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E-mail: dehesa@ugr.es, koga@mmm.muroran-it.ac.jp, ryanez@ugr.es, arplastino@ugr.es and
esquivel@xanum.uam.mx

Received 13 September 2011, in final form 16 November 2011
Published 15 December 2011
Online at stacks.iop.org/JPhysB/45/015504

Abstract
We compute the entanglement of the ground state and several singlet and triplet excited states
of the helium atom using high-quality, state-of-the-art wavefunctions. The behaviour of the
entanglement of the helium eigenstates is similar to that observed in some exactly soluble
two-electron systems. In particular, the amount of entanglement exhibited by the eigenstates
tends to increase with energy.

1. Introduction

The exploration of the information-theoretic features exhibited
by atomic systems has been the focus of a considerable
research activity in recent years [1–24]. In this vein,
several researchers have investigated the phenomenon of
quantum entanglement in atomic physics [12–24]. Quantum
entanglement is one of the most fundamental aspects of the
quantum mechanical description of nature [25]. Besides its
well-known role within new information technologies [26],
quantum entanglement is beginning to be regarded as a basic
ingredient in the characterization of the structural properties of
composite quantum systems. In this sense, it is of great interest
to analyse the entanglement properties of atoms. Most studies
on entanglement in atoms have so far considered special model
systems, or have been restricted to ground state computations.
It is clearly desirable to extend these investigations to other
scenarios, especially to the excited states of naturally occurring
atomic systems. In this regard, the helium atom enjoys an
important place, both from the conceptual and practical points
of view. It constitutes one of the simplest non-trivial (real)
composite quantum systems and it has played a distinguished
role in the historical development of quantum theory
[27, 28]. The purpose of the present effort is to calculate
the amount of entanglement of the ground state and of the first
few excited states of helium employing high-quality, state-of-
the-art wavefunctions.

The paper is organized as follows. In section 2, we briefly
review the concept of entanglement in systems consisting of

identical fermions. The technical details of the calculations
performed in this work are given in section 3. In section 4,
we describe our main results. Finally, some conclusions are
drawn in section 5.

2. Entanglement in systems of identical fermions

Quantum entanglement in systems consisting of N identical
fermions has attracted considerable attention in recent years
[29–37]. The entanglement features of a variety of systems
constituted by identical fermions have been investigated. For
example we can mention the entanglement in two-electron
atomic models [12] and the entanglement between pairs of
electrons in conducting bands [33], among many others.

A pure state of a system consisting of N identical fermions
is separable (that is to say, non-entangled) if it can be
written as a single Slater determinant det{|1i, |2i, . . . , |Ni}
constructed with N normalized and orthogonal single-particle
states {|ii, i = 1, . . . , N}. N-fermion states that can be
represented in this way are said to have a Slater rank equal
to 1. Pure states of N identical fermions that do not
admit such a representation are entangled. This means that
the minimum correlations between the particles imposed by
the antisymmetry of the fermionic state do not contribute to the
state’s amount of entanglement. Therefore, the entanglement
exhibited by an N-fermion state corresponds to the quantum
correlations that the state has on top of those minimum ones.
There are profound physical reasons behind this notion of
fermionic entanglement (see [29, 30]).
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Let |8i be a pure state of N identical fermions. The
single-particle reduced density matrix obtained after taking
the trace over N − 1 particles is ρ1 = Tr2,3,...,N (|8ih8|). The
linear entropy of ρ1, given by SL(ρ1) = 1 − Tr(ρ2

1), leads
to a practical quantitative measure ξ [|8i] for the amount of
entanglement of the state |8i, namely

ξ [|8i] = N

·
SL(ρ1) −

µ
N − 1

N

¶¸
. (1)

The entanglement measure (1) is a non-negative quantity that
vanishes if and only if the state |8i has Slater rank 1 and is
therefore separable. The constant term appearing within the
square brackets in (1) takes into account the fact that even for
separable (pure) states (represented by a Slater determinant),
the linear entropy of the single-particle density matrix does not
vanish and is equal to N−1

N
. The overall multiplicative factor N

normalizes the entanglement measure to the range [0, 1]. In the
spacial case of systems of two identical fermions (N = 2), the
measure (1) can be related to the Schmidt decomposition. The
measure (1) has been applied to several problems, particularly
in connection with two-fermion systems (a recent discussion
on the theoretical foundations of the measure (1) can be found
in [37]).

