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Abstract. A one-dimensional transient quantum Euler-Poisson system for the elec-
tron density, the current density, and the electrostatic potential in bounded intervals is
considered. The equations include the Bohm potential accounting for quantum mechan-
ical effects and are of dispersive type. They are used, for instance, for the modelling of
quantum semiconductor devices.

The existence of local-in-time solutions with small initial velocity is proven for general
pressure-density functions. If a stability condition related to the subsonic condition for
the classical Euler equations is imposed, the local solutions are proven to exist globally in
time and tend to the corresponding steady-state solution exponentially fast as the time
tends to infinity.

1. Introduction.
1.1. The Model Equations. In 1927, Madelung gave a fluid-dynamical description of

quantum systems governed by the linear Schrodinger equation for the wave function tjj-.

£2
iedtip = ——Aip — Vip in x (0, oo),

^(•,0) = tpo in Kd,
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where d > 1 is the space dimension, e > 0 denotes the scaled Planck constant, and
V = V(x, t) is some (given) potential. Separating the amplitude and phase of ip =
l^l exp(iS/e), the particle density p = \il>\2, and the particle current density j = pVS for
irrotational flow satisfy the so-called Madelung equations [21]

dtp + divj = 0, (1)

dtj + div - PV4> - jpV = 0 inKdx(0,oo), (2)

where the i-t.li component of the convective term div(j ® j/p) equals

y- 9 f jijk
F)ti. I nk=1 dxk V p

Equations (l)-(2) can be interpreted as the pressureless Euler equations including the
quantum Bohm potential

<3)2 \fp
They have been used for the modeling of superfluids like Helium II [16, 20].

Recently, Madelung-type equations have been derived to model quantum phenom-
ena in semiconductor devices, like resonant tunneling diodes, starting from the Wigner-
Boltzmann equation [6] or from a mixed-state Schrodinger-Poisson system [8, 9]. There
are several advantages of the fluid-dynamical description of quantum semiconductors.
First, kinetic equations, like the Wigner equation or Schrodinger systems, are computa-
tionally very expensive, whereas for Euler-type equations, efficient numerical algorithms
are available [5, 25]. Second, the macroscopic description allows for a coupling of classi-
cal and quantum models. Indeed, setting the Planck constant e in (2) equal to zero, we

obtain the classical pressureless equations, so in both pictures, the same (macroscopic)
variables can be used. Finally, as semiconductor devices are modeled in bounded do-
mains, it is easier to find physically relevant boundary conditions for the macroscopic
variables than for the Wigner function or for the wave function.

The Madelung-type equations derived by Gardner [6] and Gasser et al. [8] also include
a pressure term and a momentum relaxation term taking into account interactions of the
electrons with the semiconductor crystal, and are self-consistently coupled to the Poisson
equation for the electrostatic potential <fi:

dtp + divj = 0, (4)

dtj + div + vp(p) -Pv<t>- = -3~, (5)

A2 A4> — p — C(x) in x (0, oo), (6)

where Q C is a bounded domain, r > 0 is the (scaled) momentum relaxation time
constant, A > 0 is the (scaled) Debyc length, and C(x) is the doping concentration
modelling the semiconductor device under consideration [12, 24], The pressure is assumed
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to depend only on the particle density and, like in classical fluid dynamics, often the
expression

P(p) = —p1, p> 0, 7 > 1, (7)
7

with the temperature constant To > 0, is employed [6, 11]. Isothermal fluids correspond to
7=1, isentropic fluids to 7 > 1. Notice that the particle temperature is T(p) = Top7-1.
In this paper we consider general (smooth) pressure functions. Equations (4)-(6) are
referred to as the quantum Euler-Poisson system or as the quantum hydrodynamic model.

In this paper, we investigate the (local and global) existence and long-time behavior
of solutions of the following one-dimensional quantum Euler-Poisson system:

Pt + ix = 0, (8)

3, + (Jj tfw)_ =?*. + -/*> <9>

<t*xx = P - C(x), (10)

with the following initial and boundary conditions:

P(x,0) = gi(x) > 0, j(x,0) = ji(x) =: ei(x)vi(x), (11)

p{0,t)=p1, p(l,t)=p2, px(0,t) = px(l,t) = 0, (12)
cj)(0,t) = 0, 0(l,f) = $o, (13)

for (x,t) G (0,1) x (0,oo), where pi, p2, $0 > 0, and vi is the initial velocity.
The existence and uniqueness of steady-state (classical) solutions to the quantum

Euler-Poisson system for current density jo = 0 (thermal equilibrium) has been stud-
ied in [1, 7]. The stationary equations for jo > 0 have been considered in [4, 11, 27] for
general monotone pressure functions, however, with different boundary conditions, as-
suming Dirichlet data for the velocity potential S [11] or employing nonlinear boundary
conditions [4, 27], Existence of steady-state solutions to (8)-(10) subject to the boundary
conditions (12)-(13) is proven in [10] for the linear pressure function P{p) = p and in
[14] for general pressure functions P(p) also allowing for non-convex or non-monotone
pressure-density relations. So far, to our knowledge, the only known results 011 the
existence of the time-dependent system (4)-(6) have been obtained in [13] for smooth
local-in-time solutions on bounded domains and in [17] for "small" irrotational global-
in-time solutions in the whole space assuming strictly convex pressure functions and a
constant doping profile.

In the present paper, we consider the initial-boundary-value problem (IBVP) 8-13
for general pressure and non-constant doping profile, and we focus on the local and
global existence of classical solutions {p,j, <fi) of the IBVP 8-13 and their time-asymptotic
convergence to the stationary solutions (poijo^o) obtained in [14]. First, we show that
there exists a classical local-in-time solution for regular initial data. Second, we prove
that if a certain "subsonic" condition (see 25) holds and if the initial data is a perturbation
of a stationary solution (po,jo, <fio), a classical solution (p, j, (f>) exists globally in time and
tends to {po,jo,<Po) exponentially fast as time tends to infinity.
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In dealing with the IBVP 8-13 we have to overcome the following difficulties. First,
since the general pressure P(p) can be non-convex (even zero or "negative"; see Re-
mark 1.6), the left part of Eqs. 8-10 may be not hyperbolic any more. Unlike [17],
we cannot apply the local existence theory of quasilinear symmetric hyperbolic sys-
tems [3, 15, 22, 23]. We have to establish a new local existence theory. Second, the
appearance of the nonlinear quantum Bohm potential in 9 requires that the density is
strictly positive for regular solutions. This together with the structure of the quantum
term causes problems in the local and global existence proofs.

1.2. Main results. Before stating our main results we introduce some notation. We
denote by L2 = L2(0,1) and Hk = Hk(0,1) the Lebesgue space of square integrable
functions and the Sobolev space of functions with square integrable weak derivatives of
order /c, respectively. The norm of L2 is denoted by ||-||o = ||-||, and the norm of Hk is ||-||fc.
The space Hq = Hq(0, 1) is the closure of Co°(0,1) in the norm of Hk. Let T > 0 and
let B be a Banach space. Then Ck(0, T; B) (Cfc([0, T];B), respectively) denotes the space
of ^-valued fc-times continuously differentiable functions on (0, T) ([0, T], respectively),
L2{0, T; B) is the space of B-valued L2-functions on (0, T), and Wfc'p(0, T; B) the space of
B-valued PF^-functions on (0, T). Finally, C always denotes a generic positive constant.

It is convenient to make use of the variable transformation p = ui2 in 8-10, which
yields the following IBVP for (u>,j,4>):

2u)u}t + jx = 0, (14)

jt+(% + P^2)) =uj24>x+1-sW(^) -i (15)
\(jJz J x 2 V UJ J x T

<\>xx = W2 -C(x), (16)

with the initial and boundary conditions

(w,j)(x, 0) = (wi,ji)(x) = (V?T>eiVi)(a:), (17)
u>(0, t) = VpT, w(l, t) = V/P2, wx(0, t) = wx{l, t) = 0, (18)

<f>(0,t) = 0, <j>(l,t) = $0, (19)

for x € (0,1), t > 0. This problem is equivalent to 8-13 for classical solutions with
positive particle density.

