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has lead to a new prescription for calculating entanglement entropies, which involves spe-

cial subsystems in regions where gravity is dynamical, called quantum extremal islands. We

present a simple holographic framework where the emergence of quantum extremal islands

can be understood in terms of the standard Ryu-Takayanagi prescription, used for calcu-

lating entanglement entropies in the boundary theory. Our setup describes a d-dimensional

boundary CFT coupled to a (d−1)-dimensional defect, which are dual to global AdSd+1

containing a codimension-one brane. Through the Randall-Sundrum mechanism, graviton

modes become localized at the brane, and in a certain parameter regime, an effective de-

scription of the brane is given by Einstein gravity on an AdSd background coupled to two

copies of the boundary CFT. Within this effective description, the standard RT formula

implies the existence of quantum extremal islands in the gravitating region, whenever the

RT surface crosses the brane. This indicates that islands are a universal feature of effective

theories of gravity and need not be tied to the presence of black holes.
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1 Introduction

Almost half a century ago, it was discovered that black holes behave as quantum ob-

jects, with an associated temperature, entropy and other thermodynamic properties [1–5].

One realization of these ideas is the Bekenstein-Hawking (BH) formula, which states that

the black hole entropy is a quarter of its horizon area measured in Planck units, i.e.,

SBH = A/4GN. These concepts gained a wider scope in the context of the AdS/CFT corre-

spondence, where the Ryu-Takayanagi (RT) prescription [6–9] applies the same geometric

expression to extremal bulk surfaces in evaluating the entanglement entropy for generic

subregions on the boundary theory. Indeed, this was later derived as a special case of the

generalized gravitational entropy in [10].

However, as pointed out by Hawking early on [11], a standard semiclassical analysis

seemingly leads to an inconsistency in describing the time evolution of black holes. If a pure

state of matter collapses to form a black hole, which is then allowed to completely evaporate

via Hawking radiation, the final quantum state appears to be mixed, contradicting unitary

evolution. This is the black hole information paradox. On the other hand, arguments from

the AdS/CFT correspondence suggest that unitarity should remain valid, e.g., [12, 13].
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There, one expects that after an initial rise of the entanglement entropy of the Hawking

radiation, subtle correlations between the quanta emitted at early and late times lead to

a purification of the final state and a decrease in the late-time entropy. This qualitative

behaviour of the entropy is known as the Page curve [14] — see also [13].

As emphasized with the generalized second law [15] (see also [16, 17]), the geometric

BH entropy is naturally combined with the entanglement entropy of quantum fields outside

the event horizon to produce a finite quantity known as the generalized entropy. In the

context of holographic entropy, this leads to an extension of the RT prescription to include

quantum corrections in the bulk [18, 19]

SEE(R) = min {extSgen(V)} = min

{
ext

(
A(V)

4GN

+ SQFT

)}
, (1.1)

where V is a bulk surface homologous to the boundary subregion R, while SQFT is the

entropy of the quantum fields on a partial Cauchy surface extending from V to R on the

asymptotic boundary. The surface which extremizes the generalized entropy in the above

expression is then referred to as a Quantum Extremal Surface (QES) [19]. Further, the

‘min’ indicates that in the situation where there is more than one extremal surface, one

chooses that which yields the minimum value for Sgen(V).

This approach produced some surprising new insights with holographic models of black

hole evaporation [20–22]. In particular, at late stages in the evaporation, the quantum term

can compete with the classical BH contribution in eq. (1.1) to produce new saddle points

for the QES, which could describe the late-time phase of the Page curve. Perhaps the

biggest surprise is that the Page curve can be reproduced from saddlepoint calculations in

semi-classical gravity, i.e., in a situation where the details of the black hole microstates or

of the encoding of information in the Hawking radiation are still not revealed. Further, the

evaluation of the entanglement entropy of the Hawking radiation is seen to be encapsulated

by the so-called ‘island rule’ [22],

SEE(R) = min

{
ext

(
SQFT(R ∪ islands) +

A (∂(islands))

4GN

)}
. (1.2)

That is, the entropy of the radiation collected in a nongravitating reservoir is evaluated as

the contributions from the quantum fields in the reservoir but possibly also on a quantum

extremal island (QEI) in the gravitating region, i.e., a separate region near the black hole,

as well as a geometric BH contribution from the boundary of the island. In the early phase

of the Hawking evaporation, extremizing this expression yields the empty set for the island,

i.e., there is no island. However, at late times, a QEI appears to reduce the radiation’s

entropy and yields the expected late-time behaviour of the Page curve. These results have

sparked further progress with a variety of new investigations, e.g., [23–41].

In this paper, we aim to explore the island formula (1.2) in further generality. Recall

that the latter was motivated by the ‘doubly holographic’ model presented in [22], who in

turn began with the two-dimensional model of [20]. The latter consists of a bath, i.e., a

two-dimensional CFT on a half line, and a pair of quantum mechanical systems, which are

assumed to be holographically dual to Jackiw-Teitelboim (JT) gravity on AdS2 coupled
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to the same CFT as in the bath. Hence if the quantum mechanical systems begin in a

thermofield double state, the dual description is given by a two-sided AdS2 black hole.

If the boundary of the bath is then coupled to one of the quantum systems, i.e., to the

asymptotic boundary of one side of the black hole, the black hole begins to evaporate as

Hawking radiation leaks into the bath. Now the insight of [22] was to examine the case

where the two-dimensional CFT is itself holographic, and so can be replaced with a locally

AdS3 bulk. The boundary of this bulk geometry has two components: the asymptotically

AdS boundary, on which the bath lives, and the Planck brane, where the JT gravity is

supported. This third perspective on the system has the advantage that the generalized

entropy in eq. (1.1) or (1.2) is realized completely geometrically. That is, the entanglement

entropy of the boundary CFT is computed by RT surfaces in the three-dimensional bulk,

and the geometric BH contribution is given by the usual expression for JT gravity. Further,

calculations in this doubly holographic model produce the expected Page curve, with RT

surfaces ending on the Planck brane manifesting the island rule (1.2).

In the present paper, we generalize this doubly holographic model to higher dimensions

as follows (see also figure 3): we consider a d-dimensional holographic CFT coupled to a

codimension-one conformal defect. As usual, the gravitational dual corresponds to an

asymptotically AdSd+1 spacetime, containing a codimension-one brane anchored on the

asymptotic boundary at the position of the defect. The gravitational backreaction of the

brane warps the geometry creating localized graviton modes in its vicinity, as per the usual

Randall-Sundrum (RS) scenario [42–44]. Hence at sufficiently long wavelengths, the system

can then also be described by an effective theory of Einstein gravity coupled to (two copies

of) the holographic CFT on the brane, all coupled to the CFT on the static boundary

geometry.1 To better emulate the previous model with JT gravity [22], we also consider

introducing an intrinsic Einstein term to the brane action, analogous to the construction

of Dvali, Gabadadze and Porrati (DGP) [45].2 In any event, this more or less standard

holographic model can be viewed from three perspectives in analogy with [22]: the bulk

gravity perspective, with a brane coupled to gravity in an asymptotically AdSd+1 space;

the boundary perspective, with the boundary CFT coupled to a conformal defect; and the

brane perspective, with a region where the holographic CFT couples to Einstein gravity

and another region where the same CFT propagates on a fixed background geometry.

From the bulk gravity perspective, the entanglement entropy is realized in a com-

pletely geometric way in terms of the areas of RT surfaces, with a contribution in the bulk

and another contribution on the brane. That is, we have an extension of the usual RT

prescription with

SEE(R) = min {extSgen(V)} = min

{
ext

(
A(V)

4Gbulk

+
A(V ∩ brane)

4Gbrane

)}
, (1.3)

1Some tuning of the parameters characterizing the brane is required to achieve this effective description.

Note that the fact that the RS gravity on the brane has a finite cutoff [42, 43] makes conspicuous that this

is only an effective theory.
2Without the DGP term, our construction resembles that in [28] in many respects. Our model resembles

the setup in [22] even more closely if we make a Z2 orbifold quotient across the brane.
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(no gravity)

AdSd brane

V

V ∩ brane

Boundary CFT

R

AdSd+1

Gbulk

Gbrane

Figure 1. A sketch of our holographic setup illustrating the various elements appearing in eq. (1.3),

which manifests the island rule in our analysis.

where again, where V is a bulk surface homologous to the boundary subregion R (see

figure 1). Note that the brane contribution seems natural here, we will argue for its presence

by extending the derivation in [46]. In contrast to eq. (1.1), we are not considering quantum

field contributions in the AdSd+1 bulk. However, from the brane perspective, the usual RT

term, i.e., the first term on the right-hand side of eq. (1.3), is interpreted as the leading

planar contribution of the boundary CFT to SEE(R), and the island rule (1.2) is realized

in situations where the RT surface cross over the brane.

We emphasize the underlying simplicity of our holographic model. In particular, the

elements of construction are more or less standard, and the entropies are evaluated with

the geometric formula for holographic entanglement entropy. Hence we generalize the

island rule to any number of dimensions but also cast it in a framework where many of

its features follow simply from the properties of the RT prescription — and in fact, can

be understood analytically. In particular, we will be able to address several issues which

appeared puzzling in [22]. Other recent analyses in higher dimensions were undertaken

numerically in [24], in an effective theory in flat space [36] and using a Randall-Sundrum-

inspired toy model in [40].

The remainder of this paper is organized as follows: in section 2, we begin by studying

a certain class of d-dimensional branes embedded in AdSd+1. We show how the Randall-

Sundrum gravity induced on the brane is equivalent to the bulk description of the brane

embedded in the higher dimensional geometry. In section 3, we elucidate the different holo-

graphic perspectives of this system as described above, i.e., we can describe the system as

a d-dimensional boundary CFT coupled to a conformal defect, a d-dimensional CFT which

contains a region with dynamical gravity, or a (d+1)-dimensional theory of gravity coupled

to a codimension-one brane. Section 4 investigates the relation between the appearance

of quantum extremal islands using eq. (1.2) and the bulk picture using eq. (1.3) with RT

surfaces crossing the brane. In the same section, we present some explicit calculations ex-

plicitly illustrating appearance of such QEI for d = 3. Section 5 concludes with a discussion

of our results. In appendix A, we extend the arguments in [46] to support the appearance
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of the brane contribution to the generalized entropy in eq. (1.3). Appendix B examines a

surprising class of spherical RT surfaces, which can be supported at finite size by the brane.

We must note that most of our discussion is quite general and not necessarily linked

to the physics of black holes. In fact, the explicit calculations in section 4.4 evaluate the

entanglement entropy of entangling regions (with components on either side of the confor-

mal defect) in the vacuum state of the boundary system.3 This illustrates that QEIs are

not a feature exclusive to the black hole information problem, but may play a role in more

general settings where gravity and entanglement are involved. Nevertheless, it is indeed

possible within our model to also discuss black holes. In a forthcoming publication [47],

we will apply the methods developed here to the case of eternal black holes coupled to a

thermal bath in higher dimensions, similar to [23].

2 Brane gravity

As described in the introduction, we are studying a holographic system where the boundary

theory is a d-dimensional CFT which lives on a spherical cylinder R×Sd−1 (where the R is

the time direction). Further, this CFT is coupled to a (codimension-one) conformal defect

positioned on the equator of the sphere. Hence, the defect spans the geometry R × Sd−2

and supports a (d− 1)-dimensional CFT. The bulk description of this system involves an

asymptotically AdSd+1 spacetime with a codimension-one brane spread through the middle

of the space (and extending to the position of the defect at asymptotic infinity). In this

setup, the brane has an AdSd geometry and further, we consider the case in which the

brane has a substantial tension and backreacts on the bulk geometry. If the brane tension

is appropriately tuned, the backreaction produces Randall-Sundrum gravity supported on

the brane [42, 43], i.e., in the backreacted geometry, new (normalizable) modes of the bulk

graviton are localized near the brane inducing an effective theory of dynamical gravity on

the brane. In the following, we review the bulk geometry produced by the backreaction of

the brane, and also the gravitational action induced on the brane.

2.1 Brane geometry

In the bulk, we have Einstein gravity with a negative cosmological constant in d + 1

dimensions, i.e.,

Ibulk =
1

16πGbulk

∫
dd+1x

√−g

[
R(g) +

d(d− 1)

L2

]
, (2.1)

where gab denotes the bulk metric, and we are ignoring the corresponding surface terms

here [48–50]. We also introduce a codimension-one (i.e., d-dimensional) brane in the bulk

gravity theory. The brane action is simply given by

Ibrane = −To

∫
ddx
√
−g̃ , (2.2)

where To is the brane tension and g̃ij denotes the induced metric on the brane.

3Further, let us note that the formation of QEIs on branes in the ‘Einstein gravity regime’ require us to

introduce somewhat unconventional couplings. That is, we must consider a negative Newton’s constant on

the brane and/or a Gauss-Bonnet interaction in the four-dimensional bulk gravity.
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AdSd+1 AdSd+1AdSd+1

AdSd

CFTda. b.

Figure 2. Panel (a): our Randall-Sundrum construction involves foliating with AdSd slices. Then

identical portions of two such AdSd+1 geometries are glued together along an common AdSd slice.

Panel (b): the jump in the extrinsic curvature across the interface between the two geometries is

supported by a(n infinitely) thin brane. The brane is represented by a green line in the figures and

the bulk AdSd+1 spacetime is blue with a d-dimensional CFT at the asymptotic boundary.

Away from the brane, the spacetime geometry locally takes the form of AdSd+1 with

the curvature scale set by L. As described above, the induced geometry on the brane will

be an AdSd space, and so it is useful to consider the following metric where the AdSd+1

geometry is foliated by AdSd slices

ds2 = dρ2 + cosh2 (ρ/L) gAdSd
ij dxidxj . (2.3)

Implicitly here, L also sets the curvature of the AdSd metric, e.g., in global coordinates,

gAdSd
ij dxidxj = L2

[
− cosh2r̃ dt2 + dr̃2 + sinh2r̃ dΩ2

d−2

]
. (2.4)

With the above choices, we approach the asymptotic boundary with ρ → ±∞, or with

fixed ρ and r̃ → ∞. In the latter case, we arrive at the equator of the boundary Sd−1,

where the conformal defect is located. For the following, it will be convenient to replace ρ

with a Fefferman-Graham-like coordinate [51, 52],

z = 2Le−ρ/L , (2.5)

with which the metric (2.3) becomes

ds2 =
L2

z2

[
dz2 +

(
1 +

z2

4L2

)2

gAdSd
ij dxidxj

]
. (2.6)

In these coordinates we approach the asymptotic boundary with z → 0 and with z → ∞.

Below, we will focus on the region near z ∼ 0.

As described above, the brane spans an AdSd geometry in the middle of the backre-

acted spacetime. Following the usual Randall-Sundrum approach, we construct the desired

solution by cutting off the AdSd+1 geometry at some z = zB, and then complete the space

by gluing this geometry to another copy of itself — see figure 2. Then the Israel junction

conditions (e.g., see [53, 54]) fix zB by relating the discontinuity of the extrinsic curvature

across this surface to the stress tensor introduced by the brane, i.e.,

∆Kij − g̃ij ∆Kk
k = 8πGbulk Sij = −8πGbulkTo g̃ij , (2.7)

– 6 –
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where ∆Kij = K+
ij −K−

ij = 2Kij , given the symmetry of our construction. The extrinsic

curvature is calculated as [54]

Kij =
1

2

∂gij
∂n

∣∣∣∣
z=zB

= − z

2L

∂gij
∂z

∣∣∣∣
z=zB

=
1

L

4L2 − z2B
4L2 + z2B

g̃ij , (2.8)

where ∂n = − z
L∂z is an outward directed unit normal vector. Further, we are using the

notation introduced above where g̃ij corresponds to the induced metric on the surface

z = zB, i.e., on the brane. Combining eqs. (2.7) and (2.8), we arrive at

4L2 − z2B
4L2 + z2B

=
4πGbulkLTo

d− 1
. (2.9)

Now if we consider zB ≪ L, it will ensure that the defect is well approximated by the

holographic gravity theory on the brane — see the discussion in the next subsection. In this

regime, we can solve eq. (2.9) in a small zB expansion, and to leading order, we find that

z2B ≃ z20 = 2L2

(
1− 4πGbulkLTo

d− 1

)
. (2.10)

Hence to achieve this result, we must tune the expression in brackets on the right to be

small, i.e.,

ε ≡ 1− 4πGbulkLTo

d− 1
≪ 1 . (2.11)

As the notation suggests, we can think of this quantity ε as an expansion parameter in

solving for the brane position from eq. (2.9). A useful check of our calculations below will

come from carrying the solution to the next order, i.e., z2B = z20 + δ[z2B]2 + · · · with

δ[z2B]2 =
(d− 1)L

4πGbulkTo
ε2 =

(d− 1)L

4πGbulkTo

(
1− 4πGbulkLTo

d− 1

)2

. (2.12)

To conclude, we consider the intrinsic geometry of the brane. As we noted above, the

curvature scale of gAdSd
ij is simply L, and hence given the full bulk metric (2.6), we can read

off the curvature scale of the surface z = zB as

ℓB =
L2

zB

(
1 +

z2B
4L2

)
. (2.13)

Note that since we are considering zB/L ≪ 1, it follows that ℓB/L ≫ 1, i.e., the brane is

weakly curved. Using eq. (2.10), we can solve for ℓB to leading order in the ε expansion

to find
L2

ℓ2B
≃ 2 ε = 2

(
1− 4πGbulkLTo

d− 1

)
. (2.14)

It will be useful to have the following expressions for the Ricci tensor and scalar evaluated

for the brane geometry, and these are compactly written using eq. (2.13) as

R̃ij(g̃) = −d− 1

ℓ2B
g̃ij , R̃(g̃) = −d(d− 1)

ℓ2B
. (2.15)
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2.2 Gravitational action on the brane

As noted above, following the usual Randall-Sundrum scenario [42–44], new (normalizable)

modes of the bulk graviton are localized near the brane in the backreacted geometry, and

this induces an effective theory of dynamical gravity on the brane. The gravitational action

can be determined as follows: first, one considers a Fefferman-Graham (FG) expansion near

the boundary of an asymptotic AdS geometry [51, 52]. Then integrating the bulk action

(including the Gibbons-Hawking-York surface term [48, 49]) over the radial direction out

to some regulator surface produces a series of divergent terms, which through the FG ex-

pansion can be associated with various geometric terms involving the intrinsic curvature of

the boundary metric. Usually in AdS/CFT calculations, a series of boundary counterterms

are added to the action to remove these divergences, as the regulator surface is taken to in-

finity [50]. In the present braneworld construction, the regulator surface is replaced by the

brane, which remains at a finite radius, and no additional counterterms are added. Rather

the ‘divergent’ terms become contributions to the gravitational action of the brane theory,

and hence the latter from previous discussions of the boundary counterterms [50], i.e.,

Idiver =
1

16πGbulk

∫
ddx
√
−g̃

[
2(d− 1)

L
+

L

(d− 2)
R̃

+
L3

(d− 4)(d− 2)2

(
R̃ijR̃ij −

d

4(d− 1)
R̃2

)
+ · · ·

]
. (2.16)

Several comments are in order at this point: first of all, we note that the above

expression is written in terms of the induced metric g̃ij on the brane (as in [50]) rather

than the boundary metric
(0)
g ij that enters the FG expansion. Using the standard results,

e.g., [55, 56], we can relate the two with

g̃ij(xk) =
L2

z2B

(0)
g ij(xk) +

(1)
g ij(xk) +

z2B
L2

(2)
g ij(xk) + · · · , (2.17)

where the higher order terms can be expressed in terms of the curvatures of
(0)
g ij , e.g.,

(1)
g ij = − L2

d− 2

(
Rij

[(0)
g
]
−

(0)
g ij

2(d− 1)
R
[(0)
g
]
)

. (2.18)

In other words, the two metrics are related by a Weyl scaling and a field redefinition.

Further, we see a factor of (d − 2) appearing in the denominator of the second term, i.e.,

the Einstein-Hilbert term, in eq. (2.16). Hence this expression only applies for d ≥ 3 and

must be reevaluated for d = 2, which we do in section 2.3. Similar factors, as well as a

factor of d − 4, appear in the denominator of the third term, which again indicates that

this expression must be reconsidered for d = 4.

