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QUANTUM EXTENSIONS OF FOURIER-GAUSS AND
FOURIER-MEHLER TRANSFORMS

Un Cig Ji

Abstract. Noncommutative extensions of the Gross and Beltrami Lapla-
cians, called the quantum Gross Laplacian and the quantum Beltrami
Laplacian, resp., are introduced and their basic properties are studied.

As noncommutative extensions of the Fourier-Gauss and Fourier-Mehler
transforms, we introduce the quantum Fourier-Gauss and quantum Four-
ier-Mehler transforms. The infinitesimal generators of all differentiable

one parameter groups induced by the quantum Fourier-Gauss transform
are linear combinations of the quantum Gross Laplacian and quantum
Beltrami Laplacian. A characterization of the quantum Fourier-Mehler
transform is studied.

1. Introduction

As infinite dimensional analogues of a finite dimensional Laplacian, Lévy,
Gross and Piech introduced the Lévy Laplacian, the Gross Laplacian and the
Beltrami Laplacian (number operator) in [8], [24], and [27], respectively. Since
then, in white noise theory initiated by Hida [9], these infinite dimensional
Laplacians have been extensively studied in [12, 21, 22, 25, 29] and the ref-
erences cited therein. In particular, Kuo [18] formulated the Gross Laplacian
and the number operator as continuous linear operators acting on the space of
test white noise functionals.

In recent papers [3, 4, 16], noncommutative generalizations of the Lévy
Laplacian, called the quantum Lévy Laplacian, acting on operators have been
introduced and studied. In particular, in [2], the authors studied the quantum
extension of the time shift of the Brownian motion to give a positive answer to
the Meyer’s problem. Then the generator of the Markov semigroup generated
by the quantum extension of the time shift is a quantum Laplacian. Also, a
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noncommutative extension of the Gross Laplacian has been introduced in [1]
and studied in connection with heat equation.

On the other hand, based on the white noise theory, Kuo [17, 19, 20] formu-
lated the Fourier-Mehler transform and Fourier transform as continuous linear
operators acting on the space of generalized white noise functionals which are
called the Kuo’s Fourier-Mehler transform and Kuo’s Fourier transform, respec-
tively, and have been studied in connection with infinite dimensional harmonic
analysis in [11, 21, 25]. Since then, Chung and Ji [5] generalized the Kuo’s
Fourier-Mehler transform as a two parameter transform which is the adjoint
of the Fourier-Gauss transform studied by Lee [23] (see, also [21]) and called
the generalized Fourier-Mehler transform. In [5], the authors studied all dif-
ferentiable one parameter transformation groups induced by the generalized
Fourier-Mehler transform of which the infinitesimal generators are linear com-
binations of the adjoint of the Gross Laplacian and the Beltrami operator, and
proved a characterization theorem for the transform. Recently, in [14, 15], the
authors obtained unexpected results for unitarities of the Kuo’s Fourier-Mehler
transform and the generalized Fourier-Gauss transform.

The main purposes of this paper are two folds: one is to study noncom-
mutative extensions of the Gross and Beltrami Laplacians, and another one
is to study noncommutative extensions of the Fourier-Gauss and generalized
Fourier-Mehler transforms.

For the purposes we first introduce the quantum Gross Laplacian and quan-
tum Beltrami Laplacian and then we study their basic properties. In fact, the
notion of quantum Gross Laplacian in this paper is slightly different with in [1]
in which the quantum Gross Laplacian is defined by using the Wick symbols of
operators, but in this paper we use the symbols of operators. The definitions are
very similar, but the basic properties are much different. Secondly, we introduce
the quantum Fourier-Gauss transform and quantum generalized Fourier-Mehler
transform. Then we study basic properties of the transforms and all differen-
tiable one parameter transformation groups induced by the quantum general-
ized Fourier-Mehler transform of which the infinitesimal generators are linear
combinations of the adjoint of the quantum Gross Laplacian and the quantum
Beltrami Laplacian. Also, we prove a characterization theorem for the quantum
generalized Fourier-Mehler transform by certain intertwining properties.

The paper is organized as follows. In Section 2 we recall some of concepts,
notations and known results in white noise theory. In Section 3 we revisit the
operator theory on Fock space with the analytic characterization theorem for
operator symbols and a general characterization theorem in white noise theory.
In Section 4 we introduce noncommutative extensions of the Gross Laplacian
and the Beltrami Laplacian, and study their basic properties. Also, we study
relations between the quantum Laplacians and the classical Laplacians. In Sec-
tion 5 we introduce noncommutative extensions of the Fourier-Gauss and gener-
alized Fourier-Mehler transform motivated by the standard quantum-classical
correspondence. Then we study basic properties of the transforms and all
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differentiable one parameter transformation groups induced by the quantum
generalized Fourier-Mehler transform. In Section 6 we prove a characterization
theorem for the quantum generalized Fourier-Mehler transform.

2. Nuclear rigging of Fock space

Let H ≡ L2(R, dt) be the real Hilbert space of the square integrable functions
on R of which the norm and the inner product on H are denoted by | · |0 and
⟨·, ·⟩, respectively. Let A = 1 + t2 − d2/dt2 be the harmonic oscillator. For
each p ≥ 0, put Ep = dom(Ap) which becomes a Hilbert space with norm
| ξ |p = |Apξ |0. Let E−p be the completion of H with respect to the norm
| · |−p = |A−p· |0. Then E−p is isomorphic to the strong dual space E∗

p of Ep

with respect to the Hilbert space H and then we have the following chain of
Hilbert spaces

· · · ⊂ Ep ⊂ H ⊂ E−p ⊂ · · · .

