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Quantum error correction in the presence of spontaneous emission
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We present a quantum error correcting code that is invariant under the conditional time evolution between
spontaneous emissions and which can correct for one general error. The code presented here generalizes
previous error correction codes in that not all errors lead to different error syndromes. This idea may lead to
shorter codes than previously expectgsl050-294{®7)00101-7

PACS numbe(s): 03.65.Bz, 89.70tc, 89.80+h

I. INTRODUCTION gubit. An example[10] of such a code is one where state
|0) is represented by
With the discovery of an algorithm to factorize a large
number on a quantum computer in polynomial time instead |0,)=00000 +|11100 ~ 10013 —[01113 +[11010

of exponential time as required by a classical comp[tér +]00110 + 01003 +| 10103 (1)
the question of how to implement such a quantum computer

has received considerable attentid®]. However, realistic and the statél) by

estimates soon showed that decoherence processes and spon-

taneous emission severely limit the bit size of the number |1.)=[11112—]00012+|01100 —|10000 —|00102
that can be factorizedi3,4]. It has become clear that the

solution to the problem does not lie in an increase in the +[11009+{10119 {01019, @
lifetime of the transitions used in the computation. Attention,,ere the subscript indicates that the encoded state)
has now shifted towards the investigation of methods to eNgiffers from the initial statdi). We omit the obvious nor-
code qubits such that the correction of errors due to interaGs,ajization factor in the statd®, ) and|1,) throughout this

tion with the environment becomes possible. In a number Ofgtar a5 they are irrelevant for the present analysis. Starting
recent publications, possible encoding schemes have be‘\?\'ﬂth a state |¢)=a|0)+p|1), this is encoded as

considered and theoretical work has been undertaken to el 7.0 =al0.)+ B|1.). If the state suffers an amplitude error

cidate the structure of quantum error correction code : : P
[5—22. However, we showqthat these codes do not perfectly,’ (which acts as a0t operation on qubi) or a phase error
' ' p 313i (which gives the upper state of qulita minus sigh or

correct errors due to the conditional time evolut{@3] be- the combinationA,P; of both to theith qubit of |¢) it is

tween spontaneous emissions . This has the effect that, f Jossible to reconstruct the initial stdtg). The code given in

exzm dplg, thete_nfcl:oded Igvxt/)er tshtate of dat'qumlt,tw hich, Ifl utnenEqs.(l) and(2) has the attractive feature that it is optimal in
coded, 1S not influenced by the conditional ime evolulion.y, o gange that it only requires five qubits which can be shown
acquires an error due to the conditional time evolution. We[0 be the minimal possible numbgx3]. Using ideas similar
then proceed to construct a code that is able to cooget to classical error correcting codes one can estimate that if

Gue 1o the conditional tme evolution betweon SpontaneouZe WENIS 0 encodequBis in terms oh qubts in such
P ay that one can reconstruct the state aftgeneral errors,

emissions. By one general error we mean an arbitrary one b : :
operation acting on a single bit of the code. The conditiona# en the inequality

time evolution, however, contains terms that act on many t n

gubits. Our code proposed in this paper has the ability to 2'2 3i< ) )gzn ©)
correct a special kind of errdhere due to the conditional i=0 I

time evolution to all orders. This is an interesting feature, as o )

one would be interested to correct those errors which frehas to be satisfiefil1]. The bound Eq(3) is related to the
quently occur to higher order than rare errors. The code presPhere packing bound in classical coding the(d]. The
sented here is optimal in the sense that it uses the smallegason for that is that E¢3) was obtained using the assump-
possible number of qubits required to perform its téstr-  fion that different errors lead to different mutually orthogo-

recting one general error and all errors due to the conditiond?@l €rror syndromes. However, we will later see that the code
time evolution. presented in this papelike the one presented {%]) in fact

violates this assumption which shows that it may be possible
to find codes that go beyond E).
The code given in Eq91) and (2) does not correct for
multiple errors. Especially, it is not able to correct to all
Several codes have been proposed to encode one qubitders for errors that arise due to the conditional time evo-
which can correct one general error, i.e., amplitude andution between spontaneous emissions. The conditional time
phase error or a combination of both applied to the samevolution between spontaneous emissions is unavoidable and