We will assume throughout this paper compatibility conditions for the IBVP 14-19
in the sense that the time derivatives of the boundary values and the spatial derivatives
of the initial data are compatible at (x,t) = (0,0) and {x,t) = (1,0) in 14-16. We will
prove the following local existence result for the IBVP 14 19:

Theorem 1.1. Assume that

PeC\ 0,+oo), CeH2, (20)

(wiiii) £ H6 x H5 such that uji(x) > 0 for x £ [0,1], and for some a G [(1 + 2\Z2e)~1,1)

(1 - ct)w» , .
ll»il|CM[o,u» < <21>
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where

= min loAx) > 0.
*e[o,i]

Then, there is a number (determined by 128), such that there exists a unique classical
solution (u>, j,(f>) of the IB VP (14)-(19) in the time interval [0, T], with 0 < T < T**,
satisfying u> > (1 — > 0 in [0,1] x [0, T\ and

Mt)\\i+ymi+\m)\\i<™ for t <t.
Remark 1.2. (1) It is well known that for classical hydrodynamic equations, monotone
pressure-density relations are required to guarantee short-time existence of classical so-
lutions [2, 18]. The condition 20 means that this condition is not necessary (to a certain
extent) when the quantum effects are taken into account.

(2) Condition 21 is needed to prove the positivity of the particle density. A similar
condition has been used to prove the existence of stationary solutions [11]. This condition
allows for arbitrarily large current densities j\ = wfvi, for instance, if Wi is a sufficiently
large constant.

(3) We are able to show the statements of Theorem 1.1 under the slightly more general
condition

Ihllc'ao.i]) < min jae, ' "€(0,1). (22)

Then 21 is a special case for a > (1 + 2\[2e)~l which is equivalent to as > (1 — a)/2\/2.
(4) The local existence of the Cauchy problem in or Td can be shown in the same

framework; see [19].

Theorem 1.1 is proven by an iteration method and compactness arguments. More
precisely, we construct a sequence of approximate solutions that is uniformly bounded in
a certain Sobolev space in a fixed (maybe small) time interval. Compactness arguments
then imply that there is a limiting solution which proves to be a local-in-time solution
of 14-19. Unlike [17], we cannot apply the theory of quasilinear symmetric hyperbolic
systems [3, 15, 22, 23] to construct (local) approximate solutions and obtain uniform
bounds in Sobolev spaces because the pressure can be non-convex, causing the loss of
entropy and hyperbolicity of 14-15.

The idea of the local existence result is first to linearize the system 14-16 around its
initial state {wi,ji,4>i), where <j>\ solves the Dirichlet problem 16 and 19 with o> replaced
by u)\, and to consider the equations for the perturbation (ip, 77, e) =
The main idea is to write the evolution equation for the perturbed particle density
as a semilinear fourth-order wave equation. Then, we construct approximate solutions
(■ipi,r)i,ei) (i > 1) from a fixed-point procedure, which are expected to converge to a
solution (1/), 77, e) of the perturbed problem as i —> 00. For this, we derive uniform
bounds in Sobolev spaces on a uniform time interval and apply standard compactness
arguments,(see Sec. 3). A further analysis shows that (u>,j,(j)) = (a>i +ip,ji +f),<j> 1 + e)
with ui > 0 is the expected local (in time) solution of the original problem 14-19.

To extend the local classical solution globally in time, we need to establish uniform
estimates. We consider the situation when the initial data is close to the stationary
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solution (wo,joi0o) of (14)-(16) with boundary conditions 18-19. The existence of sta-
tionary solutions {u>o,jo, 0o) of the boundary-value problem (14)—(16) and 18-19 for
general pressure functions P(p) was obtained in [14] (see Theorem 1.3 below).

Assume that there is a function A £ H2(0,1) satisfying

A(x) > 0 for x £ (0,1), .4(0)= pi, 4(1) = P2, «4X(0) = AX{1) = 0 (23)

such that for a set E C [0,1], it holds

P\A)- 4 I"0, XeE' (24)
42 [>0, are [0,1 }\E.

Then we conclude the existence of stationary solutions (wo,jo, 0o) of 14-16 satisfying
the boundary conditions 18-19:

Theorem 1.3 ([14]). Let 20, 23-24 hold. For given k e (0,1), assume that

min A2 (\k£2 + P'{A)] > j%. (25)
xe[o,i] \4 /

Then there is a unique solution (ujq, jo, 0o) of the stationary version of the boundary-value
problem 14 16 and 18 19 such that

A. || WO — "^-^l|2 + ^ollwoxlli + II 00a: 111 < CSq,
provided S0 ■= ||«4'||i + ||4 — C|| is small enough. Here, A* = minxe[01] A(x),

A0 = min (\ke2 + P'(A) - j'^A '*) > 0, (26)
®€[0,1] \4 J

and C > 0 is a constant depending on jo, t, and A.
Let p0 = loq. Then (po, jo. 4>o) is a solution of the stationary version of the boundary-

value problem 8-10 and 12-13 satisfying

-4*||po — -4||2 + Aollpoxlli + ||0o&Hi < C'Sq, □
and C' > 0 is a constant depending on jo, r, and A.

Remark 1.4. (1) When E = 0 assumption 24 corresponds exactly to the subsonic
condition for classical fluids [2, 18]. We recall that a classical fluid is in the subsonic
state if the velocity is smaller than the sound speed yjP'(p)- Only for subsonic fluids,
we can expect to have existence of classical solutions [2, 18]. Therefore, in order to get
existence of classical solutions of the quantum hydrodynamic equations, we expect that
a condition corresponding to the classical subsonic condition is needed. It turns out that
24 is such a condition. Notice that condition 25 can allow for non-empty sets E when
quantum effects are involved.

(2) Condition 24 can be replaced by

\ne2 + \E\ min(p'(4) - JqA'2) >0, k £ (0,1), (27)
4 x£E

in order to obtain the existence and uniqueness of classical solutions. Here, |£7| denotes
the volume of the subset E.
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(3) We recall that in the steady state, the current density jo is a constant. If jo = 0,
we obtain the thermal equilibrium state. Condition 24 is satisfied if jo > 0 is sufficiently
small. Thus, Theorem 1.3 means that we can show the existence of solutions "close" to
the thermal equilibrium state.

In the following, we use the abbreviation

ipo=Ux- w0, rio = ji - j0. (28)

In view of the uniform a-priori estimates of Sec. 2, we are able to extend the local classical
solution globally in time and prove its exponential convergence to the stationary solution
(w0, jo,^o):

Theorem 1.5. Assume that 20, 23-25 hold. Let {too,jo,4>o) be the stationary solution
of the boundary-value problem 14-16 and 18-19 given by Theorem 1.3 for sufficiently
small do- Assume that the initial datum (u;i, ji) £ H6 x H5 satisfies 21 and > 0 in
[0,1]. Then there is a number mi > 0 such that if

ile + 11%Us = IK - wolle + llii — J0II5 < mi,
the (classical) solution (a;, j, (j>) of the IBVP (14) (19) exists globally in time and satisfies

||(u; - woXiJIlS + ||(j - j0)(t)||i + 11(0 - < C(Uo\\l + ll^o|||)e-Aot (29)
for all t > 0. Here, C > 0 and Ao > 0 are constants independent of the time variable t.

Remark 1.6. Theorems 1.1-1.5 also apply for non-monotone or even "negative" pressure
functions. These functions are related to quantum mechanical phenomena in which the
motion of the particles is affected by their attractive interaction [16]. A typical example is
the focusing nonlinear Schrodinger equation. In fact, this equation is formally equivalent
to the quantum Euler-Poisson system with infinite relaxation time and with "negative"
pressure.

Using Theorems 1.1-1.5 and the variable transformation p = u>2, we also obtain the
local and global existence of classical solutions of the original IBVP 8-13 and can establish
their large-time behavior:

Theorem 1.7. Let 20 hold. Assume that (y/gi, ji) 6 H6 x H5 such that gi > 0 in [0,1]
and

ae(0'1)'

where

g* - min J~qAx).
2:6(0,1]

Then there is a number > 0 such that there exists a classical solution (p, j, (f>) of the
IBVP (8)—(13) in t £ [0, T^\ satisfying p > 0 in [0,1] x [0, T't] and

\\pmi + \\m\\t+\\m\l<oc, t<%. m
Furthermore, assume that 23-25 hold and let (po,jo,<j>o) be the stationary solution

of the boundary-value problem 8-10 and 12-13 given by Theorem 1.3 with sufficiently
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small So- Then, there is a number m2 > 0 such that if \\s/qi — y'polle + ll^olls < m2, the
solution (p,j,(f>) of the IBVP (14)-(19) exists globally in time and satisfies

11 (p - Pomwi+no' - m)\\i + ii(0 - 0o)wii4 < cmwi + iMi§)e-Ait,

for all t > 0, where C > 0 and Ai > 0 are constants independent of t and the pair (ipo, 770)
is defined in 28.

