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Abstract: We discuss holographic models of extremal and non-extremal black holes in

contact with a bath in d dimensions, based on a brane world model introduced in [1]. The

main benefit of our setup is that it allows for a high degree of analytic control as compared

to previous work in higher dimensions. We show that the appearance of quantum extremal

islands in those models is a consequence of the well-understood phase transition of RT

surfaces, and does not make any direct reference to ensemble averaging. For non-extremal

black holes the appearance of quantum extremal islands has the right behaviour to avoid

the information paradox in any dimension. We further show that for these models the

calculation of the full Page curve is possible in any dimension. The calculation reduces to

numerically solving two ODEs. In the case of extremal black holes in higher dimensions, we

find no quantum extremal islands for a wide range of parameters. In two dimensions, our

results agree with [2] at leading order; however a finite UV cutoff introduced by the brane

results in subleading corrections. For example, these corrections result in the quantum

extremal surfaces moving further outward from the horizon, and shifting the Page transition

to a slightly earlier time.
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1 Introduction

Understanding the quantum description of black holes remains a central question in theoret-

ical physics. One unresolved question is the fate of information during black hole evapora-

tion. In his seminal work, Hawking argued that in a quantum theory black holes evaporate

into a mixed state of radiation, independently of how the black hole was formed [3–5].
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Of course, this is in tension with the assumption that to an outside observer, the black

hole looks like an ordinary, unitary quantum mechanical system, e.g., as suggested by

the AdS/CFT correspondence [6, 7]. This tension is colloquially known as the black hole

information paradox [8].

One way of sharpening the paradox is to consider the von Neumann entropy of the

Hawking radiation produced during black hole evaporation. Assuming the gravitational

system begins in a pure state, this entropy gives a measure of the amount of entanglement

between the radiation and the black hole. According to Hawking’s original calculation,

the entanglement increases monotonically throughout the evaporation process since the

radiation is thermal. On the other hand, unitary evolution would require that the thermo-

dynamic entropy of the black hole, which is proportional to its horizon area [9–11], set an

upper bound on the entanglement entropy of the radiation. Since the former decreases as

the black hole radiates, at some time — known as the Page time — the thermodynamic

entropy of the black hole will equal the entropy of the radiation, and the latter entropy

must then decrease in the subsequent evolution, reaching zero when the black hole has dis-

appeared. That is, subtle correlations between the quanta emitted at early and late times

must produce a purification of the final state, in a unitary evolution of the full system.

This qualitative behaviour of the radiation’s entropy as a function of time is known as the

Page curve [12] — see also [7].

While reconciling Hawkings calculation with the idea that quantum gravity is uni-

tary was a longstanding puzzle, recently progress has made it possible to compute the

Page curve in a controlled manner [13–15]. The new approach builds on insights com-

ing from holographic entanglement entropy [16–19] and its extension to include quantum

contributions [20, 21]. It is best understood in a setting where a black hole is coupled to

an auxiliary, non-gravitational reservoir — referred to as the bath — which captures the

Hawking radiation.1 This setup can be interpreted as a idealized picture, where we split

the spacetime into two regions: the first, in which gravity is important, is close to the

black hole while the second region is far away, where gravitational effects are negligible,

at least semi-classically. In this situation, it was argued that instead of using Hawking’s

calculation, the true entropy of the Hawking radiation captured in a region R of the bath

should be calculated using the so-called island rule [15]

SEE(R) = min

{
ext

islands

(
SQFT(R ∪ islands) +

A(∂(islands))

4GN

)}
. (1.1)

This formula instructs us to evaluate the (semiclassical) entanglement entropy of the quan-

tum fields in the bath region R combined with any codimension-two — and possibly dis-

connected — subregions in the gravitating region. The boundary of the candidate islands

also contributes a gravitational term in the form of the usual Bekenstein-Hawking entropy.

One extremizes the right-hand side of eq. (1.1) over all such choices, and if the latter yields

multiple extrema, the correct choice is the one that yields the smallest entropy for R. If

1This approach has now also been applied in a variety of different situations involving black holes [22–50]

and cosmology [51–58].
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this procedure yields a solution with a nontrivial region ‘islands’, the latter is called a

quantum extremal island — see [37] for a recent review.

For an evaporating black hole, an obvious choice for the island region which extremizes

the entropy functional is the empty set, in which case the result of eq. (1.1) agrees with

Hawking’s calculation. However, if radiation in the region R shares a large amount of

entanglement with the quantum fields behind the horizon, new quantum extremal islands

can appear. In particular, this occurs for an old evaporating black hole, and in this case

a quantum extremal island appears just behind the horizon [14]. It turns out that after

the Page time, this configuration yields the minimal entropy in eq. (1.1). As time evolves

further, the entropy of R is controlled by the horizon area of the black hole which enters

through the second term in eq. (1.1). Hence as the black hole evaporates, the latter shrinks

to zero size and the island rule (1.1) gives a unitary Page curve.

Eq. (1.1) was motivated in part by analyzing a “doubly-holographic” model in [15].

This model provides three different descriptions of the physical phenomena: first, from the

boundary perspective, the system consists of two (one-dimensional) quantum mechanical

systems, which are entangled in a thermofield double state. Further, one of the quantum

mechanical systems is coupled to a two-dimensional holographic CFT, which plays the role

of the bath — see figure 1a. With the brane perspective, the quantum mechanical systems

are replaced by their holographic dual, a two-dimensional black hole in JT gravity. The

latter has an AdS2 geometry, which also supports another copy of the two-dimensional

holographic CFT — see figure 1b. Finally, with the bulk perspective, the holographic

CFT is replaced everywhere with three-dimensional Einstein gravity in an asymptotically

AdS3 geometry. The latter effectively has two boundaries: the standard asymptotically

AdS boundary and the region where JT gravity is supported, which is referred to as the

Planck brane — see figure 1c. An advantage of working in the bulk perspective is that

entanglement entropies of subregions in the bath can be computed geometrically using the

usual rules of holographic entanglement entropy [16–18], taking into account that the RT

surfaces that can also end on the Planck brane [59, 60].

One direction for progress is to understand the Page curve and quantum extremal

islands in higher dimensions. While limited results have been obtained on this front [14, 30–

34], we focus here on the holographic model which we introduced in [1]. Our model allows

us to obtain analytic results, while being powerful enough to do calculations in the regime

where the gravitational theory on the brane is well-approximated by Einstein gravity. In

our previous paper, we showed that quantum extremal islands can appear in any spacetime

dimension, and clarified several of the properties of the doubly-holographic model in [15].

Here, we will extend our earlier work and discuss the presence of quantum extremal islands

for black holes coupled to bath at a finite temperature. That is, our analysis provides a

higher dimensional extension of the two-dimensional scenario considered in [2].

The key feature of our holographic model [1] is that it reproduces the three descrip-

tions of the underlying physics discussed above for the doubly-holographic model of [15].

From the boundary perspective, our system consists of a d-dimensional holographic CFT

coupled to codimension-one conformal defect, as shown in figure 1d. Using the standard

AdS/CFT dictionary, this description is translated to the bulk gravity perspective. The

– 3 –
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a.

d.

b.

e. f.

c.

Figure 1. Illustration of doubly-holographic models: the top row illustrates (a time slice of) the

three perspectives of the model in [15], while the bottom row displays the analogous descriptions

of our construction in higher dimensions [1]. In the latter, we are using the global conformal frame

where the boundary CFT lives on R × Sd−1 and the conformal defect appears on the equator of

the (d − 1)-sphere — see discussion in section 2 and [1]. The bottom row reduces to the top upon

setting d = 2 and taking a Z2 quotient across the defect in the boundary or the brane in the bulk.

The boundary, brane and bulk gravity perspectives correspond to panels a & d, b & e, and c & f,

respectively.

latter describes the system in terms of (d + 1)-dimensional Einstein gravity in an asymp-

totically AdSd+1 geometry coupled to a d-dimensonal brane, which intersects the boundary

at the location of the conformal defect — see figure 1f. According to the Randall-Sundrum

(RS) scenario [61–63], the gravitational backreaction of the brane warps the bulk geometry

creating new localized graviton modes in its vicinity. This mechanism allows for the brane

perspective, shown in figure 1e, where the system is described by an effective theory of Ein-

stein gravity coupled to (two copies of) the holographic CFT on the brane, all coupled to

the boundary CFT. In [1], we also considered introducing an intrinsic Einstein term to the

brane action, analogous to the construction of Dvali, Gabadadze and Porrati (DGP) [64].

Hence our construction [1] provides a natural generalization to higher dimensions of

the two-dimensional doubly-holographic setup considered in [15]. Let us also note that our

model resembles the setup in [15] even more closely upon taking a Z2 orbifold quotient

across the brane. Further, we emphasize that while the three different perspectives were

presented on a more or less equal footing, the fact that the RS gravity on the brane has

a finite UV cutoff [61, 62] singles out the brane prespective as an effective low-energy

description, in contrast to the boundary and bulk descriptions.2

2This does not mean that the bulk description in terms of a(n infinitely thin) brane in AdSd+1 is UV

complete. However, it is reasonable to expect that the bulk description can be completed in the UV by a

more complicated configuration which can be obtained within string theory, e.g., see [65–67]. In contrast,

the brane theory has a fundamental cutoff.
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Again, the bulk gravity perspective allows us to calculate entanglement entropies

of boundary regions geometrically with the usual rules of holographic entanglement en-

tropy [16–18]. From the brane perspective then, quantum extremal islands simply arise

when the minimal RT surfaces in the bulk extend across the brane for certain configura-

tions.

In this case, the entanglement entropy of the corresponding boundary region R is

given by

SEE(R) = min

{
ext
ΣR

(
A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

)}
(1.2)

where ΣR is the usual bulk RT surface, i.e. an extremal codimension-two surface in the

bulk homologous to R. As argued in [1], when the brane supports an intrinsic gravitational

action, we must also include a Bekenstein-Hawking area contribution for the brane region

σR = ΣR∩brane. This intersection of the RT surface with the brane becomes the boundary

of the islands seen in the brane prespective.

The equivalence between eqs. (1.1) and (1.2) can be easily understood as follows: the

bulk term in eq. (1.2) describes the leading planar contributions of the entanglement en-

tropy of the boundary CFT, and so matches the first term in eq. (1.1). However, expanding

this geometric contribution near the brane also reveals an Bekenstein-Hawking term that

matches the induced Einstein term in the effective gravitational action on the brane [1].

