QUANTUM EXPANSION OF SOLITON SOLUTIONS

N. H. Christ
Columbia University
New York, N.Y. 10027

 En

An invited talk given of the Conference "Extended Systems in Field Theory", June 1975, Paris (to be published in the proceedings of the conference).

This research was supported in port by the U. S. Energy Research and Developanent Administration.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereot, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The usual perturbative field theory, while useful as a guide to some aspects of hadronic physics, does not provide a computational fromework for discussing strong interaction phenomena. The quanta obtained from quantizing free fields, which are the lowest approximation in perturbation theory, are simply too far removed from real hadrons to serve as a reasonable first approximation. Recently there has been renewed interest in making quite a different connection between hodronic physics and field theory. In this approach ${ }^{(1)}$ one attempts fo relate the particle-like solutions of eldissical non-linear field equations with physical hadrons. Of course in order to make such a connection, these classical particle-like solutions must be carried over into quantum field theory and a computational scheme must be provided. It is such a method ${ }^{(2,3)}$ for giving quantum mechanical meaning to particle-like (or soliton) classical solutionts which I would like to describe. The method was developed in collaboration with T. D. Lee.

Let us begin by considering a Lagrange density depending on an N-component real seatar field ϕ^{i}

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2} \sum_{i}\left(\frac{\partial \phi^{i}}{\partial x_{\mu}}\right)^{2}-g^{-2} V\left(g \phi^{i}\right) \tag{1}
\end{equation*}
$$

If the porential $g^{-2} V\left(g \phi^{i}\right)$ is expanded in a power series in ϕ^{i} about its minimum, the parameter g will enter anly terms of cubic or higher power in ϕ^{i}; thus g plays the role of a coupling constant. Assume that

$$
\begin{equation*}
\left[\phi^{i}(\vec{r}, r)\right]_{c l} \equiv g^{-1} \sigma^{i}\left(\vec{r}, k, z_{1}^{0} \ldots z_{K}^{0}\right) \tag{2}
\end{equation*}
$$

represents a family of equal energy solutions, depending on the K paramerers $z_{1}^{0} \ldots z_{K}^{0}$, for which we would like to find a quantum mechanical interpretotion: The function $o^{i}\left(\vec{r}, t, z_{1}^{0} \cdots z_{K}^{0}\right)$ obeys

$$
\begin{equation*}
\frac{\partial^{2} \sigma^{i}}{\partial x_{\mu}^{2}}=\frac{\partial V(\sigma)}{\partial c^{i}}=0 \tag{3}
\end{equation*}
$$

and hence is chosen independent of g. The paramerers $z_{1}^{0} \cdots z_{K}^{0}$ will always be chosem so that translation of our solution in space or time can be aceamplished by shanging the porameters $z_{1}^{0} \cdots z_{K}^{0}$. Therefore, there will exist values $z_{k}\left(t, z_{1}^{0} \cdots z_{K}^{0}\right)$ sorisfying

$$
\begin{equation*}
\sigma^{i}\left[\vec{r}, t, z_{1}^{0} \cdots z_{K}^{0}\right]=\sigma^{i}\left[\vec{r}, 0, z_{1}\left(1, z_{1}^{0} \cdots z_{K}^{0}\right) \cdots z_{K}\left(1, z_{i}^{0} \cdots z_{K}^{0}\right)\right] . \tag{4}
\end{equation*}
$$

If we wish to discuss a single soliton in D dimension space, then we will introduce D parameters $z_{1} \cdots z_{D}$ corresponding to the position of the center of mass of the soliton. In many cases, the elassical solution for a single soliton at rest is time indeperdent and no further porometers are needed. Even if such a soliton is moving, the only time dependence corresponds to simple translation of the center of mass so that again only D parameters are necessary. For example, in the case of a single moving soliton solution to the 1-dimensional sine-Gordon equation,

$$
\begin{equation*}
-\frac{\partial^{2} \theta}{\partial t^{2}}+\frac{\partial^{2} \sigma}{\partial x^{2}}-\mu^{2} \sin \theta=0, \tag{5}
\end{equation*}
$$

we choose

$$
\begin{equation*}
\sigma(x, z)=4 \tan ^{-1}\left[e^{y_{U}(x-z) \mu^{2}}\right] \tag{6}
\end{equation*}
$$