II. SINGLE ERROR CORRECTING CODES
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it differs from the unit operation because the fact that nospontaneous emission23]. For each of these trajectories
spontaneous emission has taken place provides informatiasur considerations above hold and, therefore, also hold for
about the state of the system and therefore changes its watlee incoherent sum of these trajectories which make up the
function. The conditional time evolution of the system underensemble. Therefore our error correction code is not re-
the assumption that no spontaneous emission has taken plasteicted to a particular measurement scheme such as, for ex-
is given by the nonunitary time evolution operator ample, the detection and reconstruction scheme discussed in
exp{ —iH4t/A} [23]. For the case that the qubits are not[25], where it is necessary to detect individual quantum
driven by external fields we obtain for the code given in Eqsjumps. Nevertheless, such a detection of individual jumps
(1) and (2) the effective Hamilton operator would improve the performance of our code, as that would
exclude the contribution of multiple quantum jumps with
oo 2 AT which our code cannot cope. This would enhance the impor-
eff ~ & Inl oy, (4 tance of the conditional time evolution as a error source
compared to other sources and it is here where our code is
wherec{] is the projectot1)(1| onto the excited state of the SUPerior to previous codes.
ith qubit leaving all other qubits unaffectedl’ 2s the Ein-
stein coefficient of the upper level 1 of the qubits. If we Ill. CORRECTING SPONTANEOUS EMISSION
apply the conditional time evolution exp(H ¢4t/f) to the
encoded state

5

The discussion of Sec. Il shows that it is of some interest
to construct a quantum error correcting code that corrects
|y )=a|0 )+ B|1.) (5)  errors due to the conditional time evolution to all orders.
This is possible, and in the following we present such a
and subsequently apply the appropriate error correction pragquantum error correcting code.
cedure for this five-bit codgL0] we donotrecover the origi- The following code was constructed starting from the
nal state. This becomes obvious in the special #4sel in  code(1) and(2). State|0) is encoded as

which one obtains
|0.)=/0000111}+|11101000—|10010110—|0111000}

+/11010100+ 0011001} +|0100110}
+110101010, )

| c)=]00000 +|0001Q +]0100Q — 01110 + | 10000
+]1001Q +]11000 +[11110. (6)

This shows that this five-bit code is not able to correct errors )
due to the conditional time evolution exactly. Especially While state[1) is encoded as

striking is the effect when we assume that0, i.e., we
encode thestablg ground state. The conditional time evo- |1,)=111110000—[0001011}+{0110100} 10001110

lution then leads to no errors in the unencoded state while it —]00101013+|11001100+ 10110010
changes the encoded state such that it cannot be corrected
perfectly anymore. Note, however, that the error introduced —|01010103}. (8)

by the conditional time evolution is, for short times, of fourth
order. If, however, a spontaneous emissi@n any other The state Eq(7) encoding the logical 0 was obtained in the
kind of errop occurs then a subsequent conditional time evofollowing way. We started with state Eq4l) and for each
lution induces contributions which after error correction leadword, e.g.,/11100 we constructed the bitwise inverse, i.e.,
to second-order errors in the state. Our code presented lat§l0013. We concatenated the two words where the second
in this paper preserves the encoded state in both cases pene is taken in reverse bit order to obtdit110011009.
fectly, i.e., to all orders. This method, applied to all words in E(.), already yields a
The reason that the cod&gs. (1) and (2)] cannot per- possible code. However, it is possible to shorten the code by
fectly correct errors due to the conditional time evolutionremoving bits 5 and 6 from every word. This then yields Eq.
derives from the fact that the wordsroduct statesof which  (7) and analogously Ed8). Subsequently a computer search
the code consists do not all have the same number of excitaslas made for potentially shorter codes; this revealed no such
states. This leads to a difference in the rate at which theodes, so we conclude that 8 qubits is the minimum num-
amplitude of these states decays. The amplitud®@®00 ber required for the task of correcting one general error while
remains unchanged under the conditional time evolutiorerrors due to the conditional time evolution are corrected
while the amplitude 0f11100, for example, decreases at a perfectly. In the following we present some interesting prop-
rate exp3I't). This can be seen as a multiple amplitudeerties of the code and demonstrate that it indeed has the
error with which the code cannot cope. This problem is notclaimed error correction properties. However, this code dif-
restricted to the five-bit code given [d0] but is present in  fers in many ways from previously proposed codes. First of
all other previously proposed codes. It should be noted that &ll, it violates the conditions given for quantum error correct-
is not necessary to observe the system for these conclusioitgy codes in[11] thereby showing that these conditions are
to hold. If we do not observe the system, it then has to beverly restrictive. As these conditions were used to derive
described by a density operator, whose time evolution folthe inequality Eg.(3), their violation indicates that there
lows the appropriate Bloch equations. This time evolutionmight exist codes that require less qubits than expected from
can in principle be decomposed into individual trajectoriesEq. (3). However, we did not yet succeed to construct a code
each of which consists of no-jump evolutions interrupted bythat violates Eq(3). One should also realize that the code-
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TABLE I. One obtains an error syndrome, i.e., the state of all