This paper is arranged as follows. Section 2 is concerned with uniform a-priori esti-
mates of local (in time) solutions. We reformulate the original problem in Sec. 2.1 as a
nonlinear fourth-order wave equation and establish the a-priori estimates for local solu-
tions in Sec. 2.2. The a-priori estimates and the local existence result of Sec. 3 imply
the global existence. In order to prove the local existence result, we first give a result
on the existence of solutions of an abstract fourth-order wave equation (Sec. 3.1). This
wave equation allows us to construct a sequence of approximate solutions converging to
a local solution of the problem under consideration (Sec. 3.2).

2. Proof of Theorem 1.5. In this section, we establish uniform a-priori estimates
for local classical solutions of 14 16. This yields, together with the usual continuity ar-
gument, the existence of global-in-time solutions and proves Theorem 1.5. For notational
simplicity, we set r = 1.

2.1. Reformulation of the original problem. Let (co>o, jo, <t>o) be the steady-state solu-
tion of the boundary-value problem 14-16 and 18-19. For any T > 0, assume that
(cj, j, (f>) is a solution to the IBVP 14-19 in [0, T].

Differentiating 14 with respect to t and 15 with respect to x and adding the resulting
equations leads to a nonlinear fourth-order wave equation for w:

1 2 1 1 / 21 \ 1
vtt + u>t H (w 4>x)x " 7r~

oj 2u) Zui
p{u2)+4

UJZ xx
+ ~;£2Uxxxx — -s2—^- — 0, (1)4 4 uj

where we have used the identity

,2/ ^xx \

V UJ ) x.
= UJ   ^XXUJ.xx xx (2)

Similarly, the steady-state solution of 14-15 satisfies

1 t 2^ x __L
2uqM 0*)* 2wo p(v 0) + 41w0 J XX

1 lc2 _ 1 _2 10Oxx _ ^ /o\
~r £ UJQxxxx4 4 ujq

Introduce the perturbations of the steady-state

ip = u-uJo, V = j-jo, e = <j>-<j> 0. (4)
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Then, using 14, (l)-(3), and 16, the evolution equations for (ip,r],e) read as follows:

Vt+V = 9o{x,t), (5)

4>tt +il>t + ^ £ Ipxxxx + —{2l0q + 3u)Qip + cpoXX + 1p2)i>

1
u>o

Jo
UJr,

p'U) - 4)
w0 .

(6)
= 9i{x,t) + g2{x,t),

exx = (2 w0 + (7)

with the following initial-boundary values:

7i(x,0) = rio(x), are (0,1), (8)

ip{x,0) = ipo(x), ipt(x,0) = e0(x)=:- V0*^\( v xe(0,l), (9)2(w0 + WW
V>(0, i) = -0(1, f) = ^x(0, t) = ipx( 1, <) = 0, t > 0, (10)

e(0,t) = e(l,i)=0, i > 0, (11)

and the definitions

g0(x,t) = - (jo + r,l _4 + /)((^ + ̂ )_p(uj)
_(w0 + ^>)2 Wg

. 1 2/ , i\2 f (w0 + ^)ix \ 1 2 2 / ^Oxx \
+ -£ (W0 + V)  ——" - oS W0  2 Vwo+^/x 2 \ wo J x
+ (2w>o + ip)ip(/)ox + (wo + 4>)2ex, (12)

glQM) =e'(2"°- + - "7""+ ^
4 w0 4 (w0 + V>Vo (w0 + ^)

(0Ox ~t~ ̂x)V?x ^0x^x> (^)

/ x 192{x,t) =
2(w0 + ^)

p'l^i 41 f,
^0 .

(w0 +1/;)2

1

1
XX 2w0 ^) + 4u>.

Jo~2^
0 .W, (14)w0

Notice that we can write 14 equivalently as

2(w0 + + r)x = 0, (15)

which allows us to estimate the derivatives of r) in terms of ipt.
2.2. The a-priori estimates. We assume that for given T > 0, there is a classical

solution (ip,r],e) of the IB VP 5-11 satisfying the regularity condition

(i>,V,e)€X(T) := C°([0,T];H6) x C°([0, T]; H5) x C°([0,T]; H4).

We also use the definition

St := 0™<XT^^^"6 + (16)
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It is easy to verify that if St is sufficiently small, there are constants w_, w+, j_, and
j+ such that

0 < U)- < UJQ + ip < lo+, j- < j0 + n < j+.

In the following we assume that St is sufficiently small such that the above estimates
hold.

Lemma 2.1. It holds for e) € X(T) and (x,t) G (0,1) x (0, T),

ex(x,t)2 + ||e(t)||2 < C\\ip{t)\\l, ext(x, t)2 + et(x,t)2 + ||et(«)||| < C\\ipt(t)\\\, (17)

\\ij(t)\\2 < C11770112 exp{—c0t} + C\\(ipt,^,^xxx)\\2, (18)
r){x,t)2 < C||7?o||2exp{-c0i} + C|| ip, ipxxx) II21 (19)

\\Vt(.t)\\2 < C||r?o||2exp{-c00 + C\\(ipt, V, ipxxx)\f, (20)

|| i^XXXX 1 Ipxxx )|| ^ C|| {^ttl "05 Ipxx 1 Ipxi ^t)||2, (21)

provided that St + So is small enough (see Theorem 1.3 for the definition of Jo)- Here,
Co, C > 0 are constants independent of time t. Here and below the notation ||(/, g,.. .)||2
means ||/||2 + |M|2 + ■•••

Proof. The estimates (17) follow directly from the formula

e = [ G{x,y)(2u0{y) + ip(y,t))ip(y,t)dy,
Jo

and Holder's inequality. Here, G(x,y) denotes the Green's function

nt \ x<y> i or)\G(x,y)=< , (22)
[y(l-x), x > y.

To prove (18)-(20), it is sufficient to prove 18. In fact, from (15) follows

r/2 < f r/2dx + 2 f \i)xr)\dx < C f ~q2dx + C I ip2dx,
Jo Jo Jo Jo

which gives 19 if 18 is proved. In order to see that 20 also follows from 18, we proceed
as follows.

We conclude from the boundary condition (10) that there exists 0 < Xi(t) < 1 such
that

if>x{xi(t),t) = 0,

and that there are x2(t), X3(t), and x^t) satisfying 0 < x2(<) < X\(t) < x3(t) < 1 and
0 < X2(t) < X4 (t) < X3(t) < 1 such that

ipxx(x2(t), t) = i>xx{x3(t),t) = ipxxx(x4(t),t) = 0.
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Thus, by Poincare's and Holder's inequalities, we obtain

[ ipxdx <C f iplxdx, (23)
Jo J 0

[ \xdx= [ ( [ i>xxx(y,t)dy] dx< [ tplxxdx, (24)
Jo Jo \Jx3(t) J Jo

[ f \ [ ^xxxx (jI,t)dy] dx < [ ifixxxxdx. (25)
Jo Jo \Jx4(t) J Jo

Then, using (5), (17), 15, and 23-24, we can estimate

I">dx iC[ {(Srf" I+ +«2> - p«») J"*
+ C [ [if + ip24>20x + e2x}dx + C [ [((2w0 + il>)ip)lxx + ((2w0x + ipx)ipx)l}dx

Jo Jo

<C [r? +tp + ipt +ipi + V4 +Ipxxx\dx
io• /VJo

<C [ [rj2 + i/j2 + ip2t + ip2xxx\dx.
Jo

Hence, estimate 20 follows as soon as 18 is shown.
We now prove 18. Multiplying (5) by 77, integrating over x £ (0,1) and integrating by

parts gives, in view of the boundary conditions (10),

1 d
2 dt

< -

(/ ifdx^J + J rfdx

' (jo + vr-jo'I . ,i
1 pi

+ \r/{{2u>0 + i/j)ip(t>ox + (^o +ip)2ex)\dx
o Jo

10

1 '(jo + v)2 Jo
(w0 + VO2 w0** 2 - ^ + P((u0 + m - PH) dx

Z"1
+ IC (|j/((2w0 + ip)ip) XXX I ~l~ \ f1xipx{'2'^0x "0x)I) dx

Jo

=I0 + h+I2+I3. (26)
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The integrals Iq, h, h, and I3 are estimated as follows.

t s f1 Oo + n)2 - Jo , o jo + v 0 wu . ■,/ ju ,Iq ^ I Tjx o ~f" 27777.7? o 2?7u;n.r o dxfJo

<(cs0 + ^) j\2dx + C j\tdx, (27)

I\ <—- ( r)2dx + C f (tp2 + e2)dx < ^- f rfdx + C f ip2dx, (28)
12 Jo ^0 12 70 Jo

h <C f \iptv\ + Iiptpt\dx < ~ [ rfdx + C [ [tp2 + %p2]dx, (29)
Jo *-z Jo Jo

[ rj2dx + C [ [ip2t + i>2 + iplxx]dx,
Jo Jo

h 1 V2dx + C I [ip'f + ip2 + iplxx\dx, (30)

provided that St + <5o is small enough. In the above estimates we have used 15, 17, 23,
and 24. Substituting (27)-(30) into (26) yields

d
dt (/ r)2dx^J+c0 J rf dx < C J [ip2 + ip2 + iplxx\dx, (31)

where Co € (0, | — CS0] is a constant and So is chosen so small that CSo < Applying
Gronwall's inequality to 31 gives 18.