depending on the single parametrer z. This is a solution to Eq. (5) if $z\left(t, z^{0}\right)=z^{0}+u t$ where $u=\sqrt{1-\gamma_{u}^{-2}}$ is the soliton velocily. However, we intend also to include more complicated situations. For a charged soliton the classical solution will hove an additional time-dependent phase factor ${ }^{(4)}$ while other periodic solutions, as wos seen in the sine-Gordon case, ${ }^{\text {(5) }}$ may correspond to soliton-antisoliton bound states. Similarly, it is possible to discuss solitan-soliton scattering if for $0^{i}\left(\vec{r}, 1 ; z_{1}^{0} \cdots z_{K}^{0}\right)$ we use a classical solution containing two moving solitons. In this case at least 2D parameters z_{k} are introduced corresponding asymptotically to the center-of-mass positions of the two solitons.

We now turn to a quantum-mechanical exponsion which approaches the original classical solution $\sigma^{i}\left(\vec{r}_{f} z_{1}(t), \cdots, z_{K}(t)\right)$ in the limit of small coupling g. First we expand the elassical field $\varphi(\vec{r})$ about our classical solution $\frac{1}{9} \sigma\left(\vec{r}, z_{1} \cdots z_{K}\right)$

$$
\begin{equation*}
\phi^{i}(\vec{r}, r)=g^{-1} \sigma^{i}\left(\vec{r}, z_{1} \cdots z_{K}\right)+\sum_{n=K+1}^{\infty} q_{n}(r) \phi_{n}^{i}\left(\vec{r}, z_{1}, \cdots z_{K}\right) \tag{7}
\end{equation*}
$$

where $z_{1} \cdots z_{K}, q_{K+1}, q_{K+2} \cdots$ are treated as coordinates and the N-component functions $\dot{p}_{n}\left(\vec{r}, z_{1} \cdots z_{K}\right)$ form a complete set of real functions subject to the constroints

$$
\begin{equation*}
\sum_{i=1}^{N} \int \psi_{n}^{i} \frac{\partial \sigma^{i}}{\partial z_{k}} d \tau=0 \tag{B}
\end{equation*}
$$

and the orthonomality relation

$$
\begin{equation*}
\sum_{i=1}^{N} \int \phi_{n^{\prime}}^{i} \phi_{n^{\prime}}^{i} d \tau=\delta_{\pi n^{\prime}} \tag{9}
\end{equation*}
$$

We propose to use the usual canonical methods to quantize the field theory dessribed by the Lagrange density (1) using the new coordinares $z_{1} \cdots{ }^{2}{ }_{K}, q_{K+1} \cdots$. In terms of these coordinates the Lagrangian takes the form

$$
\begin{align*}
& L=\frac{1}{2} \dot{z}_{k} M_{k k^{\prime}} \dot{z}_{k^{\prime}}+\dot{z}_{k} M_{k n} \dot{q}_{n}+\dot{q}_{n} M_{n n^{\prime}} q_{n^{\prime}} \\
&-\int d r\left\{\frac{1}{2}\left[\frac{1}{g} \vec{\nabla}_{\sigma}^{i}+q_{n}\left(\vec{\nabla} \Psi_{n}^{i}\right)\right]^{2}+\frac{1}{g^{2}} V\left(\sigma^{i}+g q_{n} \Psi_{n}^{i}\right)\right\} \tag{10}
\end{align*}
$$

where repeated indices have been summed over: k or k^{\prime} from 1 to K; n or $n^{\text {t }}$ from $K+1$ to ∞; and i from 1 to N. The moss matrix M is given by

$$
\begin{gather*}
M_{k k^{*}}=\int d \tau\left(g^{-1} \frac{\partial o^{i}}{\partial z_{k}}+q_{n} \frac{\partial \phi_{n}^{i}}{\partial z_{k}}\right)\left(g^{-1} \frac{\partial \sigma^{i}}{\partial z_{k^{\prime}}}+q_{n^{\prime}} \frac{\partial \psi_{n^{\prime}}^{i}}{\partial z_{k^{\prime}}}\right), \\
M_{k n}=M_{n k}=\int q_{n^{\prime}} \frac{\partial \psi_{n^{\prime}}^{i}}{\partial z_{k}} \psi_{n}^{i} d \tau \tag{11}
\end{gather*}
$$