This contribution combines with the brane term in eq. (1.2) to produce the expected grav-

itational contribution appearing in eq. (1.1). In fact, the RT contribution also captures

higher derivative contributions matching the Wald-Dong entropy [68–71] of the higher cur-

vature terms appearing in the effective gravitational action [1]. Further, as discussed in [1],

the competition between candidate quantum extremal islands, denoted by the ‘min’ in

eq. (1.1) simply becomes the usual competition between different possible RT surfaces in

the holographic formula (1.2), e.g., see figure 2.

In the following, we will study the question of quantum extremal islands for black

holes in arbitrary dimensions using the purely geometric description (1.2) of the bulk

gravity perspective. As emphasized in [1], the transition between the phase without an

island and that with the island is nothing more than the usual transition between different

classes of RT surfaces [72–74] — see figure 2. In particular, in the island phase, the RT

surface crosses the brane so that a portion of the latter, i.e. the island, is included in the

corresponding entanglement wedge. Thus the appearance of quantum extremal islands is

simply decribed by a well understood feature of holographic entanglement entropy in a new

setting. The main advantage of our construction here and in [1] lies in its simplicity. As we

will show, our framework allows us to carry the calculations remarkably far analytically,

complementing previous approaches which heavily relied on numerics [30]. In our case, the

numerics required to extract quantitative results are limited to solving few ODEs.

The remainder of this paper is organised as follows: in section 2, we review the bulk

geometry and effective action of our model presented in [1], which is based on the Karch-

Randall setup [63, 75–80] for branes embedded in AdS. We also discuss the addition

of a DGP term [64] to the brane action. For the two dimensional bulk gravity case, we

– 5 –
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R

ΣR

σR
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Figure 2. The choice of RT surfaces on a constant time slice in the presence of the brane (coloured

green), showing the different ingredients involved in eq. (1.2).

summarize the setup of [2], describe the connection to our model and introduce eternal black

holes. In section 3, we construct eternal black holes on the brane in higher dimensions. As

in the d = 2 case, these black holes are in equilibrium with the bath at finite temperature

and so they do not evaporate. Nonetheless, there is a continuous exchange of radiation

between the black hole and the bath, which has the potential to create an information

paradox [2]. Hence, we use eq. (1.2) to investigate under which conditions islands appear.

We present the general analysis for the time dependence of the entropy, exploring the

island and no-island phases. In section 4, we develop the numerics associated to some

integral equations found in the previous section and explicitly evaluate the Page curve for

d = 3, 4 and 5. Section 5 examines an extremal horizon with a vanishing temperature,

and find that in contrast to two dimensions [2], generally islands do not form in higher

dimensions. However, this is not problematic, since at zero temperature the black hole

and bath are not actually exchanging radiation and thus no information paradox arises.

Details for the special case d = 2 appear in section 6. We review the induced action on

the two-dimensional brane, including the introduction of JT gravity terms, given in [1].

We also evaluate the corresponding quantum extremal surfaces and the Page curve, and

show that the brane cutoff produces subleading corrections compared to the results in [2].

Finally in section 7, we discuss our results and point towards some future directions.

2 Braneworld framework

2.1 Braneworlds in higher dimensions

Let us review the holographic model discussed in [1]. Beginning with the bulk gravity

perspective our setup is described by (d + 1)-dimensional Einstein gravity with a negative

cosmological constant,3

Ibulk =
1

16πGbulk

∫
dd+1x

√−g

[
R(g) +

d(d − 1)

L2

]
, (2.1)

3Throughout the paper, we ignore surface terms for the gravitational action, e.g., see [81–83].
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AdSd+1 AdSd+1AdSd+1

AdSd

CFTda. b.

Figure 3. A timeslice of our Randall-Sundrum setup. In panel (a), we cut off the AdSd+1 spacetime

along an AdSd slice near the asymptotic boundary θ = 0, in the metric (2.3). Two of these spaces

are glued together in panel (b) and the brane is realized as the interface between the two geomeries.

where gab denotes the bulk metric. We also introduce a codimension-one brane in the bulk

with action

Ibrane = −(To − ∆T )

∫
ddx

√
−g̃ +

1

16πGbrane

∫
ddx

√
−g̃ R̃(g̃) , (2.2)

where g̃ij is the induced metric on the brane. As well as the usual tension term, we

have also introduced an intrinsic Einstein-Hilbert term in the brane action, in a manner

analogous to Dvali-Gabadadze-Porrati (DGP) braneworld gravity [64]. We have separated

the brane tension into To and ∆T , and will tune ∆T ∝ 1/Gbrane so that the brane position

is determined entirely by To. Adding the DGP term is a natural generalisation to higher

dimensions of having JT gravity on a two-dimensional brane [15] — see section 6.

Since the brane is codimension-one, the bulk geometry away from the brane locally

takes the form of AdSd+1 with the curvature scale set by L. We will work in a regime

where the induced geometry on the brane will be that of AdSd space — see [1] for details

— and so it is useful to consider the following foliation of the AdSd+1 geometry by AdSd

slices

ds2
AdSd+1

=
L2

sin2 θ

(
dθ2 + ds2

AdSd

)
. (2.3)

The AdSd metric is dimensionless with unit curvature. This metric would cover the entire

AdSd+1 vacuum spacetime if we take 0 ≤ θ ≤ π. The solution for the backreacting brane

is constructed by first cutting off the spacetime along an AdSd slice near the asymptotic

boundary θ = 0, i.e. at θ = θB ≪ 1 where θB is determined by the brane tension To —

see below. Then, two such spaces are joined together along this surface, and the brane is

realized as the interface between the two geometries. With this construction, the brane

divides the bulk spacetime in half, but the backreaction of the brane has enlarged the

geometry — see figure 3. In this case, the metric (2.3) can be used to cover a coordinate

patch with θB ≤ θ ≤ π on either side of the brane.

With the above construction, the induced geometry on the brane is simply AdSd and

using the Israel junction conditions [1, 84], one finds the curvature scale to be

1

ℓ2
B

=
sin2 θB

L2
=

2

L2
ε (1 − ε/2) , where ε ≡

(
1 − 4πGbulkLTo

d − 1

)
. (2.4)

– 7 –
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For the most part, we will be interested in the regime where L2/ℓ2
B

≪ 1 or ε ≪ 1. As we will

explain below, this ensures that the gravitational theory on the brane is essentially Einstein

gravity. Implicitly in eq. (2.4), we have tuned the “shift” ∆T to produce an embedding of

the brane that is independent of the DGP coupling Gbrane, i.e. the brane location remains

unchanged when we vary Gbrane. This is achieved by setting

∆T =
(d − 1)(d − 2)

16πGbrane ℓ2
B

. (2.5)

The boundary perspective simply considers the dual description of the above gravi-

tational system using the standard rules of the AdS/CFT correspondence. As described

in [1], when considered in “global” coordinates, the dual solution is naturally the boundary

CFT on a spherical cylinder R × Sd−1 (where the R is the time direction). Further there is

also a codimension-one conformal defect positioned on the equator of the sphere, where the

brane reaches the asymptotic boundary. The central charge of the boundary CFT is given

by the standard expression cT ∼ Ld−1/Gbulk, e.g., see [85], whereas the (d − 1)-dimensional

CFT of the conformal defect has c̃T ∼ ℓd−2
eff

/Geff ≫ cT . Similarly, one can consider the

ratio of the couplings in the defect and bath CFTs: λ̃/λ ∼ ℓeff/L ≫ 1.

We arrive at the brane perspective by replacing the conformal defect in the boundary

perspective by its gravitational dual. Hence this description includes the boundary CFT

on the asymptotic AdSd+1 boundary, but also two copies of the boundary CFT on the

brane, as dictated by the usual Randall-Sundrum (RS) scenario. Of course, the latter is

an effective theory with a finite UV cutoff set by the position of the brane, e.g., see [86]

and references therein.4 Further, new (nearly) massless graviton modes localized in the

vicinty of the brane also appear and so the brane also supports a gravitational theory. We

can think that integrating out the brane CFT (or the bulk gravity) induces an effective

gravitational action on the brane of the form [1]

Iinduced =
1

16πGeff

∫
ddx

√
−g̃

[
(d − 1)(d − 2)

ℓ2
eff

+ R̃(g̃)

]
(2.6)

+
1

16πGRS

∫
ddx

√
−g̃

[
L2

(d − 4)(d − 2)

(
R̃ijR̃ij − d

4(d − 1)
R̃2
)

+ · · ·
]

,

where
1

Geff

≡ 1

GRS

(1 + λb) with λb ≡ GRS

Gbrane

,

1

GRS

=
2L

(d − 2)Gbulk

,
1

ℓ2
eff

=
2

L2
ε ,

(2.7)

and ε is given in eq. (2.4). Note that in the regime of interest (i.e. ε ≪ 1), we have ℓeff ≃ ℓB.

Hence to leading order, the above gravitational theory (2.6) corresponds to Einstein gravity

coupled to a negative cosmological constant. In the second line of eq. (2.6), we show the first

of a(n infinite) sequence of higher curvature corrections, involving powers of L2 × curvature.

Since the gravitational equations of motion set the curvatures to be roughly 1/ℓ2
eff

(at least

4In fact, working with the induced metric on the brane (as we do in the following), the short-distance

cutoff on the brane is δ̃ ≃ L — see [1] for further details.

– 8 –
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defect

Rindler Left

Rindler Right

τ = t = 0

Figure 4. Our eternal black hole coupled to the CFT bath, as seen from the bulk perspective.

for the background of interest), the contribution of these terms is highly suppressed since

we work in the regime where L2/ℓ2
eff

≪ 1.5 Lastly, let us note that 1/GRS is the standard

RS gravitational coupling induced in the absence of a DGP term, i.e. λb = 0.

It turns out that in the case of a brane theory with negative cosmological constant, like

the one we are considering here, the graviton acquires a mass [63, 75–80]. For small brane

angles, the graviton mass is proportional so some power of the brane angle [79, 80] and thus

vanishes as we take the zero-angle limit. It was suggested in [33] that this mass is a crucial

ingredient for islands to exist, since the limit of vanishing graviton mass coincides with a

limit in which islands cannot be created since their area becomes infinite. Alternatively,

it is possible that in the Karch-Randall model, the graviton mass simply depends on the

effective gravitational coupling on the brane, and is thus correlated with the island size,

but not responsible for the island.

2.2 Two dimensions and black holes

In two dimensions, we need to revisit our setup for an accurate effective brane action and

to make connection to [2]. First, there are factors of 1/(d−2) appearing in eq. (2.6),6 which

indicate that the bulk integration analysis leading to this result must be reconsidered for

d = 2. As reviewed in section 6, we find that the induced brane action is non-local, a

signature of the trace anomaly. In addition, the two-dimensional analogue of the DGP

brane action is a JT gravitational action localized on the brane. Having accounted for

these changes, we may relate our setup directly to that of [2], which we now briefly review.