Finally, we prove (21). By (6) and (18), it holds

f 4>lxxxdx <C [ (i>tt + Vt + </>2 + + il>lt)dx
Jo Jo

+ C(ST + S0) f iplxxdx. (32)
Jo

The combination of (32) and (25) leads to (21), provided that St + So is small enough
such that C(St + <5o) < 1- Q

We prove now uniform estimates in Sobolev spaces for ip, tpt, and tptt-

Lemma 2.2. It holds for (-0,77, e) € X(T) and 0 < t < T,

+ \\Mt)\\l + H^ttWII2 + I|e(t)||| (33)

+ J (p'{-A) - {ip2x +iplt)dx

< CCII^olli + ||t?o||1) exp{-fat}, (34)

provided that St + Sq is small enough. Here, C,(33 > 0 are constants independent of t.

Proof. Step 1: differential inequality for xp and ipt in L2. We multiply (6) by tp,
integrate the resulting equation over (0,1) and integrate by parts, taking into account
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the boundary conditions 10:

d
dt j + tpipt dx^j - J ^dx +\ j (2wo + + <t>0xx + if^dx

- f j£2^L+(p\uo)~ dx+ f ^~(hv) dx
Jo L4 \ w0/ J Jo w0 V^o J XX

4- / giipdx + / g^dx
Jo Jo

—I<t + h + h + I7 • (35)
We estimate the integrals I4,..., I7 term by term. Prom 23 follows

h = - fQ \e2^xx + (p'{A) - ^ xl>2x dx - £ (p'(w0) - P'(-4) " + ^)

< - ̂ 1 - min, (mi -%) I tli* - /o (m) - f) ^

(bo + ̂ 4o) f i>lxdx- [ (p'{A)-^\i>2xdx + C5Q [ iplxdx, (36)
Jo J(0,1)\E \ A J Jo

< -

where Aq is given by 26 and

b0 = J(1 ~ k)e2-
Note that Aq > 0 by assumption 25.

Elementary computations, employing 15 and 16, lead to

(^v) = ~ 2^[(w0 +i>)ipxt + (u0 +ip)x^t]
\^o J xx wo

~ 4 f ̂  ) (w° + + r> (^1 ■ (37)
\W0/x V^O/xx

With this identity, Cauchy's inequality, integration by parts, 18, and 23, we have

dx2 jo , ,
—Vxipt\h\ <C(8t + 60) [ (ip2 + ip? + ii2)dx + f

Jo J 0

<C(6t + 60) [ (tp? + V2 + 4>lxx)dx + a0 [ ip?dx + ^-b0[ iplxdx
Jo Jo 4 Jo

+ Cexp{—c0£} / rfodx,
Jo

where

ao = 4io/ininwo6o = T  4. (38)[0,1] u (1 - K)e2 mm[0il| wg

In view of

\gi(x,t)\ < C(\*(>xx\ + |^| + \ipt\ + \ipx\ + lex|), (39)
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Cauchy's inequality, (17), and 23, we infer

\I6\ < C{ST + 50) [ [V'L + V'2 + i>?\dx.
Jo

By 16, 15, (18), and (23), we obtain, after a tedious calculation, that

\g2{x,t)\ < C(ST + S0)(\ipxx\ + \4>x\ + M + \A\ + \v\)- (40)
From the above estimate, 19, and Cauchy's inequality follows

\I7\ <C(ST + S0) [ W2 + iplx + iplxx + 4>2]dx + Cexp{-c0f} [ rftdx.
Jo JoJo

Substituting the estimates for I4,... . Ij into (35), we conclude

d_ / rl

dt
1 9
-ip +iptip dx^j — (1 + ao) J ip2dx

/'<Jo
+ h I (2wo + 3^0^ + 4>0xx + tp2)tp2dxdx

+ (^0 + ^0) i>lxdx + j (p'{A) - ipldx

<C(St + S0) f (tp2 + iplx + tplxx + ip?)dx + Cexp{-c0t} [ rftdx. (41)
Jo Jo

Multiply now (6) by xpt, integrate the resulting equation over (0,1) and integrate by
parts, noticing ipt{0,£) — ipt(l,f) = 0:

2 dt \Jq
3 11

+ ( wo + 2Wo^ + l^&oxx + 2 ) dx

1 d
+ 2 dt + (-P'(wo) - ^) dx^j + ifidx

= / dx+ g1iptdx+ / g2iptdx
Jo \w0 J XX Jo Jo

=I8 + h + ho- (42)

Employing 37, integration by parts, and (18), we estimate

Is < ~ [ iptipxtdx + C(ST + 60) [ (tp2 + ipt + ri2)dx
Jo uo Jo

<C(ST + So) f {ipt + + i'lxxjdx + Cexp{-c0t} ( rfodx.
Jo Jo

In view of 39, 40, 17, (18), and (20), the integrals Ig and /10 can be bounded as follows:

<C(ST + So) [ (iplx + V2 + tPt)dx,
Jo

<C(ST + S0) [ (ip2 +ip2xx +*Plxx + ip2)dx + Cexp{-c0t} f rjldx.
Jo Jo

1^91

\ho\ ^
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Substitution of the above three estimates into (42) yields

1 d_
2 dt

1 d_
2 dt

J 1pt + + |woV> + ^<p0xx + V'2 dx^j

Jo + (V(wo) - ife dx^j + jf tfdx

<C{5t + 5o) [ (i/;2 + iplx + iplxx + ipt)dx + Cexp{-c0t} [ rfclx. (43)
Jo Jo

We add 41 and 43, and multiply by 2(1 + ao) (here we recall that ao is denoted by
38), to obtain

d^f f1
dt 'o

^ip2 + iptip + {1 + a0)ip? dx

d_
dt
d t r1

3,1, 1
-Co>0Ip + -(poxx + -t

i£VL + (p'M)-$]*
ip2dx

dx

[ (1 + «o)
Jo

[ (1 + do)
Jo

1 fl
+ 2 J [(2<^o + 3wo^ + 0Oxx + 4>2)'iP2 + 2(1 + ao)tp2] dx

+ (a0 + tpxxdx + J ^ (p'iA) - 4>ldx

<C{5t + S0) [ {ip2 + ip2xx + ^Ixx + i>t)dx + Cexp{-c0<} [ Vodx.
Jo Jo

(44)

Applying Gronwall's Lemma to 44, we can estimate the i?2-norm of ip and the L2-
norm of ipt in terms of the initial data and ||^xxx||. However, the differential inequality
for ip and ipt is enough for the following considerations.

