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Quantum error correction was invented to allow for fault-tolerant quantum computation. Systems with

topological order turned out to give a natural physical realization of quantum error correcting codes

(QECC) in their ground spaces. More recently, in the context of the anti-de Sitter/conformal field theory

correspondence, it has been argued that eigenstates of CFTs with a holographic dual should also form

QECCs. These two examples raise the question of how generally eigenstates of many-body models form

quantum codes. In this Letter we establish new connections between quantum chaos and translation

invariance in many-body spin systems, on one hand, and approximate quantum error correcting codes

(AQECC), on the other hand. We first observe that quantum chaotic systems obeying the eigenstate

thermalization hypothesis have eigenstates forming approximate quantum error-correcting codes. Then we

show that AQECC can be obtained probabilistically from translation-invariant energy eigenstates of every

translation-invariant spin chain, including integrable models. Applying this result to 1D classical systems,

we describe a method for using local symmetries to construct parent Hamiltonians that embed these codes

into the low-energy subspace of gapless 1D quantum spin chains. As explicit examples we obtain local

AQECC in the ground space of the 1D ferromagnetic Heisenberg model and the Motzkin spin chain model

with periodic boundary conditions, thereby yielding nonstabilizer codes in the ground space and low

energy subspace of physically plausible 1D gapless models.

DOI: 10.1103/PhysRevLett.123.110502

Introduction.—Quantum error correcting codes (QECC)

were originally designed for fault-tolerant quantum com-

putation [1]. The idea is to cleverly encode the quantum

information into entangled states in a way that the infor-

mation is inaccessible locally. At first sight, it may seem the

conditions for quantum error correction are very different

from everything we have normally in nature, and that it

would take very special engineered quantum systems to

realize it. This intuition turned out to be wrong; QECCs

appear naturally in the ground space of topological ordered

systems [2]. This connection has lead to many insights both

in the study of quantum error correction [3,4] and of

topological order [5,6] in the past 20 years.

In a different direction, in recent years there have been

ongoing efforts of connecting the holographic correspon-

dence to quantum error correction. In the anti–de Sitter

(AdS)/conformal field theory (CFT) correspondence [7,8],

it has been understood to a certain degree that, bulk local

operators in AdS are dual to nonlocal operators on the

boundary CFT [9]. Quantum error correction has recently

been used [10] for explaining seemingly puzzling facts

about this correspondence. It was argued that bulk local

operators, reconstructed on the boundary, should commute

with boundary local operators only within a certain sub-

space of the full boundary CFT Hilbert space. Interpreting

this subspace as the code subspace of an error correcting

code not only clears the apparent puzzles but also gives a

new information-theoretic perspective to the AdS=CFT
correspondence. Since then quantum error correction has

served as a guiding feature for the application of tools from

quantum information to the challenge of constructing

explicit realizations of AdS=CFT duality [11–13].

Understanding holographic codes from the perspective of

the CFT continues to be a major open challenge [14,15].

In this Letter, we explore one-dimensional physical

systems through the lens of AQECC. Guided by the codes

found in the ground space of topologically ordered gapped

Hamiltonians and the expectation of good codes in eigens-

paces of certain CFTs (motivated by AdS=CFT correspon-

dence), we ask what other physical conditions lead to good

quantum codes. First we observe a connection between

quantum chaos and quantum error correction, pointing out

that the eigenstate thermalization hypothesis (ETH) [16]

can be interpreted as saying that eigenstates with close-by

energies form an AQECC. This observation supports the

QECC view of the AdS=CFT correspondence, as the CFTs

considered there are expected to be chaotic. Then we show

that merely translation-invariance of the Hamiltonian

already implies that most (translation-invariant) eigenstates

in a subextensive energy window of finite energy density
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form AQECCs. This general result also applies to inte-

grable models and even to noninteracting Hamiltonians.

In some of these cases we show that it is possible to use

local symmetries of the states to generate an interacting

Hamiltonian that embeds the finite energy eigenstates (i.e.,

the codespace) of the noninteracting Hamiltonian into the

ground space or low-lying energy subspace of gapless 1D

quantum systems. As examples we show how this pro-

cedure can give rise to the Heisenberg andMotzkin models.

For these systems we confirm the AQECC performance of

the low energy eigenspace by direct calculations, thereby

showing that nonstabilizer codes can appear at low energy

in physically plausible 1D models. The precise statements

about the distance, the dimension of the codespace and the

scaling of the error of the AQECC, are given for each case.