and

$$
M_{n n^{\prime}}=6_{n n^{\prime}}
$$

The momenta conjugate to z_{k} and q_{n} are

$$
\begin{align*}
& p_{k}=\frac{\partial L}{\partial \dot{z}_{k}}=M_{k k^{*}} \dot{z}_{k^{\prime}}+M_{k n} \dot{q}_{n}, \\
& \pi_{n}=\frac{\partial L}{\partial \dot{q}_{n}}=M_{n k} \dot{z}_{k}+M_{n n^{\prime}} \dot{q}_{n^{\prime}} \tag{12}
\end{align*}
$$

The coordinates z_{k}, q_{n} and conjugate momenta p_{k}, π_{n} can all be identified as operators in the standard way and the resulting quantum-mechanical Hamiltonian is

$$
\begin{align*}
H=\frac{1}{2} J^{-1} & {\left[p_{k}\left(M^{-1}\right)_{k k^{\prime}} J p_{k^{\prime}}+p_{k}\left(M^{-1}\right)_{k n} J \pi_{n}+\pi_{n}\left(M^{-1}\right)_{n k} J p_{k}\right.} \\
& \left.+\pi_{n}\left(M^{-1}\right)_{n n^{\prime}} J \pi_{n^{\prime}}\right]+g^{-2} \int d \tau \bar{V}\left(\sigma^{;}+g q_{n} \psi_{n}^{i}\right) . \tag{13}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{V}(\xi) \equiv V(\xi)+\frac{1}{2}(\vec{\nabla} \xi)^{2} \tag{14}
\end{equation*}
$$

The Jacobian factor J :.

$$
\begin{equation*}
J=\left[\operatorname{det}\left(M_{k k^{\prime}}-M_{k n} M_{n k^{\prime}}\right)\right]^{1 / 2} \tag{15}
\end{equation*}
$$

is introduced so that the resulting ordering of non-commuting factors defines an operator H equal to the usual quantum Hamiltonian

$$
\begin{equation*}
H=\int d r\left\{\frac{1}{2}\left[\nabla^{i}(\vec{r})\right]^{2}+\frac{1}{g^{2}} \nabla(g \varphi(\vec{r}))\right\} \tag{16}
\end{equation*}
$$

where $\pi^{i}(\vec{r})$ is the momentum operator conjugate to the local field $\phi^{i}(\vec{r})$.
In order to develop a systematic perturbation expansion of the eigenstates of H in powers of g we must first deal with the terms of order g^{-2} and g^{-1} which appear in H. We exploit the close connection between g and Planck's constant h by writing an arbitracy quantum-mechanical state Ψ^{*} in the WKB form

$$
\begin{equation*}
\Psi_{\alpha}\left(z_{k}, q_{n}\right)=e^{i S\left(z_{k}\right) / 9^{2}} x_{\alpha}\left(z_{k}, q_{n}\right) . \tag{17}
\end{equation*}
$$

Here quantum states are writteri as wave funetions depending on the variobles z_{k} and q_{n}. If the function $X_{a}\left(z_{k}, q_{n}\right)$ is assumed to be regular at $g=0$, then the terms of order g^{-2} in the product $H \Psi_{u}$ reduce to a diagonal form $\frac{1}{g^{2}} \xi \Psi_{k} \quad$ if $S\left(z_{1} \cdots z_{K}\right)$ is chosen to satisfy the Homilton-Jacobi equation

$$
\begin{equation*}
\frac{1}{2} \frac{\partial S}{\partial z_{k}}\left(M_{0}\right)_{k k^{\prime}}^{-1} \frac{\partial S}{\partial z_{k^{\prime}}}+\int \bar{V}\left(\sigma^{i}\left(\vec{r}, z_{1} \cdots z_{K}\right)\right) d x=\varnothing \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(M_{0}\right)_{k k^{\prime}}=\int d \tau \frac{\partial \sigma^{i}}{\partial z_{k}} \frac{\partial \sigma^{i}}{\partial z_{k^{\prime}}} \tag{19}
\end{equation*}
$$

Furthermore, the terms of order g^{-1} can be completely eliminated from the product $H \Psi$, if the solution S is chosen to generate precisely the classical time dependence $z_{k}\left(t, z_{1}^{0} \ldots z_{K}^{0}\right)$ specified by Eq. (4), i.e.

