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Quantum error correction in the presence of spontaneous emission

M. B. Plenio, V. Vedral, and P. L. Knight
Blackett Laboratory, Imperial College London, London SW7 2BZ, England

~Received 1996 August 19!

We present a quantum error correcting code that is invariant under the conditional time evolution between
spontaneous emissions and which can correct for one general error. The code presented here generalizes
previous error correction codes in that not all errors lead to different error syndromes. This idea may lead to
shorter codes than previously expected.@S1050-2947~97!00101-7#

PACS number~s!: 03.65.Bz, 89.70.1c, 89.80.1h
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I. INTRODUCTION

With the discovery of an algorithm to factorize a larg
number on a quantum computer in polynomial time inste
of exponential time as required by a classical computer@1#,
the question of how to implement such a quantum comp
has received considerable attention@2#. However, realistic
estimates soon showed that decoherence processes and
taneous emission severely limit the bit size of the num
that can be factorized@3,4#. It has become clear that th
solution to the problem does not lie in an increase in
lifetime of the transitions used in the computation. Attenti
has now shifted towards the investigation of methods to
code qubits such that the correction of errors due to inte
tion with the environment becomes possible. In a numbe
recent publications, possible encoding schemes have
considered and theoretical work has been undertaken to
cidate the structure of quantum error correction co
@5–22#. However, we show that these codes do not perfe
correct errors due to the conditional time evolution@23# be-
tween spontaneous emissions . This has the effect that
example, the encoded lower state of a qubit, which, if un
coded, is not influenced by the conditional time evolutio
acquires an error due to the conditional time evolution. W
then proceed to construct a code that is able to correctone
general error and is able to correct toall orders the errors
due to the conditional time evolution between spontane
emissions. By one general error we mean an arbitrary on
operation acting on a single bit of the code. The conditio
time evolution, however, contains terms that act on ma
qubits. Our code proposed in this paper has the ability
correct a special kind of error~here due to the conditiona
time evolution! to all orders. This is an interesting feature,
one would be interested to correct those errors which
quently occur to higher order than rare errors. The code
sented here is optimal in the sense that it uses the sma
possible number of qubits required to perform its task~cor-
recting one general error and all errors due to the conditio
time evolution!.

II. SINGLE ERROR CORRECTING CODES

Several codes have been proposed to encode one
which can correct one general error, i.e., amplitude a
phase error or a combination of both applied to the sa
551050-2947/97/55~1!/67~5!/$10.00
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qubit. An example@10# of such a code is one where sta
u0& is represented by

u0L&5u00000&1u11100&2u10011&2u01111&1u11010&

1u00110&1u01001&1u10101& ~1!

and the stateu1& by

u1L&5u11111&2u00011&1u01100&2u10000&2u00101&

1u11001&1u10110&2u01010&, ~2!

where the subscriptL indicates that the encoded stateu i L&
differs from the initial stateu i &. We omit the obvious nor-
malization factor in the statesu0L& and u1L& throughout this
letter as they are irrelevant for the present analysis. Star
with a state uc&5au0&1bu1&, this is encoded as
ucL&5au0L&1bu1L&. If the state suffers an amplitude erro
Ai ~which acts as aNOT operation on qubiti ) or a phase error
Pi ~which gives the upper state of qubiti a minus sign! or
the combinationAiPi of both to thei th qubit of ucL& it is
possible to reconstruct the initial stateuc&. The code given in
Eqs.~1! and~2! has the attractive feature that it is optimal
the sense that it only requires five qubits which can be sho
to be the minimal possible number@13#. Using ideas similar
to classical error correcting codes one can estimate tha
one wants to encodel qubits in terms ofn qubits in such a
way that one can reconstruct the state aftert general errors,
then the inequality

2l(
i50

t

3i S ni D<2n ~3!

has to be satisfied@11#. The bound Eq.~3! is related to the
sphere packing bound in classical coding theory@24#. The
reason for that is that Eq.~3! was obtained using the assum
tion that different errors lead to different mutually orthog
nal error syndromes. However, we will later see that the c
presented in this paper~like the one presented in@5#! in fact
violates this assumption which shows that it may be poss
to find codes that go beyond Eq.~3!.