Put
E = proj lim

p→∞
Ep, E∗ ≡ ind lim

p→∞
E−p.

Then we have the real Gelfand triple:

(1) E ⊂ H ≡ L2(R, dt) ⊂ E∗.

In fact, E is a nuclear Fréchet space and coincides with the Schwartz space of
rapidly decreasing C∞-functions on R. The canonical bilinear form on E∗ ×
E is also denoted by ⟨·, ·⟩. The complex Gelfand triple obtained by taking
complexification of (1) is denoted by

EC ⊂ HC ⊂ E∗
C.

The (Boson) Fock space Γ(HC) over the Hilbert space HC is defined by

Γ(HC) =

{
ϕ = (fn)∞n=0 : fn ∈ H

b⊗n
C , ∥ϕ ∥2

0 =
∞∑

n=0

n! | fn |20 < ∞

}
.

Let Γ(A) denote the second quantization operator of A defined by

Γ(A)ϕ =
(
A⊗nfn

)∞
n=0

, ϕ = (fn)∞n=0 ∈ Γ(HC).

Then Γ(A) is a positive selfadjoint operator on Γ(HC) with
∥∥ Γ(A)−1

∥∥
OP

< 1
and

∥∥ Γ(A)−1
∥∥

HS
< ∞. From Γ(HC) and Γ(A), a complex Gelfand triple

(E) ⊂ Γ(HC) ⊂ (E)∗

is constructed in the standard manner (see [21], [25]), and referred to as the
Hida–Kubo–Takenaka space in the white noise theory. We note that (E) is a
nuclear space equipped with the Hilbertian norms ∥ϕ ∥p = ∥Γ(A)pϕ ∥0, p ≥ 0.
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It is obvious that ϕ ∈ Γ(HC) belongs to (E) if and only if fn ∈ E⊗̂n
C for all n

and

∥ϕ ∥2
p =

∞∑
n=0

n!|fn|2p < ∞

for all p ≥ 0. We denote by ⟨⟨·, ·⟩⟩ the canonical C-bilinear form on (E)∗× (E).
For each Φ ∈ (E)∗, there exists a unique sequence {Fn}∞n=0, Fn ∈ (E⊗n

C )∗sym

such that

⟨⟨Φ, ϕ⟩⟩ =
∞∑

n=0

n! ⟨Fn, fn⟩

for all ϕ = (fn)∞n=0 ∈ (E). Moreover,

∥Φ ∥2
−p =

∞∑
n=0

n!|Fn|2−p < ∞

for some p ≥ 0. We use a formal expression for Φ ∈ (E)∗: Φ = (Fn)∞n=0.
For each ξ ∈ EC, an exponential vector (or coherent vector) ϕξ is defined by

ϕξ =
(

1, ξ, . . . ,
ξ⊗n

n!
, . . .

)
.

It is well-known that {ϕξ : ξ ∈ EC} spans a dense subspace of (E). The
S-transform of Φ ∈ (E)∗ is a function on EC defined by

SΦ(ξ) = ⟨⟨Φ, ϕξ⟩⟩ , ξ ∈ EC.

The following theorem is well-known as the analytic characterization theorem
for S-transform of white noise functionals.

Theorem 2.1 ([13, 28]). A Gâteaux-entire function F : EC → C is the S-
transform of some Φ ∈ (E)∗ if and only if there exist C > 0 and p ≥ 0 such
that

|F (ξ) | ≤ C exp
{
| ξ |2p

}
, ξ ∈ EC.

3. Operators on Fock space

Let L(X, Y) denote the space of all continuous linear operators from a locally
convex space X into another locally convex space Y. For simple notation, we
write L(X) for L(X,X). For each Ξ ∈ L((E), (E)∗), the function Ξ̂ on EC ×EC
defined by

Ξ̂(ξ, η) = ⟨⟨Ξϕξ, ϕη⟩⟩ , ξ, η ∈ EC

is called the symbol of Ξ. Then the following theorem is well-known as analytic
characterization theorem for symbols of white noise operators.

Theorem 3.1 ([13, 26]). A Gâteaux-entire function Θ : EC ×EC −→ C is the
symbol of an operator Ξ ∈ L((E), (E)∗) if and only if there exist nonnegative
constants C > 0 and p ≥ 0 such that

(2) |Θ(ξ, η) | ≤ C exp
{
| ξ |2p + | η |2p

}
, ξ, η ∈ EC.
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The Gâteaux-entire function Θ is the symbol of an operator Ξ ∈ L((E)) if and
only if for any p ≥ 0, there exist q ≥ 0 and C > 0 such that

(3) |Θ(ξ, η) | ≤ C exp
{
| ξ |2p+q + | η |2−p

}
, ξ, η ∈ EC.

For each κ ∈ (E⊗(l+m)
C )∗, by applying Theorem 3.1 we can easily see that

there exists an operator Ξl,m(κl,m) ∈ L((E), (E)∗), called an integral kernel
operator, such that

(4) ̂Ξl,m(κl,m)(ξ, η) =
〈
κl,m, η⊗l ⊗ ξ⊗m

〉
e⟨ξ, η⟩, ξ, η ∈ EC.

For each x ∈ E∗
C and t ∈ R we write

a(x) = Ξ0,1(x), a∗(x) = Ξ1,0(x), at = a(δt), a∗
t = a∗(δt).

The operators a(x) and a∗(x) are called the annihilation and creation operators,
respectively, which play an important role in the white noise theory. Note that
Ξl,m(κ) ∈ L((E)) if and only if κ∈E⊗l

C ⊗ (E⊗m
C )∗.