$$
\begin{equation*}
\frac{\partial S}{\partial z_{k}}\left(z_{k}\left(t, z_{1}^{0} \cdots z_{K}^{0}\right)\right)=\left(M_{0}\right)_{k k^{\prime}} \frac{d}{d t} z_{k^{\prime}}\left(t, z_{1}^{0} \cdots z_{K}^{0}\right\rangle . \tag{20}
\end{equation*}
$$

These equations can be integrated, completely determining S up to an additive constant, provided they are consistent with the identity

$$
\begin{equation*}
\frac{\partial}{\partial z_{k}}\left(\frac{\partial S}{\partial z_{k^{\prime}}}\right)=\frac{\partial}{\partial z_{k^{\prime}}}\left(\frac{\partial S}{\partial z_{k}}\right) \tag{21}
\end{equation*}
$$

This requirement will be obeyed, at least for most coses of interest if we make a suitable choice of parametrization of the elassieal solution. For example, if o is a classieal solution describing the soattering of ℓ solitons in D dimensional space, then Lagrangets equations can be shown to imply the cansistency of Eqs (20) and (21) provided we introduce parameters z_{k} which develop in time as

$$
\begin{equation*}
z_{k}\left(t, z_{1}^{0} \cdots z_{K}^{0}\right)=u_{k} t+z_{k}^{0} \tag{22}
\end{equation*}
$$

and which correspond asymptotically to the $\boldsymbol{l} \times \mathrm{D}$ center-of-mass coordinotes of the solitons.

Thus, if we remove the factor $\exp \left(\mathrm{ig}^{-2} \mathrm{~S}\right)$ from all quantum states, the transformed Hamiltonion

$$
\begin{equation*}
H^{\prime}=e^{-i 5 / g^{2}} \mathrm{He}^{i S / g^{2}} \tag{23}
\end{equation*}
$$

con be written as a power series in g

$$
\begin{equation*}
H^{\prime}=H^{\prime}(-2)+H^{\prime}(0)+H^{\prime}(1)+\cdots \tag{24}
\end{equation*}
$$

With our choice of 5 the rerm of order $g^{-2}, \mathrm{H}^{\prime}(-2)$, is simply a constont $\varepsilon / \mathrm{g}^{2}$, just the energy of our classical solution. After some algebraic rearrangement H^{\prime} (0) can be written

$$
\begin{equation*}
H^{\prime}(0)=\frac{u}{\sqrt{J}} P_{K} \sqrt{J}+\frac{1}{2} \pi_{n} \pi_{n}+\frac{1}{2} q_{n} F_{n n^{\prime}} q_{n^{\prime}}+\frac{1}{2}\left(\pi_{n} G_{n n^{\prime}} q_{n^{\prime}}-q_{n} G_{n n^{\prime}} \pi_{n^{\prime}}\right) \tag{25}
\end{equation*}
$$

where

$$
\begin{gather*}
F_{n n^{\prime}}=\int\left[\left(\vec{\nabla} \psi_{n}^{i}\right)\left(\vec{\nabla} \psi_{n^{\prime}}^{i}\right)+\psi_{n}^{i} \frac{\partial^{2} V(\sigma)}{\partial \sigma^{i}} \frac{\psi_{n^{\prime}}^{j}}{\partial j}\right] d \tau+3 u^{2} f_{n k^{\prime}}\left(M_{0}^{-1}\right)_{k k^{\prime}} f_{n^{\prime} k^{\prime}} \\
f_{n k}^{i}=\int \psi_{n}^{j} \frac{\partial^{2} \sigma^{i}}{\partial z_{k} \partial z_{K}} d \tau \tag{26}
\end{gather*}
$$

and

$$
G_{n n^{2}}=-G_{n^{\prime} n}=-v \int \psi_{n}^{i} \frac{\partial \phi_{n^{\prime}}^{i}}{\partial z_{K}} d \tau
$$

Here we hove introduced the parameters z_{k} so that Eq. (22) is obeyed with $u_{k}=0$ for $k \leqslant K$ and $U_{K}=U$. Such a situation results if we explicitly choose one of the parameters, z_{K}^{0}, in Eq. (2) to correspond to time translation.