5A more careful examination in [1] showed that the gravitational theory on the brane was well approx-

imated as semiclassical Einstein gravity with L2/ℓ2
eff ≪ 1 for λb > 0, but required L2/ℓ2

eff ≪ 1 + λb for

λb < 0. However, the latter constraint is replaced by L2/ℓ2
eff ≪ (1 + λb)2 for the special case of λb < 0 and

d = 3.
6Similar factors of 1/(d − 4) appear and are problematic in d = 4, but we work in a regime such that

the curvature squared terms of eq. (2.6) are irrelevant.
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Ref. [2] interprets the two Rindler patches of AdS2 as exteriors of an eternal non-zero

temperature black hole and subsequently considers coupling each exterior to a flat half-

space, consitituting a bath region. A matter CFT2 theory spans both the bath and AdS2

regions and JT gravity is placed on the AdS2 region. Invoking AdS2/CFT1, this setup is

alternatively described by the thermofield double (TFD) state of a BCFT living on two

half-lines (the bath regions) coupled to quantum mechanics (dual to the AdS2 spacetime)

on the boundaries of the half-lines. The authors then compute the entanglement entropy

of a region consisting of intervals on both sides of the TFD including the defect and with

endpoints in the bath regions. From the AdS2 perspective, this entropy is obtained using

eq. (1.1), allowing for the possibility of islands in the AdS2 spacetime. In particular, this

gives rise to a competition between a no-island phase and an island phase, with the former

dominating at early times and the latter at late times. In the island phase, quantum

extremal surfaces (QESs) appear in the AdS2 spacetime just outside the horizon, marking

the boundaries of an island, stretching through the AdS2 wormhole, which now belongs to

the entanglement wedge of the bath complements to the intervals.

Let us return to our braneworld to see how our setup mimics that of [2] described

above. From the bulk perspective, we have an AdS3 spacetime with a brane lying along

an AdS2 slice (figure 4). We may reproduce the AdS2 black hole on the brane by taking

Rindler-AdS coordinates in the AdS3 bulk — this equips the AdS3 bulk with a horizon and

‘left’ and ‘right’ exterior regions. The resulting picture is that of a Hartle-Hawking state

prepared by the Euclidean path integral drawn in figure 5. The Rinder AdS3 coordinates

also induce a horizon on the brane. In fact, the geometry of the brane is itself Rindler-AdS,

ds2 = ℓ2
B

[
−(ρ2 − 1)dτ2 +

dρ̃2

ρ2 − 1

]
, (2.8)

supporting a dilaton profile Φ ∝ ρ. In the brane perspective, we then have a CFT spanning

the left and right asymptotic boundary regions — the baths — and the Rindler-AdS2 brane,

which also supports a theory of JT gravity. Illustrated in figure 6, this is essentially the

same setup as in [2], up to a Z2-quotient across the brane. We may alternatively take the

boundary perspective, wherein the bulk AdS3 plus brane theory is dual to a CFT2 plus

defect theory. More precisely, the Euclidean path integral preparing the Hartle-Hawking

bulk is equated to a thermal path integral preparing a TFD state of two copies of a CFT2

with a defect running through its middle. We are thus led to the boundary picture drawn

in figure 7. Taking a Z2 quotient across the defect, this, of course, is the alternative

description of the setup in [2] as a thermal BCFT coupled to quantum mechanics.

With our setup in place, we can then consider subregions of the boundary CFT and

use the RT formula (1.2) to compute the corresponding entanglement entropies. Analogous

to [2], we choose ‘belt’ subregions consisting of intervals symmetric about the defect. The

details of the resulting entropy calculation in two dimensions are provided in section 6.

The upshot is that we find a competition between a no-island phase and an island phase,

as sketched in figure 2, with the former dominating at early times and the latter past a

Page time. Notice that these phases are analogous to the no-island and island phases of [2],

with now the QESs demarked by the intersection between our bulk RT surface and the
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β
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Figure 5. The Euclidean path integral (orange region) prepares the Hawking-Hartle state. The

black hole temperature T = 1/(2πR) is derived in section 3.

brane. Namely, it is clear from the bulk picture shown in the right panel of figure 2 that

the island region between these intersection points belongs to the entanglement wedge of

the bath region complementary to the belt.

In section 6, we also explicitly demonstrate that our bulk RT calculation using eq. (1.2)

precisely reproduces the results of [2], in the limit where the brane approaches the would-

be AdS3 boundary by slicing through the bulk at a small brane angle θB (that is, the

high-tension limit of higher dimensions). For early times, we find that the entanglement

entropy grows linearly in the no-island phase7 as 4πct/(3β) (see eq. (6.38)), whereas for

late times it is dominated by the island and given by a constant, 1
2Gbrane

(
Φ̃0 + Φr

)
(see

eq. (6.51)). Thus, as in [2], the appearance of an island caps off the entropy growth at

the expected course-grained entropy of two copies of the black hole on the brane, rescuing

the system from a potential information paradox (the resulting Page curve is shown in

figure 24). While we find perfect agreement with [2] at leading order in θB, we also find

corrections to these results due to the brane imposing a UV cutoff at finite θB. The result

is O(θ2
B
) corrections which, for instance, push the QES further from the horizon, lower the

entropy of the island phase, and lead to a hastened Page transition. (Note that, in the

no-island phase, no such corrections appear as the bulk RT surface does not intersect the

brane.)

It would be straightforward to use our setup to perform the zero-temperature analysis

also covered in [2] for d = 2. Here one would instead take Poincaré coordinates which

would equip the AdS3 bulk and AdS2 brane with an extremal horizon. We then expect

entanglement entropy of large regions in the bath to require the inclusion of islands on the

gravitating brane. In particular, intervals stretching from some location in the bath out

to infinity require the inclusion of an island localized around the horizon. (This is to be

contrasted with our findings in d ≥ 3, where islands are lacking in the extremal case at

small brane angle θB.)

7Recall our setup is related to that of [2] by a Z2-orbifold, hence factors of 2 must be accounted for when

comparing results.
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CFTRCFTL

τ = t = 0

horizon

defect

Figure 6. Our eternal black hole coupled to the CFT bath, as seen from the effective brane

perspective. Each point in the Penrose diagram represents a hyperbolic space Hd−2. For d = 2 this

is simply a point.

defect

CFTL CFTR

Figure 7. Conformal defects along a CFT bath in the boundary perspective.

The benefit of our Randall-Sundrum setup is that it allows great flexibility in generaliz-

ing the construction of [2] to higher dimensions. Indeed, it is straigtforward to re-interpret

figures 4, 6, and 7 with a suppressed hyperbolic Hd−2 direction. In the following sections,

we shall apply our setup to extend the results mentioned here to higher dimensions.

3 Black hole in equilibrium with an external bath

In this section, we discuss how islands arise in the presence of certain topological, non-

extremal black holes in higher-dimensional brane-world models. Topological black holes

are characterized as having nontrivial horizon topology, and we will be interested in the

case of neutral black holes with a hyperbolic horizon [87, 88]. The general metric is given by

ds2 = −f(r)
L2

R2
dt2 +

dr2

f(r)
+ r2 dH2

d−1 , (3.1)

with the blackening factor

f(r) =
r2

L2
− 1 − ωd−2

rd−2
. (3.2)

Here, L denotes the AdS curvature scale and dH2
d−1 denotes the line element on a (d − 1)-

dimensional hyperbolic plane with unit curvature. This bulk geometry (3.1) is dual to
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a thermofield double (TFD) state for two copies of the boundary CFT [89], where each

resides on a spatial geometry Hd−1. After an appropriate Weyl rescaling, the boundary

metric for each CFT reads

ds2
CFT

= −dt2 + R2 dH2
d−1 , (3.3)

and hence the scale R (introduced in eq. (3.1)) corresponds to the curvature scale of the

spatial geometry. The full boundary geometry is then two copies of R × Hd−1, where the

R corresponds to the time direction in each of the CFTs.

Turning back to eq. (3.1), the relation between the position of the horizon rh, the black

hole mass M , and the ‘mass’ parameter ω is [83, 90, 91]

ωd−2 = rd−2
h

(
r2

h

L2
− 1

)
=

16π GN

(d − 1) volHd−1

R

L
M. (3.4)

Here and in the following, we use volHd−1
to denote the dimensionless volume of the spatial

boundary geometry, i.e. the volume measured by the metric dH2
d−1. Of course, this volume

is infinite and we must introduce an infrared regulator — see below.

In the following, we will consider the special case of a topological black hole with

vanishing mass M = ω = 0. Note that despite the fact that ω = 0, we still find a horizon

at rh = L from eq. (3.2). In fact, the bulk geometry corresponds to the AdS vacuum (as

expected for M = 0), but we are describing this geometry with the AdS-Rindler coordinates

where the metric resembles that of black hole [92]. In this case, it is straightforward to

evaluate the entropy and the temperature of the black hole

S =
volHd−1

Ld−1

4GN
, T =

1

2πR
. (3.5)

In terms of the dual CFT, we are considering a pure state (i.e. the vacuum) in the

conformal frame where the boundary geometry corresponds to R × Sd−1. However, with

an appropriate conformal transformation, we produce the TFD state on two copies of

R × Hd−1 with temperature T = 1/(2πR) [92]. The entropy in eq. (3.5) corresponds to

the entanglement entropy between the two copies of the CFT — and alternatively, can be

interpreted as the entanglement entropy between two halves of the sphere in the original

conformal frame. From the point of view of the CFT, masslessness of the black hole

corresponds to a fine tuning of the temperature to T = 1
2πR .

Following the brane world construction outlined in the previous section, we locate

a codimension-one defect at the center of each CFT. By the holographic dictionary, this

corresponds to a brane which cuts through the bulk and orthogonally intersects the horizon

— see figure 4. Since with ω = 0 , the bulk geometry is just the AdS vacuum, our previous

discussion of the brane geometry (above and in [1]) is still applicable. Hence, the brane

position in the bulk is determined precisely as described above in terms of the brane

tension To. In fact, this bulk geometry provides a higher dimensional generalization of the

construction discussed in section 2.2, and we will see that the brane inherits a black hole

metric with temperature T = 1/(2πR), from the AdS-Rindler coordinates in the bulk.