Theorem 3.2 ([25]). For any Ξ ∈ L((E), (E)∗) there exists a unique family
of distributions κl,m ∈ (E⊗(l+m)

C )∗sym(l,m) such that

(5) Ξ =
∞∑

l,m=0

Ξl,m(κl,m),

where the right hand side converges in L((E), (E)∗). If Ξ ∈ L((E)), so does
Ξl,m(κl,m) for all l,m and the series (5) converges in L((E)).

Expansion (5) is referred to as Fock expansion. For the study of the white
noise theory with various applications, we refer to [10, 21, 25].

By the kernel theorem we have the following isomorphisms:

L((E), (E)∗) ∼= (E)∗ ⊗ (E)∗, L((E)) ∼= (E) ⊗ (E)∗

and
L((E)∗, (E)) ∼= (E) ⊗ (E),

i.e., for each Ξ ∈ L((E), (E)∗) there exists a unique ΦΞ ∈ (E)∗ ⊗ (E)∗ such
that

⟨⟨Ξϕ, φ⟩⟩ = ⟨⟨ΦΞ, φ ⊗ ϕ⟩⟩ , ϕ, φ ∈ (E).
Define a map K : L((E), (E)∗) ∋ Ξ 7→ ΦΞ ∈ (E)∗ ⊗ (E)∗. Conversely, for
each ϕζ1 ⊗ ϕζ2 ∈ (E) ⊗ (E) ⊂ (E)∗ ⊗ (E)∗, there exists a unique Ξϕζ1⊗ϕζ2

∈
L((E), (E)∗) such that〈〈

Ξϕζ1⊗ϕζ2
ϕ, φ

〉〉
= ⟨⟨ϕζ1 ⊗ ϕζ2 , φ ⊗ ϕ⟩⟩ = ⟨⟨ϕζ1 , φ⟩⟩ ⟨⟨ϕζ2 , ϕ⟩⟩ , ϕ, φ ∈ (E).

Therefore, for any ζ1, ζ2, ξ, η ∈ EC we have

Ξ̂ϕζ1⊗ϕζ2
(ξ, η) = e⟨ζ1, η⟩+⟨ζ2, ξ⟩

=
∞∑

l,m=0

1
l!m!

〈
ζ⊗l
1 ⊗ ζ⊗m

2 , η⊗l ⊗ ξ⊗m
〉
.
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Hence for each ζ1, ζ2 ∈ EC we have

Ξϕζ1⊗ϕζ2
= K−1(ϕζ1 ⊗ ϕζ2)

=
∞∑

k,l,m=0

(−1)k

k!l!m!
Ξl+k,m+k(ζ⊗l

1 ⊗̂τ⊗k⊗̂ζ⊗m
2 )

= eΞ1,0(ζ1)e⋄(−N)eΞ0,1(ζ2),

where Ξ1 ⋄ Ξ2 is the Wick product (or normal-ordered product) of Ξ1 and Ξ2

defined by

Ξ̂1 ⋄ Ξ2(ξ, η) = Ξ̂1(ξ, η)Ξ̂2(ξ, η)e−⟨ξ, η⟩, ξ, η ∈ EC,

see [6]. Since {ϕξ ⊗ ϕη : ξ, η ∈ EC} spans a dense subspace of (E) ⊗ (E),
{Ξϕξ⊗ϕη : ξ, η ∈ EC} spans a dense subspace of L((E)∗, (E)).

For each Υ ∈ L((E) ⊗ (E), (E)∗ ⊗ (E)∗), we put

G(ξ1, ξ2; η1, η2) = ⟨⟨Υ(ϕξ1 ⊗ ϕξ2), ϕη1 ⊗ ϕη2⟩⟩ , ξ1, ξ2, η1, η2 ∈ EC.(6)

Theorem 3.3 ([13]). A Gâteaux-entire function G : E4
C → C is expressed in

the form (6) with Υ ∈ L((E)⊗(E), (E)∗⊗(E)∗) if and only if there exist C ≥ 0
and p ≥ 0 such that

|G(ξ1, ξ2; η1, η2)| ≤ C exp

{
2∑

i=1

|ξi|2p +
2∑

i=1

|ηi|2p

}
for ξ1, ξ2, η1, η2 ∈ EC. Moreover, G is expressed in the form (6) with Υ ∈
L((E)⊗ (E)) if and only if for any p ≥ 0 there exist C ≥ 0 and q ≥ 0 such that

(7) |G(ξ1, ξ2; η1, η2)| ≤ C exp

{
2∑

i=1

|ξi|2p+q +
2∑

i=1

|ηi|2−p

}
for ξ1, ξ2, η1, η2 ∈ EC. In this case,

|||ΥΦ |||2p−t ≤ CM(s, t) |||Φ |||2p+q+s , Φ ∈ (E) ⊗ (E),

where M(s, t) is a (finite) constant for some sufficiently large s, t > 1 and
|||Φ |||p = ∥ (Γ(Ap) ⊗ Γ(Ap))Φ ∥Γ(HC)⊗Γ(HC) for Φ ∈ (E) ⊗ (E).