|0} p—(w)—(/?—o—— qubits except qubit 3, depending on the error that occurred and the
place in which it occurredP; indicates a sign change of the upper
|0) level of qubiti, A; an amplitude error which is given by the trans-
AT I formation|0)«|1). The product of both applied to the same qubit
1) I - L l gives the third kind of error. Note that the error syndrome is not
0) -®-e Py able to distinguish betweeR; and Py_; which leads to global
phases in some of the corrected states. This table does not take into
|0y B & account that before and after the error a conditional time evolution
takes place.
0) <b S
o) @ o Error Error syndrome State of qubit 3
None 0000000 a|0)+ B|1)
0) B &, P, 1000000 a|0)+ B|1)
P, 0100000 «|0)+ B|1)
FIG. 1. The encoding networR describes a one bit rotation P4 0010000 a|0)+ (1)
which takes|0)— (|0)+|1))/y2 and|1)—(|0)—|1))/\2. Anen-  As 0001000 al0)+B|1)
circled cross denotesnoT operation while a dot denotes a control Ag 0000100 al0)+B|1)
bit. For a filled circle the operation is carried out if the control bit is A7 0000010 @|0)+ B|1)
1, for an empty circle the operation is carried out if the control bit Ag 0000001 @|0)+ B|1)
is 0. A circle with a 7 represents multiplication with phase p, 1010000 a|0)—B|1)
exp(iw). Qubit 3 is in the statéy) that we wish to encode, while A, 0010010 a|0)y—B|1)
all other qubits are initially in their ground stajt@). Ps 1010000 — a|0)+ B|1)
words in the code Eq$7) and(8) do notform a linear code  A2P2 0110010 —a|0)+B[1)
as this would imply thaf00000000 is a codeword which in  AsPs 1010100 —a|0)+B[1)
turn would render impossible the task of constructing a codé&’s 0010000 —al0)—p|1)
with codewords of equal excitation. Nevertheless, the codeP7 0100000 —al0)—B|1)
words of|0, ) form a coset of a linear code. The coset leaderPs 1000000 —a|0)—pg[1)
is |0000111}. This contrasts slightly with other codes such AsPs 0011000 —al0)—p|1)
as those presented j8,8—10. The codewords of the code A;P; 0100010 —al0)—pB[1)
(1) and(2), for example form a linear code. Given the initial AgPg 1000001 —a|0)—8|1)
state| ) = a|0)+ B| 1), we obtain the code Eq¢7) and(8) AP, 1110001 B|0)+ 1)
using the network given in Fig. 1. To correct the error thatA,P, 1011000 Bl0)+«a|1)
may have appeared we first apply the encoder in the reversg,p, 1110100 B|0)— 1)
direction (right to left). After the application of the decoder, A, 0110001 —Bl0)—a|1)
the third qubit contains information about the encoded stat@,, 0100100 ~B|0)—a|1)
while the remaining seven qubits contain the error syndromes,, 1001000 — Bl0)—al1)