The code given in Eqs.~1! and ~2! does not correct for
multiple errors. Especially, it is not able to correct to a
orders for errors that arise due to the conditional time e
lution between spontaneous emissions. The conditional t
evolution between spontaneous emissions is unavoidable
67 © 1997 The American Physical Society
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68 55M. B. PLENIO, V. VEDRAL, AND P. L. KNIGHT
it differs from the unit operation because the fact that
spontaneous emission has taken place provides informa
about the state of the system and therefore changes its w
function. The conditional time evolution of the system und
the assumption that no spontaneous emission has taken
is given by the nonunitary time evolution operat
exp$2 iH efft/\% @23#. For the case that the qubits are n
driven by external fields we obtain for the code given in E
~1! and ~2! the effective Hamilton operator

Heff5(
i51

5

2 i\Gs11
~ i !, ~4!

wheres11
( i ) is the projectoru1&^1u onto the excited state of th

i th qubit leaving all other qubits unaffected. 2G is the Ein-
stein coefficient of the upper level 1 of the qubits. If w
apply the conditional time evolution exp(2 iH efft/\) to the
encoded state

ucL&5au0L&1bu1L& ~5!

and subsequently apply the appropriate error correction
cedure for this five-bit code@10# we donot recover the origi-
nal state. This becomes obvious in the special caseGt@1 in
which one obtains

ucC&5u00000&1u00010&1u01000&2u01110&1u10000&

1u10010&1u11000&1u11110&. ~6!

This shows that this five-bit code is not able to correct err
due to the conditional time evolution exactly. Especia
striking is the effect when we assume thatb50, i.e., we
encode the~stable! ground state. The conditional time evo
lution then leads to no errors in the unencoded state whi
changes the encoded state such that it cannot be corre
perfectly anymore. Note, however, that the error introduc
by the conditional time evolution is, for short times, of four
order. If, however, a spontaneous emission~or any other
kind of error! occurs then a subsequent conditional time e
lution induces contributions which after error correction le
to second-order errors in the state. Our code presented
in this paper preserves the encoded state in both cases
fectly, i.e., to all orders.

The reason that the code@Eqs. ~1! and ~2!# cannot per-
fectly correct errors due to the conditional time evoluti
derives from the fact that the words~product states! of which
the code consists do not all have the same number of exc
states. This leads to a difference in the rate at which
amplitude of these states decays. The amplitude ofu00000&
remains unchanged under the conditional time evolut
while the amplitude ofu11100&, for example, decreases at
rate exp(23Gt). This can be seen as a multiple amplitu
error with which the code cannot cope. This problem is
restricted to the five-bit code given in@10# but is present in
all other previously proposed codes. It should be noted th
is not necessary to observe the system for these conclus
to hold. If we do not observe the system, it then has to
described by a density operator, whose time evolution
lows the appropriate Bloch equations. This time evolut
can in principle be decomposed into individual trajector
each of which consists of no-jump evolutions interrupted
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spontaneous emissions@23#. For each of these trajectorie
our considerations above hold and, therefore, also hold
the incoherent sum of these trajectories which make up
ensemble. Therefore our error correction code is not
stricted to a particular measurement scheme such as, fo
ample, the detection and reconstruction scheme discuss
@25#, where it is necessary to detect individual quantu
jumps. Nevertheless, such a detection of individual jum
would improve the performance of our code, as that wo
exclude the contribution of multiple quantum jumps wi
which our code cannot cope. This would enhance the imp
tance of the conditional time evolution as a error sou
compared to other sources and it is here where our cod
superior to previous codes.

III. CORRECTING SPONTANEOUS EMISSION

The discussion of Sec. II shows that it is of some inter
to construct a quantum error correcting code that corre
errors due to the conditional time evolution to all orde
This is possible, and in the following we present such
quantum error correcting code.

The following code was constructed starting from t
code~1! and ~2!. Stateu0& is encoded as

u0L&5u00001111&1u11101000&2u10010110&2u01110001&

1u11010100&1u00110011&1u01001101&

1u10101010&, ~7!

while stateu1& is encoded as

u1L&5u11110000&2u00010111&1u01101001&2u10001110&

2u00101011&1u11001100&1u10110010&

2u01010101&. ~8!

