1mt1al entangled qubits will typically change states
. during the execution of the protocol, but they are reset to i:helr mlttal values at
the end of the protocol.
_ It is straightforward to transform an exact (ml,mg} qubﬂ: prot.ocol into a
clean (m; + ma,m; + mp)-qubit protocol that computes the same function. To
reset the bits of the input, the ancilla, and the initial entanglement after the
. protocol is run once, the answer is recorded and then the protocol is run in
* the backwards direction to “undo the effects of the computation”. The answer is
recorded on a new qubit of Alice (with initial state |)) which is control-negated
(with the qubit of Alice that is in the state [f(z,y}) as the control qubit). Note
that, for each qubit that Alice sends to Bob when the protocol is run forwards,
Bob sends the qubit to Alice when run in the backwards direction. Running

the protocol backwards resets all the qubits—except Alice’s new one—to their .

original states. The result is an {m; + My, 71 + ma)- quhlt'. protocol that maps
state (7) to state (8). . :

2.2 Reduction_ from Comtm_mica_tion Pi‘ob_lems

We will now show how to transform a clean {my + mj,m; + ma)-qubit protocol
' that computes IP for inputs of size n, $0 an {my + my,m, +mz)-qubit protoéol o

that transmits n bxts of information from Bob to Alice. This is accompllshed in
_four sta.ges : :




L 'Ahce initializes her qubﬂ:s mdmated in Eq (7) with z =1 and :z:i ==

=0

. Alice performs a Hadamard transfm‘ma.tmn on each of her first n.+ { qubits.

" Alice and Bob execute the clean protocol for the inner product function.
Alice again performs a Hada.ma.ld transformation on each of her first n+ 1
qutbits.

L5

Let |A;} denote the state of Ahce 3 ﬁrst n + 1 qubits after the s“‘ stage. Then |

42 = 1o, 0 e
RTHE 7 > -1)" |a>|bl, S I (10)
o b1 eesbn e{o 1} : o o
|A_3} = _7_2}““ Z —1)%a + b1y1 9P oA op bnyn)fbl bn)
: : @by 4eeeyby E{O, 1}- . : ="
— _‘75%_1 Z )c+6:y1+ +bnyn 1‘:)!51 bn} : (11)
. .:61, ,.,e{(]l} o L .

“where, in Eq (11}, the substﬂ;utlon c=a+ blyl +-- +bnyn has been made (and
arithmetic over bits is taken mod 2). The above transformation was msplred by
 the reading of [13] on superfast quantum searching.
Since the above protocol conveys n bits of information (na.mely, yl, < s ln)
from Bob to Alice, by Theorem 1, we have m; + m3 > n/2. Since this protocol '

can be constructed from an arbitrary exact (ml, mgz )-qubit protocol for IP, thzs
estabhshes the lower bound of Eq. {2). - :

| .3 Lower Bounds for BOunded-Errdr Qubit Protocols

" In this section we consider bounded-error qublt protocols for IP, and prove

- Eq. {3). Asmme that some qubit protecol P computes IP correctly with prob-

ability 1 + =, where £ > 0. Since P is not exact, the constructions from the
‘previous section do not work exactly. We analyze the extent by which they err. .
_ First, the construction of Section 2.1 will not produce a protocol in clean

: form; however, it will resuit in a protocel which approzimates an exact clean -
" protocol (this type of constriuction was previously carried out in a different con- .
text by Bennett et al. [2]). ' :
Denote the initial state as

Bt 20 O BaB) s a0, 0),  (13)

' Also, assume that, in protecol P, Alice never changes the state of her input
- qubits |z1,...,2,) (so the first » qubits never change}. This is always possible,

- ‘since she can copy Zi,...,%, into hér ancilla qubits at the beginning. After .