Our aim will be to use eq. (1.2) to investigate the appearance of quantum extremal

islands, from the brane perspective, where (two copies of) the boundary CFT are supported
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in this black hole geometry on the brane. Further, we will compute the entanglement

entropy associated to symmetric regions R on each side of the defect as a function of time

— see figure 2. The regions R of interest consist of those points on a CFT timeslice which

are further than a distance χ = χΣ away form the defect.8 The entanglement entropy

is evaluated using the holographic prescription of the bulk perspective and as described

in the introduction, the corresponding RT surfaces can be in one of two phases. Either

they connect through the horizon, which we will call the no-island phase, or they connect

through the brane, which we will call the island phase. The reason for those names is

apparent from the d-dimensional effective gravity on the brane, i.e. the region bounded by

the intersection of the RT surface and the brane is a quantum entremal island, which now

contributes to the entropy of R. This also implies that from the (d + 1)-dimensional bulk

perspective, the appearance of islands is simply explained as a standard phase transition

of an RT surface. We will see in the remainder of this section that at early times, the RT

surfaces starts out in the no-island phase, i.e. connects throught the horizon. As is well

known [93], the volume of the corresponding surfaces grows linearly with time. At some

point its volume will have grown so large, that the RT surface in the island phase has

smaller area and gives the correct entanglement entropy.

The calculation of the time-dependence of the area of RT surfaces will proceed in two

steps: in sections 3.2 to 3.4, we will derive expressions for the area of three special cases

of extremal surfaces. The first one will be RT surfaces in the island phase anchored at

Rindler time τΣ = 0. The second and third special cases will be RT surfaces ΣR in the

no-island phase which either end on entangling surfaces ∂R at χ = ±χΣ and τΣ = 0,

or end on entangling surfaces located at the defect (χΣ = 0) and arbitrary τΣ. While

these special cases naively might seem not to contain enough information to completely

reconstruct the time-evolution of the entanglement entropy, we will argue in section 3.5

that the time-evolution of any symmetric RT surface in the no-island phase can always be

reduced to one of those three cases.

We remind the reader that as described in section 2.2, we are considering eternal black

holes which do not evaporate. Nonetheless, from the effective brane point of view, the

black hole on the brane and the fields on the asymptotic boundary are in contact, and can

therefore continuously exchange radiation. If island are not accounted for appropriately,

this leads to information loss [15]. In section 3.6 we will argue, using results obtained below,

that also in higher dimensions the presence of islands makes the entanglement dynamics

of the joint system of black holes and radiation compatible with unitarity.

8The coordinate χ is introduced in eq. (3.7) below. Of course, since the global state which we are

considering is pure, we could equivalently discuss the entanglement entropy of the belt regions −χΣ < χ <

χΣ in both CFTs, including the conformal defects.
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3.1 Geometry on the brane

To set the stage for the following calculations, we will start by discussing the bulk and

brane geometry. As noted above, the bulk metric is described by AdS-Rindler coordinates

ds2 = L2

(
−(r2 − 1)dτ2 +

dr2

r2 − 1
+ r2 dH2

d−1

)
, (3.6)

which is obtained from eq. (3.1) by taking the massless limit ω, M → 0 and rescaling the

coordinates t → R τ and r → L r, such that the coordinates in eq. (3.6) are dimensionless.

Although the underlying geometry is simply the AdS vacuum, the metric (3.6) resembles

a black hole metric with horizons at r = ±1 and an apparent singularity at r = 0. We can

also extend the spacetime at a fixed time-slice through the bifurcation surface and arrive

at a second Rindler wedge. The bulk spacetime thus has two asymptotic regions, located

at r → ∞, each of which hosts one copy of the boundary CFT on the R × Hd−1 geometry.

As noted above (in terms of the dimensionful coordinates), the corresponding TFD state

has a (dimensionful) temperature T = 1/(2πR), which is tuned in relation to the curvature

scale R of the hyperbolic geometries (3.3). Lastly, note that since the Rindler wedges are

simply a reparametrization of pure AdS, it is clear that the singularity at r = 0 is only

a coordinate singularity.9 In fact, we can extend the coordinates smoothly through the

interior to negative r where we can exit the region behind the (inner) horizon at r = −1

and enter a new set of Rindler wedges.

For each CFT, we introduce a codimension-one conformal defect (with zero extrinsic

curvature) at the center of the hyperbolic spatial geometry. It is convenient to choose

slicing coordinates for the hyperbolic boundaries, such that

dH2
d−1 = dχ2 + cosh2 χ dH2

d−2. (3.7)

In these coordinates, the location of the conformal defect is χ = 0.

From the bulk perspective, the CFT defects are dual to a co-dimension one brane,

which spans a slice of constant extrinsic curvature of the bulk spacetime and intersects the

asymptotic boundary at the location of the CFT defect. In order to describe its trajectory,

it is convenient to write the bulk metric in terms of the slicing coordinates in eq. (2.3).

The brane is located at constant θ = θB, which is determined by the tension To through

eq. (2.4) with

ℓB =
L

sin θB

. (3.8)

The trajectory of a hypersurfaces of constant θB in the bulk spacetime is then given by

r2 sinh2 χ = cot2 θB =

(
ℓB

L

)2

− 1 . (3.9)

As noted in [1], this means that a brane with positive tension (i.e. To ≥ 0) creates additional

geometry by its backreaction. Of course, the backreaction of a negative-tension brane would

9This is in contrast to the general metric (3.1) where r → 0 does yields a curvature singularity.
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remove geometry. However, let us add that there is no (nearly) massless graviton induced

on a negative-tension brane10 and therefore we will only consider positive tensions in the

following, i.e. 0 ≤ θB ≤ π
2 .

For such a (positive-tension) brane, the bulk geometry to one side of the brane can be

described by eq. (3.6), with r sinh χ ≤ cot θB, while the geometry to the other side of the

brane is given by the same metric with r sinh χ ≥ − cot θB. We can therefore treat either

side of the brane as an AdS-Rindler geometry which is cut off by the brane.

Using eq. (3.9), we can determine the induced metric on the brane. After a short

calculation, one finds

ds2 = ℓ2
B

(
−(ρ2 − 1) dτ2 +

dρ2

ρ2 − 1
+ ρ2 dH2

d−2

)
, (3.10)

where we have changed the radial coordinate with

ℓ2
B
(ρ2 − 1) = L2(r2 − 1) . (3.11)

This brane metric again takes the form of an AdS-Rindler metric, cf. eq. (3.6). Further, this

demonstrates that the Rindler horizon in the bulk (at r = 1) induces a Rindler horizon

on the brane (at ρ = 1), as one would expect from the bulk perspective.11 From the

boundary perspective, this behavior is readily explained by the fact that the conformal

defect is in thermal equilibrium with the surrounding CFT. In the effective Randall-

Sundrum description of the brane perspective, this behaviour arises because the region of

dynamical gravity is coupled to the bath CFT along an accelerated trajectory, so that the

temperature felt by the accelerated boundary agrees with the temperature of the CFT, e.g.,

see [94–96]. As already mentioned, this setup generalizes the two-dimensional framework

presented in [2] to higher dimensions.

All calculations below will be done for the case of positive tension branes. However,

when it comes to interpretation, we will be particularly interested in the case where 1 ≫
θB ≃ L

ℓB
, for which the brane theory is well described as Einstein gravity coupled to two

copies of the boundary CFT (with a high cutoff). The reason is that in this limit, we can

interpret the intersection of the brane and the RT surface as bounding an island in this

effective gravitational theory.

3.2 Island phase at τΣ = 0

We will start our analysis by calculating the area of the RT surface for an entangling

surface lying in the τ = τΣ = 0 plane and crossing the Planck brane. In other words, the

RT surface is in the connected phase — see figure 8. We are interested in the entanglement

entropy of R comprised of the combined regions χ > χΣ and χ < −χΣ in both the left and

right CFTs. Hence the entangling surfaces of interest have two components (in each CFT)

sitting a constant distance away from the defect at χ = ±χΣ. We note that the induced

metric on the latter surfaces is proportional to coshd−2χΣ.

10We thank Raman Sundrum for explaining this point to us.
11However, it is interesting to note that r = 0 corresponds to ρ = cos θB = 1 − (L/ℓB)2, and hence one

cannot reach ρ = 0 in the r-coordinate system (unless θB = π/2).
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In two dimensions, the analysis of the RT surfaces is simplified because the metric (3.6)

has a shift symmetry χ → χ + const, but the latter is absent in higher dimensions. How-

ever, we can find a similar simplification by going to a different coordinate system defined

via [1, 97]

(1 + ζ2) = r2 cosh2 χ , tan ξ =
r√

r2 − 1
sinh χ , (3.12)

such that the horizon is located at ξ = ±π
2 . By time-translation invariance, we know that

the RT surface lies on a constant Rindler time slice and hence we consider the metric on

the τ = 0 slice in the new coordinates,12 which reads

ds2
E

= L2

(
dζ2

1 + ζ2
+ ζ2dξ2 + (1 + ζ2)dH2

d−2

)
. (3.13)

Hence the geometry of this spatial slice (or any constant τ slice) is invariant under ξ →
ξ + const, which will simplify the following.

Making the ansatz ζ = ζ(ξ) for the profile of the RT surface, the induced metric on

these surfaces takes the form

ds2
ind = L2

[((
∂ζ

∂ξ

)2

+ ζ2(1 + ζ2)

)
dξ2

(1 + ζ2)
+ (1 + ζ2)dH2

d−2

]
, (3.14)

with metric determinant

det(γ) = L2(d−1)(1 + ζ2)d−3

((
∂ζ

∂ξ

)2

+ ζ2(1 + ζ2)

)
. (3.15)

To obtain the correct RT surface, we now need to extremize the area functional

A(ΣR) =

∫

ΣR

√
det(γ) , (3.16)

subject to the correct boundary conditions. Here, a few observations are in order. The

boundary condition is determined by the RT surface ending at the entangling surface on

both sides of the defect. Alternatively, since our setup is reflection-symmetric across the

brane, we can also consider a family of bulk extremal surfaces which end on the brane and

vary with respect to the point of intersection of the brane and the RT surface [1]. Even

in higher dimensions, this variation takes a fairly simple form (see eq. (3.22) below), since

extremizing the RT surface can be cast as an effectively two-dimensional problem with

metric

ds2
2D = L2(d−1)volHd−2

(1 + ζ2)d−2

(
dζ2

1 + ζ2
+ ζ2dξ2

)
. (3.17)

Note that the area functional does not explicitly depend on ξ. Rather, ξ plays the

role of an angular coordinate and its associated Hamiltonian is conserved. This allows us

12Note that the full metric takes the form ds2 = L2 ζ2 cos2ξ dτ2 + ds2
E, and hence the shift symmetry

does not extend to the full spacetime metric.
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ΣR

ζ∗

(ζQES, ξQES)

horizon

(∞, ξΣ)
CFTL

CFTR

ξ
R R

conformal
defect

conformal
defect

Figure 8. This figure shows the RT surface and various quantities defined in the text for the RT

surface in the connected phase. The entangling region R in the boundary is composed of the two

regions |χ| > χΣ (where tan ξΣ = sinh χΣ) in both the left and right CFTs. Note that the right

(left) CFT occupies the region on the asymptotic boundary marked in pink (aqua). The conformal

defects (i.e. χ = 0 or ξ = 0 and π) are positioned where the brane (green) reaches these boundary

regions.