Let us now apply the above measure to the particular case
of a system consisting of two spin- 1

2 fermions (that is, we have
N = 2). In the present context, it will be sufficient to consider
states described by wavefunctions of the type

8 = 9(Er1, Er2) χ(σ1, σ2), (2)

where the global wavefunction 8 is factorized as the product of
a coordinate wavefunction 9(Er1, Er2) and a spin wavefunction
χ(σ1, σ2), where Er1 and Er2 denote the vector positions of
the two electrons. The density matrix associated with a
wavefunction of the type (2) is given by

ρ = ρ(coord.) ⊗ ρ(spin), (3)

where the matrix elements of ρ(coord.) are

hEr 0
1 , Er 0

2 |ρ(coord.)|Er1, Er2i = 9(Er 0
1 , Er 0

2 )9∗(Er1, Er2). (4)

When evaluating the entanglement measure (1) on a state
described by the wavefunction (2) (or the density matrix (3)),
one obtains

ξ [|8i] = 1 − 2 Tr
£¡

ρ
(coord.)
1

¢2¤
Tr

£¡
ρ

(spin)

1

¢2¤
, (5)

where ρ
(coord.)
1 and ρ

(spin)

1 denote the marginal density matrices
respectively obtained after computing the partial traces of the
matrices ρ(coord.) and ρ(spin) over the degrees of freedom of one
of the two particles. It is clear that the entanglement between
the two fermions (electrons) given by (5) involves both the
translational and spin degrees of freedom of the electrons.
To evaluate the entanglement measure (5), it is convenient to
discuss separately the cases of a spin wavefunction describing
parallel spins or antiparallel spins. When the spins are
parallel (that is, the coordinate wavefunction is antisymmetric
and the spin wavefunction is either χ++ or χ−−), we have
Tr

£¡
ρ

(spin)

1

¢2¤ = 1. In this case, the measure (1) reduces to

ξ [|8i] = 1 − 2
Z

|hEr 0
1 |ρ(coord.)

1 |Er1i|2 dEr 0
1 dEr1. (6)

In the case of anti-parallel spins we have two alternative
situations. On one hand, we have a symmetric coordinate
wavefunction and the spin wavefunction 1√

2
(χ+− − χ−+).

Alternatively, the coordinate wavefunction is antisymmetric
and the spin wavefunction is 1√

2
(χ+− + χ−+). In either case

we have Tr
£¡

ρ
(spin)

1

¢2¤ = 1
2 , and the amount of entanglement

is given by

ξ [|8i] = 1 −
Z

|hEr 0
1 |ρ(coord.)

1 |Er1i|2 dEr 0
1 dEr1. (7)

In equations (6) and (7), we have

hEr 0
1 |ρ(coord.)

1 |Er1i =
Z ∞

−∞
9(Er 0

1 , Er2)9
∗(Er1, Er2) dEr2. (8)

It is worth stressing that a two-electron state with a
wavefunction of the form

1√
2

[ψ1(Er1)ψ2(Er2) − ψ2(Er1)ψ1(Er2)]χkk, k = ±, (9)

with ψ1(Er) and ψ2(Er) being orthogonal, normalized single-
particle (coordinate) wavefunctions (corresponding a Slater
determinant), has no entanglement (that is, it describes
a separable fermion state). This example illustrates an
essential point already mentioned: the correlations between
two fermions that are entirely due to the anti-symmetry
requirement on the fermionic state do not contribute to the
entanglement of the state.