4. Classical and quantum Laplacians

4.1. Classical Laplacians

The integral kernel operators with trace τ as kernel distribution:

∆G = Ξ0,2(τ) =
∫

R
a2

sds, −N = −Ξ1,1(τ) = −
∫

R
a∗

sasds

are called the Gross Laplacian and Beltrami Laplacian (N is called also the
number operator), respectively. It is well-known that ∆G and N are continu-
ous linear operators from (E) into itself. Moreover, N can be extended to a
continuous linear operator, denoted by the same notation, from (E)∗ into itself.
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Let {en}∞n=1 ⊂ E be a complete orthonormal basis of HC. Then the Gross
Laplacian and number operator are represented by

∆G =
∞∑

n=1

a(en)a(en), N =
∞∑

n=1

a(en)∗a(en),

respectively, see [21].
Let F ∈ C2(EC). Then for each ξ ∈ EC there exist F ′(ξ) ∈ E∗

C and F ′′(ξ) ∈
(EC ⊗ EC)∗ such that

F (ξ + η) = F (ξ) + ⟨F ′(ξ), η⟩ +
1
2
⟨F ′′(ξ), η ⊗ η⟩ + o(| η |2p), η ∈ EC

for some p ≥ 0. Moreover, the maps EC ∋ ξ 7→ F ′(ξ) ∈ E∗
C and EC ∋ ξ 7→

F ′′(ξ) ∈ (EC ⊗ EC)∗ are continuous. For more study, we refer to [7]. By the
kernel theorem we have the canonical isomorphism

(EC ⊗ EC)∗ ∼= L(EC, E∗
C) ∼= B(EC, EC)

from which, for notational convenience, we sometimes write

⟨F ′′(ξ), η ⊗ η⟩ = ⟨F ′′(ξ)η, η⟩ .

Note that for each ϕ ∈ (E), Sϕ ∈ C2(EC) and

S(∆Gϕ)(ξ) = ∆̃G(Sϕ)(ξ) ≡
∞∑

n=1

⟨(Sϕ)′′(ξ), en ⊗ en⟩ , ξ ∈ EC

and so the Gross Laplacian can be represented by

∆G = S−1∆̃GS,

see [21].

4.2. Quantum Laplacians

For each F ∈ C2(EC × EC), there exist F ′
i (ξ1, ξ2) ∈ E∗

C and F ′′
ij(ξ1, ξ2) ∈

(EC ⊗ EC)∗ for any ξ1, ξ2 ∈ EC and i, j = 1, 2 such that

F (ξ1 + η1, ξ2 + η2) = F (ξ1, ξ2) +
2∑

i=1

⟨F ′
i (ξ1, ξ2), ηi⟩

+
1
2

2∑
i,j=1

〈
F ′′

ij(ξ1, ξ2)ηi, ηj

〉
+ o(| η1 |2p + | η2 |2p)

for some p ≥ 0 and any η1, η2 ∈ EC. For more study, we refer to [7].
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For each Ξ ∈ L((E), (E)∗), Ξ̂ ∈ C2(EC × EC). Define

∆̃AG(Ξ̂)(ξ1, ξ2) =
∞∑

k=1

〈
Ξ̂′′

11(ξ1, ξ2), ek ⊗ ek

〉
,

∆̃CG(Ξ̂)(ξ1, ξ2) =
∞∑

k=1

〈
Ξ̂′′

22(ξ1, ξ2), ek ⊗ ek

〉

if the series exist and then

∆̃QG(Ξ̂)(ξ1, ξ2) = ∆̃AG(Ξ̂)(ξ1, ξ2) + ∆̃CG(Ξ̂)(ξ1, ξ2).

If ∆̃AG(Ξ̂) and ∆̃CG(Ξ̂) are Gâteaux entire and (2) holds, then there exist
unique operators, denoted by ∆AGΞ and ∆CGΞ, in L((E), (E)∗) such that

∆̂AGΞ = ∆̃AG(Ξ̂), ∆̂CGΞ = ∆̃CG(Ξ̂).

Then
∆QG ≡ ∆AG + ∆CG

is called the quantum Gross Laplacian which is slightly different with the quan-
tum Gross Laplacian studied in [1].

Theorem 4.1. For any f, g ∈ H, Ξϕf⊗ϕg
is an eigenvector of the quantum

Gross Laplacian ∆QG corresponding to the eigenvalue ⟨f, f⟩ + ⟨g, g⟩, i.e.,

(8) ∆QGΞϕf⊗ϕg = (⟨f, f⟩ + ⟨g, g⟩) Ξϕf⊗ϕg .

Proof. The proof is straightforward. ¤

Theorem 4.2. The quantum Gross Laplacian ∆QG is a continuous linear
operator in L(L((E)∗, (E))).

Proof. By applying Theorem 3.3 we can easily show that K∆QGK−1 is a con-
tinuous linear operator from (E) ⊗ (E) into itself. On the other hand, K is a
topological isomorphism from L((E)∗, (E)) onto (E) ⊗ (E) which follows the
proof. ¤

By (8) we can easily see that for any ξ, η ∈ EC we have

K∆CGK−1 (ϕξ ⊗ ϕη) = ⟨ξ, ξ⟩ϕξ⊗ϕη, K∆AGK−1 (ϕξ ⊗ ϕη) = ⟨η, η⟩ϕξ⊗ϕη

which implies that

(9) ∆CG = K−1 (∆G ⊗ I)K, ∆AG = K−1 (I ⊗ ∆G)K.

Theorem 4.3. For any Ξ ∈ L((E)∗, (E)) we have

∆QGΞ = ∆GΞ + Ξ∆∗
G,

where ∆∗
G ∈ L((E)∗) is the adjoint of the Gross Laplacian ∆G ∈ L((E)).
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Proof. Let Ξ ∈ L((E)∗, (E)). Then by (9) for any Ψ, Φ ∈ (E)∗ we have

⟨⟨∆AGΞΨ, Φ⟩⟩ = ⟨⟨KΞ, Φ ⊗ (∆∗
GΨ)⟩⟩ = ⟨⟨Ξ∆∗

GΨ, Φ⟩⟩ .