The state Eq.~7! encoding the logical 0 was obtained in th
following way. We started with state Eq.~1! and for each
word, e.g.,u11100& we constructed the bitwise inverse, i.e
u00011&. We concatenated the two words where the sec
one is taken in reverse bit order to obtainu1110011000&.
This method, applied to all words in Eq.~1!, already yields a
possible code. However, it is possible to shorten the code
removing bits 5 and 6 from every word. This then yields E
~7! and analogously Eq.~8!. Subsequently a computer sear
was made for potentially shorter codes; this revealed no s
codes, so we conclude thatn58 qubits is the minimum num-
ber required for the task of correcting one general error wh
errors due to the conditional time evolution are correc
perfectly. In the following we present some interesting pro
erties of the code and demonstrate that it indeed has
claimed error correction properties. However, this code d
fers in many ways from previously proposed codes. First
all, it violates the conditions given for quantum error corre
ing codes in@11# thereby showing that these conditions a
overly restrictive. As these conditions were used to der
the inequality Eq.~3!, their violation indicates that there
might exist codes that require less qubits than expected f
Eq. ~3!. However, we did not yet succeed to construct a co
that violates Eq.~3!. One should also realize that the cod
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55 69QUANTUM ERROR CORRECTION IN THE PRESENCE OF . . .
words in the code Eqs.~7! and~8! do not form a linear code
as this would imply thatu00000000& is a codeword which in
turn would render impossible the task of constructing a c
with codewords of equal excitation. Nevertheless, the co
words ofu0L& form a coset of a linear code. The coset lead
is u00001111&. This contrasts slightly with other codes su
as those presented in@5,8–10#. The codewords of the cod
~1! and~2!, for example form a linear code. Given the initi
stateuc&5au0&1bu1&, we obtain the code Eqs.~7! and ~8!
using the network given in Fig. 1. To correct the error th
may have appeared we first apply the encoder in the rev
direction~right to left!. After the application of the decode
the third qubit contains information about the encoded s
while the remaining seven qubits contain the error syndro
from which one can infer the type and location of the err
We measure the qubits of the error syndrome and ap
according to the result of our measurement, a suitable uni
operation on qubit 3. We assume that after the measurem
all the other qubits are reset to their ground stateu0& so that,
in principle, we can reencode the state again using the s
qubits.

In Table I we give all possible outcomes of the measu
ment and the corresponding state of the third qubit. The n
essary unitary transformation that has to be applied onto
third qubit is then obvious. Careful inspection of Table
reveals that this error correction scheme has, for some er
a slightly different effect than expected. Take, for example
phase errorsP1 on bit 1 and compare with the effect of
phase errorP8 on bit 8. We observe that they both lead
the same error syndrome but that the resulting state dif
by a global phase21. Therefore it is not possible to corre
both states in such a way that they go over to the initial st
After the correction they differ by a global phase21. But
this also shows that the dimension of the spaceHcode
spanned by the code together with all states that result f
it by single errors is 2321 and not as expected from Eq.~3!
2325. The latter number results from the considerations
Ekert and Macchiavello@11# who have presented a set

FIG. 1. The encoding network:R describes a one bit rotatio
which takesu0&→(u0&1u1&)/A2 andu1&→(u0&2u1&)/A2. An en-
circled cross denotes aNOT operation while a dot denotes a contr
bit. For a filled circle the operation is carried out if the control bit
1; for an empty circle the operation is carried out if the control
is 0. A circle with a p represents multiplication with phas
exp(ip). Qubit 3 is in the stateuc& that we wish to encode, while
all other qubits are initially in their ground stateu0&.
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conditions that have to be satisfied by any quantum e
correction code. The violation of these conditions by t
code Eq.~7! and ~8! leads to these different predictions fo
the dimension ofHcode. More general conditions can b
derived and it can be checked easily that our code satis
these conditions@13,26# while it violates the conditions
given in @11#.

So far we have shown that our code can indeed corre
general single error without taking into account the con
tional time evolution due to spontaneous emission. Now
show that our code is able to correct errors due to the c
ditional time evolution perfectly, i.e., to all orders. For o
code given in Eqs.~7! and~8! the conditional time evolution
under the assumption that no spontaneous emission has
place is generated by the effective Hamilton operator

Heff5(
i51

8

2 i\Gs11
~ i !. ~9!