In any event, the gravitational action on the brane is given by combining the above

expression with the brane action (2.2),

Iinduced = 2 Idiver + Ibrane , (2.19)
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where the factor of two in the first term accounts for integrating over the bulk geometry

on both sides of the brane. The combined result can be written as

Iinduced =
1

16πGeff

∫
ddx
√
−g̃

[
(d− 1)(d− 2)

ℓ2eff
+ R̃(g̃)

]
(2.20)

+
1

16πGRS

∫
ddx
√
−g̃

[
L2

(d− 4)(d− 2)

(
R̃ijR̃ij −

d

4(d− 1)
R̃2

)
+ · · ·

]
,

where

1

Geff

=
1

GRS

=
2L

(d− 2)Gbulk

,
1

ℓ2eff
=

2

L2

(
1− 4πGbulkLTo

d− 1

)
. (2.21)

In the present discussion Geff and GRS are equal, but by adding terms to the brane action

this can change. We will explain this in section 2.4. Comparing eqs. (2.14) and (2.21), we

see that ℓeff (which sets the cosmological constant term in Iinduced) precisely matches the

leading order expression for the brane curvature ℓB. Hence if we only consider the first two

terms in eq. (2.20), the resulting Einstein equations would reproduce the leading expression

(in the ε expansion) for the curvatures in eq. (2.15). Further, it is a straightforward exercise

to show that if the contribution of the curvature squared terms is also included in the

gravitation equations of motion, the curvature is shifted to precisely reproduce the ε2 term

in eq. (2.15). Hence rather than using the Israel junction condtions, we could determine

the position of the brane in the backreacted geometry by first solving the gravitational

equations of the brane action (2.20) and then finding the appropriate surface z = zB with

the corresponding curvature. More generally, the fact that these two approaches match

was verified by [57],4 which argued the bulk Einstein equations combined with the Israel

junction conditions are equivalent to the brane gravity equations of motion.5

Of course, the gravitational approach only provides an effective approach in the limit

that ℓeff ≫ L since otherwise the contributions of the higher curvature terms cannot be

ignored. For example, if the curvatures are proportional to 1/ℓ2eff at leading order, then

the curvature squared term is suppressed by a factor of L2/ℓ2eff relative the first two terms.

Similarly the higher order curvature terms denoted by the ellipsis in eq. (2.20) are further

suppressed by a further factor of L2/ℓ2eff for each additional curvature appearing these

terms. From eq. (2.14), we can write L2

ℓ2eff
= 2ε and hence we see that the gravitational

brane action and the resulting equations of motion can be organized in the same small ε

expansion discussed in the previous section.6

Recall that we can give a holographic description of this system involving (two weakly

interacting copies of) the boundary CFT living on the brane. However, this CFT has a

finite UV cutoff because the brane resides at a finite radius in the bulk, e.g., see [56, 63, 64].

4See also earlier discussions, e.g., [58–60].
5We note that the brane graviton acquires a small mass through interactions with the CFT residing

there [44, 61, 62]. However, this mass plays no role in the following as it is negligible in the regime of

interest, i.e., L/ℓeff ≪ 1 — see further discussion in section 3. This point was emphasized in [40].
6Note that we have distinguished the gravitational couplings in the Einstein terms and in the higher

curvature interactions, i.e., in the first and second lines of eq. (2.20), even though Geff = GRS here. However,

this distinction will become important in section 2.4.
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The action (2.16) is then the induced gravitational action resulting from integrating out

the CFT degrees of freedom. The UV cutoff is usually discussed in the context of the

boundary metric g(0)

ij , where the short distance cutoff would be given by δ ≃ zB. However,

recall that the gravitational action (2.20) is expressed in terms of the induced metric g̃ij
and so the conformal transformation in eq. (2.17) yields δ̃ ≃ L for this description of the

brane theory. Therefore the ε expansion corresponds to an expansion in powers of the short

distance cutoff, i.e., ε ∼ δ̃2/ℓ2eff.

2.3 The case of two dimensions

Recall that the curvature terms in the induced action (2.16) have coefficients with inverse

powers of (d− 2) and so we must reconsider the calculation of this brane action for d = 2,

i.e., when the bulk space is (locally) AdS3 and the induced geometry on the brane is

AdS2. This section sketches the necessary calculations, which are largely the same as those

performed in higher dimensions, but with a few important differences.

Let us add that in contrast to the induced action, the calculations in section 2.1,

where the position of the brane is determined using the Israel junction conditions, need

no modifications for d = 2. Therefore we can simply substitute d = 2 into eqs. (2.10)

and (2.12) for the brane position to find

z2B ≃ 2L2ε+
L

4πGbulkTo
ε2 + · · · , with ε = 1− 4πGbulkLTo . (2.22)

Of course, we must be able to reproduce the same result using the new induced gravity

action.

Integration of bulk action. As discussed in section 2.2, one can determine the structure

of the terms in the induced action by a careful examination of the FG expansion near the

asymptotic boundary [56, 57, 65]. However, we can take the simpler route here, since in

two dimensions the Riemann curvature has a single component and therefore the entire

induced action can be expressed in terms of the Ricci scalar R̃(g̃). Therefore, we evaluate

the on-shell bulk action and match the boundary divergences to an expansion in R̃(g̃).

That is, we substitute the metric (2.6) into the bulk action (2.1) plus the corresponding

Gibbons-Hawking-York surface term [48, 49] and integrate over the radial direction z. The

result can be expressed as a boundary integral with a series of divergences as zB → 0,7

Idiver =
L

16πGbulk

∫
d2x
√
−gAdS2

[
1

z2B
+

1

L2
log
(zB
L

)
− z2B

16L4
+ · · ·

]
. (2.23)

Now we rewrite the above expression in terms of the induced metric and the corresponding

Ricci scalar combining eqs. (2.6), (2.13) and (2.15), which yield

√
−g̃ =

L2

z2B

(
1 +

z2B
4L2

)2√
−gAdS2 , R̃ = −2

z2B
L4

(
1 +

z2B
4L2

)−2

. (2.24)

7This expression also includes O(z2B) contributions, which are necessary to match eq. (2.22) to O(ε2)

in the following. Further, note that we are ignoring the contributions coming from asymptotic boundaries

at z → ∞.
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Using these expressions, the induced action becomes8

Idiver =
L

16πGbulk

∫
d2x
√
−g̃

[
2

L2
− 1

2
R̃ log

(
−L2

2
R̃

)
+

1

2
R̃+

L2

16
R̃2 + · · ·

]
. (2.25)

The most striking feature of this induced action is the term proportional to R̃ log |R̃|.
The appearance of this logarithm is related to the conformal anomaly [66–68], and points

towards the fact that the corresponding gravitational action in nonlocal,9 as we discuss

next. Further, since the Einstein-Hilbert term is topological in two dimensions, it turns

out that this unusual action is precisely what is needed to match the dynamics of the bulk

gravity described above, i.e., the position of the brane in eq. (2.22).

The logarithmic contribution should correspond to that coming from the nonlocal

Polyakov action [65]. Schematically, we would have

Ibulk ≃ IPoly = − αL

16πGbulk

∫
d2x
√

−g̃ R̃
1

�̃
R̃ , (2.26)

where we have introduced an arbitrary constant α here but it will be fixed by comparing

with the divergences in the integrated action. Of course, 1
�̃
R̃ indicates a convolution of

the Ricci scalar with the scalar Green’s function, but there are subtleties here in dealing

with constant curvatures. The latter are ameliorated by making the action (2.26) local by

introducing a auxiliary field φ (e.g., see [65, 69]),

IPoly =
αL

8πGbulk

∫
d2x
√
−g̃

[
−1

2
g̃ij∇̃iφ∇̃jφ+ φ R̃+ χ e−φ

]
, (2.27)

where χ is a fixed constant.10

The equation of motion resulting from eq. (2.27) is

0 = �̃φ+ R̃− χ e−φ , (2.28)

which has a simple solution when R̃ is a constant, namely,

φ = φ0 = log(χ/R̃) . (2.29)

Evaluating the Polyakov action with φ = φ0 yields

IPoly

∣∣
φ=φ0

= − αL

8πGbulk

∫
d2x
√
−g̃

[
R̃ log(R̃/χ)− R̃

]
. (2.30)

Comparing this expression with the log term in eq. (2.25), we fix α = 1
4 and χ = − 2

L2 .

8Our derivation of eq. (2.25) will miss terms involving derivatives of R̃ as these vanish for the constant

curvature geometry of our brane. However, such terms will only appear at higher orders, i.e., in the ‘· · · ’

(other than the total derivative �̃R̃).
9Similar nonlocalities appear in the curvature-squared or four-derivative contributions with d = 4, or

more generally in the interactions with d/2 curvatures for higher (even) d. Hence they do not play a role

in higher dimensions if we work in the regime where the induced action (2.20) is well approximated by

Einstein gravity coupled to a cosmological constant.
10The last term is needed to take care of zero mode problem [69]. Examining the equation of motion (2.28),

one can think of φ as a conformal factor relating the metric g̃ij to a canonical constant curvature metric

ĝij , i.e., g̃ij = eφĝij with R̂(ĝ) = χ [69, 70]. Hence we choose χ to be negative to match the sign of R̃.

Further, note that with the interaction χe−φ in the action (2.27), φ becomes an interacting field [65].
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Varying the action (2.27) with respect to the metric, we find the corresponding con-

tribution to the ‘gravitational’ equations of motion

T Poly

ij = − 2√−g

δIPoly

δgij
=

L

32πGbulk

[
∇̃iφ∇̃jφ+ 2 ∇̃i∇̃jφ (2.31)

−g̃ij

(
1

2
(∇̃φ)2 + 2 �̃φ− χ e−φ

)]
,

where we have used R̃ij − 1
2 g̃ijR̃ = 0 for d = 2 to eliminate the terms linear in φ (without

any derivatives). Now substituting φ0, we find that this expression reduces to

T Poly

ij

∣∣
φ=φ0

=
L

32πGbulk

g̃ij R̃ , (2.32)

which we will substitute into evaluating the equations of motion below to fix the position

of the brane. As an aside, we can take the trace of the above expression to find that it

reproduces the trace anomaly, e.g., [71, 72]

〈T i
i〉 =

c

24π
R̃ , (2.33)

where we recall that c = 3L
2Gbulk

for the boundary CFT. In our case, the trace anomaly will

be twice as large, since there are two copies of the CFT living on the brane.

The induced action Iinduced = 2 Idiver + Ibrane can be written as

Iinduced =
1

16πGeff

∫
d2x
√
−g̃

[
2

ℓ2eff
− R̃ log

(
−L2

2
R̃

)
+ R̃+

L2

8
R̃2 + · · ·

]
, (2.34)

where ℓeff is given by the expression in eq. (2.21) with d = 2, i.e.,

L2

ℓ2eff
= 2 (1− 4πGbulkLTo) , (2.35)

however, we have set Geff = Gbulk/L here. The metric variation then yields the following

equation of motion

0 =
2

ℓ2eff
g̃ij + g̃ij R̃+

L2

8
R̃
(
g̃ij R̃− 4R̃ij

)
+ · · · , (2.36)

where we dropped the terms involving derivatives of curvatures arising from the variation

of the R̃2 term. To leading order, we find R̃ ∼ −2/ℓ2eff = −4ε/L2 in agreement with

eqs. (2.14) and (2.15). Hence, the gravitational equations of motion again fix the (leading-

order) position of the brane for d = 2, and further it is a straightforward exercise to

match to second order corrections in eq. (2.22) using the curvature-squared contributions

in eq. (2.36).

Adding JT gravity. Much of the recent literature on quantum extremal islands exam-

ines models involving two-dimensional gravity, e.g., [20, 22, 23, 25, 26, 29, 73], however, the

gravitational theory in these models is Jackiw-Teitelboim (JT) gravity [74, 75]. One can
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incorporate JT gravity into the current model by dropping the usual tension term (2.2),

and instead using the following brane action11

Ibrane = IJT + Ict , (2.37)

where the JT action takes the usual form,

IJT =
1

16πGbrane

∫
d2x
√
−g̃

[
Φ0 R̃+Φ

(
R̃+

2

ℓ2JT

)]
. (2.38)

Here, as in previous actions, we have ignored the boundary terms associated with the JT

action, e.g., see [76], and we have introduced the dilaton Φ. Recall that Φ0 is simply a

constant and so the first term is topological but contributes to the generalized entropy. In

eq. (2.37), we have also included a counterterm

Ict = − 1

4πGbulkL

∫
d2x
√

−g̃ , (2.39)

which is tuned to cancel the induced cosmological constant on the brane. This choice

ensures that the JT gravity (2.38) couples to the boundary CFT in the expected way, e.g.,

as in [20, 76] — see further comments below.

The full induced action now takes the form

Iinduced =
1

16πGeff

∫
d2x
√

−g̃

[
−R̃ log

(
−L2

2
R̃

)
+

L2

8
R̃2 + · · ·

]

+
1

16πGbrane

∫
d2x
√

−g̃

[
Φ̃0 R̃+Φ

(
R̃+

2

ℓ2JT

)]
, (2.40)

where we have combined the two topological contributions in the second line with12

Φ̃0 = Φ0 +Gbrane/Geff . (2.41)

Now, with the JT action (2.38), the dilaton equation of motion fixes R̃ = −2/ℓ2JT, i.e.,

the brane geometry is locally AdS2 everywhere with ℓB = ℓJT. Then the position zB of the

brane is fixed by eq. (2.13) and implicitly we assume that ℓJT ≫ L, which ensures that

zB ≪ L as in our previous discussions. The gravitational equation of motion coming from

the variation of the metric becomes

−∇i∇jΦ+ g̃ij

(
∇2Φ− Φ

ℓ2JT

)
= 8πGbrane T̃

CFT
ij = −Gbrane

Geff

1

ℓ̂2eff
g̃ij , (2.42)

where ℓ̂eff is the effective curvature scale produced by ℓJT. That is, in the case without JT

gravity, we can combine eqs. (2.9), (2.13) and (2.21) to find

L2

ℓ2eff
= f

(
L2

ℓ2B

)
≡ 2

(
1−

√
1− L2

ℓ2B

)
. (2.43)

11Alternatively, one could simply add IJT to the usual tension term. With this approach, an extra source

term appears in eq. (2.42), but it can be eliminated by shifting the dilaton in a manner similar to eq. (2.44).
12In [20], Φ̃0 would also absorb a logarithmic constant −2 log(L/zB), which would be accompanied by a

shift in the prefactor in the argument of the logarithmic term in eq. (2.40), i.e., 2/L2 → 2/z2B.
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We can understand this expression as the gravitational equation of motion coming from the

two-dimensional action (2.34), where a Taylor expansion of the right-hand side for L/ℓB ≪ 1

corresponds to varying the curvature terms and subsequently substituting R̃ij = − 1
ℓ2B

g̃ij ,

as in eq. (2.15). Now in the JT equation of motion (2.42), the effective curvature scale

ℓ̂eff satisfies L2/ℓ̂2eff = f
(
L2/ℓ2JT

)
. We have indicated in eq. (2.42) that the left-hand side

corresponds to the stress tensor of the boundary CFT which lives on the brane. In the

present arrangement,13 this takes a particularly simple form, with TCFT
ij ∝ g̃ij . Of course,

this source term in eq. (2.42) can be easily absorbed by shifting the dilaton,

Φ̃ ≡ Φ− Gbrane

Geff

ℓ2JT

ℓ̂2eff
, (2.44)

so that Φ̃ satisfies the usual source-free equation studied in e.g., [76].

At this point, we observe that the trace of eq. (2.42) yields on the right-hand side,

〈
[
T̃CFT

]i
i〉 = − L

4πGbulk

1

ℓ̂2eff
= − L

4πGbulk

1

ℓ2JT

(
1 +

1

4

L2

ℓ2JT
+

1

8

L4

ℓ4JT
+ · · ·

)
, (2.45)

where in the final expression, we are Taylor expanding f(L2/ℓ2JT) assuming L2/ℓ2JT ≪ 1, as

above. Noting that R̃ = −2/ℓ2JT and comparing to eq. (2.33),14 we see that the expected

trace anomaly has recieved a infinite series of higher order corrections. We can interprete

the latter as arising from the finite UV cutoff on the brane, recalling that δ̃ ≃ L as discussed

at the end of section 2.2.

2.4 DGP gravity on the brane

The previous discussion of d = 2 motivates that it is interesting to add an intrinsic gravity

term to the brane action. Here, we extend this discussion to higher dimensions, i.e., extend

the brane action to include an Einstein-Hilbert term. Of course, this scenario can be viewed

as a version of Dvali-Gabadadze-Porrati (DGP) gravity [45] in an AdS background. Hence,

it combines features of both RS and DGP gravity theories. We discuss the modifications

of the brane dynamics and the induced action below, but it also produces interesting

modifications of the generalized entropy, as discussed in sections 4 and appendices A and B.

We write the extended brane action, replacing eq. (2.2), as

Ibrane = −(To −∆T )

∫
ddx
√

−g̃ +
1

16πGbrane

∫
ddx
√

−g̃R̃ . (2.46)

In general, for a fixed brane tension, the position of the brane will be modified with the

additional Einstein-Hilbert term. Hence we have parametrized the full brane tension as

To−∆T and the contribution ∆T will be tuned to keep the position of the brane fixed. This

13In more interesting scenarios, e.g., with evaporating black holes as in [20, 22, 29], it is more appropriate

to work directly with the CFT’s stress tensor, rather than replacing these degrees of freedom by an effective

gravity action after integrating out the CFT.
14Recall that the central charge here is twice that appearing in eq. (2.33) because the brane supports two

(weakly interacting) copies of the boundary CFT.
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choice will facilitate the comparison of the generalized entropy between different scenarios

in the following.

As in section 2.1, the position of the brane can be determined using the Israel junction

conditions (2.7). Hence we begin by evaluating the brane’s stress tensor,

Sij ≡ − 2√−g̃

δIbrane
δg̃ij

= −g̃ij(To −∆T )− 1

8πGbrane

(
R̃ij −

1

2
g̃ij R̃

)
. (2.47)

As commented above, we choose ∆T to cancel the curvature contributions in this expres-

sion, i.e., the stress tensor reduces to Sij = −To g̃ij . With this tuning, the Israel junction

conditions in eq. (2.7) are unchanged as the analysis which follows from there. There-

fore the brane position and curvature remain identical to those determined in eqs. (2.9)

and (2.13). This allows use to determine the desired tuning as

∆T =
(d− 1)(d− 2)

16πGbrane ℓ2B
≃ (d− 1)(d− 2)

8πGbrane L2
ε . (2.48)

We have used eq. (2.14) to show that the shift in the brane tension is small in the ε

expansion.

We return to the induced gravitational action on the brane that takes the same form

as in eq. (2.20) but with the effective Newton’s constant in eq. (2.21) replaced by

1

Geff

=
2L

(d− 2)Gbulk

+
1

Gbrane

. (2.49)

By construction, ℓeff and the position of the brane are unchanged. Note that the gravita-

tional couplings in the Einstein terms and in the higher curvature interactions, i.e., in the

first and second lines of eq. (2.20), are now distinct. That is, Geff no longer equals GRS.

In the following, it will be useful to define the ratio

λb =
GRS

Gbrane

with
1

GRS

=
2L

(d− 2)Gbulk

, (2.50)

where GRS is the induced Newton’s constant on an RS brane appearing in eq. (2.21), while

the dimensionless ratio λb controls the relative strength of the Newton’s constants in the

bulk and on the brane. With these definitions, the induced Newton’s constant on the DGP

brane, in eq. (2.49), can be rewritten as

1

Geff

=
1

GRS

(1 + λb) . (2.51)

Of course, one can also consider other modifications of the brane action beyond adding

the Einstein-Hilbert term in eq. (2.46) — see discussion in the next subsection and [77].

Further, we will discuss adding topological gravitational terms on the brane or in the bulk

in sections 4 and 5. In particular, we will see in section 4.4 that adding a Gauss-Bonnet

term to the four-dimensional bulk gravity theory yields another tuneable parameter which,

for a certain parameter range, makes it possible to find quantum extremal islands in the

absence of black holes.

– 15 –



J
H
E
P
1
0
(
2
0
2
0
)
1
6
6

3 Three perspectives: bulk/brane/boundary

Our setup can be interpreted from three different ‘holographic’ perspectives, which are

analogous to the three descriptions of [22], suitably generalised to arbitrary dimensions. A

set of analogous descriptions for gravity on a brane in higher dimensions was discussed in

the context of the Karch-Randall model [44], and in fact, these are the models discussed

here with the addition of the DGP term (2.46). In this section we review each of the dual

descriptions, and explore their relation.

First, consider the bulk gravity perspective corresponding to the geometric picture por-

trayed in section 2.1: we have an AdSd+1 bulk region where gravity is dynamical, containing

a DGP brane with tension running through the middle of the spacetime — see figure 3a.

The induced geometry on the brane is AdSd. In the second picture, we integrate out the

bulk action from the asymptotic boundary where gravity is frozen up to the brane, giving

rise to Randall-Sundrum gravity [42–44] on the brane. From the resulting brane perspective,

the CFTd is then supported in a region with dynamical gravity (i.e., the brane) and another

non-dynamical one (i.e., the asymptotic boundary) — figure 3b. Finally, the third descrip-

tion makes full use of the AdS/CFT dictionary, by using holography along the brane. This

boundary perspective describes the system as a CFTd coupled to a conformal defect that is

located at the position where the brane intersects the asymptotic boundary — see figure 3c.