Similarly, we have
⟨⟨∆CGΞΨ, Φ⟩⟩ = ⟨⟨∆GΞΨ, Φ⟩⟩ .

Thus, by definition we complete the proof. ¤

By applying Theorem 3.3 we can easily show that there exist operators
∆̃AB, ∆̃CB ∈ L((E) ⊗ (E), (E)∗ ⊗ (E)∗) such that for any ξ1, ξ2, η1, η2 ∈ EC〈〈

∆̃CB(ϕξ1 ⊗ ϕξ2), ϕη1 ⊗ ϕη2

〉〉
= ⟨ξ1, η1⟩ e⟨ξ1, η1⟩+⟨ξ2, η2⟩,〈〈

∆̃AB(ϕξ1 ⊗ ϕξ2), ϕη1 ⊗ ϕη2

〉〉
= ⟨ξ2, η2⟩ e⟨ξ1, η1⟩+⟨ξ2, η2⟩.

Moreover, we have ∆̃CB, ∆̃AB ∈ L((E) ⊗ (E)) ∩ L((E)∗ ⊗ (E)∗) and

∆̃CB = N ⊗ I, ∆̃AB = I ⊗ N.

Put

∆CB = K−1∆̃CBK ∈ L(L((E)∗, (E))), ∆AB = K−1∆̃ABK ∈ L(L((E)∗, (E)))

and then

(10) ∆CB = K−1 (N ⊗ I)K, ∆AB = K−1 (I ⊗ N)K.

The operator
∆QB = ∆CB + ∆AB

is called the quantum Beltrami Laplacian and then, by similar arguments used
in the proof of Theorem 4.3, we obtain that for any Ξ ∈ L((E), (E)∗)

(11) ∆QBΞ = NΞ + ΞN.

The following theorem is already proved.

Theorem 4.4. The quantum Beltrami Laplacian ∆QB is a continuous linear
operator in L(L((E)∗, (E))).

4.3. Quantum–classical correspondence

For each ϕ, ψ ∈ (E), we write ϕψ for the pointwise multiplication. It is
well-known that the pointwise multiplication yields a continuous bilinear map
from (E) × (E) into (E), see [21, 25]. For Φ ∈ (E)∗ and ϕ ∈ (E) we define
Φϕ = ϕΦ ∈ (E)∗ by

⟨⟨Φϕ, ψ⟩⟩ = ⟨⟨Φ, ϕψ⟩⟩ , ψ ∈ (E).

Obviously, the map (Φ, ϕ) 7→ Φϕ is a separately continuous bilinear map.
In particular, each Φ ∈ (E)∗ gives rise to a multiplication operator MΦ ∈
L((E), (E)∗) ∼= (E)∗ ⊗ (E)∗ defined by MΦϕ = Φϕ. With this we have a
continuous injection (E)∗ ↪→ L((E), (E)∗). Note also that (MΦ)∗ = MΦ.
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Since K∆QGK−1 = ∆G ⊗ I + I ⊗ ∆G ∈ L((E) ⊗ (E)), the operator

K−1
(
K∆QGK−1

)∗ K = K−1 (∆∗
G ⊗ I + I ⊗ ∆∗

G)K ∈ L(L((E), (E)∗))

is considered as the adjoint of the quantum Gross Laplacian ∆QG and denoted
by ∆∗

QG. Then by similar arguments used in the proof of Theorem 4.3 we have

(12) ∆∗
QG(Ξ) = ∆∗

GΞ + Ξ∆G, Ξ ∈ L((E), (E)∗)

and
∆∗

QG = ∆∗
CG + ∆∗

AG,

where
∆∗

CG = K−1 (∆∗
G ⊗ I)K, ∆∗

AG = K−1 (I ⊗ ∆∗
G)K.

Theorem 4.5. For any Φ ∈ (E)∗, we have(
∆∗

QGMΦ

)
ϕ0 = ∆∗

GΦ, (∆QBMΦ)ϕ0 = NΦ.

Proof. The proof is immediate from (12) and (11). ¤

5. Quantum generalized Fourier–Mehler transform

5.1. Generalized Fourier–Mehler transform

By applying Theorem 3.1, we can easily see that for each α, β ∈ C, there
exists an operator Gα,β ∈ L((E)) such that

(13) Gα,βϕξ = exp {α ⟨ξ, ξ⟩}ϕβξ, ξ ∈ EC,

see [5]. In fact, the function Θ on EC × EC defined by

Θ(ξ, η) = Ĝα,β(ξ, η) = exp {α ⟨ξ, ξ⟩ + β ⟨ξ, η⟩} , ξ, η ∈ EC

is Gâteaux-entire and (3) holds. It is obvious from (13) that

(14) Gα,β = Γ(βI)eα∆G .

The operator Gα,β ∈ L((E)) obtained as in (13) is called the Fourier–Gauss
transform and the adjoint Fα,β ≡ G∗

α,β ∈ L((E)∗) of Gα,β is called the gener-
alized Fourier–Mehler transform. In particular, for α(θ) =

(
ieiθ sin θ

)
/2 and

β(θ) = eiθ, θ ∈ R, Fα(θ),β(θ) is called the Kuo’s Fourier-Mehler transform, see
[11]. From (14) we have

(15) Fα,β = eα∆∗
GΓ(βI).

For a locally convex space X, let GL(X) denote the group of all linear home-
omorphisms from X onto itself. Let F = {Fα,β : α ∈ C, β ∈ C∗}, where
C∗ = C \ {0} is the multiplicative group. Then F is a subgroup of GL((E)∗).
In fact, for any α′, β′, α, β ∈ C,

F0,1 = I, Fα′,β′Fα,β = Fα′+αβ′2,β′β .