. executing P until just before the measurement occurs, the sta.te of the qub:ts'
. must be of the form. - :

a|zl,...'. ,mn)]my)|J)+ ﬁ[z1,,mn)|&“"y‘}]K), {14)




where laf? > 2 +¢ and BP<i-cIn the above the n+41% qul:ut is the answer
qubit, z-y denotes the inner product of z and y, and T~ 7 denotes the negation
of this inner product. In general, o, 3, |7}, and |K} may depend on « and y.
" -Now, suppose that the procedure described in Section 2.1 for producing a
clean protocol in the exact case is carried out for P. Since, in general, the answer -
-qubit is not in the state |z - y)—or even in a pure basis state—this does not
produce the final state : _ :
2+ 2 g, )0, O} Eas s Y000 (15)
However, let us consider the state that is produced instead. After introducing
the new qubit, initialized in basis state |2), and applying P, the stateis
2 (edey,. o zadle - )Y + Bless. .2 )ETT y)IK} | (16}
Aftel applymg ‘the controlled NOT gate, the state is '

 afz+a- _y)l;m L zalz ) + Blz + TR, 2 TIIE)
 o=aetaegiley. . zale ) +Ble e yles o) [ETHIE)
—Blz + 2 Plr1s @) FTHE) + Blz + T ess ., 2 )FTHIK)
=lz+z -y (afer,... za)lz -y} + Blow,. .2 iTTKY)
+V38 (Glz +779) — Llz+2-9)) vz EBIK). (1)
Finally, af.'te.r. applying 'P:in reverse t6 this state, :t.he final stateis '
et g)lone s ma)0, 0 Basdlys, Ga)l0, -, 0) + VEB|May,s),
where - _ : o . .
Meye) = (Z5l2 4770 = gl +2-9)) Pllon,. 2T DIK).  (19)

Note that the vector v/28|M..,,.) is the difference between what an exact
protacol would produce {state (15)) and what is obtained by using the inexact
(probabilistic} protocol P (state (18)). There are some useful properties of the =
' !M,:,y'z) states. First, as = € {0,1}" varies, the states | M, , .} are orthonormal,
since |zy,...,Z,) is a factor in each such state (this is where the fact that Alice
. does not change her input qubits is used). Also, [M; yo) = —|Mz 1), since only
“the { v,.-|z +7g) — "7=[z + @ - y}) factor in each such state dependson z. =~

Call the a.bove protocol P. Now, apply the four stage reduction in Section
2.2, with Pin place of an exact clean protocol. The difference between the state
produced by using P and using an exact clean protocol first occurs after the
third stage and is : : :

A= Y - 1)2'\/§ﬁz|Mz,y-.z>

ES PP ‘z,‘,ZE{D 1}

. =‘,2L“+—1- Z \/_,Bm |M ,yB) IMZM))

Liam ,33&{0 1}

D T

T1aer '”nE{Oll}




' whu:h has magmtude bounded above by 2\/3—¢ = 1,,1"2 — 4¢, since, for ea.ch.

z € {01} |B* £ 5~ £, and the JM,, .0} states are orthenormal. Also, the
magnitude of this dzﬂ'erence does not change when the Hadamard transform in
the fourth stage is applied. Thus, t.he final state is within Euclldean dxstance

o2 —4 from _ _ _
Ly, - -,yn)iﬂ )l@AB}Iylw syad|0s. . 0) o (21)

o Consuier the a.ngle 8 between this final state and {21). Tt satisfies sin® @ + (1 —
cos8)? > 2 — 4e, from which it follows that cos@ > 2e. Therefore, if Alice
" 'measures her first n+1 qubxts in the sta.ndard basts, the prob&blhty of obtaining
[L,g1s. ... 4 ) is at least cos® § = 4&%.
Now, suppose that 1, . ,yn are umformly distributed. Then Fa.no 8 mequa.l—
ity (see, for example, [8}) unphec; that Alice’s measurement canses her uncertainty .
. about ¥1,... .Y, to drop from n bits to less than (1~ 4¢%)n + h(4e?) bits, where
hiz) = —zlogz — (1~ z) log(l — ) 18 the binary entropy function. Thus, the
“mutual information between the result of Alice's measurement and (yl, Yn)
is at least 4e’n — h(4e?) > 4<’n — 1 bits. By Theorem 1, the communication
from Bob to Alice is at least (4c2n — 1)/2 qubits, which establishes Eq. (3).