A holographic system was presented in [22] to describe the evaporation of two-

dimensional black holes in JT gravity. This system has three descriptions analogous to

those above. Of course, it also includes certain elements that we did not introduce in our

model, i.e., end-of-the-world branes to give a holographic description of conformal bound-

aries separating various components [78, 79] and performing a Z2 orbifold quotient across

the Planck brane, i.e., the brane supporting JT gravity. However, the essential ingredi-

ents are the same as above. The boundary perspective in [22] describes the system as a

two-dimensional holographic conformal field theory with a boundary, at which it couples

to a (one-dimensional) quantum mechanical system — figure 3f. With the brane perspec-

tive, the quantum mechanical system is replaced by its holographic dual, the Planck brane

supporting JT gravity coupled to another copy of the two-dimensional holographic CFT

— see figure 3e. Finally, the bulk gravity perspective replaces the holographic CFT with

three-dimensional Einstein gravity in an asymptotically AdS3 geometry. Because of the

Z2 orbifolding, the latter effectively has two boundaries, the standard asymptotically AdS

boundary and the dynamical Planck brane — see figure 3d.

This initial model [22] raised a number of intriguing puzzles. For example, as empha-

sized in [23], implicitly two different notions of the radiation degrees of freedom are being

used: one being the semi-classical approximation and the other one in the purely quantum

theory. Here, we will explain some details of the higher dimensional construction which

allow us to provide a resolution of several of these questions in section 5.

Bulk gravity perspective. As discussed in section 2.1, the system has a bulk description

in terms of gravity on an asymptotically AdSd+1 spacetime containing a codimension-one

brane, which splits the bulk into two halves — see figure 3a. The brane is characterized
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f.

c.

e.

b.a.

d.

Figure 3. This figure shows the relation between a time-slice in our construction and the holo-

graphic setup of [22]. The top row illustrates three perspectives with which the system discussed

here can be described, while the bottom row displays the analogous descriptions for the model

in [22]. The comparison can be made more precise by performing a Z2 orbifold quotient across the

bulk brane/conformal defect in the top row. a. Bulk gravity perspective, with an asymptotically

AdSd+1 space (shaded blue) which contains a co-dimension one Randall-Sundrum brane (shaded

grey). b. Brane perspective, with dual CFTd on the asymptotic boundary geometry (blue) and also

extending on the AdSd region (shaded green) where gravity is dynamical. c. Boundary perspective,

with the holographic CFTd on Sd−1 (blue) coupled to a codimension-one conformal defect (green).

d. AdS3 formulation with two boundary components: the flat asymptotic boundary (straight black

line) and a “Planck brane” (curved black line) with an AdS2 geometry. e. The holographic CFT

extends over a region with a fixed metric (blue) and an AdS2 region with JT gravity (green). f.

The microscopic description as a two-dimensional BCFT (blue) coupled to a quantum mechanical

system at its boundary (green).

by the tension To and also the DGP coupling 1/Gbrane, introduced in eqs. (2.2) and (2.46),

respectively. We can use the Israel junction conditions (2.7) to determine the location of

the brane as embedded in the higher dimensional space. The backreaction causes warping

around the brane, and after a change of coordinates, tuning the brane tension can be

understood as moving the brane further into a new asymptotic AdS region, as seen in

eq. (2.9) or (2.10). For large brane tension, i.e., with ε ≪ 1, the spectrum of graviton

fluctuations in the bulk is almost unchanged with respect to the modes in empty AdS

space. However, a new set of graviton states also appear localized at the brane [42, 43],

as illustrated figure 4. These are created by the nonlinear coupling of gravity to the

brane. Unlike in the Randall-Sundrum model with a flat or de Sitter brane, the new

graviton modes are not actually massless on the brane, but merely very light states whose

wavefunction peaks around the brane [44, 61]. The remaining bulk graviton modes appear

as a tower of Kaluza-Klein states, from the point of view of the theory on the brane, with

masses of O(1/ℓeff) set by the curvature scale of the d-dimensional AdS geometry on the

brane. These results have been studied in quite some detail [44, 61, 62, 80–82] for Randall-
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µB

ψ(µ)

π0
µ

Figure 4. This figure illustrates the spatial profile of the first few normalized graviton modes in

the presence of a large tension brane, and a Z2 orbifolding across the brane. We use the spatial

coordinate µ, related to ρ in eq. (2.3) by cotµ = sinh ρ/L. The tension is adjusted such that the

location of the brane is at µ = µB with µB . π. As discussed in the main text, the presence of the

brane creates new bulk modes (orange), which are highly localized at the brane, and which play the

role of a (nearly massless) graviton on the brane. The remaining bulk modes appear as KK modes

in the brane theory.

Sundrum branes, but it is interesting to examine how the spectrum is modified by the

DGP term (2.46). We will make some qualitative statements about this question below,

but leave a detailed quantitative discussion and the interpretation of this mechanism from

the point of view of the CFT for future work [77].

Brane perspective. This second perspective, discussed in section 2.2, effectively inte-

grates out the spatial direction between the asymptotically AdS boundary and the brane

to produce an effective action (2.20) for Randall-Sundrum/DGP gravity on the brane, with

the new localized graviton state playing the role of the d-dimensional graviton. Hence, we

are left with a d-dimensional theory of gravity coupled to (two copies of) the dual CFT

on the brane — see figure 3b. As discussed in the description of the bulk perspective,

amongst the new localized bulk modes, we have an almost massless graviton but also a

tower of massive Kaluza-Klein states with masses of O(1/ℓeff). In section 2.2, we demon-

strated the consistency between the bulk gravity perspective and the brane perspective by

observing how the equations of motion of the new effective action fix the brane position

in the ambient spacetime. Of course, the bulk physics is also dual to the dual CFT on

the asymptotic AdSd+1 boundary, and so this description is completed by coupling the

gravitational and CFT degrees of freedom on the brane to the CFT on the fixed bound-

ary geometry. We refer to that latter as the bath CFT. Next, we discuss how different

parameters in the brane perspective are related to bulk parameters.

There are four independent parameters which characterize the gravitational theory on

the brane: the curvature scale ℓeff, the effective Newton’s constant Geff, the central charge

of the boundary CFT cT, and the effective short-distance cutoff δ̃. These emerge from the

bulk theory through the four parameters characterizing the latter: the bulk curvature scale

L, the bulk Newton’s constant Gbulk, the brane Newton’s constant Gbrane and the brane
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tension To.
15 From eq. (2.21), we see that ℓeff is determined by a specific combination of

To, Gbulk and L. Similarly, Geff is determined by Gbrane, Gbulk and L in eq. (2.49). The

central charge of the boundary CFT is given by the standard expression cT ∼ Ld−1/Gbulk,

e.g., see [83].

Lastly, as discussed in section 2.2, the theory on the brane comes with a short-distance

cutoff δ̃ [56, 63, 64] at which the description of the brane theory in terms of (two copies of)

the boundary CFT coupled to Einstein gravity breaks down. Following a standard bulk

analysis, one would see that correlators of local operators (with appropriate gravitational

dressings) now longer exhibit the expected CFT behaviour at short distances of order

δ̃CFT ∼ L . (3.1)

We denote this cutoff with the subscript ‘CFT’ to emphasize that the description of the

matter degrees of freedom on the brane as a local d-dimensional CFT is failing at distances

smaller than this short-distance cutoff. However, we stress that there is another scale δ̃GR,

which is the distance at which the approximation of Einstein gravity on the brane breaks

down. The simple parameter counting above shows that this cannot be an independent

scale. For the brane perspective, the true cutoff δ̃ where the description in terms of the

dual CFT coupled to Einstein gravity fails is

δ̃ = max
{
δ̃CFT , δ̃GR

}
. (3.2)

We now discuss how δ̃GR is related to the other scales in the brane theory.

Recall that integrating out the bulk degrees of freedom produces a series of higher

curvature terms in the effective action (2.20), and hence demanding that d-dimensional

Einstein gravity provides a good approximation of the brane theory introduces constraints.

The suppression of these higher curvature corrections requires that the ratio L/ℓeff be

small. However, if we examine eq. (2.20) carefully and note the distinction Geff 6= GRS,

then suppressing the curvature-squared terms requires that

1

1 + λb

L2

ℓ2eff
≪ 1 , (3.3)

using eq. (2.51). Note that for fixed bulk and boundary curvature scales, this implies a

lower bound on the DGP term, such that λb cannot be arbitrarily close to −1. For a

pure RS brane with no additional DGP gravity, i.e., λb = 0, we conclude that the cutoff

below which we find Einstein gravity coincides with the CFT cutoff δ̃GR ∼ δ̃CFT ∼ L. More

generally then, the above expression suggests that the DGP term (2.46) affects a shift

producing a new short-distance cutoff for gravity,

δ̃GR ∼ L√
1 + λb

∼ δ̃CFT√
1 + λb

. (3.4)

Hence the true cutoff (3.2) depends on the sign of λb — we return to this point below.

We should note that this result only applies for d > 4. For d = 4, the coefficient of the

15Recall that ∆T is determined by these parameters in eq. (2.48), as well as eqs. (2.9) and (2.13).
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curvature-squared term is logarithmic in the cutoff, while for d = 2 or 3, this interaction is

not associated with a UV divergence.

While the above are UV effects, there are also IR effects resulting from having a large

number of matter degrees of freedom propagating on the brane, as explained in [84–86].

The usual regime of validity for QFT in semiclassical gravity lies at energy scales below

the Planck mass, or at distance scales larger than G
1/(d−2)
eff . However, the boundary CFT

has a large number of degrees of freedom, as indicated by the large cT, and hence the

semiclassical description of gravity in fact breaks down much earlier. A direct way to see

this breakdown [85] is to consider the computation of the (canonically normalized) graviton

two-point function. In the high energy approximation, i.e., ignoring the AdS geometry, we

have here:16

〈h(p)h(−p)〉 ∼ p−2
[
1 + cT Geff p

d−2 + · · ·
]
. (3.5)

The leading correction arises from a diagram involving the external gravitons coupling to

the CFT stress tensor two-point function. We see that such corrections are only suppressed

relative to the ‘tree-level’ result for momenta below a cutoff scale of order (cTGeff)
−1/(d−2).

For our model, the gravitational theory of the brane can therefore only be treated semi-

classically for distance scales larger than

δ̃GR ∼ (cTGeff)
1/(d−2) ∼ L

(1 + λb)1/(d−2)
∼ δ̃CFT

(1 + λb)1/(d−2)
. (3.6)

Again, for a pure RS brane with λb = 0, the cutoffs for Einstein gravity and the CFT agree,

yielding δ̃ ∼ L. However, the addition of a DGP gravity term modifies the cutoff, but in

a manner distinct from eq. (3.4), produced by the higher curvature terms. Note that the

above result applies for d ≥ 3.

The distinction between these two cutoffs indicates that these are really two differ-

ent physical phenomena contributing to the breakdown of Einstein gravity in the brane

perspective. Note that λb > 0, in both eqs. (3.4) and (3.6), the effect is to produce a

shorter cutoff scale, however, the second limit (3.6) is the first to contribute (where we are

assuming d > 4). However, this result is smaller that δ̃CFT and hence from eq. (3.2), we find

λb > 0 : δ̃ ∼ δ̃CFT ∼ L . (3.7)

On the other hand with λb < 0, the cutoff δ̃GR is pushed to larger distance scales. In this

case, eq. (3.4) is the first to modify the gravitational physics on the brane as we move

to smaller distances. Further since this result is now larger than the CFT cutoff, in this

regime, eq. (3.2) yields

λb < 0 : δ̃ ∼ δ̃GR ∼ L√
1 + λb

. (3.8)

Let us also note that the latter effect, i.e., CFT corrections to the graviton propagator,

are also responsible for the mass of the brane graviton [80]. It is interesting to note that if

16This propagator argument can also be applied for the higher curvature terms discussed above. For ex-

ample, the curvature-squared terms gives a perturbative correction: 〈h(p)h(−p)〉 ∼ p−2
[

1 + L2

1+λb

p2 + · · ·
]

.

Hence this approach yields the same result for the cutoff in eq. (3.4).

– 20 –



J
H
E
P
1
0
(
2
0
2
0
)
1
6
6

we take the high energy limit of the corrections to the graviton propagator, eq. (3.5), we

can estimate a mass correction for low energy gravitons mode of roughly

cTGeff

ℓdeff
∼ 1

(1 + λb) ℓ
2
eff

(
L

ℓeff

)d−2

, (3.9)

where we have substituted the d-dimensional AdS scale as a lower bound on the momentum.

The scaling with the d-dimensional cosmological constant − 1
ℓ2eff

agrees with predictions in

the Karch-Randall model [81, 82]. However, we caution the reader that the above argument

by which we obtained the scaling is heuristic at best. Importantly, whether or not the

graviton actually obtains a mass correction depends on the boundary conditions of the

matter fields in AdS and can therefore not be determined by a local argument alone [80].

However, taking eq. (3.9) at face value, we also see that a negative DGP coupling increases

the mass scale, and vice versa for a positive coupling. This can be confirmed explicitly

from bulk calculations [77].

Boundary perspective. As the preceding discussion has made clear, the theory ob-

tained by integrating out the bulk between the asymptotic boundary and the brane, has

an effective description of the brane in terms of a local d-dimensional CFT coupled to Ein-

stein gravity up to some cutoff (3.2). However, the standard rules of AdS/CFT also allow

for a fully microscopic description of the system in terms of the boundary theory. This is

obtained by integrating out the bulk — including the brane — and the result is given by the

bath CFT on the fixed d-dimensional boundary geometry coupled to a (d− 1)-dimensional

conformal defect (positioned where the brane reaches the asymptotic boundary, i.e., the

equator of the boundary sphere) — see figure 3c.

The bath CFT is characterized by the central charge cT ∼ Ld−1/Gbulk, while the defect

is characterized by its defect central charge c̃T ∼ ℓd−2
eff /Geff. We note that in the absence of

a DGP term, increasing the brane tension increases the defect central charge c̃T. Further,

we note that the ratio of these two charges is given by

c̃T
cT

∼
(
ℓeff
L

)d−2

(1 + λb) . (3.10)

Following the standard AdS/CFT dictionary, the ratio ℓeff/L also translates to a ratio of

couplings in the defect and bath CFTs,17

λ̃/λ ∼ ℓeff/L . (3.11)

Since we do not have a particular string construction in mind here, λ should be thought

of some positive power of the ‘t Hooft coupling of the bath CFT, while λ̃ will be some

(different) positive power of the analogous coupling for the defect CFT.

Now the parameters in this boundary description must be constrained if we want to be

in the regime where the brane perspective is valid. In particular, the latter requires that

the brane curvature scale must be much larger than the effective cutoff, i.e.,

ℓeff/δ̃ ≫ 1 . (3.12)

17Remember that the AdS/CFT dictionary tells us that GN ∼ ℓd−1
AdS/Ndof and λHooft ∼ (ℓAdS/ℓs)

d.
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Now as described above, the cutoff has a separate form depending on whether λb is positive

or negative. Eq. (3.7) applies for λb > 0, which then yields ℓeff/L ≫ 1. Hence we must

have λ̃/λ ≫ 1 and also c̃T/cT ≫ 1 since 1 + λb > 1 in this case. Similarly for λb < 0,

combining eqs. (3.8) and (3.12) yields ℓeff/L ≫ 1/
√
1 + λb. In this case, 1 + λb < 1 and it

is straightforward to again show that the ratios must be constrained in the same manner.

Hence for either sign of λb, we have

λ̃/λ ≫ 1 and c̃T/cT ≫ 1 . (3.13)

The large ratio of the central charges can also be heuristically understood requiring that

energy and information are only leaking very slowly from the dynamical gravity region

into the bath [28]. It has been argued that this ratio also sets the Page time [28]. With

the boundary perspective, this can be understood as a requirement which ensures that the

degrees of freedom on the defect and the CFT only slowly mix.

Lastly, the d-dimensional graviton can be understood as a field dual to the lightest

operator appearing in the boundary OPE expansion of the CFT stress energy tensor [87].

At weak coupling, one would naively assume that the lightest operator has dimension ∆ =

d. However, due to strong coupling effects it becomes possible that a negative anomalous

dimension of roughly −1 is obtained, so that the corresponding operator can act as the

holographic dual to a d-dimensional graviton. The mass of the lightest state then signals

that the anomalous dimension is not quite −1, such that the dimension of the boundary

operator dual to the graviton is ∆ ≥ d− 1.

4 Holographic EE on the brane

In this section, we shall look for ‘quantum extremal islands’ using the holographic setup

described in the previous sections. Of course, quantum extremal islands have recently

proven especially enlightening in the context of the black hole information paradox in two-

dimensional JT gravity, where the emergence of these islands has signalled a transition to a

phase where entropy of the Hawking radiation decreases over time, e.g., [20, 22, 23, 25, 26,

29, 73]. Some preliminary investigations of quantum extremal islands in higher dimensions

also appeared in [21, 24]. In a companion paper [47], we will use the holographic model

developed here to further extend these discussions to consider the black holes in arbitrary

dimensions. However, in our present discussion black holes are not involved. Rather, we

are simply considering the holographic entanglement entropies for certain regions in the

vacuum of the boundary CFT coupled to the conformal defect. In situations to be discussed

below, we find that the corresponding RT surfaces cross the brane in the bulk and this can

be interpreted in terms of the appearance of a quantum extremal island in the effective

theory of gravity on the brane.

In section 4.1 we will describe the regions we are considering and the possible RT

surfaces. Section 4.2 discusses the extremization procedure of the RT surface in the presence

of a brane and derives the conditions an RT surface needs to obey in our setting. Further,

section 4.3 shows that the leading contribution of the RT surface close to the brane can be

understood as the Dong-Wald entropy on the brane, as seen from the brane perspective.
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Conformal Defect

θCFT θCFT

R

ΣCFT

Figure 5. A timeslice of our CFT setup. A conformal defect running along the equator separates

the two halves of R and its corresponding engangling surface ΣCFT.

In section 4.4 we show an explicit calculation in d = 3 and investigate the choices of

parameters necessary to obtain quantum extremal islands. In particular, there, we will

consider adding a DGP coupling to the bulk theory.

4.1 Holographic setup

In the remainder of this chaper, we will focus on a specific calculation of the entanglement

entropy (EE): we consider the vacuum state of our boundary CFT on R(time)×Sd−1(space)

with a conformal defect running along the equator of the Sd−1. As described in section 2,

the bulk spacetime has locally an AdSd+1 geometry and is bisected by a brane extending

out to the defect position on the asymptotic boundary. Now we wish to evaluate the EE

in the boundary CFT for a region R comprised of the union of two polar spherical caps

on the Sd−1 — see figure 5. We follow the usual holographic prescription to compute the

EE. That is, we examine the bulk surfaces V which are homologous to R and extremize

the generalized entropy functional

SEE(R) = min {extSgen(V)} = min

{
ext

(
A(V)

4Gbulk

+
A(V ∩ brane)

4Gbrane

)}
. (4.1)

Of course, the first term above corresponds to the usual Ryu-Takayanagi (RT) term [6, 7]

while, as discussed in appendix A, we expect the second term to arise whenever the bulk

surface crosses a DGP brane.18 Let us denote the extremal bulk surface as ΣR, and the

intersection with the brane σR = ΣR∩brane, see figure 7. Importantly, if there are multiple

extrema, the EE is given by chosing the extremal surface yielding the smallest value for

Sgen(ΣR), as indicated above.

For the calculation described above, the candidate RT surfaces are anchored at the

AdS boundary to the entangling surface ΣCFT = ∂R = ∂ΣR, i.e., the boundaries of these

surfaces are comprised of two (d−2)-spheres, which are the boundaries of the two polar caps.

18Implicitly, eq. (4.1) assumes that the bulk and brane gravitational actions both correspond to the

Einstein-Hilbert action (with a cosmological constant term), as in eqs. (2.1) and (2.46).
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We will find that there are two topologically distinct candidates for ΣR which extremize

the generalized entropy in eq. (4.1), see figure 8. The first consists of two disconnected

disks on either side of the brane (in which case σR = {∅}). The second candidate has a

cylindrical geometry which pierces the brane. Hence it is only in this latter case that the

second term contributes in eq. (4.1). As noted above, the correct RT surface is chosen from

these two candidates as the one which yields a smaller generalized entropy. Generally, we

shall find that when the two polar caps are small, the disconnected discs are favoured, while

the cylindrical surface can be the leading saddle for when the polar caps are large. We

will denote the first situation as the ‘disconnected’ phase and the latter as the ‘connected’

phase. As we will describe in section 4.4, the details of the transition between these two

phases also depends on other parameters in the holographic model, e.g., the tension and

gravitational coupling of the brane.