For more study of the generalized Fourier–Mehler transform, we refer to [5, 21,
25].
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5.2. Quantum generalized Fourier–Mehler transform

We start with the following lemma.

Lemma 5.1. For any α, β, γ, δ ∈ C, there exists an operator G̃Q
α,β;γ,δ ∈ L((E)⊗

(E)) such that

(16) G̃Q
α,β;γ,δ(ϕξ1 ⊗ ϕξ2) = eα⟨ξ1, ξ1⟩+β⟨ξ2, ξ2⟩ϕγξ1 ⊗ ϕδξ2 , ξ1, ξ2 ∈ EC.

Proof. The proof is straightforward by applying Theorem 3.3. ¤

For the operator G̃Q
α,β;γ,δ ∈ L((E) ⊗ (E)) obtained in Lemma 5.1 we write

GQ
α,β;γ,δ = K−1G̃Q

α,β;γ,δK ∈ L(L((E)∗, (E)))

which is called the quantum Fourier–Gauss transform. The quantum general-
ized Fourier–Mehler transform is defined by

FQ
α,β;γ,δ = K−1F̃Q

α,β;γ,δK ∈ L(L((E), (E)∗)),

where F̃Q
α,β;γ,δ ∈ L((E)∗ ⊗ (E)∗) is the adjoint of G̃Q

α,β;γ,δ.

Theorem 5.2. Let FQ = {FQ
α,β;γ,δ : α, β ∈ C, γ, δ ∈ C∗}. Then FQ is a

subgroup of GL(L((E), (E)∗)).

Proof. The proof is straightforward. In fact, we have

(17) FQ
0,0;1,1 = I, FQ

α′,β′;γ′δ′FQ
α,β;γ,δ = FQ

α′+αγ′2,β′+βδ′2;γ′γ,δ′δ

for any α′, β′, γ′, δ′, α, β, γ, δ ∈ C. ¤

Proposition 5.3. Let α, β, γ, δ ∈ C. Then we have

(18) G̃Q
α,β;γ,δ = Gα,γ ⊗ Gβ,δ, F̃Q

α,β;γ,δ = Fα,γ ⊗Fβ,δ.

Proof. The proof is immediate from (14), (15) and (16). ¤

Theorem 5.4. Let α, β, γ, δ ∈ C. Then GQ
α,β;γ,δ ∈ L(L((E)∗, (E))) and for

each Ξ ∈ L((E)∗, (E)) we have

GQ
α,β;γ,δ(Ξ) = Gα,γΞFβ,δ, Ξ ∈ L((E)∗, (E));(19)

FQ
α,β;γ,δ(Ξ) = Fα,γΞGβ,δ, Ξ ∈ L((E), (E)∗).(20)

Proof. By definition, it is obvious that GQ
α,β;γ,δ is a continuous linear operator

in L(L((E)∗, (E))). Let Ξ ∈ L((E)∗, (E)) and ϕ, φ ∈ (E). Then by (18), we
have 〈〈

GQ
α,β;γ,δ(Ξ)ϕ, φ

〉〉
=

〈〈
G̃Q

α,β;γ,δ(KΞ), φ ⊗ ϕ
〉〉

= ⟨⟨KΞ, (Fα,γφ) ⊗ (Fβ,δϕ)⟩⟩
= ⟨⟨Gα,γΞFβ,δϕ, φ⟩⟩

which implies (19). Similarly, we prove (20). ¤
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Theorem 5.5. Let Ξ ∈ L((E), (E)∗) admit the Fock expansion (5). Then
FQ

α,β;γ,δ(Ξ) is given by

FQ
α,β;γ,δΞ =

∞∑
i,j,k,l,m=0

αiβj(γδ − 1)k

i!j!k!
γlδm(21)

× Ξ2i+k+l,2j+k+m

((
τ⊗i⊗̂κl,m⊗̂τ⊗j

)
⊙k

k τ⊗k
)
,

where for κ ∈ (E⊗(l+m)
C )∗, κ ⊙k

k τ⊗k ∈ (E⊗(2k+l+m)
C )∗ such that〈

κ ⊙k
k τ⊗k, η⊗(k+l) ⊗ ξ⊗(k+m)

〉
= ⟨ξ, η⟩k

〈
κ, η⊗l ⊗ ξ⊗m

〉
, ξ, η ∈ EC.

Proof. Since

Ξ̂(ξ, η) =
∞∑

l,m=0

〈
κl,m, η⊗l ⊗ ξ⊗m

〉
e⟨ξ, η⟩,

by (20) we have

̂FQ
α,β;γ,δ(Ξ)(ξ, η) = Ξ̂(δξ, γη)eα⟨η, η⟩+β⟨ξ, ξ⟩

=
∞∑

l,m=0

γlδm
〈
κl,m, η⊗l ⊗ ξ⊗m

〉
eα⟨η, η⟩+β⟨ξ, ξ⟩+γδ⟨η, ξ⟩

= e⟨ξ, η⟩
∞∑

i,j,k,l,m=0

αiβj(γδ − 1)k

i!j!k!
γlδm

×
〈(

τ⊗i⊗̂κl,m⊗̂τ⊗j
)
⊙k

k τ⊗k, η⊗(2i+k+l) ⊗ ξ⊗(2j+k+m)
〉

.

Hence in view of (4), we get the expression (21) of FQ
α,β;γ,δΞ. ¤

5.3. Quantum–classical correspondence

Theorem 5.6. Let Φ ∈ (E)∗. Then we have

(22)
(
FQ

α,β;γ,δ(MΦ)
)

ϕ0 = Fα,γΦ.