ζ∗

R R

CFTL

CFTR

Figure 9. This figure shows how RT surfaces can intersect the brane before reaching the turnaround

point ζ∗, with relatively small brane tension To, i.e. θB ∼ O(1), and positive DGP coupling.

to turn the second order equation which determines extremal surfaces into a first order

expression,

dζ

dξ
= ±

√√√√ζ2(1 + ζ2)

(
ζ2(1 + ζ2)d−2

ζ2
∗ (1 + ζ2

∗ )d−2
− 1

)
, (3.18)

where we have introduced ζ∗ which is the turn-around point for ζ as a function of ξ —

see figure 8. The sign depends on whether ζ is going towards (+) or away (−) from the

boundary as ξ increases. In the latter case, where the RT surface does not turn around

before it intersects the brane we have to think of ζ∗ as a coordinate of vacuum AdS extended

past the brane, as shown in figure 9. More generallly, the sign starts out negative and

generally flips after ζ = ζ∗ has been reached.
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The area functional for the RT surfaces satisfying eq. (3.18) then becomes

A(ΣR) = 4Ld−1volHd−2

(∫ ∞

ζ∗

±
∫ ζ∗

ζQES

)
dζ

ζ(1 + ζ2)d− 5
2

√
ζ2(1 + ζ2)d−2 − ζ2

∗ (1 + ζ2
∗ )d−2

, (3.19)

where here and below, we use the subscript QES to mark coordinates of the intersection

between RT surface and brane, which corresponds to a quantum extremal surface in the

brane theory. The upper limit of integration indicated as ∞ must be regulated, since the

area of the RT surface is infinite. The sign here is the same sign as in eq. (3.18). We have

also included a factor of four, since there is one RT surface to each side of the defect and

considering both CFTs, we need to multiply the result by another factor of two.

Eq. (3.18) yields a family of RT surfaces (parameterized by ζ∗) which are locally

extremal in the bulk away from brane. However, fully extremizing the area functional (3.16)

requires that we also extremize over the possible locations where these candidate surfaces

intersect the brane. That is, we consider the extremization condition of the RT surfaces’

area (plus possibly the area of the QES, should there be extra DGP gravity) with respect

to the position of the intersection σR,

0 =
∂

∂ρQES

(
A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

)
, (3.20)

where the two contributions reflect the two contributions in eq. (1.2). Here, ρQES denotes

the location of σR in coordinates along the brane in eq. (3.10).

As described in [1], this extremization leads to a boundary condition restricting the

angle at which the RT surface meets the brane. Normally, this would be a difficult problem

in higher dimensions. However, here we are leveraging the hyperbolic symmetry along the

transverse directions, which reduces the present case to a two-dimensional problem. That

is, we need only extremize a one-dimensional profile ζ(ξ) of the RT surface in the effective

two-dimensional geometry given by eq. (3.17). Assuming that we consider an extremal

bulk surface which is anchored at the asymptotic boundary, the variation of the surface’s

area with respect to its intersection point with the brane is given by

δσR
A(ΣR) = hij T iXj |end-point, (3.21)

where hij is the two-dimensional metric (3.17) and T i is a normalized (w.r.t. hij) tangent

vector to the RT surface, which can be obtained from eq. (3.9). The vector Xi determines

the variation along the brane.

In the absence of a DGP gravity term in the action, this variation must vanish for

Xj along the brane; hence we have a boundary condition which sets the RT surface per-

pendicular to the brane. More generally, we must balance the above variation against the

variation of the entropy contribution intrinsic to the brane, as can be seen from eq. (3.20).

The first contribution to eq. (3.20) is then calculated using eq. (3.21) and yields

∂ρA(ΣR) = 4Ld−1volHd−2

ζ∗(1 + ζ2
∗ )

d−2
2

ζ2 sin θB



√

ζ2 + 1

tan2 θB ζ2 − 1
±
√

ζ2(1 + ζ2)d−2

ζ2
∗ (1 + ζ2

∗ )d−2
− 1


 ,

(3.22)

which is evaluated at ζ = ζQES. Here we have used the brane angle θB defined in eq. (3.8).
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If the brane DGP coupling is turned on, the variation of the area also obtains a

contribution from the second term in eq. (3.20),

∂ρA(σR) = 2Ld−2volHd−2

ζ∗(1 + ζ2
∗ )

d−2
2

ζ2
√

ζ2 sin2 θB − cos2 θB

(d − 2)(ζ2 + 1)
d−2

2 . (3.23)

Substituting eqs. (3.22) and (3.23) into eq. (3.20), we obtain the following relation between

the QES position ζQES and the deepest point ζ∗ reached by the RT surface:

ζ∗(1 + ζ2
∗ )

d−2
2 = (ζ2

QES + 1)
d−3

2

√
ζ2

QES sin2 θB − cos2 θB

×
[
λb cos(θB)

√
1 + ζ2

QES +

√
1 + ζ2

QES − λ2
b

(
ζ2

QES sin2 θB − cos2 θB

)]
,

(3.24)

where λb was defined in eq. (2.7).

A final relation associating ζQES and the belt width ξΣ comes from integrating eq. (3.18)

from the boundary to the brane,

ξQES = ξΣ +

∫ ∞

ζ∗

dζ

∣∣∣∣
dζ

dξ

∣∣∣∣
−1

±
∫ ζQES

ζ∗

dζ

∣∣∣∣
dζ

dξ

∣∣∣∣
−1

. (3.25)

After using eq. (3.24), this can then be rewritten as a relation between the location of the

entangling surface ξΣ and the QES ζQES only, if we further use eq. (3.9) together with

eq. (3.12) to find the brane trajectory in ζ, ξ coordinates and determine the relationship

between ξ and ζ on the brane

ζ2 sin2 ξ = cot2 θB . (3.26)

In section 4, we will use eqs. (3.19), (3.24) and (3.25) to produce the late-time part of the

Page curve for a topological black hole coupled to a bath in higher dimensions.

3.3 No-island phase for τΣ = 0

We can use the result of the previous subsection to obtain a solution for the no-island

phase. The first order equation (3.18) (where we choose the minus sign) again determines

the shape of extremal surface. By symmetry, we know that ζ∗ must lie on the bifurcate

horizon and is thus determined by solving

∫ ζ∗

∞

∣∣∣∣
dζ

dξ

∣∣∣∣
−1

dζ = −π

2
− ξΣ. (3.27)

Here we have implicitly chosen to perform the calculation in the asymptotic CFT which

sits at negative ξ, i.e. to a particular side of the brane. By symmetry the calculation on

the other side of the brane yields the same result. The total area of the two RT surfaces

which connect both CFTs through the horizon is then given by

A(ΣR) = 4Ld−1volHd−2

∫ ∞

ζ∗

dζ
ζ(1 + ζ2)d− 5

2

√
ζ2(1 + ζ2)d−2 − ζ2

∗ (1 + ζ2
∗ )d−2

, (3.28)
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Figure 10. The RT surface of an entangling surface located at the defect in the no-island phase.

with ζ∗ given by eq. (3.27). In the case of small brane angle θB this phase always dominates

at early times. The reason is that the RT surface in the competing phase, i.e. the phase

where the RT surface crosses the brane, has to travel a large distance to the brane before

it can return to the asymptotic boundary across the brane. This additional distance can

be made arbitrarily small by choosing a small enough brane angle. We will furthermore

see in section 3.5 how the time evolution of an RT surface at early times can be mapped

to this case.

3.4 No-island phase for χΣ = 0

Lastly, we will consider the case of a zero-width belt, i.e. the case where the location of the

entangling surface is taken towards the defect, so that the RT surface falls straight through

the bulk along constant boundary slicing coordinate χ = χΣ, cf. figure 10. Note that this

setup is essentially the same as considered in [93], which studied entanglement entropy of

identical half-spaces in the two sides of a time-evolved TFD.

Due to symmetry, the trajectory of the RT surface is determined by its radial coordinate

r as a function of time τ . However, it is convenient to introduce Eddington-Finkelstein

coordinates to avoid the coordinate singularity at r = 1. Hence, describing ingoing null

rays, we have

v = τ + rtor(r) where rtor(r) =
1

2
log

( |r − 1|
r + 1

)
, (3.29)

where rtor(r) denotes the usual tortoise coordinate.13 Note that with the above definitions,

rtor(r → ∞) → 0 and hence v = τ at the asymptotic AdS boundary. Then the metric

becomes

ds2 = L2
(
−(r2 − 1) dv2 + 2 dv dr + r2 dH2

d−1

)
. (3.30)

Now the extremal surface will fall from the asymptotic boundary, through the exterior,

across the Rindler horizon, reaching a minimal radius at r∗, within the interior. Then the

surface will continue emerging into the second exterior region. Due to reflection symmetry,

we need only track the trajectory of the RT surface until it reaches r∗. Using eq. (3.30),

13We extend our defintion of rtor(r) across the horizon using the standard prescription given in [91].
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the area functional can be written as

A(ΣR) = 4 volHd−2
Ld−1

∫ λUV

λ∗

dλ rd−2
√

−(r2 − 1)v̇2 + 2v̇ṙ , (3.31)

where λ is a radial coordinate intrinsic to the surface, which increases along the surface

moving from the left asymptotic AdS boundary to the right boundary. The limits of

integration here correspond to λ∗, the value at the minimal radius r∗, and λUV, the value

at the UV cutoff near the right boundary — see figure 10. We have also included a factor

of 4 to account for the fact that we only integrate from the Z2 symmetric point λ∗ out to

the right boundary, and the fact that there are two such RT surfaces, one on either side of

the brane. Of course, we have also integrated out the directions along the belt, i.e. along

the Hd−2. Now, we fix the reparametrization symmetry of the area functional with the

following convenient gauge choice
√

−(r2 − 1)v̇2 + 2v̇ṙ = rd−2 . (3.32)

The integrand in eq. (3.31) is independent of v and so we have a conserved ‘v-

momentum’

Pv =
∂L
∂v̇

=
rd−2(ṙ − (r2 − 1)v̇)√

−(r2 − 1)v̇2 + 2v̇ṙ
= ṙ − (r2 − 1)v̇ , (3.33)

where the second expression results from substituting in the gauge choice (3.32). Using

eqs. (3.32) and (3.33) to solve for ṙ and v̇, we find

ṙ [Pv, r] =
√

(r2 − 1) r2(d−2) + P 2
v ,

v̇ [Pv, r] =
ṙ − Pv

r2 − 1
=

1

r2 − 1

(
−Pv +

√
(r2 − 1) r2(d−2) + P 2

v

)
. (3.34)

Note that we have implicitly chosen a positive sign for ṙ indicating that r is increasing as

we move along the surface out towards the asymptotic boundary.