Step 2: differential inequality for iptt in L2. The starting point of the following
estimates is 6, differentiated with respect to t:

1 / 13
Ipttt + Iptt + J^lpxxxxt + ( ^0 + Suolp + -4>0XX + 2^2 ) V't

1 (JO-2 H
100 \LO[0 /xx

p'U) - 4) **
LO,

= glt(x,t) + g2t(x,t). (45)

This equation holds pointwise almost everywhere in (0,1) x (0, T) due to the fact ip £
C°([0, T\; H6) fl H3(0,T; L2) (see the proof of Theorem 1.1). We multiply (45) first by
ipt, integrate the resulting equation over (0,1) and integrate by parts, using 7 and the
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boundary conditions = tpxt{0,t) = ipxt(l,t) = 0 :

\Vt + Mtt dx^J - ipttdxd t f1 n ,o , , i , \ f1 ,o. f1 r 2 o , 1, 3,2
uj0 + 3(jJoip + ~(poxx +dt wfdx

= - f \e?iplxt+ (p\ul)~ 4)</& dx+ f ^-ipt(hvt) dx
JO L4 V u0 / J Jo w0 V^o J XX

+ / gui>tdx+ / g2tiptdx
Jo Jo

=Il2 + Il3 + hi + Il5- (46)

Applying an argument similar to 36, it follows

hi < —{A0 + b0) [ ip\xtdx - [ (P'(A) - ~] ipltdx + CS0 f iplxtdx,
Jo J(0,1)\E V A / JO

where we have used

f ipxtdx < f ipxtdx < [ ^lxtdxi (47)
JE Jo JO

based on the facts tjjxt{0,t) = ipxt(l,t) = 0. By (15), (20), and (47), we have, after
integration by parts,

c ̂
^13 = - 2 / + Uj0)ipxtt + 2iptipxt + (wo + ip)xiptt)dx

Jo u0

-4 [ Uo1 m*) + (w0 + i/j)iptt)dx + [ Wq1 (^) iptVtdx
Jo V^o/x Jo V^O / xx

y) f\i>iJo
<C(ST + So) / (iptt + i>xt + W + 1t)dx

2 ^(u>0 + ip)4>xti>tt
u n

dx

<C(ST + <5o) [ {iptt + <!>t + t-Lx +
J 0

+ Cexp{—c0i} I rfodx + a0 [ ip^tdx +-b0 f ipxxtdx.
Jo Jo 4 Jo

Elementary computations yield the estimate

\git{x, t)| < C(5t + So)(\ipxxt\ + \iptt I + |V>t| + IVktl + \ext\), (48)

which implies, in view of Cauchy's inequality, (21), and (47), that

\I14\ < C(ST + S0) [ (iplxt + ipt + iit)dx.
Jo
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After a tedious computation, it follows from 16 that

192t{x, £)| <C(ST + So)(\ipxxt\ + \iptt\ + IV'xtl + l^tl + |?7i|)
. Jo + V jo .
Uw0+V)3 ^)71xxt

<C(St + So)(\lpxxt\ + \*Pxx\ + IV'it I + l^xtl + |V*t| + \vt\)
io + y? _ jo

v (w0 + VO3-2(^0 + ^) -t! (49)

where we have used the equation

4 ipxx^t + 2(wo + VOV'xtt + 2(o;o + VOxV'tt + = 0. (50)

Using 49, (18), 47, (24), and the fact ipt(0,t) = = 0, we can estimate /15, after
integration by parts, as follows:

<(^T + So) f (V>Lt + + ̂ t2 + ̂ 2 + V'L + i>lxx)dx
Jo

'15

r-1
+ 2 I (uj0 + V) ( ——7-7^ - — ) ipxtipttdx

+ 2

f (w0 + ip)
J 0

J f(w0 + VO

jo + T? _ jo
(wo + V)3

"x ' jo + ?y jo
iptipttdx

(ujo+tp)3

<C(sT + <50) [ {tplxt + 4>2u + i>t +i>2 + i>L + ^lxx)dx-
Jo

Substituting the above estimates for /12,..., /15 into (46), we conclude

Jt (/ +^tl dx) ~ ^+00 ^ J0 ^tdx

+fJo

1 3
LOq + 3^0+ -<p0xx + tpfdx

+ ( Ao + —bo f i'lxtdx+ [ (p\A) - ipltdx
0 J(0,1 )\E \ A /

<C(6t + So) f {ip2t + </>2 + Vt2t + fplx + 1>lxt + ̂ lxx)dx
Jo

+ C exp{—c0£} f r)odx. (51)
Jo
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The next step is to multiply (45) by iptt, to integrate the resulting equation over (0,1)
and to integrate by parts, using iptt(0,t) = = 0, which yields

1 d f fl
2 ~dt

Id//1
2 dt

iptt + (^o + 3^0ip + ^4>0xx + ipt dx^j

Jq + (P'i^l) ~ dx^j

~ \ f (^o + Wifidx + [ ^ttdxZ JO J0

= / u^iptt [-^Vt) dx+ I gltipttdx+ / g2t^ttdx
JO \w0 / xx Jo Jo

± he + In + Ji8. (52)

By 15, 50, (20), (23), (47), and integration by parts, we have

/is = -2
pl ■ pi ■

/ ^|(w0 + ip)iptti>xttdx - 2 / ^|(2iptipxt + (w0 + ip)xiptt)dx
Jo ^0 Jo w0

~4 / + (wo + i/>)il>tt)dx + [ — V*ttVtdx
Jo Wo v^o/^ 7o Vw6/xx

<C(6t+60) [ (iptt + i*t + ^ + Vxxt + ^lxx)dx + Cexp{-c0i} /
J 0 ^0

Prom (48), (17), and (47), it follows

|Ji7| < C(ST + S0) [ [ip2xxt + ipt + 4>tMx■
J 0

Finally, in view of (49), (18), (20), and integration by parts, it holds

h» <{ST + S0) f {iplxt + V& + V>t + + iplxx)dx
Jo

- 2 [ (ujQ+ip) ( J° ^ iptttpxttdxJo Kiuo + ipr u>oJ

<(ST + S0) [ [lplxt + Iptt + ^t +l/>2 + ll>lxx\dx■
J 0
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Substituting the estimates for the integrals I\q, In, and Tig into (52) gives

o

1 d
2 dt

1 d
^ 2 dt \J0

i'tt + (<^0 + 3<x>oV' + 2^0xx + 2^2 ) ^ dx

\cV„, + (p'(u$) -|)A dx

~ \ J0 + ̂ Wdx + J ^tdx

<C(5t + <50) f (i>lxt + iptt + Vt +ip2+ + Vxxx)dx
Jo

+ Cexp{-c0t} f r)ldx. (53)
J o

Now we add inequalities 51 and 53, and multiply by 2(1 + ao), to infer

dt —ipt + + (1 + ao)iptt dx

+ (1 + a0)— . .
al \Jo

+ (1+a0)^ v./o

1 3
U>Q + + -4>0xx + 2^2

\e2^lxt + i>lt

ipt dx

dx

1 r j 3
cl>q + 3wq'!/' + + 2^2 J'2ipt dx+ (1 + a0) [ 4>udx + [

Jo Jo

+ + ^bo^j 4>lxtdx + J(p'{A) - ip2xtdx

<C(6t + 60) f (ipt + + ̂ lx + V>Lt + ̂ Ixx + ̂ 2)dx
Jo

+ exp{—c0£}7 (54)
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Step 3: combination of the estimates for ip, ipt, and iptt- We combine the
estimates (44) and (54) and obtain for some constant f3\ > 0, using (21),

eld
dt i(^2 + tp?) + tpt(ip + iptt) + (1 + ao)(ipt + ip. dx

+ {1 + ao)Jtn

+ {l+ao)Jt

+ {l+ao)Jt

2 3 , 1 1,2u0 + 2^°^ + + -£lp

UJq + 3w Qtp + —(poxx + n

xp dx

ipfdx1 , 3
^VOxx ~l~ 2

^(^Ix + ^Ixt) + fP'i^o) - ) (V'x + V'xt)dx

+ 01 [ [V'2 + 4>t + + V4 + t^lxt + ̂ lx\dx
JO

+ Pi j '(*4) - ^2 ̂  (rfx + ^lt)dx

<Cexp{—c0i} [ riodx, (55)
Jo

provided that 6t + is small enough.
There exist constants 02,03 > 0 such that

02 [ [lp2 + 1p? + Iplt + + i'lxt + '4>lx\ dx
Jo

+ A / ( - i ) !t\; t- ./4><fa:

< T,""'"
^0

^(V;2 + t/>2) + ipt{ip + Vtt) + (1 + a0){ipf + ip?t) dx

o 3 / 1 ^ 1 ,2
w0 + + T^V Oxx +

1 3
Wq + 3wo^ + -<t> oxx + 2^2

ip dx

ipfdx

+ (1 + ao) f
Jo

+ (1 + ao) f
Jo

+ (1 + ao) J -e2(iplx + i'lxt) + (p\"1) — ii'l + ''Pit)

<03X01 [ + Vt + Iplt + 4>tt + V4t + *Plx\ dx
Jo

+ /?3"1/Sl 1(0 E (P'("4) " i) ^ +

Thus, applying Gronwall's inequality to 55, we finally obtain

Jo [V + + 4>lt + V't2 + iplxt + V'L] dx + J 1 E ̂ '(-4) - (V>2 + i>lt)dx
<C(||Vo|l2 + |M|2)exp{-/?3i}, (56)
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provided that St + Sq is small enough.
The combination of (56), (17), (21), and 7 gives assertion 34. Thus, the lemma is

proved. □
We also obtain bounds for higher-order estimates for ip.