Approximate QECC.—We start with a brief description

of the features of approximate quantum error correction.

For exact quantum error correction, Knill and Laflamme

gave a convenient set of necessary and sufficient conditions

for a code being able to correct a noisy channel [17].

Similar conditions for the approximate case were found by

Beny and Oreshkov [18], which we now review. We

consider N qubits arranged in a line and assume that errors

are local. We say that a subspace C of a 2N-dimensional

vector space is a ½½N; k; d; ε�� approximate quantum error

correction code (AQECC) if dimðCÞ ¼ 2k and for every

channelN acting on at most d consecutive qubits, we have

min
jψi∈C⊗2

max
D

hψ jðD∘N ⊗ IÞðjψihψ jÞjψi ≥ 1 − ε; ð1Þ

where the maximum is over decoding channels D, and the

minimum is over pure entangled states acting on C and a

reference system (we denote the tensor product space of C

and the reference by C⊗2 above). In other words, this

condition states that one can correct, up to error ε, the effect

of local noise on at most d qubits. If Eq. (1) only works for

a particular N , we say the code is ε-correctable under N .

In this Letter we find it convenient to consider

a set of codewords that span the code space, C ¼
spanðfjψ1i;…; jψ2kigÞ ⊂ C

2N , and show that these code-

words satisfy an approximate version of the Knill-

Laflamme conditions,

hψ ijEjψ ji ¼ CEδij þ εij: ð2Þ

Corollary 5 of the Supplemental Material [19] shows that if

this condition is satisfied, then the error of the code as

defined in Eq. (1) can be bounded as ε ≤ 2dþ2kmaxi;jε
1=2
ij

using [20]. For many-body systems with N sites, it is

natural to seek ε ≤ OðN−cÞ so that the probability of

recovering the logical state converges to 1 quickly with

increasing system size.

AQECC from ETH.—The ETH states that thermalization

in a quantum system takes place already on the level of

eigenstates. Given the Hamiltonian H ¼ P

kEkjEkihEkj,
with jEki being energy eigenstates with eigenvalue Ek

(ordered as E1 ≤ E2 ≤;…), Srednicki proposed the follow-

ing version of ETH [16]: there are constants c1, c2 > 0 such

that for every El, Ek in the bulk of the spectrum and for any

local observable O,

jhEljOjEli − hElþ1jOjElþ1ij ≤ expð−c1NÞ; ð3Þ

and

jhEkjOjElij ≤ expð−c2NÞ: ð4Þ

Indeed Eq. (3) tells us that the energy eigenstates around

Ē are locally indistinguishable from each other, and there-

fore also from the thermal state of the same energy. They

ensure that the long-time average of any local observable is

thermal. Equation (4), in turn, guarantees that the fluctua-

tions around the long-time average is small. Comparing the

ETH condition Eq. (3) to the AQECC condition Eq. (2), we

observe that ETH implies that any region of the spectrum

with finite energy density have eigenstates forming

approximate error correcting codes.

Note that the distance of the code is given by the range of

locality for which ETH holds in the system. This is

expected to vary depending on the model, and can be as

large as a constant fraction of the size of the system [21].

From Eq. (2) and Corollary 5 of the Supplemental Material

[19], we find that the codes have constant rate, i.e.,

k ¼ ΩðNÞ, and exponentially small error. Note that, these

are very good codes for highly chaotic systems in which

ETH holds for d-local observables with d ¼ ΩðNÞ.
However, a major drawback is that the codewords are

exponentially close to each other in energy; hence it is not

clear at all if the Hamiltonian can help with encoding and

decoding. One way forward is to split the codewords in

energy by sacrificing either the dimension of the codespace

or the error of the code. We leave to future work to

investigate whether the locality of the Hamiltonian leads to

good ways of encoding and decoding in this case.

Notice that ETH codes introduced above are somewhat

analogous to random subspace codes (in terms of the

parameters achieved) [22]. This is no coincidence. One of

the ways of understanding quantum chaos is that apart from

a few conserved quantities (e.g., energy), the physics of the

model mimics the one of a fully random system. Here we

give a coding perspective of this view.