An intuitive picture of the dynamics of the extremal surfaces is given by recasting the

ṙ equation above as a Hamiltonian constraint,

ṙ2 + U(r) = P 2
v , (3.35)

where the effective potential is given by

U(r) = −(r2 − 1) r2(d−2) . (3.36)

In this framework, P 2
v plays the role of the conserved energy and the minimum radius r∗

corresponds to the turning point where ṙ = 0, i.e.

(1 − r2
∗) r

2(d−2)
∗ = P 2

v . (3.37)

The area (3.31) of the extremal surface becomes

A(ΣR) = 4 volHd−2
Ld−1

∫ rUV

r∗

dr
r2(d−2)

√
(r2 − 1) r2(d−2) + P 2

v

, (3.38)
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using eqs. (3.32) and (3.34). Note that rUV denotes the position of the UV cutoff surface

near the asymptotic AdS boundary.

With eq. (3.37), the extremal surface can be specified by the integration constant

Pv or the boundary condition r∗. However, we want to examine the time evolution of the

entanglement entropy and so we must determine a relation between these constants and the

boundary time. In particular, using eq. (3.34), we can integrate out to the right boundary

to determine

vbound − v∗ =

∫ rUV

r∗

dr
v̇

ṙ
=

∫ rUV

r∗

dr
1

r2 − 1


1 − Pv√

(r2 − 1) r2(d−2) + P 2
v


 , (3.39)

where v∗ denotes the value of the Eddington-Finklestein time at the turning point. How-

ever, because of the Z2 symmetry of the extremal surface, we know that the turning point

lies on the surface t = 0, and so we may use eq. (3.29) to write

v∗ = rtor(r∗) =
1

2
log

(
1 − r∗

1 + r∗

)
. (3.40)

Further, we know that vbound = τ [Pv] and hence we find

τ [Pv] =
1

2
log

(
1 − r∗

1 + r∗

)
+

∫ rUV

r∗

dr
1

r2 − 1


1 − Pv√

(r2 − 1) r2(d−2) + P 2
v


 . (3.41)

Note that the integrand is nonsingular in the vicinity of the horizon, i.e. near r = 1.

The time derivative of the area (3.31) admits a very simple form

dA(ΣR)

dτΣ
= 4 volHd−2

Ld−1 Pv = 4 volHd−2
Ld−1 rd−2

∗

√
1 − r2

∗ , (3.42)

where τ is the boundary time parameter.14 Further, we also observe that the critical radius

where ∂rU = 0 is given by

r2
c =

d − 2

d − 1
. (3.43)

At late times, the turning point is very close to this critical radius, i.e. , the critical surface

lies near the surface r = rc for a long time, and so we can replace r∗ → rc into eq. (3.42).

Hence we expect the growth of the area is fixed at late times, i.e.

dA(ΣR)

dτΣ
= 4 volHd−2

Ld−1 (d − 2)(d−2)/2

(d − 1)(d−1)/2
. (3.44)

As we will see momentarily, the late time behavior of the entropy of any subregion

bounded by constant χ in the no-island phase is determined by a zero-belt width calcula-

tion. Thus, as in the two-dimensional case studied in [34] (as well as the higher dimensional

case [30]), the entropy corresponding to the no-island phase grows without bound.

14A quick derivation of this result follows by considering a small variation of the surface profile in

eq. (3.31). The bulk contributions naturally vanishes by the equations of motion determining the ex-

tremal surface. However, deriving the latter requires an integration by parts which produces boundary

terms. These are usually eliminated by fixing the boundary conditions at infinity. In the above result, we

instead allow for a small variation in the boundary time.
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3.5 Time-evolution for general χΣ, τΣ 6= 0

Given the region R of interest,15 we can ask how the RT surface changes under time

evolution. If we are in the island phase, the RT surface is completely contained inside

the Rindler patch so that time translations are a symmetry and the entropy is a constant.

On the other hand, in the no-island phase, the RT surface connects to both bath CFTs.

Forward time evolution of both sides is not a symmetry and the area of the RT surface

changes.

Obtaining RT surfaces in the no-island phase which are anchored on symmetric entan-

gling surfaces of arbitrary width and at arbitrary times in higher dimensions is generally

difficult. However, as we will now show, our choice of entangling surfaces with the hyper-

bolic symmetry of Hd−2 allows us to map the RT surface at any (χΣ, τΣ) either to some

RT surface in the τ = 0 slice, i.e. with (χ′
Σ, τ ′

Σ = 0) or to the case where the entangling

surface is at χ = 0, i.e. with (χ′
Σ = 0, τ ′

Σ). In particular, this means that the solutions

obtained in the last two subsections are sufficient to discuss the full time evolution of the

symmetric entangling surfaces of interest.

The strategy we will employ in this chapter is the following. We will perform a coordi-

nate change from Rindler space to a particular Poincaré coordinate system defined below.

In the new coordinates, the entangling surfaces are straight lines. By exploiting the boost

symmetry of the Poincaré patch and mapping back to Rindler space, the task of calculating

entanglement entropy of a subregion with χΣ at time τΣ can be reduced to one of the cases

discussed in sections 3.3 and 3.4.

To understand the required coordinate changes it is convenient to embed AdSd+1 into

R
d,2, i.e. we are looking for a parametrization of (parts of) the hyperboloid defined via

−T 2
1 − T 2

2 + X2
1 + · · · + Xd = −L2 . (3.45)

Our original two Rindler patches correspond to the parametrization

T1 = ±L
√

r2 − 1 sinh τ , T2 = Lr cosh χ cosh η ,

X1 = ±L
√

r2 − 1 cosh τ , X2 = ±Lr sinh χ , (3.46)

Xi = Lr cosh χ sinh η µi with i = 3, 4, . . . , d ,

where µi denotes further angular coordinates, e.g., µ3 = cos φ1, µ4 = sin φ1 cos φ2, . . .,

which, together with η parametrize the Hd−2 slice of the metric (3.7). The AdS boundary

is located at r → ∞, and each sign corresponds to one of the two Rindler wedges. On a

fixed r slice, we can reach the boundary by taking χ → ±∞ or η → ±∞. For any constant

Rindler time (i.e. fixed τ), the bifurcation surface reached with r → 1. The defect in the

CFT is located at χ = 0 = X2. The entangling surfaces are defined to be at χ = ±χΣ in

both CFTs.

15Recall that R consists of all points more than a distance χΣ away from the defect in both CFTs.
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of Hd−1
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origin in Poincaré

coordinares

point at infinity in

Poincaré coordinates

χΣ

Figure 11. A time-slice of our setup. The spatial boundary Sd−1 (in global coordinates) is split

into two hyperbolic discs Hd−1, shown in pink and aqua, which are glued together at infinity. At

the same location, the bifurcate horizon intersects the boundary. The CFT on either disc is dual

to a Rindler wedge in the bulk. The defect (green) is a great circle on the global boundary. As

indicated in the figure, the Poincaré coordinates introduced in this section cover the full sphere,

with the point at infinity appearing on the south pole of the sphere. Entangling surfaces are the

semi-circles shown in red.

We will now consider a particular Poincaré coordinate system, which covers both

Rindler wedges and is defined in terms of embedding coordinates as

T1 = L
t̃

z̃
, X1 = L

x̃1

z̃
, X2 = L

x̃2

z̃
, · · ·

Xd =
z̃2 + x̃2 − t̃2 − L2

2z̃
, T2 =

z̃2 + x̃2 − t̃2 + L2

2z̃
, (3.47)

where x̃2 = x̃2
1 + x̃2

2 + · · · + x̃2
d−1. In these coordinates, the bifurcation surface intersects

the boundary (z̃ → 0) at x̃1 = t̃ = 0,16 while the defects are located at x̃2 = 0. The two

CFTs are mapped to the regions x̃1 > 0 and x̃1 < 0, respectively. We will denote the CFT

at x̃1 > 0 as the right CFT, and the one at x̃1 < 0 as the left CFT. Comparing eqs. (3.46)

and (3.47) in the boundary limit, it is easy to see that the entangling surfaces in the right

CFT get mapped to

x̃2 = ±sinh χΣ

cosh τΣ
· x̃1 , t̃ = tanh τΣ · x̃1 . (3.48)

This shows the convenient property of the new Poincaré coordinates: entangling surfaces lie

along rays (i.e. straight lines) in the positive half-space with x̃1 > 0, whose slope depends on

the spatial location χΣ and the Rindler time τΣ at which the entangling surfaces are defined.

Further, flipping the sign of x̃1 to −x̃1 in the above expressions yields the entangling surfaces

in the left CFT. The relation between the Rindler coordinate given in eq. (3.46) and the

new Poincaré coordinates of eq. (3.48) is illustrated in figure 11.

We now need to choose cutoffs in order to regulate the area integrals of the RT surfaces.

First, we need to regulate the UV divergence in the entanglement entropy by introducing

16The full Rindler horizons reach the boundary along x̃2
1 − t̃2 = 0.
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t̃ x̃2

x̃1

τΣ = 0τΣ 6= 0

boost

Figure 12. The left panel shows two components of the entangling surface (red) at non-zero

Rindler time τΣ in the right CFT in the Poincaré coordinates (3.47). In the island phase, these two

rays in the boundary geometry are connected by an RT surface in the bulk. We can perform a boost

in x̃1 direction to map this set of entangling surfaces to the t = 0 slice, which also corresponds to

τ = 0 slice of the hyperbolic boundary geometry. The boost is a symmetry of the defect (green).

maximum radius in both AdS-Rindler patches rUV ≫ 1. This translates to a z̃-dependent

cutoff in the new coordinates,

z̃2 > z̃2
min

=
x̃2

1 − t̃2

r2
UV

− 1
∼ x̃2

1 − t̃2

r2
UV

, (3.49)

where in the last step, we used that rUV ≫ 1.

Second, we need an IR cutoff which we impose in the transverse directions along the

entangling surface. Since the solution is independent of shifts in all directions along the

brane, the transverse directions should just contribute an overall volume factor. We choose

ηmax = ℓIR

R ≫ 1, which translates to

z̃2 − t̃2 + x̃2 + L2

√
z̃2 − t̃2 + x̃2

1 + x̃2
2

< 2L cosh
ℓIR

R
. (3.50)

3.5.1 Island phase

As a warm-up exercise, we will show that the entropy on the island phase is in fact invariant

under time evolution. This is obviously true, since the RT surface is completely contained

within one Rindler wedge and τ is a Killing coordinate for the corresponding metric (3.10).