If the code undergoes a conditional time evolution before
experiences an error like, e.g., a spontaneous emission,
obvious that the code Eqs.~7!-~8! will work properly, as it is

t

TABLE I. One obtains an error syndrome, i.e., the state of
qubits except qubit 3, depending on the error that occurred and
place in which it occurred.Pi indicates a sign change of the upp
level of qubit i , Ai an amplitude error which is given by the tran
formation u0&↔u1&. The product of both applied to the same qub
gives the third kind of error. Note that the error syndrome is n
able to distinguish betweenPi and P92 i which leads to global
phases in some of the corrected states. This table does not take
account that before and after the error a conditional time evolu
takes place.

Error Error syndrome State of qubit 3
None 0000000 au0&1bu1&
P1 1000000 au0&1bu1&
P2 0100000 au0&1bu1&
P4 0010000 au0&1bu1&
A5 0001000 au0&1bu1&
A6 0000100 au0&1bu1&
A7 0000010 au0&1bu1&
A8 0000001 au0&1bu1&
P3 1010000 au0&2bu1&
A2 0010010 au0&2bu1&
P6 1010000 2au0&1bu1&
A2P2 0110010 2au0&1bu1&
A6P6 1010100 2au0&1bu1&
P5 0010000 2au0&2bu1&
P7 0100000 2au0&2bu1&
P8 1000000 2au0&2bu1&
A5P5 0011000 2au0&2bu1&
A7P7 0100010 2au0&2bu1&
A8P8 1000001 2au0&2bu1&
A1P1 1110001 bu0&1au1&
A4P4 1011000 bu0&1au1&
A3P3 1110100 bu0&2au1&
A1 0110001 2bu0&2au1&
A3 0100100 2bu0&2au1&
A4 1001000 2bu0&2au1&
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70 55M. B. PLENIO, V. VEDRAL, AND P. L. KNIGHT
invariant under the conditional time evolutio
exp(2 iH efft/\). However, it is not so obvious that the cod
corrects general single errors that occurbeforeor in between
the conditional time evolution. As we do not know the tim
at which the general error occurs, this situation will almo
certainly occur and has to be examined. If the error wa
phase error, then no problem will occur, as this error d
not change the excitation of the state. However, for am
tude errors or a combination of amplitude and phase er
we have to investigate the code more closely. The proble
that, for example, after an amplitude error in the first qub
we obtain

A1u0L&5u10001111&2u11110001&1u11001101&

1u10110011&1u0110100&2u00010110&

1u01010100&1u00101010&. ~10!

Now the code words have a different degree of excitation
that their relative weights will change during the subsequ
conditional time evolution. However, fo
ucL&5au0L&1bu1L& we have the relations
ucL&5au0L&1bu1L&

e2 iH efft/\Ai ucL&5 1
2e

23Gt$~11e22Gt!Ai2~1

2e22Gt!AiPi%ucL& ~11!

and

e2 iH efft/\AiPi ucL&5 1
2e

23Gt$2~12e22Gt!Ai1~1

1e22Gt!AiPi%ucL&. ~12!

Equation~11! shows that after an amplitude errorAi on the
i th qubit, the conditional time evolution transforms the st
into a superposition of a state without conditional time ev
lution after this amplitude error, and a state without con
tional time evolution obtained after a combined amplitu
and phase errorAiPi on thei th qubit. Inspecting Table I we
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see that both errorsAi and AiPi lead to a different error
syndrome. A measurement of the syndrome will then in
cate one or the other error,Ai or AiPi , which can then be
corrected. Therefore the code~7! and ~8! corrects properly
even if the error is followed by a conditional time evolutio

IV. CONCLUSIONS

We conclude that the code presented here is able to
rect a single general errorand, in addition, errors due to the
conditional time evolution toarbitrary order. Our code can
correct a general error to first orderand a special kind of
error to all orders. This is an interesting result as it sho
that it is possible to correct special kinds of errors to
orders. As some errors are more frequent than other
would be in our interest to correct those errors to high
order than less frequently occurring errors. We have adap
our code to errors due to the conditional time evolution b
tween spontaneous emissions. Other applications will req
different adaptions. The code presented here~similar to the
one given in@5#! violates the conditions for quantum code
given in @11# which shows that these conditions are ove
restrictive, as they exclude codes like the one presented
that map different errors onto the same error syndromes. T
can lead to the construction of shorter quantum error cor
tion codes than expected from the quantum sphere pac
bound as derived in@11#. These results may become impo
tant in different fields such as quantum computation, the d
tribution of entangled particles, and in quantum cryptog
phy @27–30#.