Lemma 2.3. It holds for (ip,rj, e) £ X(T) and 0 <t <T

>1
A2+ ll^xtt(<)||i + ||^ttt(^)||2 + IHOIlI + / ( P'{A) — -77, ) 4>lttdx

'(0,1 )\E

<C(||(^o||i + 11?7o||§) exp{—/34t}, (57)

provided that St + So is small enough. Here, C, /34 > 0 are constants independent of t.

Proof. For the proof of the lemma take the time derivative of 45 and estimate similarly
as in Lemmas 2.1 and 2.2. As the estimates are analogous to those of the proofs of
Lemmas 2.1-2.2, we omit the details. □

Proof of Theorem 1.5. By Theorem 1.1, there exists a solution 4>) of the IB VP 14-
19 for t £ [0,T*]. With the help of Lemmas 2.1-2.3, we infer that the local solution
(u>,j,<f>) of the IBVP 14-19 satisfies, for t £ [0, T*],

U(uj - uj0,j - jo,4> ~ M(t)l\%6xHsxH4 < C(||-0o|li + IMI|)exp{—A0i}, (58)

where C, Ao > 0 are constants independent of t. Choosing the initial data || V^o ||6 + 11 *7o 115
so small that

Cdl^ollei + IMIl) < ST,
we conclude first, by the Sobolev embedding theorem and 58, that w > 0 in [0,1] x [0, T*],
and second, by the usual continuity argument, that (u>,j,qi) exists globally in time and
satisfies 29. □

3. Proof of Theorem 1.1. The idea of the proof of Theorem 1.1 is to linearize Eqs.
14-16 around the initial state and to construct a sequence of approximate solutions of
the linearized problem converging to a solution of the original problem. First we need to
study the regularity properties of a certain semilinear fourth-order wave equation.

3.1. A semilinear fourth-order wave equation. Consider the two Hilbert spaces Hq and
L2 on (0,1), endowed with the scalar products (-,-) and (•, •) and corresponding norms
I ' Ih$ — I " b and || • ||, respectively. Furthermore, we consider the following initial-value
problem on L2:

u" + v! + vAu + u + Cu = F(t), t > 0, (59)

u(0) = uo, u'(0) = u±, (60)

where the primes denote derivatives with respect to time, r, v > 0 are constants, A =
is an operator defined on

D(A) = H2 n H4 = {u£ F4;«U=0,i = u*U=o,i = 0}, (61)
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and the operators £ and F are given by

(.Cu,v) = / b(x,t)uxvdx, u,v € Hq,
Jo

(F(t),v) = [ f(x,t)vdx, v £ L2,
Jo

where 6, / : [0,1] x [0, T] —» M are measurable functions.
Related to the operator A, we introduce the coercive, continuous, symmetric bilinear

form a(u, v)

a(u,v) — i/ uxxvxxdx V it, i; £ Hq .
Jo

There exist a complete orthonormal family of eigenvectors {ri}i€N of L2 and a family of
eigenvalues {/x;}igN such that O<H1<H2<--- and Hi —> oo as i —> oo.

The family {r^jigAr is also orthogonal for a(u,v) on f/g, i.e.,

{ri,rj) = Sij, a{ri,rj) = u{Ari,rj) = udij V i,j.

Using the Faedo-Galerkin method [26, 28], it is possible to prove the existence of
solutions of (59)-(60). The result is summarized in the following theorem.

Theorem 3.1. Let To > 0 and assume that

F e H\0,T0;L2), b G C1([0, To]; H2) n H/2'oo(0, To; H1). (62)

Then, if uq G H4 H H2 and u\ G Hq, there exists a solution of (59)-(60) satisfying

u G C([0, To]; if4 n#o) n C1 ([0, To]; Hq) n C2([0,T„]; L2). (63)

Moreover, assume additionally that

f6ff2(0,T„;L2)nC([0,T„];ff2).

Then, if uq G /f6 fl Hq and Ui G ii/4 fl Hq satisfy uAuq + £(wi) — T'(O) G ^ holds

u G C®([0, T0]; i?6_2i fl Hq) n C3([0, To]; L2), i = 0,1,2. (64)

Proof. The existence of solutions of 59-60 and the regularity property 63 can be shown
by applying the Faedo-Galerkin method as in [19]. The regularity property 64 follows
from 63 by considering the problem for the new variable v = u!. As the proof is standard,
we omit the details. □

3.2. Local existence. In this section we prove Theorem 1.1. For simplicity, we set
t — 1. We linearize Eqs. 14-16 around the initial state where <j>\ solves the
Poisson equation 16 and 19 with u replaced by ui, and prove the local-in-time existence
for the perturbation (ip, r/, e) = 4>—<j)\). For this, we reformulate the original
initial-boundary value problem 14-19. It is sufficient to carry out the reformulation for
Eqs. 14, 16, and 1 because of 15. For given Up = (^p,r/p,ep) we obtain the following
linearized problems for Up+1 = (ipp+i, rjp+h eP+i), p G N, writing "dx" for the spatial
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derivative and "'" for the time derivative:

Vp+i +VP+1 = 93(x,Up),

T]p+l(x, 0) = 0,
(65)

V'p+i + V'p+i + ^Vp+1 + V^+i + k(x, Up)dxip'p+1 = g4{x, t/p),

^p+i(x, 0) = 0, ip'p+1(x, 0) = 6i(x) := (66)

  "0p+l(l?^) ^X^P+1 (^5

( dxep+\ — (2cji + ipp)ipp,

£p+i(o>£) 6p+i(i?^) 0}

where 1/ = |e2 and

03(x, Up) =4(ji ^ y^-V'p - O'i + Vp)2
i yjp

(67)

1
_(u>i + ipp)

+ (wi + ipp)2{<t>i + ep)x + ^e2(u>i + i>Pf

P((u 1 + tpp)2)x -jl

(^1 ~t~ 1pp)x

Wi + Ipp

fc(x,^) = 2(il+7?p)2,
(wi + -ipp)2

04(X, C/p) - 2(wi + ^ ((W! + ^p)2(0! + ep)*)x + ^ + ^ P((Wl + ^p)2)xx

1 2 1 2 (^1 + Ipp)XX I I ^(^p)
* £ ^lxxxx i a £ i v^p I4 4 uj\ + ipp lo i+ipp

(ji + vP)2
2(lo\ + ipp)

1
_(wi +ipp)2

-3 1
(tL>l + 1pp)

O'l + ripWp- (68)

We apply an induction argument to prove the existence of solutions of 65-67.

Lemma 3.2. Under the assumptions of Theorem 1.1, i.e., P € C4(0, oo), C G H2,
6 H6 x H5 with loi > 0 in (0,1) and, for some a G [(1 + 2\/2e)_1,1),

< 8^17 (69)

with
w„ — min u>i(x), (70)

x6[0,l]

there exists a sequence {UZ}?11 of solutions of 65-67 in the time interval t G [0, T»] for
some T* > 0 which is independent of i, satisfying the regularity properties

J )hec,1([o,r,];if3)nc,2([o,T.];ir1), g c1([o,T,];//4nF01),
GCi([0,T,];F6-2'nFo2)nC3([0,T,];L2), Z = 0,1,2, t G N,
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and the uniform bounds

IkiWIli + \Wi{t)\\i + ||(eiiei)(^)II4 ^ M0,
IKV'ilV'ii ''Pi ,xlJi"){^)\\2H6xHixH2xL2 — ̂ 0, i > 1, < £ [0,T»], (72)

\\dlUt)r<a2ul
where Mq > 0 is a constant independent of Ul (i > 1) and T«.