3. Kinoshita wavefunctions: description

In this paper, we use the Kinoshita-type wavefunctions
described in [38]. The wavefunctions have the form

9N(s, u, t) = exp(−ζ s)

NX
i=1

cis
li/2

µ
t

u

¶mi ³u

s

´ni/2
, (10)

where (s, u, t) are the Hylleraas coordinates [39]

s = kEr1k + kEr2k , s ∈ [0, +∞[

u = kEr1 − Er2k , u ∈ [0, s] (11)

t = kEr1k − kEr2k , t ∈ [−u, u],

and the exponents (li , mi, ni) are non-negative integers. In the
determination of the wavefunction, for fixed N, optimization
with respect to the exponents (li , mi, ni), the expansion
coefficients ci and the exponential exponents ζ is performed.
The use of half-integer exponents in the Kinoshita expansion,
instead of integer exponents, was found to dramatically
improve the quality of the Kinoshita wavefunctions for two-
electron atoms. The detailed comparisons were given in [38].
It is also described in [38] how the optimizations of exponents
were performed.

In the evaluation of the corresponding integrals, we have
taken into account that the corresponding volume element for
this coordinate system is dv = π2u(s2 − t2)du ds dt , being the

2
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normalization of the wavefunction

d2 =
Z ∞

0
ds

Z s

0
du

Z +u

−u

dt (9N(s, u, t))2

= π2
NX

i,j=1

cicj ζ
−6− li +lj

2 2−4− li +lj

2

× (1 + (−1)mi+mj )(12 + 2mi + 2mj + ni + nj )0
¡ 12+li+lj

2

¢
(1 + mi + mj)(3 + mi + mj)(6 + ni + nj )(10 + ni + nj )

.

(12)

4. Entanglement in helium

To evaluate the entanglement for the helium wavefunction, we
need to compute Tr[(ρ(coord.)

1 )2], which is tantamount to the
evaluation of the 12-dimensional definite integral,

Tr
£¡

ρ
(coord.)
1

¢2¤
=

Z
R6

¯̄
ρ

(coord.)
1 ( Er1

0
, Er1)

¯̄2
d Er1

0d Er1

=
Z

R6

¯̄
¯̄Z

R3
9( Er1

0
, Er2)9

∗( Er1, Er2)d Er2

¯̄
¯̄2

d Er1
0d Er1

=
Z

R12
9( Er1

0
, Er2)9

∗( Er1, Er2)9
∗( Er1

0
, Er2

0
)9( Er1, Er2

0
)

× d Er1
0d Er1d Er2

0d Er2. (13)

To perform this computation, we have used the Vegas routine
in the CUBA library [40, 41], version 2.1 [42], for Monte Carlo
multidimensional numerical integration. It uses importance
sampling for variance reduction [43].

The results obtained for the amount of entanglement
exhibited by the available helium ground and excited states,
both singlet and triplet, are summarized in table 1 and
in figures 1–3. In the concomitant calculations, we used
Kinoshita wavefunctions with N = 100 terms, keeping an
accuracy which was shown to be high enough to determine
accurate entanglement values (more on this below). In
our study, we stop at the 5s excited state because to
obtain Kinoshita wavefunctions becomes computationally too
demanding as we go to higher excited states. In table 1,
we provide the amounts of entanglement and the energies
corresponding to several singlet and triplet states of helium.
In figure 1, we depict the amount of entanglement against the
energy of the singlet states considered in this work. A similar
plot is given in figure 2 for the case of triplet states.

As already mentioned, we have performed our
computations employing Kinoshita-type wavefunctions with
N = 100 terms, because they are the highest quality
helium eigenfunctions available to date. To illustrate the
fact that this number of terms is large enough to compute
appropriately the entanglement of the helium wavefunctions,
we provide in table 2 the entanglement ξ of the ground
state of helium, computed via Monte Carlo integration
using Kinoshita wavefunctions with different numbers of
terms. Note that, from N = 20 terms on, the numerically
computed entanglement (estimated error included) stays
basically constant.