An important application of the observation is in con-

nection to the recent proposal of interpreting some aspects

of the AdS=CFT correspondence as an error correcting

encoding of the AdS bulk into the boundary CFT [10]. It is

expected that holographic CFTs are chaotic and thus satisfy

ETH [23]. Therefore our observation provides considerable

evidence in favor of the proposal in Ref. [10]. However,

ETH is a claim about eigenstates with finite energy density,
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whereas the error correcting properties of eigenstates of

holographic CFTs are expected to hold beyond that, e.g.,

even at zero energy. We will partially address this point

later in the Letter, constructing specific examples of gapless

spin chains with AQECC in their low-lying spectrum. The

connection of ETH and AQECC that we point out also

suggests that such holographic CFTs might be chaotic in an

extreme sense of satisfying ETH at all energies.

AQECC from translation-invariance.—Although ETH is

expected to hold for a large class of systems, its range

of validity is still not completely understood. Our next

result shows that even just from translation invariance

we can already get codes from eigenstates of local

models (albeit with worse parameters). Consider a 1D

translation invariant Hamiltonian with N sites. Let SE
be the set of energy eigenvalues close to E: SE ≔

fEk∶Ek ∈ ½E −
ffiffiffiffi

N
p

; Eþ
ffiffiffiffi

N
p

�g, and define the microca-

nonical state of energy E as

τMCðEÞ ≔
1

jSEj
X

k∶Ek∈SE

jEkihEkj: ð5Þ

Note that in one dimension the correlation length is a

function of mean energy e ≔ E=N only, and it is a constant

independent of system size when e is too. The choice 2
ffiffiffiffi

N
p

for the energy window is arbitrary; all we need is that the

associated microcanonical ensemble has finite correlation

length, which is true as long as it is subextensive and larger

than polylogðNÞ [24].
We prove that:

Theorem 1. Let H be a 1D translation invariant local

Hamiltonian and E be such that the microcanonical state at

energy E has finite correlation length (independent of

system size). Pick jEi1
i;…; jEiL

i uniformly independently

at random from SE ≔ fjEii∶Ei ∈ ½E −
ffiffiffiffi

N
p

; Eþ
ffiffiffiffi

N
p

�g,
where fjEiigi is a basis of translation-invariant eigenstates
of H, and k ≔ logðLÞ ¼ Ω( logðNÞ). Then with high

probability they form an ½½N; k; d; ε�� AQECC with ε ¼
Oð1=N1=8Þ and

d¼minðΩ( logðNÞ); min
p≠q∈½L�

jEip
−Eiq

j−O( logðNÞ)Þ: ð6Þ

Note that by choosing k ¼ δ logðNÞ for sufficiently

small δ, the minimum energy gap will be of order nΩð1Þ,
and thus the distance of the code is Ω( logðNÞ) with high

probability.

The proof in Section B in the Supplemental Material [19]

builds upon two results. First, the result of Ref. [25]

establishes a weak version of the eigenstate thermalization

hypothesis for 1D translation invariant systems (see

Proposition 7 in the Supplemental Material [19]): the

fraction of the nonthermal energy eigenstates around

the microcanonical energy E is exponentially small with

the system size N. This means that with high probability,

randomly chosen codewords do look like the thermal state,

and hence are locally indistinguishable. Second, the result

from Ref. [26] states that eigenstates of general (not

necessarily translation-invariant) local Hamiltonians with

different energies cannot be “connected” by local operators,

in the sense that the off-diagonal matrix elements of the

local operator in energy eigenbasis drop off exponentially

with the energy gap (see Lemma 9 in Section B in the

Supplemental Material [19]). This tells us to choose the

codewords sufficiently far apart in energy so that we have

the desired distance for the code.

Translation invariance is crucial in the proof of the

results. Technically, it allows us to replace the local

observable by an extensive observable, given by a sum

of translations of the original one. Then we can use

techniques of large deviation bounds [27] on the measure-

ment of extensive observables in noncritical spin systems to

obtain the result. Intuitively, translation invariance guaran-

tees that the information of the codewords is spread to the

whole system “uniformly,” and hence cannot be corrupted

locally by noise.

Note that in addition to translation invariance, the only

feature of 1D systems we use in the proof is that the

microcanonical states at finite energy density always have a

finite correlation length. Therefore the theorem generalizes

to higher dimensions for eigenstates with finite energy

densities (albeit with a worse scale of the error of the code).