4 Lower Bbuhds for Bit Profocols

In this' sectmn, we consider exact a.nd bounded-érror bit protacols for IP a.nd
~ prove Eqgs. {4) and (5).

' ‘Recall that any m-qubit protocol can be simulated by a 2m-bit protocol using

teleportation [3] (employing EPR pairs of entanglement). Also, if the commu-

nication pattern in an m-bit protocol is such that an even number of bits is
~always sent during each party's turn then it.can be simulated by an m/ 2-qubig
protocol by superdense coding {4] (which also employs EPR pairs). However, this -
latter simulation technique cannot, in general, be applied directly, _especxa.lly for
protocols where the parties take turns sending single bits.

We can nevertheless obtain a slightly weaker simulation of bit protocols by
~ qubit protocols for IP that is sufficient for our purposes, The result is that, given

.any m-bit protocel for IP, (thatis, IP instances of size n), one can construct an
m-qubit protacol for IPa,. This is accomplished by interleaving two executions of
the bit protocol for IP,, to compute two independent instances of inner products

.of size n. We make two observations. First, by taking the sum {mod 2) of the two’

" results, one obtains an inner. product of size 2n. Second, due to the interleaving,

" an even number of bits is sent at each turn, so that the above superdense coding
technique can be applied, yielding a (2m)/2 = m-qubit protocol for IP3,. Now,
Eq. (2) implies m > n, which establishes the lower beund of Eq. {4) (and’ the
npper bound is t‘.rnna.l) _

If the sa.me technique is. apphed to a.ny m-bit protocoi computmg IP,, with
probablhty 2. + ¢, one obtains an m -qubit protocol that computes [Py, W'lth
probablhty (3 + R+(3-s =%+ 253 By Eq. (3] m > 2(2e? }2(211) -1=




. l.ﬁe"in— 1. For €< }, a better bound is obtained by-silnﬁly noting that C7 > Q- o
~ (since qublts can always be used in place of blts) s0, by Eq. (3), m > 2e%n — %,

* This estabhshes Eq. (5).

5 An etiies vl Prior Entanglement is Beneficial

‘Here we will show that in spite of the preceding results, it is still possible that a
protocol which uses prior entanglémené; outperforms all possible classical proto- -
‘cols. This improvement is done in the probabthstlé sense where we look at the -
number of communication bits required to reach a certain reliability th.reshold
for the IP function. This is done in the following setting. '
Both Alice and Bob have a 2 bit vector 125 and ylyg, for which they want’
to calculate the inner product modulo 2:

_f(?’ay)=3191+$2y2m0d2' R f22]_.

with a correctness-pr obabi}itjr of at lPast . It will be shown that with éntangle-
ment Alice and Bob can reach this ratio w1l:h 2 bits of cormmunication, whereas
‘without ent.anglement 3 bits are necessary to obtain this success- ratlo

5. 1 ' .A Two-Bit I;rotocdl With Prior Ehtanglement

. Initially Ahce a.nd Bob share a Jomt ra.ndom coin and an EPR hke pair of qublts.
: QA and @g:-

-state(QAQB) 7(|00>+z11>} Y

Wlth these attributes the protocol goes as follows. : : :

First Alice and Bob determine by 2 joint randem coin flip* who is going te be
.the ‘sender” and the ‘receiver’ in the protocol. {We continue the description of the
~ protocol by assuming that Alice is the sender and that Bob is the receiver.} After
this, Alice (the sender} applies the rotation A;, ., on her part of the entangled -
pair and measures this qubit @4 in the standard basis. The result m s of this
‘measurement is then sent to Bob (the receiver) who continues the protocol.

H Bob has the input string ‘00°, he knows with certainty that the outcome
of the function f(z,y) is zero and hence he concludes the protocol by sending
- the bit 0 to Alice. Otherwise, Bob performs the rotation B, ,, on his part of the
~ entangled pair Jp and measure it in the standard basis yielding the value mp.