Figure 1. Entanglement against energy for singlet states of helium.
Energy is given in hartrees and entanglement is a dimensionless
quantity.

Figure 2. Entanglement against energy for triplet states of helium.
Energy is given in hartrees and entanglement is a dimensionless
quantity. The triplet states represented correspond to the Sz = 0
case with anti-parallel spins.

The entanglement of the singlet and triplet states of helium
is depicted against energy in figures 1 and 2, respectively. A
similar plot representing both singlet and triplet states together
is given in figure 3. It can be observed in figures 1–3
that the amount of entanglement associated with helium
eigenstates tends to increase with energy. That is, higher
excited states tend to exhibit more entanglement. This trend
is compatible with the entanglement behaviour observed in
exactly soluble two-fermion models such as the Moshinsky
one [18]. Although the results depicted in figure 2 seem
compatible with an approximate linear relation between
entanglement and energy for triplet states, one must bear
in mind that the data available correspond only to a limited
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Table 1. Entanglement and energies of helium eigenstates.
Entanglement is dimensionless and energy is given in hartrees.

State Energy Entanglement

Singlet 1s −2.903 724 377 0.015 914 ± 0.000 044
Singlet 2s −2.145 974 046 0.488 66 ± 0.000 30
Singlet 3s −2.061 271 954 0.498 57 ± 0.000 97
Singlet 4s −2.033 586 653 0.498 92 ± 0.000 52
Singlet 5s −2.021 176 531 0.4993 ± 0.0019
Triplet 2s −2.175 229 378 0.477 78 ± 0.000 27
Triplet 3s −2.068 689 045 0.49342 ± 0.000 45
Triplet 4s −2.036 512 038 0.497 46 ± 0.000 55
Triplet 5s −2.022 618 670 0.499 55 ± 0.000 98

Table 2. Entanglement and energy of the ground state of helium
computed with Kinoshita wavefunctions having different numbers N
of terms. Entanglement is dimensionless and energy is given in
hartrees.

N Energy Entanglement

5 −2.903 569 904 0.016 295 ± 0.000 068
10 −2.903 721 712 0.015 956 ± 0.000 075
20 −2.903 724 228 0.015 915 ± 0.000 044
30 −2.903 724 361 0.015 915 ± 0.000 044
50 −2.903 724 376 0.015 914 ± 0.000 044

100 −2.903 724 377 0.015 914 ± 0.000 044

Figure 3. Entanglement against energy for both singlet and triplet
states of helium. Energy is given in hartrees and entanglement is a
dimensionless quantity.

number of states and the errors of the entanglement values
make them also compatible with a more general, nonlinear
relation with energy.

The present results concerning the entanglement
properties of helium have some similarities with the
entanglement-related features of some exactly soluble models
such as the Moshinsky, Crandall and Hooke models [18, 19].
These models comprise two interacting spin- 1

2 fermions in
an external confining potential. In the alluded exactly
soluble models the confining potential is harmonic, while

in helium the confining potential is given by the Coulomb
electrostatic potential due to the atomic nucleus. In the
Moshinsky model the interaction between the particles is
harmonic; in the Crandall model, the interaction is given by
a −1/r2 potential function, while in the Hooke atom the
interaction is the standard −1/r Coulomb interaction. It
is remarkable that, in spite of the great differences between
these models, their entanglement-related features have some
qualitative similarities that are also shared by helium. Two of
the main trends observed in these models are the following.

(i) The entanglement of the eigenstates tends to increase
when the interaction strength becomes more important
compared with the strength of the confining potential.
That is, entanglement increases with the interaction
strength, for a given strength of the confining potential or,
alternatively, entanglement decreases with the strength
of the confining potential, for a given strength of the
interaction.