from which one can infer the type and location of the error.
We measure the qubits of the error syndrome and apply,
according to the result of our measurement, a suitable unitargonditions that have to be satisfied by any quantum error
operation on qubit 3. We assume that after the measuremeanbrrection code. The violation of these conditions by the
all the other qubits are reset to their ground st@jeso that, code Eq.(7) and(8) leads to these different predictions for
in principle, we can reencode the state again using the samke dimension ofH.,4.. More general conditions can be
qubits. derived and it can be checked easily that our code satisfies
In Table | we give all possible outcomes of the measurethese conditiong13,26 while it violates the conditions
ment and the corresponding state of the third qubit. The negiven in[11].
essary unitary transformation that has to be applied onto the So far we have shown that our code can indeed correct a
third qubit is then obvious. Careful inspection of Table | general single error without taking into account the condi-
reveals that this error correction scheme has, for some errorgpnal time evolution due to spontaneous emission. Now we
a slightly different effect than expected. Take, for example, ashow that our code is able to correct errors due to the con-
phase errord®; on bit 1 and compare with the effect of a ditional time evolution perfectly, i.e., to all orders. For our
phase erroiPg on bit 8. We observe that they both lead to code given in Eqs(7) and(8) the conditional time evolution
the same error syndrome but that the resulting state differander the assumption that no spontaneous emission has taken
by a global phase- 1. Therefore it is not possible to correct place is generated by the effective Hamilton operator
both states in such a way that they go over to the initial state.
After the correction they differ by a global phasel. But H _2 AT 9
this also shows that the dimension of the spdég,q. eff ™ & nl oy ©)
spanned by the code together with all states that result from
it by single errors is X 21 and not as expected from E) If the code undergoes a conditional time evolution before it
2X25. The latter number results from the considerations oexperiences an error like, e.g., a spontaneous emission, it is
Ekert and Macchiavelld11] who have presented a set of obvious that the code Eq&)-(8) will work properly, as it is
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invariant under the conditional time evolution see that both errord, and A;P; lead to a different error
exp(—iHt/A). However, it is not so obvious that the code syndrome. A measurement of the syndrome will then indi-
corrects general single errors that ocbeforeor in between cate one or the other errof; or A;P;, which can then be
the conditional time evolution. As we do not know the time corrected. Therefore the cod@&) and (8) corrects properly

at which the general error occurs, this situation will almosteven if the error is followed by a conditional time evolution.
certainly occur and has to be examined. If the error was a

phase error, then no problem will occur, as this error does IV. CONCLUSIONS

not change the excitation of the state. However, for ampli- ,

tude errors or a combination of amplitude and phase errors W€ conclude that the code presented here is able to cor-
we have to investigate the code more closely. The problem i&€Ct @ single general errand, in addition, errors due to the

that, for example, after an amplitude error in the first qubit'conditional time evolution tqarbitrary order. Ou_r cm_je can
correct a general error to first ordand a special kind of

we obtain i . - i
error to all orders. This is an interesting result as it shows
A;/0.)=|1000111}—|1111000}+|1100110} that it is possible to correct special kinds of errors to all
orders. As some errors are more frequent than others it
+/1011001}+/0110100—|00010110 would be in our interest to correct those errors to higher
+]01010100+|00101010. (10) order than less frequently occurring errors. We have adapted

our code to errors due to the conditional time evolution be-

Now the code words have a different degree of excitation séween spontaneous emissions. Other applications will require
that their relative weights will change during the subsequen€lifferent adaptions. The code presented heimilar to the

conditional time evolution. However, for one given in[5]) violates the conditions for quantum codes
[ ) =a|0 )+ B]1.) we have the relations given i_n [11] which shows that the.se conditions are overly
|y )=al0)+B|1,) restrictive, as they exclude codes like the one presented here
that map different errors onto the same error syndromes. This
e—iHgt/ AA)| ) = %e*3“{(1+e*2F‘)Ai—(l can lead to the construction of shorter quantum error correc-
_oTt tion codes than expected from the quantum sphere packing
—e THAPH ) 1) hound as derived ipl1]. These results may become impor-
and tant in different fields such as quantum computation, the dis-
tribution of entangled particles, and in quantum cryptogra-
e—iH /APy ) =3e 3 —(1—e " 2HA +(1 phy [27-30.
+e AP} ). (12 ACKNOWLEDGMENTS
Equation(11) shows that after an amplitude err@dr on the The authors thank A. Ekert, C. Macchiavello, and A.M.