AQECC from the low-energy eigenspace of gapless

models.—So far we have considered eigenstates at finite

energy density. Here we show they are also relevant to the

low-lying spectrum of gapless models. We first apply

Theorem 1 to noninteracting models, and map the code-

words at finite energy eigenstates to low-energy eigenspace

of interacting models. We then further analyze the perfor-

mance of these specific codes by explicitly revealing the

working code subspace.

Classical models: Consider a 1-local Hamiltonian on a

system of N qubits,

H ¼
X

N

i¼1

1

2
ðI − σzi Þ; ð7Þ

which has eigenvalues 0; 1;…; N. Theorem 1 implies that

with high probability a subset of L randomly chosen

translation invariant eigenstates of Eq. (7) with energies

in ½N=2 −
ffiffiffiffi

N
p

; ðN=2Þ þ
ffiffiffiffi

N
p

� will be an AQECC with

logðNÞ distance. As eigenstates, we can take uniform

superpositions of σz-basis states jsi, where s ¼
ðs1;…; sNÞ ∈ f−1; 1gN , with a particular magnetization

MðsÞ ¼
P

N
i¼1

si,

jhNmi ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

N
N=2þm=2

�

r

X

s∶MðsÞ¼m

jsi: ð8Þ
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Mapping to low-lying eigenstates:Although Theorem 1

only applies to states with finite energy density (when the

correlation length of the microcanonical state is finite), it

turns out that the excited state AQECC in the example

above can be embedded into low energy states of a different

local model. This connection is based on the fact that the

permutation symmetric energy eigenstates [Eq. (8)] of the

spin-1=2 model [Eq. (7)] also span the ground space of the

ferromagnetic Heisenberg model,

H ¼ −
1

2

X

N

j¼1

ðσxjσxjþ1
þ σ

y
jσ

y
jþ1

þ σzjσ
z
jþ1

Þ: ð9Þ

For ease of notation we consider the version of this model

with periodic boundary conditions (PBCs). We choose

codewords with magnetization in the range ð−
ffiffiffiffi

N
p

;
ffiffiffiffi

N
p

Þ
and show the following proposition by explicit calculation

in the Supplemental Material [19].

Proposition 2. For any a; b > 0 with 5a=2þ b < 1=2
the ground space of the spin 1=2 ferromagnetic Heisenberg

model with N sites and PBCs contains an ½½N; k; d; ε��
AQECC with k ¼ a logN, d ¼ b logN, and ε ¼
Oðlog2N=N1=2−5a=2−bÞ.
Specifically, we prove Proposition 2 in terms of Eq. (2).

A d-local error can change the magnetization by at most 2d,
so for different codewords, i.e., the case i ≠ j, we have zero
error in Eq. (2). Furthermore, the d-body reduced density

matrix of different codewords are indistinguishable in the

thermodynamic limit; i.e., this gives the error for the cases

i ¼ j in Eq. (2). Note that the AQECC parameters achieved

in Proposition 2 are asymptotically equivalent to those in

Theorem 1, though one difference is that in Proposition 2

the codewords are chosen deterministically. Finally, we

note that the existence of error correcting codes in the

ground space of Heisenberg models has been observed

before [28,29], although the choices of code words as well

as the QEC parameters differ in that work from the ones

presented here.

Just as finite energy density codes of Eq. (7) can be

embedded in the ground space of the Heisenberg model,

one can also consider the spin 1 version of Eq. (7),

H ¼
X

N

i¼1

1

2
ðI − Szi Þ: ð10Þ

The permutation invariant eigenstates of Eq. (10) are

uniform superpositions of basis states jwi, where w ¼
ðw1;…; wNÞ ∈ f−1; 0; 1gN , with a particular magnetiza-

tion MðwÞ ¼
P

N
i¼1

wi,

jgNmi ¼
1
ffiffiffiffiffiffiffiffi

jgNmj
p

X

w∶MðwÞ¼m

jwi: ð11Þ

By Theorem 1 a randomly chosen subset of L states of the

form Eq. (11) with magnetization m ∈ ð−
ffiffiffiffi

N
p

;
ffiffiffiffi

N
p

Þ will

with high probability form an AQECC with distance

ΘðlogNÞ. Just as a finite energy density AQECC of

Eq. (7) was turned into a ground space AQECC of

Eq. (9), we seek a parent Hamiltonian which contains

the states Eq. (11) in its ground space.