Proof. By (20) we have(
FQ

α,β;γ,δ(MΦ)
)

ϕ0 = Fα,γ(MΦ)Gβ,δϕ0 = Fα,γΦ.

Therefore, (22) holds. ¤

Theorem 5.7. Let α, γ ∈ C with γ2 − 2α = 1. Then for any Φ ∈ (E)∗ we
have

(23) FQ
α,α;γ,γ(MΦ) = MFα,γΦ.
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Proof. Let Φ ∈ (E)∗. Then for any ξ, η ∈ EC we have

̂FQ
α,α;γ,γ(MΦ)(ξ, η) = ⟨⟨Fα,γMΦGα,γϕξ, ϕη⟩⟩

= eα(⟨ξ, ξ⟩+⟨η, η⟩)+γ2⟨ξ, η⟩ 〈〈
Φ, ϕγ(ξ+η)

〉〉
.

Therefore, for α, γ ∈ C with γ2 − 2α = 1 we have

̂FQ
α,α;γ,γ(MΦ)(ξ, η) = ⟨⟨Φ, Gα,γϕξ+η⟩⟩ e⟨ξ, η⟩ = M̂Fα,γΦ(ξ, η)

which implies (23). ¤

5.4. One-parameter groups and its infinitesimal generators

Let X be a locally convex space of which the topology is induced by a family
of norms {∥ · ∥p}p≥0. A one-parameter subgroup {Vθ}θ∈R of GL(X) is called
differentiable if for every ζ ∈ X, limθ→0

Vθζ−ζ
θ converges in the topology of X.

In this case, a linear operator L from X into itself defined by

Lζ = lim
θ→0

Vθζ − ζ

θ
, ζ ∈ X

is called the infinitesimal generator of {Vθ}θ∈R. It is shown that L ∈ L(X, X)
and for any θ ∈ R, we have VθLζ = LVθζ for ζ ∈ X.

For notational convenience, we write

GQ
θ = GQ

α(θ),β(θ);γ(θ),δ(θ), θ ∈ R

for C-valued functions α, β, γ and δ defined on R.

Lemma 5.8. Let α, β, γ, δ be differentiable C-valued functions defined on R
such that γ(θ) ̸= 0 and δ(θ) ̸= 0 for all θ ∈ R. Then {GQ

θ }θ∈R is a one-
parameter subgroup of GQ = {GQ

α,β;γ,δ : α, β ∈ C, γ, δ ∈ C∗} if and only if
α, β, γ, δ are given by

α(θ) =
a

2c
(e2cθ − 1), β(θ) =

b

2d
(e2dθ − 1), γ(θ) = ecθ, δ(θ) = edθ

for some a, b, c, d ∈ C with c ̸= 0 and d ̸= 0, or

α(θ) = aθ, β(θ) =
b

2d
(e2dθ − 1), γ(θ) = 1, δ(θ) = edθ

for some a, b, d ∈ C with d ̸= 0, or

α(θ) =
a

2c
(e2cθ − 1), β(θ) = bθ, γ(θ) = ecθ, δ(θ) = 1

for some a, b, c ∈ C with c ̸= 0, or

α(θ) = aθ, β(θ) = bθ, γ(θ) = 1, δ(θ) = 1

for some a, b ∈ C.

Proof. The proof is straightforward (see the proof of Lemma 4.1 in [5]). ¤
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For notational convenience, for each a, b, c, d ∈ C we write

IQ
a,b,c,d;θ =



GQ
a
2c (e2cθ−1), b

2d (e2dθ−1);ecθ,edθ , if c ̸= 0 and d ̸= 0;

GQ
a
2c (e2cθ−1),bθ;ecθ,1

, if c ̸= 0 and d = 0;

GQ

aθ, b
2d (e2dθ−1);1,edθ , if c = 0 and d ̸= 0;

GQ
aθ,bθ;1,1, if c = 0 and d = 0.

Theorem 5.9. Let a, b, c, d ∈ C. Then {IQ
a,b,c,d;θ}θ∈R is a differentiable one-

parameter subgroup of GQ with infinitesimal generator a∆CG +b∆AG+c∆CB+
d∆AB.

Proof. The proof is a simple modification of the proof of Theorem 4.3 in [5]. ¤

For each a, b, c, d ∈ C we put

HQ
a,b,c,d;θ =



FQ
a
2c (e2cθ−1), b

2d (e2dθ−1);ecθ,edθ , if c ̸= 0 and d ̸= 0;

FQ
a
2c (e2cθ−1),bθ;ecθ,1

, if c ̸= 0 and d = 0;

FQ

aθ, b
2d (e2dθ−1);1,edθ , if c = 0 and d ̸= 0;

Faθ,bθ;1,1, if c = 0 and d = 0.

Then by dual properties and Theorem 5.9 the following theorem is immediate.

Theorem 5.10. Let a, b, c, d ∈ C. Then {HQ
a,b,c,d;θ}θ∈R is a differentiable one-

parameter subgroup of FQ with infinitesimal generator a∆∗
CG +b∆∗

AG +c∆CB +
d∆AB.

Remark 5.11. By applying Theorem 5.6 and Theorem 5.10, we obtain one of
main results in [5] for differentiable one-parameter subgroups of F and their
infinitesimal generators.

6. A characterization of FQ
α,β;γ,δ-transform

Let η ∈ EC and q(η) ∈ L((E)) the multiplication operator by ⟨·, η⟩. Note
that the operators a(η) and q(η) are continuously extended to operators in
L((E)∗). These extensions are denoted by the same symbols. Moreover, we
have q(η) = a(η) + a∗(η).