(ii) Entanglement tends to increase with the energy of the
system’s eigenstates.

Due to the great differences between helium and the
models previously mentioned, a quantitative comparison
between the entanglement features of helium and those
exhibited by the exactly soluble models is not feasible.
However, a qualitative comparison between these systems is
indeed quite illuminating.

Let us first consider the first one of the trends listed
above. In the case of helium, the strength of the interaction,
corresponding to the electrostatic repulsion between the
electrons, is fixed. However, it is of interest to consider helium-
like atoms with different values of the nuclear charge Z. Larger
values of Z correspond to situations where the interaction
strength becomes weaker as compared with the confining
potential. On the basis of the behaviour of Moshinsky’s and
other models, one should expect entanglement in helium-like
atomic systems to decrease with Z. This is precisely what was
observed in [19], where the entanglement of the ground state
of helium-like atoms was computed for different values of the
nuclear charge Z.

Concerning the second trend (ii), the results reported
in this work indicate that helium does indeed behave in the
same qualitative way as the exactly soluble models studied
previously: entanglement tends to increase with energy.
Helium, however, exhibits some interesting peculiarities. In
the case of the models of Moshinsky and Crandall, as well
as in the case of the Hooke atom, the entanglement measure
ξ [|8i] of the system’s eigenstates |8i (given by equation (1))
approaches its maximum possible value ξ = 1 as one considers
eigenstates of increasing energy. In this respect helium is
different: the entanglement of the eigenstates of helium (for
both the singlet and the triplet states) seems to saturate at ξ =
1/2. This difference may be due to the form of the confining
potential: all of the two-fermion models mentioned have a
harmonic confining potential, while the confining potential in
helium is the Coulomb potential proportional to −1/r . The
excited states of helium studied here can be approximately
described as consisting of two electrons in a hydrogen-like

4
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Coulomb potential (with an appropriate nuclear charge). One
of the electrons is in the corresponding hydrogenic ground
state, while the other is in an excited s-state with principal
quantum number n > 1. Now, the higher the excitation of the
helium state considered, the better is this independent-particle
description. This approximate description improves because
the average distance between the electrons becomes larger and,
consequently, the Coulomb interaction between them becomes
less important. Therefore, higher excited states approach the
form

1√
2
[9100(r1)9n00(r2) ± 9n00(r1)9100(r2)] 1√

2
[χ+− ∓ χ−+],

(14)

where 9nlm(r) are the standard hydrogenic eigenfunctions and
1√
2
[χ+− ∓ χ−+] are (in self-explanatory notation) the spin

wavefunctions. The upper signs in (14) correspond to the
singlet states and the lower signs to the triplet states (the
triplet states represented in figures 2 and 3 correspond to
the Sz = 0 case with anti-parallel spins). In summary, as
one considers higher excited states their entanglement tends
to the entanglement of the states (14), which is ξ = 1

2 . In
previously studied models like the Moshinsky atom, with a
harmonic confining potential, the situation is different because
this potential is much more ‘confining’ than the Coulomb one,
and the interaction term does not become negligible as one
considers states of higher energy.

5. Conclusions

We have computed the amount of entanglement exhibited
by the ground state and several singlet and triplet excited
states of the helium atom using high-quality, state-of-the-
art wavefunctions of the Kinoshita type. We found that the
behaviour of the entanglement of the eigenstates of helium is
consistent with that observed in the case of previously studied
exactly soluble two-electron systems such as the Moshinsky
model, the Crandall system and the Hooke atom. In particular,
the amount of entanglement exhibited by the eigenstates tends
to increase with energy. The present calculations therefore
provide further evidence suggesting that this behaviour is
universal in two-electron systems. It would be interesting
to extend this investigation to atoms with more than two
electrons. Any further results along these lines will be very
welcome.
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