Such a parent Hamiltonian can be constructed by using

the connection between classical random walks (and more

generally reversible Markov chains) and stoquastic frus-

tration free local Hamiltonians [30–32]. The following

rules applied to any pair of consecutive basis labels (with

periodic boundary conditions) suffice to connect all of the

basis states at each energy,

j1;−1i↔ j0;0i; j0;1i↔ j1;0i; j0;−1i↔ j− 1;0i:

These local moves can be adjusted into a local Hamiltonian

such that the states constructed as the uniform super-

position of basis states of the same energy become the

ground states:

H ¼
X

N

j¼1

ðjFihFjj;jþ1 þ jUihUjj;jþ1 þ jDihDjj;jþ1Þ; ð12Þ

with jFi¼ð1=
ffiffiffi

2
p

Þðjudi−j00iÞ, jUi¼ð1=
ffiffiffi

2
p

Þðj0ui−ju0iÞ,
jDi ¼ ð1=

ffiffiffi

2
p

Þðj0di − jd0iÞ, where the labels −1, 0, 1 are

replaced by d, 0, u. This model is called the spin-1 Motzkin

chain with PBCs [33–35]. Using the well-studied analytical

properties of the ground states of these models, we

prove the following proposition in the Supplemental

Material [19].

Proposition 3. For any a; b > 0 with 5a=2þ b < 1=2
the ground space of the spin 1 Motzkin model on N sites

with PBCs contains an ½½N; k; d; ε�� AQECC with

k ¼ a logN, d ¼ b logN, and ε ¼ Oðlog2N=N1=2−5a=2−bÞ.
The intuitive explanation and the calculations are similar

to those for the Heisenberg model. These results also hold

for the degenerate Heisenberg and Motzkin chains with

open boundary conditions with the restriction that errors are

only applied far from the endpoints of the chain. Finally, we

note that it is possible to perturb the model with a local

translation invariant field in such a way that jgN
0
i is the

unique ground state, with an inverse polynomial gap to the

first excited state [35]. With this perturbation the states jgNmi
gain an energy that increases with the magnitude of m, but

which vanishes in the thermodynamic limit. This variant of

the Motzkin chain is of interest in the present context

because it shows that it is possible for models with a unique

ground state to be part of a code space that includes gapless

excitations.

Conclusions.—In this Letter we have given new exam-

ples of approximate quantum error correction against local

noise in the energy eigenstates of physical systems, which
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goes beyond the well-studied ground states of gapped

topologically ordered systems. To be more specific, we

have explicitly showed that energy eigenstates packed

around some finite energy density eigenstate E of systems

obeying ETH, and almost all translation invariant finite

energy eigenstates of 1D translation invariant local

Hamiltonians, construct approximate error correcting

codes. We applied the latter result to noninteracting local

Hamiltonians to map the finite-energy-density codes to the

low-energy subspace of interacting Hamiltonians, e.g.,

Heisenberg model and spin-1 Motzkin chain. We studied

the ground states of these models with periodic boundary

conditions and further detailed the parameters of the

approximate error correcting code that can be found in

their low energy.

One can interpret our results from many perspectives.

One perspective may be that it is not unusual to find error

correcting codes in physical systems; it is indeed a generic

phenomena as shown by our results of AQECC from

systems with ETH and translation invariance. Another

point of view which builds upon the first one is that even

though error correcting codes can be found easily in

Hamiltonian systems, their varying performance under

different types of errors may be a way to characterize

different properties of these physical systems. For example,

the Motzkin spin-1 model that we analyzed is gapless;

however the gap closes as OðN−2Þ on the contrary to

OðN−1Þ observed in 1D lattice models whose critical points

are effectively described by CFTs. Hence, Motzkin-type

models, even though having error correction properties, do

not have effective CFT descriptions [35–37]. To pursue its

potential relevance to AdS=CFT (-like correspondence),

one shall follow [10,38] where certain properties of

AdS=CFT such as radial commutativity, subregion duality

and Ryu-Takayanagi formula have been matched to oper-

ator algebra quantum error correcting codes.

There are numerous other questions one can ask building

upon our work. Hence, our results shall best be taken as a

first step to elucidate the role of error correcting codes in

physical systems, from topological order to ETH, CFTs

with or without holographic duals, and gapless quantum

systems. The performance of these codes under specific

noise channels must be intimately connected to the physical

properties manifested by these systems.
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