To understand the interpretation of these results in terms of quantum extremal is-

lands, we turn to the ‘brane perspective’ described in the previous section. This effective

description gives the ‘island rule’ proposed in [22] for the entanglement entropy,

SEE(R) = min {extSgen(R ∪ islands)} (4.2)

= min

{
ext

(
SEE(R ∪ islands) +

A (∂(islands))

4Gbrane

)}
.

As geometries R = R, but we have used a different font on the right-hand side to emphasize

the fact that the effective ‘brane perspective’ does not give the same detailed description

of the CFT state on R, as the boundary or bulk perspectives. Based on our discussion

in the previous sections, one might have expected that the gravitational term in eq. (4.2)

would involve Geff rather than Gbrane. This is implicit in (4.2), as we will see below. In

the presence of an island, the first term SEE(R ∪ islands) receives two large contributions,

coming from the asymptotic AdS boundary and the region close to the brane. It is this

second term, proportional to 1/GRS, which combines with the last term in eq. (4.2) to yield

the expected island contribution proportional to 1/Geff, cf. eq. (2.49).

It is now straightforward to interpret the previous holographic discussion in terms of

the effective theory on the brane, eq. (4.2). In the connected phase, the holographic RT

surface crosses the brane and (if DGP couplings are turned on) we see an explicit brane

contribution in eq. (4.1). From the brane perspective, a quantum extremal island has

formed in the gravitational region (i.e., the region on the brane enclosed by σR)
19 and the

analogous gravitational term appears in the island rule (4.2). The bulk RT contribution

in eq. (4.1) corresponds to SEE(R ∪ islands) in eq. (4.2). As alluded to above, this makes

clear that the gravitational contribution to the island is comprised of two components: the

bare contribution ∼ 1/Gbrane, which arises from a DGP coupling added to the brane, and

the bulk contribution proportional to L/Gbulk, which arises from the volume of the RT

surface close to the brane. To see how the latter arises in the effective theory, notice that

we can split SEE into UV-finite and UV-‘divergent’ contributions close to the brane, where

19Let us add that from the bulk perspective, entanglement wedge reconstruction [88–94] ensures that

operators within this island can be reconstructed from boundary CFT data in R.
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the latter are contributions proportional to inverse powers of zB. These are the analog of

the UV divergent boundary contributions for the boundary CFT in the regions without

gravity. As discussed in section 3, the brane position imposes a UV cutoff for the CFT on

the brane, and hence the corresponding ‘divergent’ contributions to the EE are in fact finite

and instead yield contributions which match those expected for the gravitational entropy

from the induced contributions to eq. (2.20). This makes contact with the usual notion of

generalized entropy as the sum of the geometric gravitational entropy and the entropy of

the quantum fields [18, 19].

In the disconnected phase, the EE only involves the modes enclosed within the two

polar caps and there is no contribution from the CFT in the gravitational region, i.e., on

the AdSd brane. In passing, let us recall that the short wavelength modes in the vicinity

of the entangling surface ΣCFT produce various UV divergent boundary contributions, such

as the celebrated area law term [95–97]. Of course, in both phases these contributions are

regulated in the holographic calculation by introducing a cutoff surface near the asymptotic

AdS boundary [9].

4.2 RT meets the brane

In this section, we shall introduce some technical details, which are useful to calculate the

EE associated with the two polar caps in the boundary CFT. In particular, we examine the

behaviour of the bulk RT surface ΣR as it crosses the brane, i.e., how the intersection surface

σR is determined. However, we begin by specifying our EE calculation more precisely and

reviewing the metrics describing the bulk spacetime.

Let us describe the R× Sd−1 geometry on which the boundary CFT lives with,

ds2 = R2
[
−dt2 + dθ2 + sin2θ dΩ2

d−2

]
, (4.3)

where R is the radius of curvature of the (d − 1)-sphere. The polar angle θ runs over

0 ≤ θ ≤ π, and the conformal defect sits at the equator θ = π/2. As illustrated in

figure 5, we wish to evaluate the EE in the boundary CFT for a region R comprised of

two polar caps on the Sd−1. More specifically, we choose the entangling surface ΣCFT to

be two circles placed symmetrically on either side of the defect at θ = π/2± θCFT. Hence

we are evaluating the EE between these two balls and the complementary region, which

corresponds to a ‘belt’ of width 2θCFT centered on the conformal defect.

Turning now to the bulk geometry, recall that in section 2.1, we discussed the back-

ground solution in terms a metric where the AdSd+1 geometry was foliated by AdSd slices.

Eq. (2.6) describes the local geometry on either side of the brane located at z = zB with

ds2 =
L2

z2

[
dz2 + L2

(
1 +

z2

4L2

)2 (
− cosh2r̃ dt2 + dr̃2 + sinh2r̃ dΩ2

d−2

)
]
. (4.4)

While these coordinates are well suited to discuss the brane geometry, we also consider

‘global’ coordinates for the AdSd+1 geometry

ds2 = L2
[
− cosh2r dt2 + dr2 + sinh2r

(
dθ2 + sin2θ dΩ2

d−2

)]
, (4.5)
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which are better adapted to discuss the boundary theory. That is, up to a Weyl rescaling,

the geometry on fixed r surfaces matches eq. (4.3) in the asymptotic region, and the UV

regulator surface needed to properly define the holographic EE can be simply chosen as

some slice r = rUV ≫ L.

However, while we refer to eq. (4.5) as ‘global’ coordinates, they do not cover the entire

back-reacted bulk solution depicted in figure 2. Rather we use the coordinates in eq. (4.5) to

cover two patches on either side of the brane and near the asymptotic AdSd+1 boundary.20

Comparing eqs. (4.4) and (4.5), it is straightforward to identify the transformation between

the two coordinate systems as

tanh r̃ = tanh r sin θ ,
z

L
= −2 sinh r cos θ ± 2

√
sinh2r cos2θ + 1 . (4.6)

With the + (−) sign, the brane at z = zB ≪ L resides near the boundary hemisphere with

0 ≤ θ ≤ π/2 (π/2 ≤ θ ≤ π) and r → ∞. Therefore letting θ run from 0 to π on the

boundary with the defect at θ = π/2, we choose the − (+) sign to cover the patch covering

the asymptotic boundary hemisphere 0 ≤ θ ≤ π/2 (π/2 ≤ θ ≤ π).

Using the AdS foliation (4.4), the position of the brane was specified by z = zB. In

terms of the global coordinates (4.5), the brane position can be specified with

sinh2r cos2θ =
L2

z2B

(
1− z2B

4L2

)2

. (4.7)

The specific sign of cos θ depends on whether one considers the coordinate patch above

or below the brane — see comments below eq. (4.6). Further, we reach the asymptotic

boundary on the brane by taking r̃ → ∞, which in the global coordinates then corresponds

to r → ∞ and θ → π/2. Hence, we see that the brane intersects the asymptotic boundary

at the position of the conformal defect, as expected.

To examine the behaviour of the bulk RT surface ΣR where it crosses the brane, it

is useful to consider the problem of extremal surfaces using the metric (4.4). Because the

bulk geometry is static, the RT surfaces will be confined to a constant time slice in the

bulk. The entangling surfaces in the boundary are spherically symmetric and so we only

need to consider bulk surfaces with the same rotational symmetry on the Sd−2, that is, we

parametrize the surfaces as r̃ = r̃(z) and the bulk contribution to the holographic EE is

then given by

Sbulk =2
Ld−1Ωd−2

4Gbulk

∫
dz

z

[
L

z

(
1+

z2

4L2

)
sinh r̃

]d−2
√

1+L2

(
1+

z2

4L2

)2(dr̃

dz

)2

(4.8)

where Ωd−2 is the area of a unit (d − 2)-sphere.21 An overall factor of 2 is included here

because we assume that the profile r̃(z) will be reflection symmetric about the brane, and

hence SRT recieves the same contribution from both sides.

Treating eq. (4.8) as an action, we would derive an ‘Euler-Lagrange’ equation for the

profile whose solution corresponds to an extremal surface in the bulk, i.e., away from the

brane.22 However, this equation is second order and so the solutions are parameterized

20Of course, the same applies for the previous coordinates in eq. (4.4).
21Recall that the area of a unit n-sphere is given by Ωn = 2π

n+1
2 /Γ

(

n+1
2

)

.
22This equation is rather involved and the details are not important here.
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by two integration constants. One of these constants is fixed by the angle θCFT on the

asymptotic boundary (i.e., the position of the entangling surface ΣCFT in the boundary

theory), and the other, by the radius r̃B at which the RT surface intersects the brane, i.e.,

r̃(z = zB) = r̃B. We are thus left with the question of fixing the boundary condition at

the brane.

There are two contributions that come into play at the brane. The first is the DGP

contribution in eq. (4.1),

Sbrane =
Ld−2Ωd−2

4Gbrane

[
L

zB

(
1 +

z2B
4L2

)
sinh r̃B

]d−2

. (4.9)

The second is a boundary term that comes from integrating by parts in the variation of

the RT functional (4.8). Combining these, one arrives at the following expression23

L
dr̃

dz

∣∣∣∣
z=zB

=
1

Gbrane

zB/L

1+
z2B
4L2

[(
1+

z2B
4L2

)2(
2L

Gbulk

tanh r̃B

)2

−
(

zB/L

Gbrane

)2
]− 1

2

. (4.10)

Hence, scanning through the family of RT surfaces parametrized by r̃B, the solution which

satisfies the above boundary condition is the one that properly extremizes the full entropy

functional in eq. (4.1). One observation is that without the DGP term, i.e., 1/Gbrane = 0,

the boundary condition simplifies to Ldr̃/dz|z=zB = 0. That is, the RT surface intersects

the brane at a right angle. Turning on the gravitational action on the brane (with a positive

coupling) produces Ldr̃/dz|z=zB > 0, which arises from pushing r̃B to a smaller value. The

decrease in r̃B is natural here because the DGP contribution in eq. (4.9) adds an additional

penalty for large areas on the brane and the effect is to shrink the area of σR.
24 This is

illustrated in the left panel of figure 6.

We observe that the above analysis has a simple interpretation in terms of the island

rule (4.2). Recall that extremizing the RT functional (4.8) leads to a family of bulk solutions

that are parametrized by r̃B, their radius on the brane. Evaluating Sbulk + Sbrane for these

different solutions is equivalent to evaluating the Sgen in eq. (4.2) with different candidates

for the island geometry. The final step of extremizing with respect to variations of r̃B then

matches the extremization in the island rule and identifies the quantum extremal surface

σR on the brane.

Next, we provide a more general geometric discussion of the boundary conditions.

The orthogonality between the RT surface and the RS brane is a special feature of the

reflection symmetry of our setup. For a better geometric understanding of the boundary

conditions, let us examine eq. (4.1) in more detail. Consider a (d− 1)-dimensional surface

V parametrized by intrinsic coordinates ξα, embedded in the (d + 1)-dimensional bulk

23Implicitly, we assume that we care considering the RT surfaces with a cylindrical topology, i.e., in the

connected phase. Examining these boundary terms carefully, one also finds that they are eliminated with

r̃B = 0. This solution points towards the existence of the second phase of disconnected surfaces, which do

not intersect the brane.
24If 1/Gbrane < 0 as we consider in section 4.4, then the DGP entropy (4.9) facilitates a larger area for

σR and so we find that r̃B increases.
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Z2-symmetric Z2-asymmetric

Figure 6. Families of extremal surfaces anchored at fixed positions on the asymptotic AdS bound-

ary. The true RT surfaces are the members of these families which extremize area in the bulk, or

equivalently, generalized entropy in the brane perspective. The RT surfaces in the case of zero,

positive, and negative 1/Gbrane are respectively shown in solid, dashed, and dotted red. In the

absence of a DGP Einstein-Hilbert action (1/Gbrane = 0), the RT surfaces passe ‘straight’ through

the brane. The left (right) panel shows the computation of entanglement entropy for a region in

the boundary CFT that is Z2-symmetric (-asymmetric) about the defect.

spacetime with coordinates Xµ and metric gµν . Hence we describe the embedding of this

surface in the bulk spacetime as Xµ = Xµ(ξα), and the induced metric then becomes

hαβ = gµν
∂Xµ

∂ξα
∂Xν

∂ξβ
. (4.11)

Hence the bulk contribution in eq. (4.1) becomes

Sbulk =
A(V)

4Gbulk

=
1

4Gbulk

∫

V

dd−1ξ
√
h . (4.12)

Next to evaluate the brane contribution in eq. (4.1), we introduce (d−2) coordinates ya to

parameterize the intersection of V and the brane. The induced metric on this intersection

surface then becomes

h̃ab = hαβ
∂ξα

∂ya
∂ξβ

∂yb
, (4.13)

and the corresponding contribution to the generalized entropy is

Sbrane =
1

4Gbrane

∫
dd−2y

√
h̃ . (4.14)

Now following the prescription in eq. (4.1), we wish to extremize the sum of the two

quantities above. So we begin with the variation of Sbulk, which yields

δSbulk =
1

4Gbulk

[∫

V∩brane
dd−2y

√
h̃ gµν (∂nRX

µ + ∂nLX
µ) δXν

+

∫

V

dd−1ξ
√
h [e.o.m.]ν δX

ν

]
.

(4.15)
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Here we assume that the equations of motion along the bulk of V can be satisfied and so

the second term above vanishes. However, one must integrate by parts to arrive at these

equations and so we are left with a boundary term where V crosses the brane.25 Here

we are assuming that the extremal surface is not necessarily smooth at the brane and so

nα
R and nα

L are unit normals to the intersection surface directed along the extremal surface

approaching the brane from either side.

In the absence of the DGP term (2.46), there is no brane contribution (4.14) and then

the vanishing of the boundary term in eq. (4.15) dictates nα
R + nα

L = 0.26 That is, with

1/Gbrane = 0, the boundary condition is that the RT surface should pass smoothly through

the brane — this is illustrated by the solid red RT surfaces in figure 6. In the reflection

symmetric setup considered above, this can only be accomplished if the RT surface is

orthogonal to the brane, i.e., both nα
R and nα

L are orthogonal to the brane.

Of course, with a DGP brane, we must also consider the variation of Sbrane in eq. (4.14),

which yields

δSbrane =
1

4Gbrane

∫
dd−2y

√
h̃ K̃i

∂xi

∂Xν
δXν , (4.16)

where K̃i denotes the trace of the extrinsic curvature of the intersection surface on the

brane, as viewed from the brane geometry (with the d coordinates xi).27 Requiring the

sum of eqs. (4.15) and (4.16) to vanish then yields the boundary condition

0 = g̃j
ν

(
gµν(∂nRX

µ + ∂nLX
µ) +

Gbulk

Gbrane

K̃i ∂νx
i

)
. (4.17)

Here, we think of the induced metric on the brane as the bulk tensor g̃µν = gµν −NµNν ,

where Nµ is the unit normal orthogonal to the brane. Then, the initial factor g̃j
ν above

projects the vector expression in the brackets on to the brane. This projection is required

because δXν in eqs. (4.15) and (4.16) is restricted to be parallel to the brane.28 Hence the

brane contribution (4.14) leads to a discontinuity in the first derivative of the RT surface

at the brane, as was implicitly found in eq. (4.10) above.

4.3 Wald-Dong entropy

As alluded to above, one of the striking features of EE for subregions in quantum field theory

is that the result is dominated by short wavelength modes in the vicinity of the entangling

surface and the EE is UV divergent. Of course, the leading contribution is the famous area

25Dirichlet boundary conditions remove the analogous boundary contributions at the asymptotic

AdS boundary.
26Actually, the requirement is g̃iα(n

α
R + nα

L) = 0, i.e., the projection into the brane of the sum of the

two normals vanishes — see the discussion after eq. (4.17). However, the vanishing of the full vector sum

follows from this restriction.
27In deriving eq. (4.16), we used that K̃i gives the expansion of the area element

√

h̃ under the map

produced by geodesics shooting out normal to the intersection surface, RT ∩ brane.
28In writing eq. (4.15), we have assumed that the same domain for the coordinates ξa mapped to the

portion of the RT surface on either side of the brane under both Xµ(ya) and Xµ(ya) + δXµ(ya). Said

another way, Sbulk has the same integration limits in ya both before and after the variation.

– 29 –



J
H
E
P
1
0
(
2
0
2
0
)
1
6
6

ΣR

ΣCFT

σR

Figure 7. A timeslice of AdSd+1 space. The entangling surface ΣCFT lies on the CFT boundary

and the RT surface ΣR intersects the brane at σR.

law term [95–97] and in higher dimensions, there are subleading UV divergences which are

also determined by the geometry of the entangling surface (as well as the dimensionful

couplings of the underlying theory). In the holographic context, these divergences arise

because the RT surface in the bulk extends out to the asymptotic boundary and hence

the unregulated area is infinite [6, 7, 9]. In the context of braneworld gravity, like the

construction in the previous section with zB ≪ L, one expects large UV contributions

when the RT surface crosses the brane. However, in this instance, the corresponding UV

cutoff remains finite and set by the position of the brane, as discussed above. We show

below that the corresponding UV contributions to the holographic EE can be interpreted

as the Wald-Dong entropy [98–101]29 of the induced gravity on the brane [63, 64]. Of

course, the leading UV contributions studied here do not probe the full bulk profile of the

RT surface, and we leave the full calculation of holographic EE to section 4.4.

To evaluate the leading contributions to the holographic entropy where the RT surface

crosses the brane, first recall the bulk metric (2.6) with bulk coordinates Xµ = (z, xi) and

the brane positioned at z = zB. Now, for the RT area functional (4.12), we choose the

coordinates on the RT surface as ξα = (z, ya) where z is the same radial coordinate as in

the bulk and ya are the d−2 spatial coordinates describing the profile of the RT surface in

slices of constant z (and time). Now following [102], we can construct a Fefferman-Graham

expansion for the transverse profile xi(ξ) of the RT surface for small z (i.e., in the vicinity

of the brane) to find30

xi(z, ya) =
(0)
x i(ya) +

z2

L2

(1)
x i(ya) +

z4

L4

(2)
x i(ya) + · · · . (4.18)

29Our calculations will include the subleading contributions arising from the curvature-squared terms in

eq. (2.20). Because the corresponding quantum extremal surfaces have nonvanishing extrinsic curvature,

we will need the full expression for the gravitational entropy derived by Dong [101].
30We will assume that the RT surface is Z2 symmetric across the brane. However, in principle, there

are two independent profiles on either side of the brane, i.e., xi
R(z, y

a) and xi
L(z, y

a). Of course, the

profiles agree where they meet on the brane, xi
R(z = zB, y

a) = xi
L(z = zB, y

a) and satisfy the boundary

condition (4.17). At this point, let us also recall that the profile in the time direction is trivial here, i.e.,

xt(z, ya) =
(0)
x t(ya) = constant.
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In principle, the functions
(n)
x i(ya) are determined recursively through extremization of the

RT area functional (4.12), however, we will simply quote the next-to-leading result found

in [102]:

(1)
x i = − L2

(0)

Ki

2(d− 2)
= − L4 K̃i

2(d− 2)z2B
+O

(
z2B
L

)
, (4.19)

where
(0)

Ki is the trace of the extrinsic curvature of the surface
(0)
x i(ya) (at z = 0) with

the boundary metric,
(0)
g ij = gAdSd

ij as given in eq. (2.4). As the latter is an unphysical

surface in the present context, we introduced the second expression with K̃i, the trace of

extrinsic curvature of intersection surface σR on the brane, i.e., xi(z = zB, y
a), evaluated

with induced metric g̃ij . This expression follows using the relation (2.17) between the

boundary metric and the induced metric on the brane,31 and the relation (4.18) between
(0)
x i(ya) and xi(zB, y

a). Note that the leading term on the right-hand side of eq. (4.19) scales

as z0B since K̃i ∼
(0)

Kiz2B/L
2 and by this counting, the first correction is O(z2B/L).

Using eq. (4.11), we now evaluate the non-vanishing components of the induced metric

on the RT surface. First, the hzz component is given by

hzz =
L2

z2

[
1 +

z2

L2

(1)

h zz +O
(
z4

L4

)]
, (4.20)

where
(1)

h zz =
4

L2
gAdSd
ij

(1)
x i(1)x j =

L4

(d− 2)2z2B
K̃i K̃i +O

(
z2B
L2

)
.

In the final expression and throughout the following, the indices on K̃i are contracted using

the induced metric g̃ij . The remaining nonvanishing components are

hab=
L2

z2

(
1+

z2

4L2

)2

hab , with hab≡ gAdSd
ij

∂xi

∂ya
∂xj

∂yb
=

(0)

h ab+
z2

L2

(1)

h ab+O
(
z4

L4

)
. (4.21)

The leading term in hab is simply given by

(0)

h ab =gAdSd
ij

∂
(0)
x i

∂ya
∂

(0)
x j

∂yb
, (4.22)

and while the individual components
(1)

h ab will not be needed, we will use the next-to-leading

order expansion of the measure

√
h =

√
(0)

h

{
1− L2z2

2(d− 2)z2B
K̃i K̃i

[
1 +O

(
z2B
L2

)]
+O

(
z4

L4

)}
. (4.23)

The latter is obtained by interpreting
(0)

Ki ∼ L2K̃i/z2B as giving an expansion of the area

element
√
h.