Proposition 6.1 ([5]). Let α ∈ C and β ∈ C∗. Then for each η ∈ EC we have

Gα,β

(
a(η)
a∗(η)

)
=

(
1/β 0
2α/β β

)(
a(η)
a∗(η)

)
Gα,β ;
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equivalently,

Fα,β

(
a(η)
a∗(η)

)
=

(
1/β −2α/β
0 β

)(
a(η)
a∗(η)

)
Fα,β .

For each η, ζ ∈ EC, define D(η,ζ), D
∗
(η,ζ) ∈ L(L((E), (E)∗)) by

D(η,ζ)(Ξ) = a(η)Ξ + Ξa∗(ζ),

D∗
(η,ζ)(Ξ) = a∗(η)Ξ + Ξa(ζ), Ξ ∈ L((E), (E)∗).

Then we have

KD(η,ζ)K−1 = a(η) ⊗ I + I ⊗ a(ζ), KD∗
(η,ζ)K

−1 = a∗(η) ⊗ I + I ⊗ a∗(ζ)

which are the annihilation and creation operators acting on Γ(HC)⊗ Γ(HC) ∼=
Γ(HC ⊕ HC). Therefore, the following canonical commutation relations hold:
for any η1, η2, ζ1, ζ2 ∈ EC,

[D(η1,ζ1), D(η2,ζ2)] = [D∗
(η1,ζ1)

, D∗
(η2,ζ2)

] = 0,

[D(η1,ζ1), D
∗
(η2,ζ2)

] = (⟨η1, η2⟩ + ⟨ζ1, ζ2⟩) I.

Proposition 6.2. Let Υ ∈ L(L((E)∗, (E))). If for any η, ζ ∈ EC

(24) D(η,ζ)Υ = ΥD(η,ζ), D∗
(η,ζ)Υ = ΥD∗

(η,ζ),

then Υ is a scalar operator.

Proof. The proof is a simple modification of the proof of Theorem 3.5 in [11].
¤

By Proposition 6.2 and the dual properties, the following theorem is imme-
diate.

Theorem 6.3. Let Υ ∈ L(L((E), (E)∗)). If Υ satisfy (24), then Υ is a scalar
operator.

Theorem 6.4. Let α, β ∈ C and γ, δ ∈ C∗. Then the quantum generalized
Fourier–Mehler transform FQ

α,β;γ,δ has the following properties:

(i) FQ
α,β;γ,δD(η,ζ) = D( 1

γ η, 1
δ ζ)F

Q
α,β;γ,δ +D∗

(− 2α
γ η,− 2β

δ ζ)
FQ

α,β;γ,δ, η, ζ ∈ EC;

(ii) FQ
α,β;γ,δD

∗
(η,ζ) = D∗

(γη,δζ)F
Q
α,β;γ,δ, η, ζ ∈ EC.

Conversely, suppose Aα,β;γ,δ is in L(L((E), (E)∗)) and satisfies the properties
(i) and (ii). Then Aα,β;γ,δ is a constant multiple of FQ

α,β;γ,δ.

Proof. For any Ξ ∈ L((E), (E)∗), by applying Proposition 6.1 we have

FQ
α,β;γ,δD(η,ζ)(Ξ) = Fα,γ (a(η)Ξ + Ξa∗(ζ))Gβ,δ

=
(

1
γ

a(η) − 2α

γ
a∗(η)

)
Fα,γΞGβ,δ

+ Fα,γΞGβ,δ

(
1
δ
a∗(ζ) − 2β

δ
a(ζ)

)
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and

FQ
α,β;γ,δD

∗
(η,ζ)(Ξ) = Fα,γ (a∗(η)Ξ + Ξa(ζ))Gβ,δ

= γa∗(η)Fα,γΞGβ,δ + δFα,γΞGβ,δa(ζ)

which implies the properties (i) and (ii).
To prove the converse, let Aα,β;γ,δ ∈ L(L((E), (E)∗)) satisfy the properties

(i) and (ii). Let α′ = −αγ−2, β′ = −βδ−2, γ′ = γ−1 and δ′ = δ−1. Then for
any η, ζ ∈ EC, by (i) and (ii), we have

FQ
α′,β′;γ′,δ′Aα,β;γ,δD(η,ζ) = D(η,ζ)FQ

α′,β′;γ′,δ′Aα,β;γ,δ,

FQ
α′,β′;γ′,δ′Aα,β;γ,δD

∗
(η,ζ) = D∗

(η,ζ)F
Q
α′,β′;γ′,δ′Aα,β;γ,δ.

Therefore, by Theorem 6.3, FQ
α′,β′;γ′,δ′Aα,β;γ,δ is a scalar operator. Equiva-

lently, Aα,β;γ,δ is a constant multiple of FQ
α,β;γ,δ since FQ

α′,β′;γ′,δ′ is the inverse
of FQ

α,β;γ,δ. ¤

Remark 6.5. By Theorem 6.4 and dual properties, we can prove a similar
characterization of GQ

α,β;γ,δ-transform by similar intertwining properties.

References

[1] L. Accardi, A. Barhoumi, and U. C. Ji, Quantum Laplacians on generalized operators
on Boson Fock space, Preprint, 2005.

[2] L. Accardi, A. Barhoumi, and H. Ouerdiane, A quantum approach to Laplace operators,
Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (2006), no. 2, 215–248.

[3] L. Accardi, H. Ouerdiane, and O. G. Smolyanov, Lévy Laplacian acting on operators,
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