The next step in our development requires diagonalization of the zeroth order Hamiltonian $H^{\prime}(0)$. If our classical solution is time independent so that $\Psi_{K}=0$, then $H^{\prime}(0)$ simplifies to . .

$$
\begin{equation*}
H^{\prime}(0)=\frac{1}{2} \pi_{n} \pi_{n}+\frac{1}{2} q_{n} F_{n n^{\prime}} q_{n^{\prime}} \tag{27}
\end{equation*}
$$

where $F_{n n}$ i can be identified in this case as the $n n^{\prime}$ matrix element of the operator

$$
\begin{equation*}
-\frac{1}{2} \vec{\nabla}^{2} \delta_{i j}+\frac{1}{2} \frac{\partial^{2} V(\sigma)}{\partial \sigma^{i} \partial \sigma^{j}} \tag{28}
\end{equation*}
$$

Differentiation of the classical field equation (3) with respect to $\mathbf{z}_{\mathbf{k}}$, reveals that when $u=0$ the K functions $\partial \sigma^{i} / \partial z_{k}$ are eigenstates of (28) with eigenvalue zero. Thus it is possible to choose the ψ_{n}^{i} orthogonal to $\partial \sigma^{i} / \partial z_{k}$ and also eigenstates of (28) with eigenvalues $\frac{1}{2} \omega_{n}^{2}$. Consequently

$$
\begin{equation*}
F_{n n^{\prime}}=\delta_{n n^{\prime}} \frac{1}{2} w_{n}^{2} \tag{29}
\end{equation*}
$$

so thot the operator $H^{\prime}(0)$ is easily diagonalized hoving the spectrum

$$
\begin{equation*}
\varepsilon_{\alpha}=\sum_{n}\left(N_{n}+\frac{1}{2}\right) \omega_{n} \tag{30}
\end{equation*}
$$

where the $N_{n}{ }^{\prime}$ s are occupation numbers $N_{n}=0,1,2, \cdots$. The w_{n} are simply the frequencies for small oscillation about the static elassical solution $\sigma\left(r, z_{1}, \cdots z_{K}\right)$. For most cases of interest, the porameters $z_{1} \cdots z_{K}$ appearing in such a family of static degenerate solutions can be interpreted as physical quantities on which the entire Hamiltonian does not depend. Thus the eigenfrequencies w_{n} will not depend on the z_{k} and the constants $\mathcal{G} / 9^{2}+\mathcal{C}_{\alpha}$ are then eigenvalues of H accurate to order \boldsymbol{g}^{0}. For example when expanding about a static soliton solution to the sine-Gordon equatiops (5), we write

$$
\begin{equation*}
\phi(x)=\frac{4}{g} \tan ^{-1}\left[e^{(x-z) \mu^{2}}\right]+\sum_{n} q_{n} \psi_{n}(x-z) \tag{3}
\end{equation*}
$$

so that changing the porameter \mathbf{z} corresponds to a space translation under which H is invoriant. Hence $H(0)$ ond the frequencies ω_{n} will not depend on 2 .

Finally let us consider the time-dependent case. Although $H^{\prime}(0)$ is still quadratic in the $q_{n}{ }^{\prime} s$ and $\pi_{n} ' s$, the situation is more complicated than the static case becouse their coefficients will in general depend on z_{K} ond $H^{\prime}(0)$ also contains a tern linear
in P_{K}. In fact, the eigenvalue condition

$$
\begin{equation*}
H^{+}(0) X_{\alpha}=\xi_{\alpha} x_{\alpha} \tag{32}
\end{equation*}
$$

can be compared to a time-dependent Schrodinger equation in which z_{K} / v is interpreted as the time and the quadratic terms

$$
\begin{equation*}
H_{2}=\frac{1}{2}\left[\pi_{n} \pi_{n}+q_{n} F_{n n^{\prime}} q_{n^{\prime}}+\pi_{n} G_{n n^{\prime}} q_{n^{\prime}}-q_{n} G_{n n^{\prime}} \pi_{n^{\prime}}\right] \tag{33}
\end{equation*}
$$

as a time-dependent Hamiltonian. Thus the eigenstates X_{*} can be written

$$
\begin{equation*}
x_{a}\left(z_{k}, q_{n}\right)=\frac{1}{\sqrt{J}} e^{i \delta_{P_{K}} \cdot z_{K}} U\left(z_{K}\right) x_{a}\left(z_{1} \cdots z_{K-1}, 0, q_{n}\right) . \tag{34}
\end{equation*}
$$