Hence the corresponding time evolution of a single Rindler wedge is an isometry of that

wedge. In this case, we are looking for an extremal surface which ends on the boundary at

the location defined by eq. (3.48) for either x̃1 > 0 or x̃1 < 0, depending on which Rindler

wedge we are interested in. Here, we choose x̃1 > 0. We can express the problem in a

boosted coordinate systems

t̃′ = γ(t̃ − βx̃1) , x̃′
1 = γ(x̃1 − βt̃) , (3.51)

with boost parameter β = tanh τΣ. This is depicted in figure 12. This boost leaves the

cutoffs given in eqs. (3.49) and (3.50) invariant, and changes the equation for the entangling

surface to

x̃′
2 = ±x̃′

1 sinh χΣ , t̃′ = 0 . (3.52)

This is precisely the entangling surface of the same region at τ = τ ′
Σ = 0 with the appro-

priate cutoffs. We may thus conclude that entropy of the region R remains constant in the
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t̃ x̃2

x̃1

τ ′
Σ 6= 0, χ′

Σ = 0

τΣ 6= 0, χΣ 6= 0

τ ′
Σ = 0, χ′

Σ 6= 0

τΣ < χΣ

τΣ > χΣ

Figure 13. The left panel shows two components of the entangling surface (red) at non-zero

Rindler time τΣ in the right CFT in the Poincaré coordinates (3.47). These two rays are located in

different CFTs so that in the no-island phase, they are joing by an RT surface in the bulk which

passes through the Rindler horizon. In this case, we can now boost in x̃2 direction to map these

two rays to τ ′

Σ = 0 when τΣ < χΣ or to χ′

Σ = 0 when τΣ > χΣ.

island or connected phase, as anticipated. Again because we have a pure state globally, we

can see that the entropy of the complementary region, i.e. the two belts centered on the

conformal defects in each of the two CFTs, is independent of τΣ in this connected phase.

3.5.2 No-island phase

For the no-island phase, we focus on the case in which the RT surface connects entan-

gling surfaces in the CFTs dual to different Rindler patches. The entangling surfaces are

located at

t̃ = − sinh τΣ

sinh χΣ
x̃2, x̃1 = ± cosh τΣ

sinh χΣ
x̃2, (3.53)

where we have chosen to focus on x̃2 < 0, i.e. to the region on one side of the defect.

Similarly to the island phase, we want to go to a new coordinate system in which the

calculation becomes simpler. Now, however, we have to distinguish two cases.

Case 1: if τΣ < χΣ,17 we can boost this problem in x̃2 direction with boost parameter

β = − sinh τΣ
sinh χΣ

. This is depicted in the upper panel of figure 13. The new entangling surfaces

are then located at

t̃′ = 0, x̃′
1 = ±x̃′

2

√
cosh2 τΣ

sinh2 χΣ − sinh2 τΣ
, (3.54)

where x̃′
2 < 0. Expressing the result in Rindler coordinates, we are dealing with the case of

an entangling surface in the τ = τ ′
Σ = 0 plane. The new location of the entangling surface

χ′
Σ is given by

cosh χ′
Σ =

cosh χΣ

cosh τΣ
. (3.55)

17We are assuming that both τΣ and χΣ are positive (or zero). Let us also note here that τΣ = χΣ is a

special case, where the entangling surfaces lie in the null plane t̃ = −x̃2. Our approach of boosting in the

x̃2 direction fails in this case, but the results for the time evolution are smooth across this point.
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Note that as cosh τΣ → cosh χΣ (and so as | sinh τΣ
sinh χΣ

| → 1), the new entangling surface gets

closer and closer to the defect, i.e. χ′
Σ → 0.

Importantly, the cutoffs are not boost invariant in this case. The IR cutoff given in

eq. (3.50) remains unchanged, but the UV cutoff in eq. (3.49) changes along the trajectory

of the entangling surface to

r′
UV

= rUV cosh τΣ . (3.56)

We should caution the reader that we arrived at eq. (3.56) by substituting the trajectory

of the entangling surface into the boosted cutoff. This means that eq. (3.56) is only correct

for a small cutoff. Luckily, the corrections to the new cutoff only change the entanglement

entropy at order O(1/rUV).

In conclusion, we found that if τΣ < χΣ, the entanglement entropy of the region

|χ| > χΣ at time τ = τΣ is the same as that of a region |χ| > χ′
Σ given in eq. (3.55) at time

τ = τ ′
Σ = 0 calculated with a different cutoff, given by eq. (3.56).

Case 2: the other case, τΣ > χΣ, is shown in the lower panel of figure 13. Now we can

boost in the x̃2 direction again, but using β̃ = − sinh χΣ
sinh τΣ

. The new entangling surfaces are

located at

x̃′
2 = 0 , x̃′

1 = ±t̃′

√
cosh2 τΣ

sinh2 τΣ − sinh2 χΣ
. (3.57)

While this does not reduce to a surface lying in the τ ′ = 0 plane, in Rindler coordinates it

reduces to an entangling surface for a belt width χ′
Σ = 0 and

cosh τ ′
Σ =

cosh τΣ

cosh χΣ
. (3.58)

Again, the IR cutoff in eq. (3.50) is unchanged, however, the UV cutoff changes to18

r′
UV

= rUV cosh χΣ . (3.59)

Let us note that the cutoff location still is continuous. In the previous case, the new cutoff

was the old cutoff multiplied by cosh2 τΣ. The latter was reliable as long as τΣ < χΣ.

However, we see here that once τΣ > χΣ, the cutoff is no longer time-dependent.

3.6 The information paradox

Now the preceding results can be combined to give a qualitative description of the time

evolution of the entanglement entropy. Following the discussion in section 2.2 for two

dimensions, at time τ = 0, we have a standard thermofield double state of the two CFTs

on hyperbolic spatial geometries, including the conformal defects at χ = 0. If we restrict

the observations to either the left or right side, the reduced state is a thermal one and

18Note that, like above, we have substituted the trajectory of the entangling surface into the boosted

expression. Thus, this equation is only strictly correct in the rUV → ∞ limit, but the corrections are

subleading to the finite part of the entanglement entropy.
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in particular, the bath CFT is in thermal equilibrium with the corresponding conformal

defect, with temperature T = 1/(2πR).

Using the brane perspective and an appropriate choice of parameters,19 we can describe

the conformal defects are replaced by (two copies of) the boundary CFT coupled to Einstein

gravity on an AdSd region. For the configuration described above, this yields a topological

black hole solution shown in eq. (3.10). We emphasize that the latter really describes an

AdSd geometry in AdS-Rindler coordinates, and hence the thermal equilibrium between

this ‘black hole’ and the finite temperature CFT on the asymptotic boundary can be

understood as arising because the two systems are coupled along an accelerated trajectory

in the region of dynamical gravity. While the black hole is in equilibrium with the bath

CFT, under time evolution, the two systems are constantly exchanging thermal quanta.

The immediate effect of this process after τ = 0 is to increase the entanglement between one

side of the black hole, i.e. one of the AdS-Rindler wedges on the brane, and its respective

bath CFT.

A standard measure for the entanglement between both AdS-Rindler wedges and their

respective baths is given by the entanglement entropy of the complement of two belt sub-

regions centered around the conformal defects in the boundary as discussed above. In

section 3.5, we saw that by a judicious change of coordinates (and cutoff), the calculation

of the entanglement entropy of these regions can be mapped at late times (i.e. τΣ ≥ χΣ)

to the case of a zero-width belt. Further, in section 3.4, we found that the entanglement

entropy grows linearly in time, as shown in eq. (3.44).20

As in the two-dimensional case [2, 98], this linear growth of entropy would lead to an

information paradox for our eternal black holes, if it was valid for all times. The reason

is that the entanglement entropy must be bound from above by the defect entropy, since

the defects need to purify the bath system. In the case of interest, the theory is well

approximated by weakly coupled Einstein gravity. This allows us to view the quantum

fields on the gravitational background as giving a small correction to the entropy and thus,

the defect entropy is well-approximated by two times the black hole entropy.21

The appearance of an island in the effective gravity theory from the brane perspectice

is simply related to a phase transition of the RT surfaces in the bulk description of our

system. The RT surface changes from the no-island phase, in which it connects both CFTs

through the horizon, to the island phase, in which it connects both sides of the defect in a

single Rindler wedge. The fact that there will always be an extremal surface crossing the

brane is easy to see: before we invoke the extremization condition at the brane, there is

19Recall that we obtain a good aproximation to (semiclassical) Einstein gravity on the brane if we choose
L

ℓB
≪ 1 and λb not too close to −1 — see footnote 5.

20Implicitly, to apply eq. (3.44), we must also show ∂τ ′

Σ
≃ ∂τΣ

. The latter follows at late times from

eq. (3.58), which yields

∂

∂τ ′
Σ

=

(
1 − sinh2 χΣ

sinh2 τΣ

)1/2
∂

∂τΣ
. (3.60)

Alternatively, the same result also follows by simply observing that eq. (3.58) implies that at late times:

τ ′ = τ − log (cosh χΣ) + O(e−2τ ). Let us add that this linear growth is analogous to that found for planar

black holes in [93].
21The black hole entropy is proportional to the horizon area of the black hole, which in our case is infinite.

Hence to be precise, we must consider an IR regulated entropy, as discussed with eq. (3.50).

– 29 –



J
H
E
P
1
2
(
2
0
2
0
)
0
2
5

an infinite family of candidate RT surfaces, which start in the bath and meet at the brane.

To get the correct RT surface, we need only extremize the area by varying the position

of the surface where they meet the brane. Subregion duality and the homology constraint

guarantee that there will be one extremal surface for every belt configuration (although

the boundary of the island might sit at the horizon or at the CFT defect).

In order to establish unitarity of the Page curve, we still need to argue that the island

appears before the black hole fails to purify the bath region R under consideration. In the

case of interest here, we have that ℓB
L ≫ 1. In this approximation, it follows from eq. (3.24)

that

ζQES = ζhor

(
1 +

ζ2
∗ (1 + ζ2

∗ )d−2

2ζ
(2d−4)
hor (1 + λb)2

+ . . .

)
. (3.61)

In deriving this equation, we have used that the location of the horizon on the brane is at

ζhor ∼ ℓB

L ≫ 1 and that ζ∗ cannot scale with ℓB

L at leading order. The reason is that ζ∗

is bounded from above by a function of the belt width. We can see that the location of

the new quantum extremal surface will always be close to the horizon — see also the next

section for numerical plots. The leading order contribution to the generalized entropy is

given by the area of the horizon which gives the black hole entropy. While a more involved

analysis is needed to demonstrate that the appearance of the island saves unitarity, this

shows that the island mechanism has the right qualitative behaviour to unitarize the Page

curve.