Now Bob finishes the protocol by sending to Alice the bit m4 + mp mod 2. -
~ Using the rotations shown below and bearing in mind the randomization pro-
cess in the beginning of the protocol with the joint coin flip, this will be a protocol
that uses only 2 bits of classical communication and that gives the correct value

. ! Because a joint random coin flip can be simulated with an EPR-pair, we can also
"' assume that Alice and Bob start the protocol with two sha.red EPR-pa.lrs and no
- random t.mns : .




of flz,y) with a probablht.y of at least % for every poss{ble comblnamon of Ty To
_&nd H1yz.
The umtary transformations used by the sender in the protocol are

i)

Aan—- - e A =

- ml\/:\/; I 15+1 _1’6 '\/%- '

: Y N
e -V +iy/5s 5 ‘\/g
1 .

16‘{'1\}"&' \/_ _1'%. 3
‘whereas the receiver uses one af the three rotat.mn.s: . .
L 1,53y Iz N '
| | \/; —rtiym ) s ity |
Bor = 2 By = : ' ' -
- _L1_: {3 3 : 1,:./3 3 o
o \TI W —-\/; —z+i/5 \/; / (25)
B =} 0)
i The matrices were found by using an optumzatmn program that suggested cer-

tain numencal values. A closer exammatmn of these va.lues revea.led the above
a.na,lytlca.l expresglons :

- e

e

m
+
e

o

=

5 2 No Two-Bit Classical Probabilistic Profocol Exists

Take the proba.bmty dJstnbutmn 7 on the mput strings » and y, defined by:
. Difz=000r y =00
(2,9) = {Iiﬁx;eooandy;éeo (26)

It is easﬂy verified t:ha.t for this dlstnbutmn, every deterministic protocol with
only two bits of communication will have a correctness ratio of at most 7 . Using
' Theorem 3.20 of [12], this shows that every possible randomized protocol _wit_'h'
. the same amount of cbmnumicatlon will have a success ratic of at most Z. (It -
- can also be shown that this I bound is tight but we will omit that proof here )
~ This mphes that in order to reach the requested ratson of 4 ¢, of least three bits of
* communication are required if we are not allowed to use any prior entanglement.

5.3 Two Qubits Suffice Without Prior Entan_glemeﬁt

A similar result also holds for qubit protocols without prior entanglemént [16].
- This can be seen by the fact that after Alice applied the rotation A,,z, and




measnred her qubit Q4 with the result ma = 0, she knows the state of Bob's
qubit Q@ exactly. It is therefore also possible to envision a protocol where: the
‘parties assume the measurement outcome m4 = 0 (this can be done without
loss of generality), and for which Alice sunply sends this qubit @p to Bob, after
which Bob finishes the protocol in the same way as prescribed by the ° pnor
entanglement’-protocol. The protocol has thus become as follows.

. First Alice and Bob decide by a random joint coin flip who is going to be
the sender and the receiver in protocol. (Again we assume here that Alice is the
sender.) Next, Alice (the sender) sends a qubit 1Qz,2.) (according to the input
string z,2 of Ahce and the table 27) to the receiver Bob who. ('ontmues the
'protocol

 [Qw) = f{o—x\ﬂl N R \/'|o>+ \/_+1Dl1
Iy = /30y + (-/F+i/E) ) 1ew = \/_IO)—I\/_II

If Bob has the input string 31y, = {}0 he concludes the protocol by sendmg azero

_ bit to Alice. In the other case, Bob applies the rotation B,,y, to the received
qubit, measures the qubit in the standard basis, and sends this measurement
outcome to Alice as the answer of the protocol. By doing so, the same correctness- .
* probability of £ is reached for the IP function with two qubits of communication,
whereas the cla.ssma.l setting requires 3 bits of communication as shown above.
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Appendix: Capamty Results for Commumcatlon Using
Qublts

In thls appendlx we present results about the quantum resources recmu'ed to

transmit n classical bits between two parties, Alice and Bob. These results are -

used in the main text in the proof of the lower bound on the communication

- complexity of the inner product functlon The results | may also be of some mde- _
_ pendent interest, : '