Here $\delta_{p_{K}}$ is a constant, $x_{\alpha}\left(z_{1} \cdots z_{K \rightarrow 1}, 0, q_{n}\right.$) is any function of $z_{k}, k<K$ and the q_{n} while $U\left(z_{k}\right)$ is a "time" development operator obeying

$$
\begin{gather*}
\text { iv } \frac{\partial}{\partial z_{K} U\left(z_{K}\right)}=H_{2} U\left(z_{K}\right) \tag{35}\\
U(0)=I
\end{gather*}
$$

The energy eigenvalue of the state $\exp \left[i S / g^{2}\right] x_{m}$ is $\varepsilon / g^{2}+u \delta P_{K}$. Although Eq. (35) has no general explicit solution even for the quadratic Hamiltonian H_{2}, it can be solved quite easily in certain cases.

For example if the classical solution $\sigma^{i}(\vec{r}, \vec{r})$ changes slowly compared to the characteristic frequencies of H_{2}, then Eq . (35) can be solved in the usual adiabatic approximation. On the other hand, if $\sigma(\vec{r}, r)$ is periodic with period T, then the close connection between H_{2} and the Hamiltonian describing small oscillations about the classcal orbit allows us to find the operator for "time" development through one period, $\mathrm{U}(\mathrm{UT})$, quite easily in terms of the stability angles $\beta_{\boldsymbol{l}}$ which appear in the classical problem. In particular, $\mathrm{U}(\mathrm{u} T)$ is given by

$$
\begin{equation*}
U(U T)=e^{-i \sum_{l}\left(A_{l}^{+} A_{L}+1 / 2\right) \beta_{\ell} T} \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{l}=a_{n}^{l} q_{n}+b_{n}^{l} \pi_{n} \tag{37}
\end{equation*}
$$

with

$$
i\left(a_{n}^{2} b_{n}^{e^{\prime *}}-b_{n}^{\ell} o_{n}^{l^{\prime *}}\right)=\delta_{\ell L^{\prime}}
$$

The quantities a_{n}, b_{n}^{ℓ} and β_{ℓ} are related to the classical small oscillation problem in the following way. First parametrize small oscillations about the classical solution $z_{k}^{c l}=u_{k} t+z_{k}^{0}, q_{n}=q_{n}=0$ by writing

$$
\begin{gather*}
z_{k}(t)=z_{k}^{c l}(t)+\delta z_{k}(t), \quad p_{k}(t)=\frac{1}{g^{2}} \frac{\partial S}{\partial z_{k}}\left(z_{k}^{c l}+\delta z_{k}\right)+\delta p_{k}(t) \tag{38}\\
q_{n}(t)=\delta q_{n}(t), \quad \pi_{n}(t)=\delta \pi_{n}^{(t)} .
\end{gather*}
$$

The quantities a_{n}^{2}, b_{n}^{l} represent those initial conditions

$$
\begin{equation*}
\delta q_{n}=-b_{n}^{l_{\lambda}}, \quad 5 \pi_{n}=a_{n}^{l} \lambda \tag{39}
\end{equation*}
$$

which change only by an overall phose $e^{-i \beta_{\mathbf{f}} T}$ when time developed through a period

$$
\begin{align*}
& 6 q_{n}(T)=-e^{-i \beta_{Q} T} b_{n} \lambda . \\
& \delta \pi_{n}(T)=e^{-i \beta_{\ell} T} a_{n} \lambda . \tag{40}
\end{align*}
$$