31Note that in contrast to [102], the indices i on the extrinsic curvatures in eq. (4.19) are coordinate

indices, rather than orthonormal frame indices. This introduces an extra factor of L/zB in the leading term

on the right-hand side of eq. (4.19). We also note that the sign of our extrinsic curvatures differs from that

in [102], i.e., the extrinsic curvature of a sphere embedded in flat space is positive here.
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Combining these expressions, the area functional (4.12) for the RT surface ΣR in the

vicinity of the brane becomes

A(ΣR)

4Gbulk

≃ 1

2Gbulk

∫

zB

dz

{(
L

z

)d−1(
1 +

z2

4L2

)d−2

×
∫

dd−2y
√
h

[
1 +

z2

2L2

(1)

h zz +O
(
z4

L4

)]}

=
Ld−1

2Gbulkz
d−2
B

∫
dd−2y

√
(0)

h

[
1

d− 2
+

d− 2

4(d− 4)

(zB
L

)2

− d− 3

2(d− 2)2(d− 4)
L2K̃iK̃i +O

(
z4B
L4

)]

(4.24)

where an overall factor of 2 was included to account for the contributions coming from both

sides of the brane.32 Next, we evaluate the area of the intersection surface σR = ΣR∩brane
using the metric induced on this surface, i.e., h̃ab = hab|z=zB where hab appears in eq. (4.21):

A(σR) =

∫

σR

dd−2y
√

h̃

=

(
L

zB

)d−2 ∫

σR

dd−2y

√
(0)

h

[
1 +

d− 2

4

(zB
L

)2
− L2K̃iK̃i

2(d− 2)
+O

(
z4B
L4

)]
. (4.25)

Hence we may rewrite the result in eq. (4.24) as

A(ΣR)

4Gbulk

≃ LA(σR)

2(d−2)Gbulk

+
L

4(d−4)Gbulk

∫

σR

dd−2y
√

h̃

[
z2B
L2

−L2 K̃iK̃i

(d−2)2

]
+O

(
Ld−6

zd−6
B

)
. (4.26)

Of course, if the brane action also includes a DGP contribution (2.46), one would add the

corresponding Bekenstein-Hawking term, as in eq. (4.1), to produce

A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

≃A(σR)

4Geff

+
L

4(d− 4)Gbulk

∫

σR

dd−2y
√
h̃

[
z2B
L2

− L2 K̃iK̃i

(d− 2)2

]
+O

(
Ld−6

zd−6
B

)
,

(4.27)

where the two leading contributions proportional to A(σR) were combined using eq. (2.49).

It is clear that the first term in eq. (4.27) corresponds to the Bekenstein-Hawking

entropy of the surface σR for the gravity action (2.20) induced on the brane. We now

show that leading corrections in eq. (4.27) match the contributions to the Wald-Dong

entropy [101] coming from the curvature-squared terms. That is, given the gravity ac-

tion (2.20), the corresponding Wald-Dong entropy is given by

SWD =
A(σR)

4Geff

+
L3

4(d− 2)2(d− 4)Gbulk

∫

σR

dd−2y
√

h̃

(
2R̃ijn

imnj
m − d

d− 1
R̃− K̃iK̃i

)
,

(4.28)

32Recall that we are assuming that the RT surface is symmetric under reflection across the brane.
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where ni
m are two unit normals to the entangling surface σR embedded in the d-dimensional

brane geometry, and as in section 2, R̃ij and R̃ are the Ricci tensor and scalar curvatures,

respectively, evaluated with g̃ij . Comparing eqs. (4.27) and (4.28), we immediately see that

the coefficients precisely match for the term proportional to K̃iK̃i. Then using eqs. (2.13)

and (2.15), we can evaluate the remaining two curvature terms in eq. (4.28),

L3

4(d− 2)2(d− 4)Gbulk

∫
dd−2y

√
h̃

(
2R̃ijn

imnj
m − d

d− 1
R̃

)

=
z2B

4(d− 4)GbulkL

∫
dd−2y

√
h̃ , (4.29)

which matches the O(z2B/L
2) term in eq. (4.27). Hence, as expected [63, 64], in the regime

zB ≪ L, one finds that the leading contributions to the holographic entanglement en-

tropy (4.1) where the RT surface crosses the brane reproduce the Wald-Dong entropy of

the intersection surface derived for the gravity action (2.20).

To close this section, we briefly remark on the case of d = 2, which is somewhat special

in that the intersection between the RT surface and the brane is a point. Consequently, the

leading UV contribution to entropy is not a standard area term, but rather a logarithmic

term. Integrating the RT area (in this case, length) across gives

S ≃ L

2Gbulk

log

(
ℓIR
zB

)
, (4.30)

where an IR length scale ℓIR must appear to make the argument of the logarithm dimen-

sionless.33

Following [103], we can find (the leading contribution to) the gravitational entropy

for the brane theory evaluating the Wald entropy formula [98] to the Polyakov-Liouville

action (2.27), and then substituting the on-shell solution (2.29) for the scalar φ,34

S =
L

4Gbulk

φ0 = − L

4Gbulk

log

(
−L2R̃

2

)
. (4.31)

Now substituting R̃ ≃ −2z2B/L
4 reproduces the leading singular behaviour in the holo-

graphic result (4.30). The same answer can be obtained by evaluating the Wald-Dong

entropy formula [98, 101] directly on the induced gravity action (2.34). Hence, once again

in this special case, the holographic entanglement entropy (4.1) reproduces the Wald-Dong

entropy for the corresponding gravity action on the brane.

4.4 Explicit calculations

In this section, we explicitly evaluate the holographic EE and examine the transition be-

tween the two classes of RT surfaces. While we set up the calculations for general d > 2, our

explicit results are given for d = 3 in which case the bulk spacetime locally has the geome-

try of AdS4. We add some comments about d = 2, and the addition of Jackiw-Teitelboim

gravity (2.38) on the brane, in the discussion section.

33As in eq. (4.24), a factor of two has been included to account for both sides of the brane.
34Note that the action (2.27) is multiplied by a factor of two for the full induced brane action, i.e.,

Iinduced = 2 Idiver + Ibrane.
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Setting up the calculation for general dimension. In section 4.2, we reviewed two

different coordinate systems in AdSd+1. The AdSd foliation (4.4) was well suited to discuss

the brane geometry, while the global coordinates are adapted to discuss the background

geometry of the boundary CFT. However, our explicit calculations of the holographic EE

are best performed in a new ‘cylindrical’ coordinate system. In particular, following [104],

we introduce cylindrical coordinates P, ζ where ζ specifies the position along the axis of

the cylinder while P measure the distance from the axis. These are related to the global

coordinates in eq. (4.5) by

cosh r =
√

P 2 + 1 cosh ζ , (4.32)

tan θ =
P√

1 + P 2

1

sinh ζ
, (4.33)

while the rest of the spherical angles remain unchanged. With this transformation, the

metric becomes

ds2 = L2

[
−(P 2 + 1) cosh2 ζ dt2 +

dP 2

1 + P 2
+
(
1 + P 2

)
dζ2 + P 2 dΩ2

d−2

]
. (4.34)

The range of these coordinates is P ∈ (0,∞) and ζ ∈ (−∞,∞). The conformal boundary

is reached with P → ∞ (or ζ → ±∞ with fixed P ). The upper (0 ≤ θ ≤ π/2) and lower

(π/2 ≤ θ ≤ π) hemispheres are mapped to the upper (ζ ≥ 0) and lower (ζ ≤ 0) halves of

the cylindrical system. The conformal defect is positioned at ζ = 0. As noted above, the

RT surfaces will be restricted to a constant time surface and hence the convenience of the

cylindrical coordinates becomes evident, i.e., ζ becomes an extra Killing coordinate in the

corresponding spatial geometry.

A few more technical details are needed for our calculations: in cylindrical coordi-

nates (4.34), the boundary entangling surface corresponds to the two circles ζ = ±ζCFT,

where

sinh ζCFT = tan θCFT , (4.35)

seen in the limit P → ∞ of the second line in eq. (4.32). Using the AdS foliation of

eq. (4.4), the position of the brane was z = zB. Using eq. (4.7), the brane position can be

specified in cylindrical coordinates (4.34) according to

(
1 + P 2

)
sinh2ζ =

L2

z2B

(
1− z2B

4L2

)2

. (4.36)

Recall that the brane intersects the asymptotic boundary at the position of the conformal

defect, i.e., at θ = π/2 with r → ∞, which corresponds to ζ = 0 with P → ∞ in cylindrical

coordinates. Further recall that RT surface areas are UV divergent since they extend to

the asymptotic boundaries. Hence we introduced a UV regulator surface at r = rUV, which

in cylindrical coordinates becomes

(P 2 + tanh2 ζ) cosh2 ζ = sinh2rUV . (4.37)

We will be mainly interested in comparing the areas of different surfaces for fixed ζCFT,

as discussed above. Since the UV divergent terms only depend of the geometry of the
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entangling surface, they will cancel in the difference of the two areas. Hence, we can then

safely take the UV cutoff to infinity.

As noted, the RT surfaces all lie in a fixed time slice and thus we only need consider

configurations with cylindrical symmetry (i.e., rotational symmetry on the Sd−2). Hence

it is convenient to use the cylindrical coordinates (4.34) and parametrize the profile of the

bulk surfaces as ζ = ζ(P ). The bulk contribution to the holographic EE is given by

Sbulk =
Ld−1Ωd−2

2Gbulk

∫
dPP d−2

√
1

1 + P 2
+ (1 + P 2) ζ ′2 (4.38)

where again Ωd−2 is the area of the unit (d− 2)-sphere — see footnote 21. As in eq. (4.8),

an overall factor of 2 is included here to account for the reflection symmetry of the profile

ζ(P ) about the brane. Since this expression does not contain an explicit ζ dependence, it

is straightforward to derive

ζ ′(P ) = ± 1

1 + P 2

√√√√ P
2(d−2)
0

(
1 + P 2

0

)

P 2(d−2) (1 + P 2)− P
2(d−2)
0

(
1 + P 2

0

) (4.39)

where the two branches correspond to two identical surfaces related by a reflection with

respect to ζ = 0. P0 corresponds to the turning point, where the surface makes its closest

approach to the symmetry axis.

We now discuss the disconnected phase described at the beginning of this section.

It corresponds to the ‘trivial’ solution with P0 = 0. We find ζ(P ) = ±ζCFT, which in

cylindrical coordinates looks simply as a pair of disks anchored at the boundary entangling

surface. Substituting ζ ′ = 0 into eq. (4.38), the area of the two discs can be integrated up

to some cutoff radius PUV, and the corresponding holographic EE is

Sdisc =
Ld−1Ωd−2

2(d− 1)Gbulk

P d−1
UV 2F1

[
1

2
,
d− 1

2
,
d+ 1

2
,−P 2

UV

]
. (4.40)

In this case, the entanglement wedge corresponds to two identical disconnected pieces

contained between each component of the RT surface and the asymptotic boundary, i.e.,

the regions ζ ≥ +ζCFT and ζ ≤ −ζCFT, as sketched in the upper panel of figure 8.

The connected phase corresponds to P0 > 0, which leads to a cylindrical RT surface.

Integrating eq. (4.39) yields a family of bulk surfaces, which are symmetric about the brane

and which are anchored on the asymptotic boundary at ζ = ±ζCFT. Recalling the discussion

below eq. (4.8), we observe that in this configuration, P0 is the second integration constant

which must be tuned in order to satisfy the appropriate boundary condition (4.10) at the

brane, see the lower panel of figure 8.

Before we calculate the entropy in the most general setting, let us consider the case

of a zero-tension brane with 1/Gbrane = 0, i.e., empty AdSd+1. In this case, the brane

is positioned at zB = 2L or simply, ζ = 0. Now, the ‘plus’ branch of eq. (4.39) can be

integrated to produce a profile extending from P = PUV at ζ = +ζCFT to the maximal depth

P = P0 at some ζ = ζ0(ζCFT, P0) < ζCFT. Since eq. (4.10) indicates that the RT surface

must intersect the brane orthogonally, we must tune P0 (with fixed ζCFT) such that ζ0 = 0,
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Figure 8. Sketch of fixed time slices of our symmetric setup, showing the two possible configu-

rations. The shaded red region corresponds to the entanglement wedge. The connected solution

contains an island on the brane, where gravity is dynamical.

i.e., the RT surface reaches its maximal depth at the brane position. Now, substituting

eq. (4.39) into eq. (4.38), the holographic EE (for empty AdSd+1) becomes

Sconn(To = 0) =
Ld−1Ωd−2

2Gbulk

∫ PUV

P0

dP
P 2(d−2)

√
P 2(d−2)(1 + P 2)− P

2(d−2)
0 (1 + P 2

0 )

. (4.41)

In the general case, this exercise is slightly more complicated for the case of interest

with a finite-tension DGP brane at some z = zB ≪ L, and the geometry of the corre-

sponding RT surface is illustrated in the lower panel of figure 8. The RT surface is again

symmetric about the brane and so as above, we focus on the portion starting at ζ = +ζCFT

at the asymptotic boundary (i.e., at P = PUV). As before, the ‘plus’ branch of eq. (4.39)

produces a surface reaching its maximal depth P = P0 at some ζ = ζ0(ζCFT, P0) < ζCFT.
35

Now one continues from this point using the ‘minus’ branch of eq. (4.39), which then meets

the brane as some P = PB(ζCFT, P0) and ζ = ζB(ζCFT, P0).
36 One would again tune P0 (for

fixed ζCFT) to ensure the appropriate boundary condition (4.10) is satisfied at the brane.

The bulk contribution to the holographic EE then becomes

Sconn(To > 0) =
Ld−1Ωd−2

2Gbulk



∫ PUV

P0

dP
P 2(d−2)

√
P 2(d−2)(1 + P 2)− P

2(d−2)
0 (1 + P 2

0 )

(4.42)

+

∫ PB

P0

dP
P 2(d−2)

√
P 2(d−2)(1 + P 2)− P

2(d−2)
0 (1 + P 2

0 )


 .

35In fact, ζ0(ζCFT, P0) is precisely the same function introduced above, since the turning point of the RT

surfaces are completely independent of the brane properties.
36Of course, PB and ζB are related as in eq. (4.36).
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Of course, if there is no gravitational term on the brane (e.g., as in eq. (2.46)), then this

expression yields the entire generalized entropy (1.1) for the connected phase. Now rather

than explicitly examining the brane boundary condition (4.10) in cylindrical coordinates,

we will simply evaluate the generalized entropy and find the minimum numerically in the

following. Hence to proceed further we will have to choose a specific value for the boundary

dimension d.

Explicit results for d = 3. In this section, we consider the above discussion for d = 3,

in which case the boundary geometry becomes R×S2, the bulk spacetime is locally AdS4,

and the branes have an AdS3 geometry. We will also consider supplementing the four-

dimensional bulk action (2.1) with a Gauss-Bonnet term,

Itop =
λGB

16π2

∫
d4x

√−g
[
RabcdR

abcd − 4RabR
ab +R2

]
. (4.43)

Note that we have ignored the necessary boundary terms which ensure that this interac-

tion is proportional to the Euler density, e.g., see [105]. Although this curvature-squared

term does not effect the bulk equations of motion, it will contribute to the generalized

entropy [101, 106]37

SJM =
λGB

4π

∫

ΣR

d2x
√
hR+

λGB

2π

∫

∂ΣR

dx
√
hKg , (4.44)

where R denotes the Ricci scalar for the intrinsic geometry on the RT surface ΣR. Simi-

larly, Kg denotes the geodesic curvature of the boundary ∂ΣR. Of course, eq. (4.44) gives

a topological contribution proportional to the Euler character of the two-dimensional ex-

tremal surfaces38 and so their geometry remains unaffected by this term. However, in the

following, this additional contribution will provide an extra parameter which allows us to

adjust the transition between the connected and disconnected phases.

For d = 3, some analytic expressions for the extremal surfaces can be obtained [104].

For example, integrating eq. (4.39) yields the following profile for the extremal surface in

empty AdS4 [104]

ζ±(P ;P0, ζ0) = ζ0 ±
P0√

(1 + P 2
0 )(1 + 2P 2

0 )
(4.45)

×
[
(1 + P 2

0 )F

(
Arcos

P0

P
,

√
1 + P 2

0

1 + 2P 2
0

)
− P 2

0 Π

(
Arccos

P0

P
,

1

1 + P 2
0

,

√
1 + P 2

0

1 + 2P 2
0

)]

where F and Π correspond to incomplete elliptic integrals of the first and third kind, respec-

tively.39 Again, the ± branches correspond to the two portions of the surface, symmetric

37One may worry that the topological nature of Itop undercuts the usual derivations of the generalized

entropy. However, individually the three terms in eq. (4.43) are dynamical and one can apply the results

of [101] for each separately and then take the sum of the corresponding contributions to the holographic

entropy, which one finds matches the result in eq. (4.44).
38The normalization is chosen so that for an RT surface with two-sphere topology, SJM = 2λGB.
39Our notation for the elliptic integrals matches that in [107], section 8.1.
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Figure 9. Plot of the ‘height’ of the RT surface in cylindrical coordinates, as a function of the

turning point P0 characterising the surface. For ζ∞ < ζcrit
∞

, there are two minimal surfaces anchored

at the same regions; otherwise there exists none.

with respect to ζ0 = 0. Of course, we need to know where this surface is anchored at the

boundary. Hence we define

ζ∞ ≡ ζ+(P → ∞;P0, ζ0)− ζ0 (4.46)

=

P0

[
(1 + P 2

0 )K

(√
1+P 2

0

1+2P 2
0

)
− P 2

0 Π

(
1

1+P 2
0
,

√
1+P 2

0

1+2P 2
0

)]

√
(1 + P 2

0 )(1 + 2P 2
0 )

and the surface reaches the asymptotic boundary at ζ±(P → ∞) = ζ0 ± ζ∞. Hence the

two components of the entangling surface in the boundary theory are separated by 2ζ∞, in

the cylindrical coordinates.

Figure 9 plots ζ∞ as a function of P0. The maximum is obtained at P0 = P crit
0 ≈ 0.51633

with ζ∞ = ζcrit
∞ ≈ 0.5011. An interesting observation in [104] was that, for P0 < P crit

0 , there

exist two values of P0 with the same ζ∞. That is, if the two components of the entangling

surface are sufficiently ‘close’ on the boundary sphere, there actually exist two extremal

RT surfaces that connect them in the bulk. However, one branch (with the smaller value

of P0) is always subdominant, and therefore will be of little interest in our analysis. On the

other hand, if the separation of the two entangling spheres is larger than the critical value

2ζmax
∞ (in cylindrical coordinates), there is no connected extremal surface that joins them.

Let us now describe the solutions corresponding to different values of the tension and

DGP term:

a) To = 0; 1/Gbrane = 0. First we consider the holographic EE in empty AdS4 as

a lead-in to the case with a brane. As emphasized above, the area of these surfaces is

divergent, and so one introduces a UV regulator surface, integrating of the area from P0

to some PUV ≫ 1 [104]. For the disconnected solution (i.e., a pair of disks), eq. (4.40) with

d = 3 gives

Sdisc(PUV) =
πL2

Gbulk

(√
1 + P 2

UV − 1
)
+ 2λGB (4.47)

=
A(S1

PUV
)

4Geff

− πL2

Gbulk

+ 2λGB +O(P−1
UV ) , (4.48)
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Figure 10. Renormalised entropy from eq. (4.52). The connected (disconnected) surface dominates

when ∆S < 0 (∆S > 0). When λGB becomes very large, λGB ∼ cT , the connected solution becomes

favoured.

where

A(S1
P )

4Geff

=
πL2

Gbulk

P , (4.49)

is the length of S1
P , a circle with radius P , and we used eq. (2.21) to write 1

Geff
= 2L

Gbulk
. We

have included in eq. (4.47) the topological contribution in eq. (4.44). On the other hand,

for the connected surfaces the area formula (4.41) yields

Sconn(PUV,P0)

=
πL2

Gbulk

P 2
0√

1+2P 2
0

Π

(
Arccos

P0

PUV

,1,

√
1+P 2

0

1+2P 2
0

)
(4.50)

=
A(S1

PUV
)

4Geff

+
πL2

Gbulk

[
−
√

1+2P 2
0E

(√
1+P 2

0

1+2P 2
0

)
+

P 2
0√

1+2P 2
0

K

(√
1+P 2

0

1+2P 2
0

)]

+O(P−1
UV ) ,

(4.51)

where E is the elliptic integral of the second kind. We emphasize that this result only

applies for vanishing To and vanishing 1/Gbrane, i.e., for the AdS4 vacuum. Note that the

Euler character of the cylindrical RT surface is zero and hence there is no contribution

proportional to λGB. As expected, the divergence in the PUV → ∞ limit matches for the

areas of the connected and disconnected surfaces. Hence we can safely take the limit when

considering the difference

∆S(P0) = lim
PUV→∞

(Sconn(PUV, P0)− Sdisc(PUV)) , (4.52)

given by the difference in O
(
(P0/PUV)

0
)
terms in eq. (4.51) and eq. (4.48). A plot of ∆S

is shown in figure 10. When ∆S > 0, the disconnected RT surface is the dominant saddle,

while for ∆S < 0, the connected solution dominates. Notice that with a larger (positive)

topolgical coupling λGB, the entropy in eq. (4.47) increases while eq. (4.50) is unaffected,

and hence the range of the disconnected phase is decreased in figure 10.
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b) To 6= 0; 1/Gbrane = 0. The next step is to introduce the brane, however, we do not

include a gravitational term in the brane action yet, i.e., 1/Gbrane = 0. In this case, we saw

in eq. (4.42) that there is an additional contribution as the RT surface extends from the

maximal depth P0 back out to meet the brane at PB. Both contributions in eq. (4.42) take

the same form except for the limits of integration, hence the d = 3 result in eq. (4.50) is

replaced by

Sconn(PUV, P0) =
πL2

Gbulk

P 2
0√

1 + 2P 2
0

[
Π

(
Arccos

P0

PUV

, 1,

√
1 + P 2

0

1 + 2P 2
0

)
(4.53)

+Π

(
Arccos

P0

PB

, 1,

√
1 + P 2

0

1 + 2P 2
0

)]
.