'~ Theorem 2: Suppose tha.t Abce possesses 1 bits of information, and wants to
convey. this information to Bob. Suppose that Alice and Bob possess no prior
entanglement but qubit communication in either direction is allowed. Let nap
be the number ofqub:ts Alice sends to Bob, and npa the numb_er of qubits Bob
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. sends to Alice:(n Ap and npa are natural numbers). Then ‘Bob can acquire the
n bits lf and only if the foﬂowmg inequalities are sat:sﬁed ' :

_ nAB> [n/?] » . _ _'{28) -
naptnaazn. . (29)

More generally, Bob can acquire m bits of mutual information with respect to
Alice’s n bits if and only if the above equations hold with m substituted for ni.”

Note that Theorem 1 follows from Theorem 2 because, if the communication
from Bob to Alice is not counted then this can be used to set ‘up an arbitrary
entanglement at no cost., . :

Graphlcally, the ca.pa.(:lty region for the above communication problem looks '

" as shown in Figure 1. Note the difference with the classical result for communi-

cation with bits, where the capacity region is giver by the equations nap > n
and npq >0 - that i is, classma.lly, commumcatmn from Bob to Alice doesn t
help .

Capacity region

inf2l

nBa

. Flg 1. Capa.ctty region to- send n blts from Ahce ko Bob nag is the mzmbcr of qublts
* Aljce sends to Bob, and ng. is the number of qubits Bob sends to Allce The dashed
line mdica.tes the bottom of the classical capa.cnt.y reglon '

Proof of Theorem 2: Suppose nap and npy satisfy the constraints. We
assume that nap < n, since othefwi%e Alice encodes the n bits into n qubits in

the obvious way. Bob prepares n ~7iap > 0 EPR pairs and sends half of each

pair to Alice. Note that npa > 7—n4p, so this is possible with Bob’s resources.
Alice does superdense coding. {4] on the n —14p qubits, and sends them back to i
Bob, who can extract 2(n — nap) bits of information. Alice uses her remaining
allotment of n —(n. — nAB) = 2n4p — n-> 0 qubits to transmit 2rn4p — n bits

. of information in the obvmus way. The tota] mformamon tra.nsmltted is thus

2(n—nap)} + 2nap —n = n bits, as required. :
The proof that’ these bounds are the best possible is the more mterestmg
part The key idea is a szmple a.pphcatmn of Holevo s theorem [10} which we




. now teview. Suppose a classical information source produces a random variable
X. Depending on the value, z. of the random variable, a state p; of a quantum =

" system is prepared. Suppose a measurement is made on the quantum system in
an effort to determine the value of X. This measurement results in an outcome
Y. Holevo’s theorem states that the mutual information [ {X Y) between X
a.nci Yis bounded by the Holevo bound [20], '

I(X: Y<sm szsmz I )

. where p, are the probabilities the different values X may take, P =Y. Pupa, and
§{(-) is the von Neumann entropy function. The quantity on the right hand side of
the Holevo bound is known as the Holevo chi quantity, x = S(p} — ¥, p=5{pz}.

" The Holevo bound tells us that the amount of information about X that may be
deduced by observing px is bounded above by x, and it is this fact that we use to
prove our lower bounds. A key fact about the Holevo qua.ntlt.y conicerns the case
of a quantum system with twe component A and B. Schumacher, Westmoreland

- and Wootters [14] have shown that if we consider the x quantity associated with

A, xa = 8(pa)— 2, p=5(pza), where pa = trp{p) and paa = trp(ps) are the

. states which result when system B is traced out, then x4 < x. In the light of the

Holevo bound this result is intuitively plausible, since if we make a measurement

on.system A4 alone, then we would expect to get no more information about X

- than we would if we could 'fneasure the entire quantum system, AB.