ACKNOWLEDGMENTS

The authors thank A. Ekert, C. Macchiavello, and A.M
Steane for discussions about quantum error correction. T
work was supported by the European Community, the U
Engineering and Physical Sciences Research Council an
financial support from the Alexander von Humboldt Found
tion.
.

za,

A.
@1# P. W. ShorProceedings of the Thirty-Fifth Annual Symposiu
on Foundations of Computer Science, edited by S. Gold-
wasser.~IEEE Computer Society, New York, 1994!, pp. 124-
134.

@2# J. I. Cirac and P. Zoller, Phys. Rev. Lett.74, 4091~1995!.
@3# M. B. Plenio and P. L. Knight, Phys. Rev. A53, 2986~1996!.
@4# M. B. Plenio and P. L. Knight,Proceedings of the 2nd Inter

national Symposium on Fundamental Problems in Quan
Physics, 1996, edited by M. Ferrero and A. Van der Merw
~Kluwer, Dordrecht, 1996!.

@5# P. W. Shor, Phys. Rev. A52, R2493~1995!
@6# I. L. Chuang and R. Laflamme, Report No. quant-ph/95110
@7# A. R. Calderbank and P. W. Shor, Phys. Rev. A.54, 1098

~1996!.
@8# A. M. Steane, Phys. Rev. Lett.77, 793 ~1996!.
@9# A. M. Steane, Report No. quant-ph/9601029.

@10# R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Ph
Rev. Lett.77, 3240~1996!.
.

.

@11# A. Ekert and C. Macchiavello, Phys. Rev. Lett.77, 2585
~1996!.

@12# L. Vaidman, L. Goldenberg, and S. Wiesner, Phys. Rev. A54,
1745 ~1996!.

@13# E. Knill and R. Laflamme, Phys. Rev. A~to be published!.
@14# C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K

Wootters, Phys. Rev. A54, 3824~1996!.
@15# A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jos

and C. Macchiavello, Report No. quant-ph/9604028.
@16# A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J.

Sloane, Report No. quant-ph/9605005.
@17# P. W. Shor, Report No. quant-ph/9605011.
@18# A. M. Steane, Report No. quant-ph/9605021.
@19# D. P. DiVincenzo and P. W. Shor, Phys. Rev. Lett.77, 3260

~1996!.
@20# D. Gottesmann, Report No. quant-ph/9607027.
@21# D. Gottesmann, Phys. Rev. A54, 1862~1996!.
@22# D. Gottesmann, Report No. quant-ph/9607030.



r-

55 71QUANTUM ERROR CORRECTION IN THE PRESENCE OF . . .
@23# J. Dalibard, Y. Castin, and K. Mo” lmer, Phys. Rev. Lett.68,
580 ~1992!; G. C. Hegerfeldt and T. S. Wilser, inProceedings
of the II International Wigner Symposium, Goslar, 1991, ed-
ited by H. D. Doebner, W. Scherer, and F. Schroeck~World
Scientific, Singapore, 1992!; H. J. Carmichael,An Open Sys-
tems Approach to Quantum Optics, Lecture Notes In Physics
~Springer, Berlin, 1993!.

@24# V. Pless, Introduction to the Theory of Error-Correcting
Codes~Wiley, New York, 1982!.

@25# H. Mabuchi and P. Zoller, Phys. Rev. Lett.76, 3108~1996!.
@26# V. Vedral, M. Rippin, and M. B. Plenio, Phys. Rev. A~to be
published!.

@27# C. H. Bennett and G. Brassard, inProceedings of IEEE Con-
ference on Computers, Systems and Signal Processing~IEEE,
New York, 1984!, p. 175.

@28# A. Ekert, Phys. Rev. Lett.67, 661 ~1991!.
@29# R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Mo

gan, and M. Schauer, Cont. Phys.36, 149 ~1995!.
@30# S. J. D. Phoenix and P. D. Townsend, Cont. Phys.36, 165

~1995!.