Of course, the entropy for the disconnected phase remains the same as in eq. (4.47)

and we can consider the difference of the generalized entropy evaluated on the connected

and disconnected extremal surfaces, as in eq. (4.52). Just as we saw a leading divergent

contribution in eq. (4.50) for PUV → ∞, we expect that eq. (4.53) will contain an analogous

large contribution for PB ≫ P0. However, this term will not be cancelled in ∆S. In fact,

in this regime, we can expand the difference as

∆S(P0)

=
A(σR)

4Geff

+
πL2

Gbulk

[
1−2

√
1+2P 2

0E

(√
1+P 2

0

1+2P 2
0

)
+

2P 2
0√

1+2P 2
0

K

(√
1+P 2

0

1+2P 2
0

)]

−2λGB+O(P−1
B ) .

(4.54)

Here, the intersection σR of the RT surface and the brane is a circle of radius PB with area

A(σR) = 2πLPB given by eq. (4.34). The fact that the leading term can be expressed as

the gravitational entropy for the induced gravity action (2.20) on the brane is in perfect

agreement with our discussion in the previous section. As we will see below, the finite

terms will play a role once we turn on the DGP term, allowing for the appearance of a

different island on the brane.

From the above expansion, we see that there is a strong penalty for having a large σR
in the connected phase. From the brane perspective, the gravitational entropy results in

a large penalty against forming an island on the brane. In fact, generally we expect that

∆S > 0 in this regime and hence the disconnected solution provides the dominant saddle

point. However, if we tune the topological coupling λGB to be large40 (and positive), this

contribution can compensate for the leading gravitational entropy term, at least for σR up

to a certain size.

On the other hand, we must note that PB is not an independent parameter. Rather it

is implicitly determined by ζCFT and the brane tension To, as well as the value of P0 that

minimises the area functional in eq. (4.54). PB can be determined in the following way (see

figure 8). One begins by solving for ζ0 using ζ0 + ζ∞(P0) = ζCFT where ζ∞(P0) is given in

40We note that this requires λGB ∼ L2/Gbulk ∼ cT, the central charge of the boundary CFT — see

further discussion in section 5.
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Figure 11. Panel a. illustrates the renormalised area from eq. (4.54) of connected RT surfaces,

anchored at ζCFT = 0, with λGB = 0. Panel b. is a plot of the critical value of λGB such that

min(∆S) < 0.

eq. (4.46). Then one finds ‘sample’ values of PB, ζB where the extremal surface meets the

brane by combining eqs. (4.36) and (4.45) and simultaneously solving

(
1 + P 2

B

)
sinh2ζB =

L2

z2B

(
1− z2B

4L2

)2

,

ζ−(PB;P0, ζ0) = ζB . (4.55)

This yields PB as a function of P0, ζCFT and To, and substituting PB into eq. (4.53) gives the

area of the associated extremal surface. Below, we perform this calculation numerically.

However, we have not yet considered the boundary conditions (4.10) in this analysis. Rather

than explicitly examining the latter, we simply evaluate the area (or rather the difference

∆S) over the range of possible P0 (with fixed ζCFT, To), as shown in figure 11a. The correct

RT surfaces are then identified as the minima in these plots. Further, the examples in the

figure illustrate that without the topological contribution, ∆S > 0 for all minima and so

the disconnected phase dominates, as generally expected. That is, no quantum extremal

islands form on the brane in this case. However, as shown in figure 11b, we see that with

a sufficiently large topological coupling λGB one can achieve ∆S < 0, where a first order

transition leads to the formation of an island.

Although the above recipe is valid for arbitrary brane tensions, in the limit of very large

tension we can approximate the solution analytically. Since, as stated above, the leading

contribution to the entropy (4.49) scales as A(σR) ∼ PB, the RT surface corresponds to

that which has the minimal value of PB. Moreover, since the function ζB(P ) defining

embedding of the brane in (4.55) is monotonically decreasing with P , the surface must

maximise its hight ζ∞(P0), which is achieved for P0 = P crit
0 , by definition (see discussion

around figure 9). This can be readily checked in figure 11a, where the curves attain a

minimum around arctan(P crit
0 ) ≈ 0.47, with a small correction due to the finite terms

in (4.54), which becomes smaller and smaller as we increase the tension. We shall refer to

this solution with P0 ≈ P crit
0 as the small island, in order to distinguish it from a second

island appearing below which corresponds to a circle with a larger radius.
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Figure 12. Panel a.: generalised (renormalised) area from eq. (4.54) as function of P0, for different

values of the DGP coupling λb. Notice the appearance of a ‘large’ island when λb approaches −1,

due to the partial cancellation of the induced and DGP area terms. Panel b.: phase diagram: the

black lines correspond to first order phase transitions, while the blue one at λb = −1 indicates the

region where gravity becomes unstable. Both plots are done for fixed L/zB = 100.

c) To 6= 0; 1/Gbrane 6= 0. Finally, we examine the holographic EE in the presence of a

DGP brane. The only difference in this analysis is the additional contribution coming at

the intersection of the RT surface with the brane in eq. (4.1). In the present setting, this

means that we add the following,

Sbrane =
A(σR)

4Gbrane

=
πL

2Gbrane

PB , (4.56)

to the bulk contribution in eq. (4.53). In fact, the expansion of ∆S for PB ≫ P0 takes

precisely the same form as in eq. (4.54). The only difference is that the induced Newton’s

constant on the brane is now given by eq. (2.49), i.e., 1
Geff

= 2L
Gbulk

+ 1
Gbrane

.

Generally, we might think of 1/Gbrane as a positive quantity, and so the DGP contri-

bution (4.56) would simply increase the penalty for having a large σR in the connected

phase, and enhance the dominance of the disconnected phase. However, there is no apriori

reason why we should not also consider a negative gravitational coupling on the brane,41 in

which case the DGP term serves as another mechanism to reduce the penalty for forming

an island on the brane. It is this scenario that we will examine further here — as well as

in appendix B.

It will prove convenient to work with the ratio λb introduced in eq. (2.50). Let us

recall what parameters are in play. The tension of the brane is controlled by zB, which we

keep small but finite. The dimensionless ratio between the bulk and brane gravitational

constants is controlled by λb. As discussed above, interesting things happen when λb < 0,

which is when Gbrane < 0 while Gbulk > 0.

Using the same approach described above, we can explore the transition between the

connected and disconnected phases numerically. In figure 12a, we plot ∆S as function of

41For example, integrating out quantum fields on the brane could produce either a positive or negative

shift in Newton’s constant. In particular, it can be negative for gauge fields or nonminimally coupled scalar

fields, as discussed in the context of EE in [108, 109] — see further discussion in section 5 and appendix B.
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P0 for a fixed ζCFT = 0.095, L/zB = 100 and λGB = 0, for different values of λb. These plots

are analogous to those presented in figure 12a where λb = 0 (but L/zB is varied). Again,

these plots are made in lieu of a detailed examination of the boundary conditions where the

RT surfaces meet the brane, rather the correct boundary conditions (4.10) will be achieved

where P0 is tuned to produced an minimum in these plots. For small λb the curves show a

single minimum but ∆S > 0, indicating that the disconnected solution dominates in this

case. As λb becomes more negative, the curves are pulled down and eventually ∆S enters

the negative region so that the connected solution becomes the dominant saddle point.

This behaviour is as expected but we note that λb is very close to −1 in this regime, which

according to eq. (2.50) means there is almost a complete cancelation between the induced

gravitation coupling 1/GRS and the DGP term 1/Gbrane. Of course, this near cancellation

is alleviated by turning on the topological coupling λGB, as shown in figure 12b.

Another interesting feature shown in figure 12a is the appearance of a second minimum

in the curves. This second solution occurs at a larger value of P0 and also of PB, and

corresponds to a larger circle σR on the brane, and therefore we refer to it as a large island.

The existence of this second island is due to the finite terms in (4.54). Indeed, these terms

are essentially what is plotted in figure 10, and they are unbounded from below for large P0.

Therefore, when λb becomes sufficiently negative as to produce a significant cancellation

between the induced and DGP gravitational entropies, there is a new competition, now

between A(σR)/4Geff and the finite terms, producing the large island. As λb → −1, the

minimum rolls down to infinity (P → ∞,∆Sgen → −∞), indicating an instability at this

point, which we explore further in appendix B.

Figure 12b summarises the phase diagram of the system, for a fixed value of the tension

L/zB = 100, as we vary both the DGP coupling λb and the topological coupling λGB. The

lines between no/small/large islands correspond to first order phase transitions, while the

blue line at λb indicates the region where the theory becomes unstable.

5 Discussion

We have described a holographic framework where quantum extremal surfaces and the

island rule (1.2) can be examined in higher dimensions, i.e., for gravity theories in d ≥ 2.

In particular, the background is simple enough that the construction given in section 2 is

straightforward and purely analytic, in contrast to the numerical approach of [24]. In sec-

tion 3, we were also able to describe the system from three different perspectives, analogous

to the three descriptions of the two-dimensional system examined in [22]. In particular, we

have the boundary perspective, where the system is described as a d-dimensional CFT cou-

pled to a (d−1)-dimensional conformal defect; the bulk gravity perspective, where (d+1)-

dimensional gravity with a negative cosmological constant is coupled to a codimension-one

brane; and the brane perspective, where the boundary CFT is coupled to an AdSd region

which supports Einstein gravity and two copies of the same CFT, which are weakly coupled

to each other. As we emphasized, this last perspective is an effective theory, as is made

clear by the cut-off arising in this Randall-Sundrum braneworld scenario. As discussed

and examined in some detail in section 4, this effective gravity theory lends itself to the
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appearance of quantum extremal islands in the brane perspective, although these have

a conventional interpretation from the bulk gravity perspective, in terms of RT surfaces

which cross the brane for certain of choices of the entangling geometry on the boundary.

Unconventional features. Of course, the analysis presented in our paper is somewhat

unusual in that we are finding quantum extremal islands but there are no black holes, no

horizons and no Hawking radiation involved. Rather we simply considered the entangle-

ment entropy of various entangling regions in the vacuum state of the boundary system.

However, to favour the formation of these quantum extremal islands, and at the same

time have the brane in the ‘Einstein gravity regime,’ i.e., L/ℓeff ≪ 1, we had to introduce

somewhat unconventional couplings. That is, we considered a negative Newton’s constant

on the brane λb < 0 and nonzero Gauss-Bonnet coupling λGB for a four-dimensional bulk.

Both of these choices were enhancing the connected RT surfaces over the disconnected RT

surfaces in calculating the holographic EE. Of course, an interesting question is the inter-

pretation of these ‘exotic’ bulk couplings in terms of data describing the boundary CFT

(and the conformal defect). While we do not have a precise interpretation, some qualitative

results can be stated.

As observed in section 3, using standard holographic techniques, one finds that the

gravitational coupling in the DGP brane action (2.46) affects the spectrum of defect op-

erators in the boundary theory [77]. Now let us reiterate that there is no apriori reason

not to consider λb < 0. For example, integrating out quantum fields on the brane could

produce either a positive or negative shift of Newton’s constant. In particular, the shift

can be negative for gauge fields or nonminimally coupled scalar fields, as was discussed in

the context of EE in [108, 109] — see also discussion is appendix B. However, this scenario

is not the one we are describing here. In particular, additional brane fields such as these

would make significant contributions to the EE which are not accounted for in our calcula-

tions. Hence, implicitly, we simply assume that the gravitational coupling 1/Gbrane (either

positive or negative) is induced by some unknown UV physics.

Introducing the Gauss-Bonnet term (4.43) does not modify the gravitational dynamics

in the four-dimensional bulk, considered in section 4.4, and hence the correlators of the

stress tensor are not modified in the dual three-dimensional boundary theory.42 However,

the topological coupling λGB affects the entanglement structure of the boundary CFT states.

To see this, consider calculating the entanglement entropy holographically for two nearby

regions in the boundary. The phase transition between connected and disconnected phase

of the RT surfaces is sensitive to a Gauss-Bonnet term. For positive λGB, the transition

from disconnected to connected phase takes place earlier (and vice versa for negative λGB).

This means that with λGB > 0, the mutual information between these two regions remains

of order cT for larger separations, e.g., [110]. Note, however, that choosing positive λGB

favours higher genus surfaces. A concern with this choice might be if higher genus extremal

surfaces exist, they may produce unusual results. Finally, we note that the topological

coupling appears directly in the expressions for the holographic EE, e.g., see eq. (4.47).

42Of course, such modifications arise for holographic constructions in higher dimensions [83].
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Therefore to have an appreciable effect, we must choose this coupling to be of the order of

the central charge of the boundary theory, i.e., λGB ∼ L2/Gbulk ∼ cT.

Let us add that in section 4.4, we focused on the example of d = 3 with a four-

dimensional bulk. In this case, the natural topological term to add to the bulk gravity is

the Gauss-Bonnet term (4.43). Of course, the scenario extends straightforwardly to any

d = 2n− 1 for which there is a corresponding topological term which can be added to the

bulk gravity action, i.e., the Euler character for 2n-dimensional manifolds, e.g., see [106].

Similarly, for even boundary dimensions (d = 2n), the analogous topological terms could

be added to the brane action, where they would not modify the dynamics of gravity on

the brane but they would modify the gravitational entropy associated with the boundary

of the quantum extremal islands.

In light of these unconventional features, a natural question therefore is whether we

find quantum extremal islands in our analysis with both λb = 0 = λGB. The answer is

affirmative, however, one must reduce to the tension of the brane to reduce its backreaction

and the extent of the additional geometry in the vicinity of the brane’s location. As a

result, the connected RT surfaces will have a smaller (bulk) area contribution as they cross

the brane. However, in this case, the curvature of the AdS geometry on the brane is

also smaller, and hence the effective description of the brane theory in terms of Einstein

gravity breaks down. That is, with ℓeff ∼ L, the contributions of the higher curvature

corrections in the induced action (2.20) are no longer suppressed relative to the Einstein

term and these new interactions play an important role in the dynamics of gravity in the

brane perspective. Furthermore, the cutoff of the corresponding CFT on the brane will be

much lower. Alternatively, one could think about computing the EE in settings beyond

the vacuum state that we studied here. In fact, in [47], we will explicitly show without

additional Gauss-Bonnet or DGP couplings that quantum extremal islands appear for

(nonextremal) eternal black holes in equilibrium with an external heat bath, i.e., in a

higher dimensional analog of the analysis in [23].

Let us conclude here by comparing our approach with the recent work [40], which

appeared while the present paper was prepared for submission. The latter examines essen-

tially the same model (with no DGP term) but concentrates on a very different regime.

The authors of [40] focused on the formation of islands for the case of a tensionless brane,

where the brane gravity becomes very nonstandard, as explained above. Further, in the

limit where the graviton becomes massless, i.e., ℓeff → ∞, they observe that no islands

form [40]. On the other hand, the present work focuses the regime of large brane tension,

where the theory on the brane can be well approximated by Einstein gravity (i.e., the

graviton mass and higher curvature interactions are negligible). We moreover show that

by allowing either a topological term or a negative Gbrane, islands can appear even in the

absence of horizons.

Resolving puzzles. Our construction clarifies certain conceptual puzzles that arose in

early discussions of quantum extremal islands in a holographic framework, e.g., for the two-

dimensional gravity models introduced in [22] and studied in [23, 29]. For example in these

models the Planck brane, which supports the JT gravity theory, appears at the boundary of
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the three-dimensional bulk spacetime. Hence one might have wondered if the brane degrees

of freedom (including the JT gravity) are a part of the boundary theory or part of the bulk

theory. In our construction, the Planck brane is in the middle of the spacetime geometry

and so this question does not arise — these degrees of freedom belong to the bulk. An

important corrolary of this observation is that when a quantum extremal island appears

on the brane, e.g., see the lower panel in figure 8, we are able to recover information about

the island with data from the boundary CFT in the corresponding boundary subregion, by

applying standard entanglement wedge reconstruction [88–94]. Of course, the latter would

not apply if the brane degrees of freedom were a part of the boundary theory.

Further, our construction circumvents the question of whether RT surfaces are allowed

to end on the Planck brane. Rather in our paper, the extremal surfaces just pass through

the bulk and only end on the asymptotic boundary as usual. It is simply that in certain

situations, the RT surfaces will pass through the brane, which of course, corresponds to

the formation of a quantum extremal island.

Another ‘novel’ feature of the two-dimensional JT gravity model of [22] was that the

holographic entanglement entropy included an extra boundary term, i.e., the gravitational

entropy of the JT model, where the RT surface terminated on the Planck brane. That is,

the holographic entanglement entropy was given by extremizing the sum of the bulk area

of the RT surface and this additional boundary term. An analogous gravitational entropy

term on the brane arises in our construction with a DGP brane — see eq. (4.1). In fact, our

derivation in appendix A suggests that if the brane supports intrinsic gravitational inter-

actions then the corresponding Wald-Dong entropy on the brane is part of the holographic

entanglement entropy formula, as shown in eq. (A.7). Hence this general result agrees

with the boundary term introduced in the two-dimensional JT gravity models, mentioned

above. A shortcoming of the derivation in appendix A is that the geometric configuration

involved a high degree of symmetry, which precluded finding the expected extrinsic cur-

vature terms [101]. Therefore it would be interesting to extend our construction there to

more general configurations along the lines of [10, 111].

We want to emphasize the above discussion is distinct from finding in section 4.2 that

the leading contribution to the holographic EE where the RT surface crosses the brane

matches the Wald-Dong entropy of the induced gravitational action on the brane (2.20).43

For example, the leading contribution is A(σR)/4Geff, where σR is the cross-section of

the RT surface on the brane. As shown in eq. (4.27), the DGP term is one important

contribution to this result, but the bulk area of the RT surface in the vicinty of the brane is

also necessary. Of course, we still find the leading contributions reproduce the gravitational

entropy of the induced gravity theory on the brane even without the DGP term, i.e., with

1/Gbrane = 0. This must be closely related to the fact that the bulk Einstein equations

combined with the Israel junction conditions are equivalent to the gravity equations of

motion on the brane in the Randall-Sundrum scenario [57].

In passing we note here that d = 2 is distinguished in the above discussion. In this case,

the leading contribution corresponds to the Wald-Dong entropy for the Polyakov-Liouville

43Recall that this analysis was general enough to see the extrinsic curvature contributions coming from

the higher curvature interactions in eq. (2.20).
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action (2.27) and takes the form given in eq. (4.31). However, since it only depends on the

curvature scalar which is constant across the AdS2 geometry of the brane, this contribution

takes the same value no matter where the RT surface crosses the brane. This contrasts

with the higher dimensional result A(σR)/4Geff, which rapidly grows as the position of σR
moves to larger radii on the brane. That is, there is an enormous penalty against forming

large quantum extremal islands for d ≥ 3. In contrast, no such penalty arises for d = 2

facilitating the formation of islands, as discussed in detail in [28]. Of course, if one adds JT

gravity (2.38) to the two-dimensional brane action, as in eq. (2.37), then the gravitational

entropy on the brane includes (Φ0 +Φ(x)) /4Gbrane, which will favour smaller quantum

extremal islands because the dilaton profile grows with the radius on the brane [76].