_ Without loss of generality we may- suppose that the quantum protocol for

‘the problem under consideration consists of unitary operations performed alter-

nately by Alice and Bob, 1nterspersed with the commuinication of qubits from

Alice to Bob or Bob to Alice. One might imagine that measurements could be
performed in addition to unitary operations, however the effect of any measure-
ments may be simulated using standard techniques by adding ancilla qubits to
the description of Alice or Bob’s. system. The final step of the protocol consists
. of a measurement performed by Bob, which has outcome Y. We aim to bound
- the mutual information I{X : Y), where X is Alice’s classical data, consisting
_ of n bits In order that the protocol be reliable, it must be possible to have

I{X :Y) = n, in the case when Alu:e s classical data is uniformly distributed.
One final convenience is to assume that initiaily Alice and Bob both start witha
system in a standard pure state. It is possible that the protocol starts with either =
Alice or Bob having a mixed state, however any such protocol can be simulated

" without extra cost using a purification of the mixed state. -

. Generically, at any stage of the protocol we will use the notation p, to denote
- the state of Bob’s system, given that Alice’s input data was . We will also use
the generic notation p = ¥ pop. and x = S(p) ~ Y., pzpe. We will study the
behavior of Bob's x quantity under the different actiens which Alice and Bob
may perform. We denote by Xo. Bob's initial ¥ quantity, and by xr, Bob’s final . -
'x quantity. pr denotes p upon conclusmn of the protocol, unmedia.tely before
the final measurement.
Note first that Bob’s sta.te pr after zero munds of commumcatlon cannot
' depend on z, and thus Xo = 0. Com1der the fo]Iowmg observatmns about how




- Bob's x changes. To reduce notational clutter, we will nse the notation pr to
denote the state of Bob's system before each of the followmg processes, and pf
to denote the state of Bob’s syqtem after each of the foilomng processes, Similar
cmwentmns are used for p, p', X and x’ ' .

l Suppose Ahce perfarms a umtary operatlon on her syst.em Then Ax

' AS(p) = O for this process, since the states Pa of Bob's system do not
~ change during the Process.

2. Suppose Bob performs a unitary operatmn on his system It is easy to verify
' that Ax = AS(p) = 0 for this process, from the umta.ry Invariance cf the
. entropy. :

3. Suppose Alice sends a qubit to Bob. Let @ denote the qublt and B Bob’
- guantum system before the qubit was sent, so (B is Bob's system after the

qubit has arrived. For an arbitrary state of QB we have the subadditivity
- inequality $(Q, B) < S(Q) + S(B) <14+ 5(B), as S(Q) < 1. Thus $(p) <

S(p)+1. Also for an arbitrary state of @B we have the Araki-Lieb inequality

[1] 5(Q,B) > S(B)— S(Q) > S(B) -1, from which we deduce that S{pl, ) >
' (pz)—l Thus =~ =

x'-—-S(p Zp, pz)<s sz pz}+2 '(31} :

. Thatis, Ay <2 for thIS process Note also that AS(p) <1 for th1s pmcess

. 4. Suppose Bob sends a qubit to Alice. Then p,c = trg{pz), where @ is the
qubit sent'to Alice. As we noted above, X’ < ¥, so Ax < 0 for this process. .
Note also that AS (p) <1 for th1s process, by the Araki-Lieb mequahty f1l.

' Comblmng the observations about Ay for these processes we fmd that A x for
" the entire communication protocol must satisfy Ay < napx 2+n3,1 x0=2nap.
But x(0) =0;s0 xr < 2n45. Suppose Bob makes a measurement on his system,
- with outcome Y, and tries to infer the value of X from that measurement. Then
Holevo’s theorem tells us that I{X : Y) < xr < 2n45. But in order that Alice
- be able to reha.bly transmit her n bits of information to Bob, we must have
HX . Y} = n. Thus n < 2n,m, and’ smce nag is an mteger, we must have
nap < [n/2)], as we set out to prove.
~ Furthermore, notmg that x < §{p} and S(p) = 0 initially, we can combine
the above observations about AS(p) to see that xp < S(pr) < nap + npa.
Holevo’s theorem therefore implies that » < nap +npa if Alice is to reliably
- transmit n blts of classical mforma.tmn to Bob. QED