Throughout this motion $6 p_{k}$ is chosen zero and δz_{k} of order g while λ is α small proportionality constant. Knowledge of $U(U T)$ is sufficient to determine the eigenvalues of $H^{\prime}(0)$. Because $\sigma^{i}\left(\vec{r}, z_{l} \cdots z_{K}\right)$ is periodic in z_{K} with period $\mathbf{U T}$, the coordinates $z_{1} \cdots z_{K}, q_{K+1} \cdots$ and $z_{1} \cdots z_{K}+4 T, q_{K+1} \cdots$ determine the same configuration of our physical system. Consequently, we must require that our wore function have the same value at the points $z_{K}=0$ and $z_{K}=U T$. The values of the wave function at these two paints are explicitly connected given $\mathrm{U}\left(\mathrm{UT}\right.$) and Eq. (34); the allowed energies $\varepsilon / g^{2}+u \delta p_{K}$ ore then fixed by the requirement thot

$$
\begin{equation*}
i \delta p_{K} u T+\int_{0}^{u T} P_{K} d z_{K}-\sum_{l}\left(N_{\ell}+\frac{1}{2}\right) \beta_{g} T=2 \pi n \tag{41}
\end{equation*}
$$

where $P_{K}=\frac{\partial S}{\partial z_{K}}$. If applied to the breather mode of the sine-Gordon equation, this condition gives exactly the spectrum found by Dashen, Hasslacher and Neveu. ${ }^{\text {(\%) }}$ In a sim= ilor foshion, if we know the connection befween the small oscillations about a two-soliton solution long before and tong after the scattering, we con discuss soliton-soliton scatrering accurate to order g^{0}.

The method described above allows quantum mechanical description of various classical solutions to non-linear field equations. if the Hamiltonion $H^{\prime}(0)$, very closely related to the classical small oscillation problem, can be diagonalized, then the effects of terms higher order in g can be systematically calculated using ordinary perturbation theory. The method appears to be relatively simple, using the familiar canonical Hilbert space formulation of Quantum Mechanics, and bas been opplied to interpret quantum-mechanically both static and time-dependent classical particle-like solutions. It is our hope that this gereral approach will prove useful in developing a realistic quantum field theory of hadrons,

References

1. The possibility of cassociating elementary particles with particle-like solutions to classical non-linear field equations was first raised by J. K. Perring and T. H. R. Skyrme, Nucl, Phys. 31, 550 (1962), and D. Finkelstein and C. W. Misner, Ann. Physics 6, 230 (1959). Recent interest was stimuloted by the work of H. B. Nielsen and P. Olsen, Nual. Phys. B61, 45 (1973), G. f'Hoofr, Nuel. Phys. B79, 276 (1974), and A. M. Polyakov, Landau Institute preprint.
2. This problem has attracted a great deal of attention recently. Several different approaches have been developed. Those based on various farms of functional integration techniques are R. F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D10, 4114 and 4130 (1974),

1AS preprint COO-2220-37; J. L. Gervais and B. Sakita, CCNY preprint HEP-74/6; J. L. Gervais, A. Jevicki and B. Sokita, CCNY preprint HEP-75-2; C. Callan and D. Gross, Princeton University preprint, and R. Rojaraman and E. J. Weinberg, IAS preprint COO-2220-41; L. D. Faddeev, "Quantization of Solitons", IAS preprint. Those based on the "Kerman-Klein method" and the Green's function approach are J. Goldstone and R. Jackiw, MIT preprint, and A. Klein and F. R. Krejs, University of Pennsylvania preprint. Those based on variational techniques are W. A. Bardeen, M. S. Chanowitz, S. D. Drell and T.M. Yan, Phys. Rev. DII, 1094 (1975); P. Vinciarelli, CERN preprint TH. 1993 (1975); K. Cahill, Phys. Letrers. 53B, 174 (1974). See also M. Creutz, Phys. Rev. DIO, 1749 (1974); M. Creutz and K. S. Soh, preprint BNL-19363. For a review of some of these methods see R. Rajoraman, IAS preprint COO-2220-47.
3. Our method, N.H.Christ and T. D. Lee, Columbia University preprint CO-2271-55, is based on the usual canonical Hilbert space formulation of Quantum Mechonics. A similar approach to the quantization of static elassical solutions has been suggested by E. Tomboulis, MIT preprint. M. Creutz, preprint BNL-20121, has recently praposed independently a cononical procedure for quantizing static and some time-dependent soluFions, also similar in certain respects to the work I will describe.
4. An example of our treatment of such a charged soliton is discussed by T. D. Lee in his contribution to this conference. See also E. Weinberg and R. Rajaraman (ref. 2) and M. Creutz (ref. 3).
5. R. F. Dashen, B. Hasslächer, A. Neveu, reference 2.