Proof. Step 1: solution of 65-67 for p > 1. Obviously, U1 = (0,0,0) satisfies
71-72. Starting with U1 = (0,0,0), we prove the existence of a solution U2 = (xp2, V2, e2)
of 65-67 satisfying 71-72. The functions g3(x,U1), g4(x,Ul) and k(x, U1) only depend
on the initial state and satisfy

g3(x, Ul) =: g3(x) € H3, g4(x, U1) =: g4(x) E H2, k(x, Ul) =: k(x) € H3,

dtg3 = dtg4 = dtk = 0, \\g3\\l + \\g4\\l + \\k\\j < a0{I0 + 1), (73)

where do > 0 is some constant and

lo = ||(^i - \/C)||2 + ll^ixlll + l|jiIII- (74)
The existence of a solution U2 = (ip2,rl2,e2) of the linear system 65-67 follows from the
theory of ordinary differential equations, applied to 65, Theorem 3.1 with /(x. t) = g4{x)
and b(x,t) = k{x), applied to 66, and elliptic theory, applied to 67. The solution U2
exists on any time interval [0,T], T > 0, and satisfies 71 with T* = T and the first two
inequalities of (72) with i = 2.

We show in the following that U2 satisfies the last two inequalities of (72) for t € [0, ],
where T\ > 0 is given by

rp ■ f In 2 ^-411^1^1(^)1^11! 1 \ _
| 2 + ao(I0 + 1) 2ao(/o + 1) ao(Io + 1) J

We recall that ao > 0 is a constant and Iq and w* are given by 74 and 70, respectively.
It holds

va2ul - 4|K||ci([0,i])IMI? > 0, (76)
since 69 implies

^Ikillc'do.i])ll^iHi < ^ )2, ,2
32"

From 65 we obtain by integrating

V2(t)=g3{x) [ exp{-(t-s)}ds, te[0,Ti],
Jo

and hence, in view of 75,

\\V2(t)\\23<T!\\g3\\l<h te[ 0,Ti]. (77)
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Multiplying the differential equation in (66) by ip'2, integrating the resulting equation
over (0,1) x (0,t) for t G [0, T\], and integrating by parts gives

ll^2xs(f)l|2 <1 (||0i||2+aoTi(/o + l))eTl(2+a°(/o+1»
2<-
V

<a2u2, (78)

(2IKIIc1([o,i])llCo'illi + a0Ti(I0 + 1))

where we have used

H0iir = i 2
UixV\ + ^ivia <2|ki||^ao,1])|K||t (79)

This proves the last two bounds in (72). Moreover, by the Sobolev embedding theorem,
it follows from 78 that

\\Mt)\\i<^2ul te[o,Ti]. (80)

Now, assume that there exist solutions {Ul}pi=l (p > 2) of 65-67 on the time interval
[0,7i] where T\ is given by 75, satisfying 71 -72. As above we obtain, for given Up, the
existence of a solution Up+l = (ipp+i, rjp+i, ep+i) of 65-67 in the interval [0, T{\, satisfying

Vp+i € C1([0,2~i]; H3) D C2([0, Ti]; H1), ep+1 G ̂ ([O, 7\]; HA n H*),

i>p+1 G C'([0, Ti];H6~21 n H2) nC3([0,Ti];L2), I = 0,1, 2.

We prove that there exist constants T* G (0, Ti] and K, > ao (i = 1,2,3, 5, 6, 7) indepen-
dent of {Ul}pi=li such that if Up satisfies on [0, T„\

\\d2ipp(t)\\2 < a2ul, (81)

w;,rp'Pm\\22 + \K'm2< k0, (82)
\\dlil>'p(t)\\l<Ki, ||^p(t)li;<^2, \\d5Mt)\\l < K3, (83)

IMOII3 < !> Wp(t)f<K5, IIdxri'p(t)\\l < K6, \\v'p(t)\\l < Kr, (84)

then Up+1 also satisfies on [0, T*]

\\9l^P+i{t)\\l < a2u>2, (85)
||«+1,^+1)W||i + ||V;;i(0l|2< K0, (86)

W^'p+imi < Ku \\d3xi>p+1(t)\\2<K2, \\d^p+1(t)\\2 < K3, (87)

hP+i(t)\\l < 1, WP+i(t)\\2 < Kb, \\dxVp+i(t)\\l < K6, Up+x{t)\\\<K7. (88)

Notice that it follows from 81 and 85, employing the boundary conditions in (66) and
Poincare's inequality,

HP(t)\\2<2a2L02, UP+1(t)\\21<2a2co2, t £ [0,T*]. (89)
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Step 2: estimates for <74, and k. Let Up satisfy 81-84. Then a direct compu-
tation shows the following estimates for <73(cc, Up) and <ji(x. Up), for t g [0,T*]:

M-, unml <n(i0 +1 + uPmi + ii^wii?)5
<N(I0 + I + K0 + K2)\ (90)

uw-, unmi <N(i0 +1 + mm i + \wm\iy
<N(I0 + 1 + K0 + R\ + K2 + Kz)7, (91)

unmi <N(I0 +1 + \Wp(t)\\l + U'MU + WMml + WWII?)6
<N(I0 + 1 + K0 + K\+K2 + K3 + K5 + A'e)6, (92)

IM",Up)(t)f <N{I0 + 1 + UP(t)\\l + ll^(t)lli)3
+ 16i,2a1||^PW||2||^PW||2 (93)

<N(I0 + 1 + K0 + K2)\ (94)

<N(Io + 1 + IIVV.WII4 + ll^Wlli)5
<N(I0 + 1 + K0 + K2)\ (95)

H(;unm2 <n(i0 +1 + wPm2 + \\Mt)\\i + wPmi + ikwii2)4
<N(I0 + 1 + K0 + K2 + K5)\ (96)

ii54(-, unm2 <N(i0 +1 + \\(v'P,vP^Pm\\2+\\(MPm\\l+1KWH2)5
<N(Io + 1 + Ko + Ki + K2 + K5 + Kj)5, (97)

where
a\ = max (wi + ipp)~2 = (1 — a)~2w~2, (98)

x€[0,l]

and the estimates for k(x,Up) and ep(x,t), for t £ [0, T*],

IIM-^P)(0ll2 <^V(/o + l + ||^WIli)3,
<N(I0 + l)3, (99)

P'o, unm2 <n(i0 + ixkwii2 + kwii2)
<N(I0 + 1 + K0 + K5)\ (100)

l|fc"(-,t^)WII2<Jva0 + i)(||«,<,O(t)||2 + ||^WII?)2
<N{I0 + 1 + K0 + K5 + K7)3, (101)

l|ep||! + ||(e;,e;0||^<iV(||^W||^ + ||(^,OWII^)
<N(I0 + 1 + K0 + K2), (102)

where TV > 1 is a constant independent of K{ (i = 1,2,3, 5, 6, 7).
Step 3: estimates for rjp+1. Integration of 65 yields

r)p+i(x,t) = f exp{-(t-s)}g3(x,U1)(s)ds, 0 <t<T„<T1, £€[0,1], (103)
Jo

and
I)p+16C1([0,r1];ff3)nC2([0,r,];ff1). (104)
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Prom 90-92 we obtain the estimates

Ik+iWII2 <T2\\g3(; ̂ p)II2 < T?N(I0 + i + k0 + k2)\
\\dxVp+1(t)\\l <T2\\g3x(;U")\\22 < T?N(I0 + 1+Ko + K1+K2 + K3)7,

K+1(t)||2 <2(7? + 1)||g3(-, IP)||2 < 2N(T? + 1 )(/„ + 1 + K0 + K2)\

\\dWP+im22<2(T? + l)\\g3x(-,Un\\22

<2 N{T? + l)(/0 + 1 + K0 + Kx +K2 + K3)7,

||<+1(t)||1<4(T12 + l)||53(-,^)||? + 2||^(.,^)||?

<4 N(T? + 1){I0+1+K0 + K1 + K2 + K3)7

+ 2N(I0 + 1 + K0 + K1+jK2 + K3 + K5+ K6f.