Of course, we can modify our higher dimensional construction to make it more anal-

ogous to the two-dimensional model introduced in [22] by taking a Z2 orbifold quotient

across the brane. With this orbifold, the brane appears as the edge of the bulk geome-

try but clearly the association with the bulk degrees of freedom has not changed. The

brane now only supports a single copy of the boundary CFT and there are factors of 1/2

appearing in various expressions, e.g., we make the following replacement in eq. (2.21):

1/Geff = L/((d− 2)Gbulk). Similarly, the RT surfaces will now end on the orbifolded brane

while satisfying the boundary condition,

0 = g̃j
ν

(
gµν ∂nX

µ +
Gbulk

Gbrane

K̃i ∂νx
i

)
, (5.1)

which replaces eq. (4.17). Further, the conformal defect becomes a conformal boundary in

the orbifolded theory, i.e., the spatial geometry on which the CFT lives is now a (d − 1)-

dimensional hemisphere with the conformal boundary being the Sd−2 at the edge of the

hemisphere.

Other questions that may have arisen from the early discussions of quantum extremal

islands which focussed on JT gravity might include the importance of having a low space-

time dimension, i.e., d = 2, or of the JT model itself. The early work of [21] considered

black hole evaporation with Einstein gravity in higher dimensions, and the holographic

model of [22] was extended to a holographic framework with d = 4 in [24] using numeri-

cal calculations. Hence our paper reinforces these results by describing quantum extremal

islands in a new setting, in particular, in higher dimensions and with Einstein gravity.

Our construction is also simple enough that further investigations of the role of quantum

extremal islands in higher dimensions are straightforward, e.g., see [47]. Let us add that

JT gravity can be seen as the gravitational dual of the so-called SYK model [112–116].

This duality involves an ensemble average over the couplings in the boundary quantum

mechanics and so one may expect that this averaging plays a role in the appearance of

quantum extremal islands. However, it seems that this is not the case as our construction

relies on the standard holographic rules of the AdS/CFT correspondence where there is no

such averaging of the couplings in the boundary theory.

One other perplexing issue with the island rule (4.2) is the appearance of the entangle-

ment of the CFT degrees of freedom in the region R on both sides of the equation [22]. As

explained in [23], we should distinguish the “full quantum description” of, e.g., the Hawk-
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ing radiation in the presence of black holes on the left-hand side from the “semiclassical

description” which includes the outgoing radiation and purifying partners on the quantum

extremal island on the right-hand side. Our holographic construction makes clear that the

description of quantum states with islands in the brane picture is on a different footing than

that solely in terms of the boundary theory. In particular, referring to the three perspec-

tives discussed in section 3, it is clear that the boundary perspective (with the boundary

CFT coupled to a conformal defect) gives a complete description of quantum state. By

the standard rules of the AdS/CFT correspondence, the bulk perspective (where Einstein

gravity with a negative cosmological constant is coupled to a codimension-one brane) gives

an equivalent description.44 However, the brane perspective has a different character. In

particular, the description in terms of a CFT coupled to the dynamical AdSd region is only

an effective one. Indeed, as emphasized in section 3, the Randall-Sundrum gravity is only

valid down to the short distance cutoff δ̃ ∼ L, i.e., see eqs. (3.7) and (3.8). Beyond this

cutoff, gravity is no longer localized to the brane and the additional ‘Kaluza-Klein’ modes

of the graviton are strongly coupled to the brane and their contribution cannot be ignored.

Further, this brane perspective also provides an effective description of the coupling to

the defect CFT. That is, it only accounts for the couplings localized at the defect, which

dominate at low energies, but ignores the subtle nonlocal couplings, which could be seen as

coming through the bulk AdS geometry in the dual description. Of course, the quantum

extremal islands in the effective description of the brane perspective are a clear example of

this. These islands are a remnant of replica wormholes in the limit n → 1 [26, 32]. However,

in the replica trick construction of the corresponding Renyi entropies in the bath CFT, one

can ask why the gravity on the different branes in the replica copies should connect with

one another. However, these effective gravity theories are UV completed by a single theory

of gravity in the bulk and so it is natural to consider geometries connecting the branes, i.e.,

replica wormholes if the effective theory. Hence the connection of the brane and boundary

through the bulk provides a simple explanation of these wormholes. Given the simplicity

of our construction, it may provide a useful framework in which to understand further

subtleties in distinguishing the various expressions in the island rule.

As a final note here, we observe that the finite cutoff for the CFT on the brane has

noticeable effects even for d = 2, e.g., see eq. (2.45). In contrast, the early discussions of

e.g., [20, 22, 23, 25, 26, 29] assumed that one could use standard formulae for conformal

transformations in the d = 2 CFT in the gravitational region (i.e., on the brane). It would

be interesting to understand if the cutoff modifies any of this analysis in a significant

way [47].

Brane geometry, Part I. As described in section 2, we choose the brane tension to

produce a negative cosmological constant in the gravity theory on the brane, in accord

with eqs. (2.20) and (2.21). As a result, the d-dimensional geometry on the brane is

44In this paper, we modeled the CFT defect with a simple brane in the bulk. This bottom-up approach

is neither sufficient, nor completely correct. For example, in the case of N = 4 SYM theory on S4, the

presence of an interface breaks at least half of the supersymmetry generators and the R symmetry. In a

complete description, this will result in a deformation of the bulk S5. For top-down models, see [117–123].
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AdS space. However, it is straightforward to consider the case where the brane tension

takes its critical value, such that 1/ℓ2eff = 0, as is usually done in the Randall-Sundrum

scenario [42, 43]. In this case, the analogous brane geometry is simply flat space, and the

brane is easily embedded in the bulk AdSd+1 geometry on a slice of constant radius (or

constant z) in standard Poincaré coordinates. An interesting feature of this embedding is

that the brane reaches the asymptotic AdSd+1 boundary along the null boundaries of the

flat space geometry (as well as a timelike and spacelike infinity) e.g., see [117]. Hence we

can naturally investigate quantum extremal surfaces and the island formula in flat space

using the usual expressions for holographic entanglement entropy in this construction as

long as we consider regions on null infinity. Notably this matches the approach pursued

in [32], but contrasts with studies of e.g., [31] which considered spacelike regions. It would,

of course, be interesting to use this framework to study quantum extremal islands in the

context of asymptotically flat braneworld black holes, e.g., as described in [124, 125]. We

should note however that there are undoubtedly subtleties with the proposed construction,

e.g., as the brane completely cuts out the asymptotic AdSd+1 boundary (except for a single

point) on constant time slices.

Of course, one can also consider the case where the brane tension is chosen such that

1/ℓ2eff < 0. That is, the brane gravity theory would have a positive cosmological constant

and the corresponding brane geometry becomes de Sitter space. In this case, one constructs

a foliation of the bulk AdSd+1 geometry in terms of d-dimensional de Sitter slices and the

brane can be embedded along the slice with the appropriate curvature, e.g., see [117]. In this

case, the brane reaches the asymptotic AdSd+1 boundary on the future and past timelike

infinities of the de Sitter geometry. Hence, this construction provides a framework to use

holographic entanglement entropy for investigating the island formula in de Sitter space as

long as we consider regions on the timelike future of the latter geometry. Let us add that

this would be similar to upcoming work of [126], which studies related questions in the

context of JT gravity with a positive cosmological constant [127]. The de Sitter evolution

of the Hartle-Hawking vacuum prepares a two-dimensional CFT state on circle and the

entanglement entropy of various regions in the latter state are investigated, revealing new

islands in the de Sitter geometry [126].

Brane geometry, Part II. The geometry of the setup presented in this paper might

look unconventional. As seen from the brane perspective, we have the bath CFT on the

asymptotic boundary with geometry Sd−1 × R, and two copies of the same CFT on the

brane with an AdSd geometry. These two geometries are joined by introducing a cutoff

surface (with topology Sd−2×R) near the asymptotic boundary of the AdSd geometry and

gluing it to the equator of the Sd−1 × R geometry. In particular, the resulting geometry

is not a manifold in the vicinity of the gluing region — see the left panel of figure 13.

Of course, we can obtain a manifold by taking the Z2 quotient which identifies the two

halves of the bath CFT, such that the theory is again defined on a manifold with topology

Sd−1 × R. However, we will ignore this simplification here. Rather, we want to comment

on the theory before taking the Z2 quotient.
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Figure 13. Left: in the brane perspective, the bath CFT on the asymptotic boundary (blue) is

connected to two copies of the effective CFT on the brane (green) but the resulting geometry is

not a manifold. Right: for excitations below the effective CFT cutoff the system behaves as if it

consists of two systems on a manifold which are weakly coupled in the gravitational region (green).

First, we note that constructions where multiple CFTs are joined at a common defect

are not rare. For example they appear in the study of boundary and interface CFTs (e.g.,

see [123]), and sometimes seem to be required to remove anomalies [128].

Second, we would like to argue that in the regime where the defect theory can be

described by two copies of the boundary CFT coupled to Einstein gravity, we can approx-

imately think of the full theory as two copies of the orbifolded theory (each living on a

manifold), which are weakly coupled in the gravitational region — see the right panel of

figure 13. This is particularly easy to see from the bulk perspective. For brevity we restrict

ourselves to the discussion of graviton modes, but a similar story applies to all bulk fields.

Let us begin by recalling that for ε ≪ 1, the spectrum of graviton fluctuations in the

bulk is almost unchanged with respect to the modes in (two copies of) empty AdS space.

Hence much of the corresponding physics should be very similar that of two copies of the

AdSd+1, or to two copies of the dual CFTd on the boundaries of two independent AdSd+1

geometries. Of course, one exception to the preceding is that upon gluing the two AdSd+1

geometries together, a new set of very light graviton states localized in the vicinity of the

brane [42–44, 61], as discussed in section 3. For simplicity, we refer to the latter as the

brane graviton modes, while we refer to the former as the standard normalizable modes.45

On a fixed time slice, as shown in the right panel of figure 2, the standard normal-

izable modes will describe stress energy excitations in the dual CFT on both the left

and right halves of the asymptotic boundary. If we assume an approximate extrapolate

dictionary [129] for the brane theory as well, these normalizable modes will also describe

analogous excitations for the effective CFT on the brane. However, there will be two sets of

such excitations: those described by bulk excitations46 with support primarily in the right

copy of the AdSd+1 geometry, and those described by the analogous excitations primarily

in the left AdSd+1 geometry. Hence, the stress tensor on the brane can be decomposed into

two pieces which correspond to subsectors of the brane theory, each of which is determined

45These bulk modes are Z2 graded under reflection across the Planck brane, and the even modes survive

the Z2 orbifold discussed above include the brane graviton states as well as half of the standard normalizable

modes. However, this organization of the modes is not useful for the following discussion.
46We stress here that the localized excitations considered here do not correspond to individual energy

eigenmodes, which were implicit in the previous paragraph. Rather they will consist of linear combinations

of such eigenmodes evaluated on the fixed time slice being examined here. Of course, having superpositions

of energy eigenmodes is what produces the complicated time evolution described below.
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by bulk excitations which essentially live on one side of the brane. If these subsectors

were truly superselection sectors (e.g., as one might imagine arises in the limit ε → 0), our

brane theory would contain two independent copies of the boundary CFT and each of these

copies would only interact with the bath CFT on the corresponding half of the asymptotic

boundary. That is, each of these systems would live on an independent manifold with

topology Sd−1 × R.

However, this is not strictly correct and the two copies of the CFT on the brane are

weakly coupled with ε ≪ 1 but finite. In particular, localized stress energy excitations

of the form considered above will not remain localized with time evolution. Rather they

will eventually spread across the entire asymptotic boundary if time evolves for a suffi-

ciently long time. For example, an excitation localized on the right asymptotic boundary

will evolve to eventually produce excitations of the stress tensors on the left asymptotic

boundary and on the brane as well. From the boundary perspective, excitations moving

onto the brane correspond to excitations that are absorbed by the conformal defect (and

remain there for a long time).

The spreading of the localized excitations can be seen to arise through two physical

effects: first, the bulk excitations can tunnel between the two AdSd+1 regions shown in

figure 2. Recall that (the radial part of) the linearized bulk equation of motion can be

reduced to a Schroedinger equation with a double-well potential, where the height of the

barrier is determined by the brane tension [44]. With ε ≪ 1 but finite, the barrier height

while large remains finite and there will be a finite probability for a bulk excitation on

one side of the Planck brane to tunnel to the other. A second independent coupling

comes because the stress tensors of the two copies of the CFT couple to the same gravity

theory on the brane. From the bulk perspective, the nonlinear Einstein equation produces

interactions between the brane graviton modes with excitations on either side of the brane.

Hence bulk excitation excitations on one side can leak to the other side by scattering

process involving the brane gravitons. However, we note that both effects become smaller

as the brane tension approaches its critical value, i.e., as ε approaches zero. Thus, to a

good approximation, the brane theory can be treated at two copies of the boundary CFT

which only interact weakly.

Entanglement wedge cross-sections. Recent work [130, 131] has drawn attention

to the entanglement wedge cross-section, i.e., for disconnected boundary regions, the

codimension-two surfaces in the bulk which have minimal area and which split the entan-

glement wedge in two. In particular, there are a number of proposals relating these holo-

graphic surfaces to various entanglement measures: entanglement of purification [130, 131],

reflected entropy [132], odd entanglement entropy [133–135], or entanglement negativ-

ity [136, 137].

Turning to our model and examining figure 8, we see that there are two such minimal

surfaces in the connected phase, for which a quantum extremal island appears on the brane.

These surfaces are simply disks of radius P = P0 on either side of the brane, with area

A =
2Ld−1Ωd−2

d− 1
P d−1
0 2F1

[
1

2
,
d− 1

2
,
d+ 1

2
,−P 2

0

]
, (5.2)
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as can be seen from eq. (4.40). The fact that both disks have the same area results

from the fact that the corresponding boundary regions are symmetric on either of the

conformal defect — see figure 5. Of course, if one of the two caps comprising the boundary

regions was smaller, the minimal area disk closer to this cap would provide the global

minimum and hence become the entanglement wedge cross-section. It would be interesting

to understand if the second minimal disk also plays an interesting role in characterizing

the entanglement of the boundary state. In this vein, let us add that there are also two

additional extremal disks which divide the entanglement wedge in two but their area is

actually a local maximum. These disks again lie on either side of the brane but end on σR,

the intersection of the RT surface with the brane. Again, it is natural to wonder if these

surfaces have an interpretation in terms of the boundary entanglement. Let us note that

similar surfaces appear in the following discussion.

RT bubbles and wormholes. In appendix B, we consider a surprising class of RT

surfaces with the topology of a sphere, i.e., Sd−1 in the (d + 1)-dimensional bulk. The

appearance of these extremal ‘bubbles’ is quite unusual as they are homologous to the entire

boundary. Hence the standard RT prescription would assign an entropy to the ground state

of the dual boundary system. Further, presence of a ‘zero mode’ which allows the bubbles to

be translated along the brane makes their interpretation even more puzzling. An essential

feature for the appearance of the RT bubbles was that the gravitational coupling in the

DGP term (2.46) was negative, i.e., λb < 0. We also noted that the bubbles do not appear

to be macroscopic objects in the brane theory. Rather, as shown in eq. (B.9), their size is

always of order of the effective cutoff δ̃.

Despite the unusual features of these RT bubbles, the discussion in appendix B high-

lights a general feature of the quantum extremal islands in a simple way. In particular, as

discussed below eq. (B.5), there are two competing terms contributing to the generalized

entropy of these surfaces: the bulk area which describes the entropy of the CFT fields on

the brane enclosed by the bubble and the area of the boundary where they intersect the

brane, which appears in the gravitational entropy of the DGP term. The bulk contribution

naturally acts to contract the bubble but with λb < 0, the brane contribution acts to ex-

pand the bubble. As described in the appendix, there is an equilibrium radius where these

two effects balance one another. Of course, with λb > 0, the brane contribution also acts to

contract the boundary of the bubble and so no closed extremal surfaces appear, as expected.

As noted above, a similar competition is a general feature in the formation of quantum

extremal islands. However, in this case as discussed in section 4.2, the bulk and brane con-

tributions combine to produce a Bekenstein-Hawking term A(σR)/4Geff on the boundary of

the island. This contribution, of course, imposes a large penalty to the formation of a large

island and acts to contract the boundary towards a smaller (i.e., vanishing) radius. For an

island to appear, this contraction must be balanced by an expanding contribution. From

the bulk perspective, this is simply coming from the remaining47 bulk area contribution of

the RT surface, which we can ascribe to the quantum EE of the CFT state from the brane

perspective. The point to be noted here is that for this to provide an expansion the RT sur-

47We combined part of the bulk area into the Bekenstein-Hawking term above.
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face must be anchored far from the island, i.e., in the asymptotic (nongravitational) region

associated with the boundary CFT. While perhaps self-evident, this discussion highlights

the nonlocal nature of the physics producing the quantum extremal islands.

Let us add that the quantum extremal islands discussed here (as well as the RT bub-

bles) are remnants of replica wormholes in the limit n → 1. This follows from the fact that

we are simply studying holographic EE with RT surfaces in a new bulk background, i.e.,

with a back-reacted brane. Hence the analysis of [10]48 introduces a smooth n-fold covering

geometry for the corresponding Renyi entropies with positive integer indices. These cover-

ing geometries produce smooth wormhole geometries on brane analogous to those discussed

in [25, 26] for two dimensions.

Now assuming replica symmetry, one can then take a Zn orbifold quotient which leaves

a single copy of the boundary geometry but the bulk solution now contains a codimension-

two cosmic brane with tension Tn = (n − 1)/(4Gbulk n). In the presence of a DGP brane,

we expect that there is an additional contribution where the two branes intersect, i.e.,

the intersection surface carries an intrinsic tension T̂n = (n − 1)/(4Gbrane n). In this set-

ting, our discussion above for the formation of quantum extremal islands extends to the

Renyi entropies in a relatively straightforward way. In particular, we expect that an area

contribution associated with the boundary of the island now carries an effective tension

T̃n = (n−1)/(4Geff n), which combines the intrinsic tension of this intersection surface and

the contribution of the cosmic brane in the vicinity of the Planck brane. The contraction

created by this term must be balance by the expansion provided by the remaining cosmic

brane contributions. However, to provide an expansion the cosmic brane must be anchored

by a twist operator in the asymptotic (nongravitational) boundary. Again, this highlights

the nonlocal nature of the physics which implicitly supports the replica wormholes.

Of course, these dynamical considerations are emergent in the topological models con-

sidered in [26, 33]. Hence it would be interesting to understand the implications of this dy-

namics to extend the new discussions of baby universes and ensembles to higher dimensions.

To conclude, let us comment that we will build on the holographic model constructed

here to study the Page curve and the appearance of quantum extremal islands for higher

dimensional black holes in [47]. In particular, we study eternal black holes coming to

equilibrium with an external heat bath (prepared at the same temperature) in a higher

dimensional analog of the analysis appearing in [23]. Let us reiterate that unconventional

features (i.e., Gauss-Bonnet and DGP couplings) introduced to favour quantum extremal

islands here are unimportant in the discussion of higher dimensional black holes.
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A Generalized entropy on the brane

In sections 2.3 and 2.4, we introduced intrinsic gravitational terms to the brane action.

Following [22],49 we assumed that these terms contribute to the generalized entropy, e.g.,

see eq. (1.3) or (4.1). In this appendix, we present a extended version of an argument

in [46], which will support this assumption and our formula for generalized entropy.

As in the main text, we begin with a d-dimensional holographic CFT on R × Sd−1

with a conformal defect on the equator of the sphere, sweeping out R × Sd−2. On a fixed

time-slice, we choose an entangling surface ΣCFT which divides the sphere into two equal

halves along a maximal Sd−2 which lies orthogonal to the conformal defect. Now we wish

to determine the entanglement entropy between the two halves of the system, as sketched

in figure 14. Recall that with the geometric approach [138], we must evaluate the partition

function on a (Euclidean) background geometry with an infinitesimal conical defect. In

order to construct a symmetric geometry where introducing such a defect is well-defined,

we perform a Wick rotation on the boundary time (i.e., tE = it) and then conformally

transform the Euclidean background metric to a round Sd with the conformal defect lying

on a maximal Sd−1 on this background. Now ΣCFT remains a maximal Sd−2 which runs

orthogonal to the defect and pierces the latter on a Sd−3. With this construction, there

is a rotational symmetry in the two dimensions orthogonal to ΣCFT. To evaluate the

corresponding entanglement entropy, we construct M1−ǫ, the ‘n-fold cover’ with n = 1− ǫ,

by introducing an infinitesimal conical defect at ΣCFT. The entanglement entropy is then

given by

S = lim
ǫ→0

(
∂

∂ǫ
+ 1

)
logZ1−ǫ , (A.1)

where Z1−ǫ is the partition function of the holographic CFT on the covering space M1−ǫ.