ith qubit, the conditional time evolution transforms the stateSteane for discussions about quantum error correction. This
into a superposition of a state without conditional time evo-work was supported by the European Community, the UK
lution after this amplitude error, and a state without condi-Engineering and Physical Sciences Research Council and by
tional time evolution obtained after a combined amplitudefinancial support from the Alexander von Humboldt Founda-
and phase erroh;P; on theith qubit. Inspecting Table | we tion.

[1] P. W. ShorProceedings of the Thirty-Fifth Annual Symposium [11] A. Ekert and C. Macchiavello, Phys. Rev. Lei#t7, 2585

on Foundations of Computer Sciencedited by S. Gold- (1996.
wasser(I[EEE Computer Society, New York, 1994op. 124- [12] L. Vaidman, L. Goldenberg, and S. Wiesner, Phys. Re%4A
134. 1745(1996.
[2] J. 1. Cirac and P. Zoller, Phys. Rev. Let4, 4091(1995. [13] E. Knill and R. Laflamme, Phys. Rev. @o be publisheg
[3] M. B. Plenio and P. L. Knight, Phys. Rev. 33, 2986(1996. [14] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
[4] M. B. Plenio and P. L. KnightProceedings of the 2nd Inter- Wootters, Phys. Rev. A4, 3824(1996.

national Symposium on Fundamental Problems in Quantuni15] A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Josza,
Physics, 1996edited by M. Ferrero and A. Van der Merwe and C. Macchiavello, Report No. quant-ph/9604028.
(Kluwer, Dordrecht, 1996 [16] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A.

[5] P. W. Shor, Phys. Rev. A2, R2493(1995 Sloane, Report No. quant-ph/9605005.

[6] I. L. Chuang and R. Laflamme, Report No. quant-ph/9511003[17] P. W. Shor, Report No. quant-ph/9605011.

[7] A. R. Calderbank and P. W. Shor, Phys. Rev. 54, 1098 [18] A. M. Steane, Report No. quant-ph/9605021.

(1996. [19] D. P. DiVincenzo and P. W. Shor, Phys. Rev. Létt, 3260
[8] A. M. Steane, Phys. Rev. Left7, 793(1996. (1996.
[9] A. M. Steane, Report No. quant-ph/9601029. [20] D. Gottesmann, Report No. quant-ph/9607027.

[10] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys.[21] D. Gottesmann, Phys. Rev. 34, 1862(1996.
Rev. Lett.77, 3240(1996. [22] D. Gottesmann, Report No. quant-ph/9607030.



55 QUANTUM ERROR CORRECTION IN THE PRESENCE OF ... 71

[23] J. Dalibard, Y. Castin, and K. ¥imer, Phys. Rev. Lett68, [26] V. Vedral, M. Rippin, and M. B. Plenio, Phys. Rev. (fo be

580(1992; G. C. Hegerfeldt and T. S. Wilser, Proceedings published.

of the Il International Wigner Symposium, Goslar, 19@d- [27] C. H. Bennett and G. Brassard, Broceedings of IEEE Con-

ited by H. D. Doebner, W. Scherer, and F. Schro@alorld ference on Computers, Systems and Signal Proces$kiifit,

Scientific, Singapore, 1992H. J. CarmichaelAn Open Sys- New York, 1984, p. 175.

tems Approach to Quantum Optjdsecture Notes In Physics [28] A. Ekert, Phys. Rev. Let67, 661 (199J).

(Springer, Berlin, 1998 [29] R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Mor-
[24] V. Pless, Introduction to the Theory of Error-Correcting gan, and M. Schauer, Cont. Phy&, 149(1995.

Codes(Wiley, New York, 1982. [30] S. J. D. Phoenix and P. D. Townsend, Cont. PI86.165

[25] H. Mabuchi and P. Zoller, Phys. Rev. Lef6, 3108(1996. (1995.