Thus, r]p+i satisfies 88 if

K5 =2N(T?+ 1)(I0 + 1+K0 + K2)5, (105)
Kq =2N(T2 +1)(I0 + 1+K0 + K1+K2 + K3)7, (106)

K7 =2N(T2 +l)(I0 + l + K0 + K1 + K2 + K3)7

+ 2N(I0 + 1 + K0 + Kx + K2 + K3 + K5 + K6)6 (107)

and if T» satisfies

T* < -$=, (108)
V -^1

where

L\ = min [2N{I0 + 1 + K0 + K2)5, 2N(I0 + 1 + K0 + Kx + K2 + K3)7} . (109)

Step 4: estimates for Vp+i- We multiply the differential equation in 66 by ip'p+i,
ipp+i, and ijjp'+1, respectively, integrate the sum of the resulting equations over (0,1) x
(0,T„) and integrate by parts. In view of 93-94, 96-97, 99-101, we obtain after tedious
computations

||^p+1(t)||2 <i (||0i||2 +T*||54(.,^)||2)

■ I (2|Mci(1o,i])lkill\+T,L3)eT^+N^+l)2) (110)
u

<-

and

ik+iWii2 + wwii2+hi w+itof+"iiw+iWir+iK+iii2
< (ll^i(O)ll2 + 211^2(0)11 + Hl«+i(0)ll2 + Pif + HW) eT'L*

+ T*{\\g'i{'i Up)\\2 + ||^4(-, t/p)||2)eT*i4

<N(I0 + T*L5)eT*L\ (111)
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where

L3 = N(l0 + 1 + K0 + K2)3, (112)

Z/4 =8 + 67V(/o + 1 + Kq + A5 + A7)3 > 2 + N(I0 + l)2, (H3)

Z/5 = 2N(I0 + 1 + A() + A'i + A2 + A5 + A7)5. (114)

A'o = 20NIq ■ p r- = 20NIq ■ max {1, v~l ) . (H5)
mm {l,v j 1 '

Using 76 (which is a consequence of 69), we see that il>p+i satisfies

||^p+1(*)||2<a2u;2,

l!(Vp_i- Fp,i)(0 J + ll^p+iWII2 < 20NI0 • max{l,^-1} = A0 (116)
if

r / • f 1 ln2 ln2 In 2 Jo I .
*-mm\V/E7' 4L3' 2 + iV(/0 + l)2' 2 + 7V(/0 + l)' L4 ' A5 J ' ( '

where
5i = i/a2w2 -4|H|£,1([0)1])||u;i||?.

This proves 85 and 86.
To verify 87 we employ the differential equation in (66) again. We use 116, 93, 79,

and 117 to estimate

rvp+i(oii2 <^(iK+1wii2 + ii^+iWii2 + ife+iWii2 + n^v;+i(t)ii2)

+ ^\\94(;Upm\\2vz

2 n
+ 1)3 (1 + A'o) + 32ai II2 A2

<^(/o + !)3(! + ^0) + 32a1eT*(2+iV(/<'+1)2) (||^||2 + TtL3) A2

<~(/0 + 1)3(1 + A0) + 64a1(2|M|271([0jl])|M|2 +T,L3)A2. (118)

Here, we used the fact that 110 is also valid for %pp in [0, T*].
From 69 and 98 we infer

128ai|H|;l1([0il])|M|2 = 128||t;1||2,1([0il])(l - a)-V2||Wl||2 < 1,

which implies
128||uiIIc"i([o,i])ll^i 111

(l-a)V2 > '
Thus, choosing

K .. 8(1 — q)2lo1N{Iq + 1)3(1 + A"q)
2 ^2[(1 — oi)2^l — 128||vj. Ilc,1([0,1]) ll^i 111] ' 1 j

where Ao is defined by 115, we obtain from 118 and the Sobolev embedding theorem

\\d^p+1(t)\\2 + \\d^P+x(t)\\2<K2
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if
rr „• f 1 B0 ln2 ln2 J0 1 /ion\

* mmlvX7' i3' 2 + JV(J0 + l)' L4 ' L5J ' ( }
We recall that L\% L3, L4, L5, and Iq are given by 109, 112-114, and 74, respectively,
iV > 0 is a generic constant, and

f(l —Q)V2- i28|M|2c1([M)|M|? aVV-ieiKH^^iKiin n
Bo = mm |   ^ ,  g—^ j>0

due to 69. Notice that 120 implies 108 and 117.
Differentiating the differential equation in (66) with respect to t, integrating over

(0,1), and using 116, 99, and 95, we can estimate d^ip'p+1 as

HdX+iWii2 <^(\K'+i wu2 + iKhWii2 + ii^iWii2 + \\(kdx^p+1ym2)

+ ^\\g',(;Upm\\2
2 N a

(/o + 1 + K0 + K2 + A5)4 .Vz

Thus, by the Sobolev embedding theorem, we have

\\di^'P+,m2 + \\di%+im2 <k, (121)

if
4 N ,

A'i = — (Jo + 1 + A0 + K2 + X5)4. (122)
vA

Differentiating the differential equation in (66) once and twice with respect to x,
integrating over (0,1), and employing 116, 99, and 95, we can estimate d^ipp+i and
<9®VP+i as

mP+i(t)\\2 <^ (rv^+iWii2+\\dx->p'P+i(t)\\2+ii^p+iwii2)
N 2

+ ^\\dx(kdx^'p+1m\\2 + -^\\dx9i{;u2P){t)r

<\k3, (123)

H^xVyt-iWII2 (II^V'p+iWII2 + ll^p+iWII2 + II<92^p+iO)II2)
AT O

+ -ii^(^xv;+i)wn2 + ^ii0234(-,f/2)wii2

<\K3, (124)
if we choose

1KT
K3 = —(Io + 1 + Ko + K1+K2)5. (125)i/z

Now we choose the constants Ki as follows. Let A0 be given by 115, A2 by 119, K5
by 105, K\ by 122, A3 by 125, K§ by 106, and K-j by 107 (with v = e2/4). The constant
T* is determined by 120. This shows that (rpp+i, Vp+i) satisfies 85-88 for t 6 [0, T»].
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Step 5: end of the proof. The uniform bounds for ep+\ 6 C1([0,T*]; if4) of 67
follow from similar computations as those needed to derive 102, where the index p is
replaced by p + 1.

By induction, we conclude that exists uniformly in [0,T*] with T* given by
120 and satisfies 71-72 uniformly for

Mq — max {Ko, K\, K2, K3, K5, K6, K7} .

The proof of Lemma 3.2 is complete. □

Remark 3.3. It follows from the last two inequalities of (72) that

ipi(x, t) + lji(x) > (1 — a)u>» > 0, i> 1. (126)

For the proof of Theorem 1.1, we observe that after a tedious computation similarly
as in the proof of Lemma 3.2, we can obtain the following estimates:

||%>+1 ~ Vp lie1 (0,T„„, j-H1) + IIV'p+l — V;pllc,i(0,T,,;H4-2i) + llep+l epllc,1(0,T,,;if2)

<T»*a(Ar, Mq) ^||rip — r]p-i|Ic1(o,t,»;H1) + ll^p — ̂V-illc^o.r.,;^4-2^) > z = 0,1,2,
(127)

for any T** < T*. Here a(N, Mo) is a function of N, Mq. Taking such that

r"<m"'{s(W r-}- "•e(0'1)' (128)

then it follows from 127:
OO

(ll^P+l ~~ lie1 (0,T** j//1) + lleP+l ~~ lie1 (0,T** ;.£f2)^
p= 1

oo

+ IIV'p+i — 1/,pllc,i(o,T.,;/f4-2i) — J = 0,1,2, (129)
p= 1

with C > 0 a constant.
Proof of Theorem 1.1. By Lemma 3.2 and 129, the sequence satisfies 71-72,

126, and 129 uniformly in [0, T] with T < T*„. Applying the Ascoli-Arzela theorem and
the Aubin-Lions lemma to {(7P}2?=1, it follows that there exists U = (t/>,7?, e) satisfying

r) G C1 ([0, T];H3), eeC\[0,T}-H4),

i!> G C'flO, T]; H6~2i n H2) n C3([0, T]; L2), i = 0,1,2,

and there is a subsequence {UPj, t/^+^^with pj + 1 < pj+i such that

J^°°> strongly in Cl([0, T]; H6~2l~a), i = 0,1,2,

f7pj+i> ^Pj J^°°' strongly in C1([0, T]; i?3_cr),

ePj+i) epj J^°°) e strongly in C1([0, T]; if4-a),

for any er > 0.
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It is not difficult to verify that U is a solution of 65-67 and satisfies 126 where Up is
replaced by U. Setting

u = wi + ip > 0, j = ji + rj, 4> = ({>i + e,

we see that j € C([0,T]; H5) and (w, j, <f>) is a local-in-time solution of the IBVP 14-19.
The uniqueness can be proven similarly as the estimates 129. The proof of Theorem 1.1
is complete. □
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