Of course, the latter has a dual description in terms of the bulk gravity, and using the

usual saddle point approximation, eq. (A.1) becomes [46]

S = − lim
ǫ→0

(
∂

∂ǫ
+ 1

)
IE,1−ǫ , (A.2)

where IE,1−ǫ is the Euclidean bulk action evaluated on the appropriate dual solution.

49See also [20, 23, 25, 26, 29].
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ΣCFT

t

t = 0

Figure 14. A timeslice of our d-dimensional CFT setup with entangling surface ΣCFT and an

equatorial conformal defect (the green line). In the right panel, one dimension is suppressed relative

to the left panel.

ΣR

σR ΣCFT

Figure 15. A cross-section of the Euclidean geometry M̃1. The orange semicircle and its comple-

ment along a time slice represent the orange shaded region of figure 14 and its complement. The

rotation that keeps ΣCFT fixed represents euclidean time. An infinitesimal conical defect ΣR runs

through the bulk and intersects the brane at σR.

Setting n = 1 for a moment, the bulk dual of M1 is simply the Euclidean version

of the geometry constructed in section 2.1, which we denote M̃1. Recall the boundary

geometry is Sd and the conformal defect runs around a maximal Sd−1. In the bulk, the

geometry is locally EAdSd+1 everywhere away from the brane, and the brane has a EAdSd
geometry which extends out to the conformal defect at the asymptotic boundary and with

the curvature scale given by eq. (2.13) — see figure 15. Now the entangling surface ΣCFT on

the asymptotic AdS boundary is the boundary of an extremal surface ΣR in the bulk, which

runs straight across the bulk solution and has a EAdSd−1 geometry with curvature scale L.

This surface pierces the brane at a right angle and the intersection, another extremal surface

σR, has the geometry of a EAdSd−2 with curvature scale ℓB — see figure 15. Now because of

the symmetry of this configuration, the rotational symmetry about the entangling surface

in the boundary extends to a rotational symmetry about ΣR in the bulk. Hence we can

calculate the entanglement entropy with the same geometric approach as we applied in

the boundary. That is, we construct M̃1−ǫ, the n-fold cover (with n = 1 − ǫ) of the bulk

solution with a infinitesimal conical defect at ΣR and by extension, at σR on the brane.

That is, the angle around ΣR runs through a range 2π(1−ǫ). Now [139, 140] developed

a description of such conical defects in which the singular geometry is replaced by a ‘regu-

lator’ geometry where the region around the conical singularity is smoothed out. Applying

their key result, we can write the bulk Riemann tensor as a “smooth” contribution away
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from ΣR, the conical defect, and a singular order ǫ contribution at ΣR,
50

(ǫ)Rab
cd = Rab

cd + 2πǫ εabεcd δΣR
, (A.3)

where εab is the Euclidean volume form in the two-dimensional transverse space to ΣR,

and Rab
cd is the “smooth” curvature piece. The δΣR

is a two-dimensional delta function

defined in [46]. The conical singularity intersects the brane at σR and so we have a similar

decomposition for the Riemann tensor on the brane,

(ǫ)R̃ij
kℓ = R̃ij

kℓ + 2πǫ ε̃ij ε̃kℓ δσR
. (A.4)

Now recall that our aim is to evaluate the Euclidean action in eq. (A.2). This action is

the sum of the Euclidean versions51 of the bulk and brane actions in eqs. (2.1) and (2.46)

(or perhaps eq. (2.38) for d = 2), as well as the associated boundary terms. Equipped with

eqs. (A.3) and (A.4), it can be shown that in the limit of small ǫ that the Euclidean action

can be expanded as

IE,1−ǫ = (1− ǫ)IE,1 +

∫

bulk

dd+1x
√
g 2πǫεabεcd δΣR

∂LE,bulk

∂Rab
cd

(A.5)

+

∫

brane

ddx
√

g̃ 2πǫε̃ij ε̃kℓ δσR

∂LE,brane

∂R̃ij
kℓ

+O(ǫ2) . (A.6)

Noting the symmetry of our configuration, i.e., the curvatures are constant everywhere

along the surfaces ΣR and σR, we then find the entropy in eq. (A.2) is given by

S = −2π
∂LE,bulk

∂Rab
cd

εabεcd

∫

ΣR

dd−1x
√
h− 2π

∂LE,brane

∂R̃ij
kℓ

ε̃ij ε̃kℓ

∫

σR

dd−2x
√
h′ , (A.7)

where h and h′ are the induced metrics along the ΣR and σR, respectively. Hence we see

that there is a contribution of the Wald entropy from both the bulk action and the brane

action. Further, let us note that various signs appear upon analytically continuing back to

Lorentzian spacetime, i.e., in the Lagrangian and the transverse volume form [46].

For the case where the Einstein-Hilbert action appears both in the bulk and on the

brane, as in eqs. (2.1) and (2.46), we find the formula for the generalized entropy (A.7)

becomes

S =
A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

, (A.8)

as given in equation (4.1). The present derivation only applies to special symmetric con-

figuration, as in [46]. The symmetry of this configuration preculdes finding any extrinsic

curvature terms in eq. (A.7), as would be expected for the Dong entropy [101]. We note

however that no such terms would correct eq. (A.8) for the generalized entropy coming

from the Einstein-Hilbert term. It would, of course, be interesting to extend our derivation

to more general configurations involving bulk DGP branes, along the lines of [10] or [111].

50This order ǫ contribution is universal, whereas the details of the regulator come into play at order ǫ2

and higher.
51Note that the difference in signs in going between Minkowski and Euclidean signatures [46].
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Figure 16. An RT ‘bubble’ on the brane: even for the vacuum, when Gbrane < 0 the competing bulk

and brane area terms can lead to a stable extremal surface, which is homologous to the entire time

slice for the boundary CFT. The entanglement wedge then corresponds to the shaded red region.

Since the two sides of the brane are glued together, the RT surface has the topology of Sd−1.

B RT bubbles

In this appendix, we consider a simple but surprising class of RT surfaces. In particular,

we show below that there are closed extremal surfaces with the topology of a sphere, i.e.,

Sd−1 in the locally AdSd+1 bulk geometry. In empty AdS space, one could consider such

spherical surfaces, but their area would be extremized when they collapse to zero size. In

the present case, we will show that in certain situations, the spherical RT surfaces can be

supported at finite size by the brane. To illustrate the situation, we continue with the

special case of d = 3 as in section 4.4, and afterwards comment on the situation with

general d.

Consider the geometry illustrated in figure 16. On either side of the brane, we have

a disk satisfying ζ =constant, i.e., satisfying eq. (4.39) with P0 = 0. Hence locally these

surfaces extremize the entropy functional (4.38) in the bulk. However, rather than extend-

ing out to the asymptotic boundary, as shown in the figure, the two disks intersect the

brane and meet at some radius PB. Hence this RT surface has the topology of a sphere and

we use the nomenclature ‘bubble’ to describe these surfaces. For d = 3, the generalised

entropy (4.1) of this bubble is

Sgen =
πL2

Gbulk

(√
1 + P 2

B − 1 + λb PB

)
+ 2λGB (B.1)

with λb defined in eq. (2.50). We have also included the topological term introduced

in eq. (4.44). Of course, since these surfaces never reach the asymptotic boundary, this

quantity is finite, i.e., there are no UV divergences in eq. (B.1).

Extremizing eq. (B.1) with respect to the radius of the bubble, we find

∂PB
Sgen = 0 =⇒ PB√

1 + P 2
B

= −λb = − Gbulk

2LGbrane

. (B.2)

Now recall that we will always have Gbulk > 0, but considered the possibility of Gbrane

becoming negative in section 4.4. Let us first consider the case λb ≥ 0, which implies

1/Gbrane ≥ 0. In this case, we can not satisfy eq. (B.2), since both the bulk and brane

contributions to the generalised entropy (B.1) are positive and monotonically increasing

functions of PB. Therefore the minimum lies at PB = 0, i.e., where the bubble collapses to

zero size — see figure 17.

– 57 –



J
H
E
P
1
0
(
2
0
2
0
)
1
6
6

P0
4321

0

2

1
λb > 0

−1 < λb < 0

λb < −1

Gbulk

πL2 Sgen

Figure 17. The generalised area (B.1) for a bubble as a function of its radius. For λb > 0, the

area is minimal for vanishing size, whereas for −1 < λb < 0 it has a finite size. For λb < −1, there

is no global minimum, signalling an instability of the system. Further note that as P0 approaches

zero, Sgen → πL2/Gbulk since we have set λGB = πL2/(2Gbulk).

Of course, the more interesting scenario is when λb, and hence 1/Gbrane, are negative.

Then eq. (B.2) has the solution

PB,0 = − λb√
1− λ2

b

, (B.3)

for which the generalized entropy (B.1) becomes

Sgen =
πL2

Gbulk

(√
1− λ2

b − 1

)
+ 2λGB. (B.4)

We note that these expressions are only sensible for −1 < λb < 0. In fact, for λb < −1,

there is no minimum for the generalized entropy (B.1), i.e., there is no solution for eq. (B.2),

and rather PB runs off to infinity — see figure 17. This is, perhaps, not so surprising since

we can see from eq. (2.51) that this regime is pathological, with the graviton localized on

the brane becoming a ghost.

Therefore we only consider the regime −1 < λb < 0 where eqs. (B.3) and (B.4) apply.

As illustrated in figure 17, eq. (B.3) is indeed the global minimum of the generalized

entropy (B.1). We might note that the sum of the bulk and brane terms in eq. (B.4)

is negative. That is, the combined contributions of the two area terms in eq. (4.1) is

in fact negative! Hence we only get a sensible (i.e., positive) result for the generalized

entropy (B.1) with the inclusion of the topological term (4.44) and with λGB sufficiently

positive, which was also favoured in section 4.4.

These calculations are easily extended to higher dimensions, where eq. (B.1) is re-

placed by

Sgen =
Ld−1Ωd−2

2(d− 1)Gbulk

P d−1
B 2F1

[
1

2
,
d− 1

2
,
d+ 1

2
,−P 2

B

]
+

Ld−2Ωd−2

4Gbrane

P d−2
B . (B.5)
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We have not included contributions from any topological gravity terms in this expression

for general d — see further comments below. To produce a qualitative understanding of

this expression, we note that

F2 1

[
1

2
,
d− 1

2
,
d+ 1

2
,−P 2

B

]
≃
{
1 if PB ≪ 1 ,
d−1
d−2

1
PB

if PB ≫ 1 .
(B.6)

Now, we observe that for large PB, the leading contribution in eq. (B.5) takes the expected

form

Sgen ≃ A(σR)

4Geff

+ · · · where
A(σR)

4Geff

=
Ld−1Ωd−2

2(d− 2)Gbulk

(1 + λb)P
d−2
B , (B.7)

again using eq. (2.50). Hence, there is a large penalty for having the RT surface meet

the brane at a large radius PB, which will tend to push the intersection σR to smaller

radii. However, for small PB, the bulk contribution to Sgen grows like the volume, i.e., it is

proportional to P d−1
B . Hence in this regime, the brane contribution dominates since it is

proportional to λbP
d−2
B , and for λb < 0, this term will favour larger values of PB. Hence

for the interesting case of λb < 0, we can expect that the generalized entropy for general

d is extremized at some finite value of PB of order −λb, just as we found for d = 3. Of

course, the denominator in eq. (B.3) is also important for λb close to −1, but this can not

be seen with this simple qualitative analysis. Now, in fact, the extremality condition can

in fact be solved exactly for any d. One finds

∂PB
Sgen =

Ld−1Ωd−2

2Gbulk

P d−3
B

(
PB√
P 2

B + 1
+ λb

)
= 0 . (B.8)

Of course, for λb ≥ 0, the only solution is PB = 0, i.e., the bubble collapses to zero size,

as expected. However, for λb < 0, the minimum is given by PB = PB,0, precisely the

same critical radius as in eq. (B.3). Substituting this critical radius into the generalized

entropy (B.5) does not yield any simplifications, however the result is easily evaluated

numerically as a function of λb. Of course, the generalized entropy (B.5) is negative at

this minimum and so one would really need to add a topological term to the gravitational

theory, either in the bulk or on the brane, to produce a sensible entropy, as we did for the

d = 3 example.

Wormholes and cutoffs. The appearance of these extremal bubbles is quite unusual,

of course. Since they are homologous to the entire boundary, this suggests that the ground

state of the dual boundary system has an entropy by the standard RT prescription. The

bulk construction makes clear that it is the conformal defect which introduces this large

degeneracy of ground states.52

We should note, however, that the evaluation of this ground state entropy presented

above is incomplete. In particular, there is a ‘zero mode’ associated with these bubbles

52As we see in figure 17, entropy associated with the zero-size bubble is nonvanishing and higher than

that of the stable finite-size bubble due to the topological contribution. However, we note that it may be

that the correct RT prescription is to choose ‘empty surface’ in this case, giving zero entropy.
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which allows them to be translated along the brane. Recall that while the empty AdSd+1 ge-

ometry has an SO(2, d) isometry (reflecting the conformal symmetry group of the boundary

CFT), the backreacted brane geometry preserves an SO(2, d−1) subgroup of these symme-

tries. Now our construction places the center of the bubbles at P = 0, however, by acting

with these symmetries, we can position the center anywhere on the brane. Further recall

that one arrives at the RT prescription by evaluating (a particular limit of) a saddlepoint

in the gravitational path integral [10]. Hence we have discovered that there is a zero mode

associated with the saddlepoints connected to the bubbles. Hence the integral over this

zero mode would add a contribution to the entropy proportional to the logarithm of the

(regulated) brane volume. It is interesting to speculate that this contribution may lift the

negative value for Sgen(PB,0) to some positive entropy.

An essential feature required for the appearance of these bubbles was that the grav-

itational coupling associated with the DGP term (2.46) was negative, i.e., 1/Gbrane < 0.

While this may seem unusual, let us note that integrating out quantum fields on the brane

can produce either a positive or negative shift in Newton’s constant. In particular, the shift

is found to be negative for a U(1) gauge field when d < 8 [108, 109]. With the connection

between the renormalization of Newton’s constant and the area law contribution in entan-

glement entropy [138, 141], this negative renormalization generates a puzzle which, however,

was finally resolved in terms of edge modes in [142, 143]. There is a similar negative renor-

maliation for non-minimally coupled scalars [108], for which the resolution of the associated

puzzle appears in [18]. However, we should add that if we imagine 1/Gbrane < 0 is induced

by additional quantum fields on the brane, then our entanglement entropy calculations are

incomplete as they do not fully include the contributions of these extra fields. Hence our

perspective here is to simply view the DGP term as a counterterm as would appear in the

usual quantization of gravity on the brane, and in this context, the sign of 1/Gbrane is not

proscribed but rather is chosen as needed to produce the ‘observed’ value of 1/Geff.

Another remark in this vein is that the bubble solutions appear as soon as 1/Gbrane

is negative, i.e., these solutions (B.3) exist for very small values of λb as long as λb < 0.

However, it is important to recall that the short distance cutoff is given by eq. (3.8) in this

regime. Hence combining eqs. (4.34) and (B.3), the areal size of the bubbles becomes

LPB,0 =
|λb|L√
1− λ2

b

≃ |λb|√
1 + |λb|

δ̃ , (B.9)

where we have substituted eq. (3.4) in the second expression. This expression approaches

the maximum size δ̃/
√
2 as λb → −1. That is, the radius of bubbles is always smaller than

the cutoff scale δ̃ on the brane! Therefore, these solutions are not reliable in the regime

where Einstein gravity gives a good description of the brane. On the other hand, our

calculations in this appendix involved evaluating RT surfaces in the bulk, i.e., they only

depended on bulk perspective. Further, for |λb| & 1/
√
2, the corresponding RT surfaces

grow much larger than the bulk AdS scale, and so would be seen as valid solutions. However,

one may ask if there are physical constraints which will not allow us to realize theories with

λb which are that negative and so prevent us from considering scenarios where these bubbles

have a macroscopic size.
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We close here with two final remarks: these bubbles are a remnant of replica wormholes

in the limit n → 1 [26, 32]. In the discussion section, we explore if there are any lessons

that they may hold for the new discussions of baby universes and ensembles [33]. Another

comment is that the bubble surfaces produce an interesting entanglement wedge, which

extends to a band covering a finite time interval on the boundary. Of course, this is

reminiscent of the holographic construction of differential entropy [144–148], which can be

used to evaluate the area of closed surfaces in the bulk. It would be interesting to examine

these connections further.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199

[Erratum ibid. 46 (1976) 206] [INSPIRE].

[2] S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].

[3] S.W. Hawking, Black Holes and Thermodynamics, Phys. Rev. D 13 (1976) 191 [INSPIRE].

[4] J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [INSPIRE].

[5] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

[6] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006)

045 [hep-th/0605073] [INSPIRE].

[7] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[8] V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[9] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Lect. Notes Phys.

931 (2017) 1 [arXiv:1609.01287] [INSPIRE].

[10] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[11] S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14

(1976) 2460 [INSPIRE].

[12] J. Polchinski, The Black Hole Information Problem, in Theoretical Advanced Study Institute

in Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 353–397 (2017)

[DOI] [arXiv:1609.04036] [INSPIRE].

[13] D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, Rev. Mod. Phys.

88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].

[14] D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743

[hep-th/9306083] [INSPIRE].

[15] J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics, Phys.

Rev. D 9 (1974) 3292 [INSPIRE].

– 61 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF02345020
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C43%2C199%22
https://doi.org/10.1038/248030a0
https://inspirehep.net/search?p=find+J%20%22Nature%2C248%2C30%22
https://doi.org/10.1103/PhysRevD.13.191
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD13%2C191%22
https://doi.org/10.1007/BF02757029
https://inspirehep.net/search?p=find+J%20%22Lett.Nuovo%20Cim.%2C4%2C737%22
https://doi.org/10.1103/PhysRevD.7.2333
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD7%2C2333%22
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1126-6708/2006/08/045
https://arxiv.org/abs/hep-th/0605073
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0605073
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603001
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.0016
https://doi.org/10.1007/978-3-319-52573-0
https://doi.org/10.1007/978-3-319-52573-0
https://arxiv.org/abs/1609.01287
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.01287
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.4926
https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1103/PhysRevD.14.2460
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD14%2C2460%22
https://doi.org/10.1142/9789813149441_0006
https://arxiv.org/abs/1609.04036
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.04036
https://doi.org/10.1103/RevModPhys.88.015002
https://doi.org/10.1103/RevModPhys.88.015002
https://arxiv.org/abs/1409.1231
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.1231
https://doi.org/10.1103/PhysRevLett.71.3743
https://arxiv.org/abs/hep-th/9306083
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9306083
https://doi.org/10.1103/PhysRevD.9.3292
https://doi.org/10.1103/PhysRevD.9.3292
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD9%2C3292%22


J
H
E
P
1
0
(
2
0
2
0
)
1
6
6

[16] A.C. Wall, Ten Proofs of the Generalized Second Law, JHEP 06 (2009) 021

[arXiv:0901.3865] [INSPIRE].

[17] A.C. Wall, A proof of the generalized second law for rapidly changing fields and arbitrary

horizon slices, Phys. Rev. D 85 (2012) 104049 [Erratum ibid. 87 (2013) 069904]

[arXiv:1105.3445] [INSPIRE].

[18] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic

entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

[19] N. Engelhardt and A.C. Wall, Quantum Extremal Surfaces: Holographic Entanglement

Entropy beyond the Classical Regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].

[20] A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields

and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063

[arXiv:1905.08762] [INSPIRE].

[21] G. Penington, Entanglement Wedge Reconstruction and the Information Paradox, JHEP 09

(2020) 002 [arXiv:1905.08255] [INSPIRE].

[22] A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation

from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

[23] A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon,

arXiv:1910.11077 [INSPIRE].

[24] A. Almheiri, R. Mahajan and J.E. Santos, Entanglement islands in higher dimensions,

SciPost Phys. 9 (2020) 001 [arXiv:1911.09666] [INSPIRE].

[25] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica

Wormholes and the Entropy of Hawking Radiation, JHEP 05 (2020) 013

[arXiv:1911.12333] [INSPIRE].

[26] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole

interior, arXiv:1911.11977 [INSPIRE].

[27] C. Akers, N. Engelhardt and D. Harlow, Simple holographic models of black hole

evaporation, JHEP 08 (2020) 032 [arXiv:1910.00972] [INSPIRE].

[28] M. Rozali, J. Sully, M. Van Raamsdonk, C. Waddell and D. Wakeham, Information

radiation in BCFT models of black holes, JHEP 05 (2020) 004 [arXiv:1910.12836]

[INSPIRE].

[29] H.Z. Chen, Z. Fisher, J. Hernandez, R.C. Myers and S.-M. Ruan, Information Flow in

Black Hole Evaporation, JHEP 03 (2020) 152 [arXiv:1911.03402] [INSPIRE].
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