4 Numerical results

In the previous section, we found a phase transition between the no-island and island phases

that has the right qualitative properties to yield a Page curve consistent with unitarity.

The calculations involved differential equations which have no known closed form solution.

However, the reader might have realized that all of these equations were ordinary differential

equations and are thus easily solved numerically. In this section, we will first present

numerical solutions to the equations for the RT surface in the island phase, and then use

the arguments of the previous section to obtain the Page curve for massless, topological

black holes in equilibrium with a bath.

4.1 General behavior of the islands

As discussed previously, by choosing entangling surfaces with the hyperbolic symmetry of

Hd−2, the problem of finding the corresponding RT surfaces reduces to a two-dimensional

problem. Choosing the convenient coordinates in eq. (3.12), we can express the profile

of the RT surface as ζ(ξ). We start here by discussing examples of extremal surfaces in

the island phase for different choices of parameters. Instead of working with ζ as a radial

coordinate, we conformally compactify the geometry and use the coordinate

̺ = arctan(ζ) , (4.1)
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which maps timeslices of AdS to a finite region. In order to calculate the profile of the RT

surface, we fix the location of the entangling surface χΣ at the boundary. Applying the

large r limit of eq. (3.12), we relate this to ξΣ, the location of the entangling surface in ζ, ξ

coordinates. We can then use eqs. (3.24) and (3.25) to determine ζ∗ and ζQES numerically

as a function of ξΣ. The shape of the RT surface is obtained by integrating eq. (3.18) from

the boundary.

Figure 14 shows a few examples of RT surfaces in the connected phase for d = 3, 4 and

5, i.e. in four, five and six bulk dimensions, respectively. Here, we only show the geometry

on one side of the brane. The other side is determined by a reflection across the brane.

Since the RT surfaces do not cross the horizon, the configuration is independent of the

choice of Rindler time τ .

Figure 14a shows RT surfaces with fixed χΣ for different values of the dimension and

selected values of the DGP coupling λb. We can see that positive DGP coupling pushes

the point of intersection between brane and RT surface towards the horizon, i.e. it reduces

the area of the island’s boundary. Similarly, negative DGP coupling causes the island to

become bigger. This behaviour is readily explained through eq. (2.7) which shows that by

increasing (decreasing) the value of λb, the gravitational coupling in the brane theory, i.e.

the effective Newton’s constant, becomes smaller (bigger). In turn, the coefficient of the

Bekenstein-Hawking contribution is bigger (smaller) in the island rule (1.1) and therefore

creating an island of fixed size becomes harder (easier).

Figure 14b shows how the RT surface in the island phase behaves as we vary the brane

angle given by sin θB = L/ℓB (or equivalently the brane tension — see eq. (2.4)). Recall

that Einstein gravity is a good approximation when θB is small. As we depart from the

limit of small brane angle, the island grows.

Finally, figure 14c shows that the size of the island varies with χΣ, the location of the

entangling surface in the bath. Moreover, as we will discuss momentarily, we see that an

island phase for the RT surface seems to exist for all values of the belt width, although of

course it will generally not dominate at early times.

We can get an even better idea of the qualitative features of the islands in higher

dimensions by plotting the turning point ζ∗ and the QES position (ζQES, ξQES) as a function

of the brane angle θB for different dimensions — see figure 15. A general feature is that

in the θB → 0 limit, the QES always approaches the horizon on the brane at ξ = π/2, as

discussed around eq. (3.61). In terms of ξQES and the distance from the horizon on the

brane, ρQES, we have

ξQES =
π

2
− ζ∗(1 + ζ2

∗ )
d−2

2

1 + λb
θd−2

B
+ O(θd

B
) (4.2)

ρQES = 1 +
ζ2

∗ (1 + ζ2
∗ )d−2

2(1 + λb)2
θ

2(d−2)
B + O(θ

2(d−1)
B ), (4.3)

where the first terms on the r.h.s.s give the location of the horizon. Granted ζ∗ tends

towards a finite value as θB → 0, the above formulas tell us that the QES tends towards
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(a) RT surfaces for the island phase in (left to right) d = 3, 4, 5. The DGP coupling λb is chosen to be

1/0/−0.9 for the dashed/solid/dotted curves. The brane angle is θB = π
4

and the location of the entangling

surface is χΣ = 1.

(b) RT surfaces in d = 4 with χΣ = 1 and brane angle of (left to right) θB = 1
8
π, 1

4
π, 1

2
π. The DGP

coupling is set to zero.

(c) RT surfaces in d = 4 with brane angle θB = π
4

and (left to right) χΣ = 1
3
, 1, 3. The DGP coupling is

set to zero.

Figure 14. RT surfaces in the island phase in higher dimensions. We only show one side of the

brane. The asymptotic boundary of the spacetime is shown in blue, the Planck brane in green and

the RT surfaces in red. The radial coordinate is ̺ defined in eq. (4.1). On each side of the horizon

(dashed purple line) the angular coordinate ξ runs between − π
2

and π
2

.
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(a) The dependence of RT surface parameters on the brane angle θB for d = 3.
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(b) The dependence of RT surface parameters on the brane angle θB for d = 4.
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(c) The dependence of RT surface parameters on the brane angle θB for d = 5.

Figure 15. The dependece of the RT surface and the quantum extremal surface on the brane angle

θB for d = 3, 4 and 5. The location of the entangling surface is chosen to be χΣ = 1.
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the horizon on the brane. Applying eq. (4.2) to eq. (3.25) and noting from eq. (3.18) that

dζ

dξ
∼ ∓ ζd+1

ζ∗(1 + ζ2
∗ )

d−2
2

for ζ ≫ 1 , (4.4)

we find that ζ∗ at small θB is determined by the equation

π

2
− ζ∗(1 + ζ2

∗ )
d−2

2

1 + λb
θd−2

B
+ O(θd

B
) = ξQES = ξΣ + 2

∫ ∞

ζ∗

dζ

∣∣∣∣
dζ

dξ

∣∣∣∣
−1

+ O(θd
B
), (4.5)

with dζ/dξ given by eq. (3.18). At leading order in θB, the second term on the l.h.s. can be

ignored and the above equation is just the statement that the RT surface should stretch

from the belt boundary to approximately the bifurcation surface on the brane.

4.2 The Page curve in d > 2

As discussed in section 3, the benefit of our model is that calculating the entropy of (the

complement of) the belt-shaped subregions centered on the conformal defects reduces to

calculating areas in an effectively two-dimensional geometry. Further we produced explicit

formulas for the areas of a number of special RT surfaces, which — as shown in section 3.5

— are sufficient to calculate the full time evolution of the RT surfaces and thus of the

entanglement entropy.

Figure 16a shows the Page curves for d-dimensional topological black holes, coupled

to a bath on a hyperbolic background, for the cases d = 3, 4, 5. More precisely, we consider

the entropy of the region defined by χΣ = 1, which is given by

4GbulkS(τ) = min

([
A(ΣR) +

2Lλb

(d − 2)
A(σR)

]

isl.

, [A(ΣR)]
✟✟isl.

)
. (4.6)

Here A(Σ) are the regulated areas of the RT surfaces, and the subscript indicates whether

we consider the extremal surface in the island or no-island phase. Since eq. (4.6) is a cutoff

dependent quantity, it is convenient to subtract off [A(ΣR)]
✟✟isl.,τ=0. That is, we subtract off

the value of the entropy at τ = 0, at which point the minimal RT surfaces in the no-island

phase, to define

∆S(τ) = S(τ) − S(τ = 0). (4.7)

Even though the UV divergences have been removed, eq. (4.6) would still be infinite, as a

result of the infinite extend of the entangling surface. Hence the plots in figure 16 show

the change in the entropy density,

∆s =
∆S

volHd−2
Ld−2

, (4.8)

with respect to the entropy at τ = 0.22 The kinks in the plots of figure 16 indicate the

time at which the island phase of the RT surface begins to dominate. The corresponding

22Note that we are actually plotting 4Gbulk ∆s, which is a dimensionless quantity. For the horizontal

axes, also recall that the AdS-Rindler time τ is also dimensionless — see further comments below.
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(a) The Page curve for dimensions d = 3, 4, 5 (left to right). The entangling surface is located at χΣ = 1

and the DGP coupling is set to zero. The brane angle is chosen as θB = 0.1.
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(b) Left: the Page curve for selected brane angles θB = 0.07, 0.10, 0.15 (top to bottom). Right: the Page

time τP as a function of the brane angle θB. The constant parameters are set to λb = 0, χΣ = 1, and d = 4.
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(c) Left: the Page curve for selected values of the DGP coupling λb = 0.5, 0, −0.5 (top to bottom). Right:

the Page time τP as a function of the DGP coupling λb. The constant parameters are set to θB = 0.1,

χΣ = 1, and d = 4.

Figure 16. The Page curve in various dimensions. The solid blue line indicates the physical

Page curve. The dashed orange lines correspond to entropies calculated by non-minimal extremal

surfaces. At early times, the RT surface in the no-island phase is the minimal surface. After some

time, the minimal surface transitions to the RT surface in the island phase.
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time is, of course, the natural analog of the Page time for eternal black holes coupled to a

bath at finite temperature. The slope of the (linearly) rising portion of the Page curve has

been determined in section 3.4 and is given by

4GN ∆s/τ ∼ 4
(d − 2)(d−2)/2

(d − 1)(d−1)/2
. (4.9)

Moreover, recall that τ is a dimensionless time such that the temperature of the hyperbolic

black hole is 1
2π (cf. the discussion in section 3.1). The dimensionful time t is related to

τ by

t = τR =
τ

2πT
, (4.10)

where R is the curvature scale for the spatial sections in the bath CFT, as defined in

eq. (3.3), and the bath CFT is taken at temperature T = 1
2πR .

The calculation of the RT surfaces is performed as follows: the area in the island phase

is computed by substituting eqs. (3.24) and (3.26) into eq. (3.25) and numerically solving

for ζQES. The result is then used together with eq. (3.24) to numerically integrate the

area in eq. (3.19). There are three different regimes for the calculation of the are in the

no-island phase. At early times, τΣ ≤ χΣ, the calculation of the entropy of the subregion

with boundaries at ±χΣ can be translated to the calculation of the entropy of a belt with

boundary χ′
Σ = ±arccosh

(
cosh χΣ
cosh τΣ

)
in the τ = 0 time-slice, as explained in section 3.5.

As also explained in the same section, we need choose a different cutoff on r in this case.

However, working in ζ, ξ coordinates, it turns out that the cutoff on ζ does not change. At

intermediate times, τΣ & χΣ, the entropy can be computed by calculating the area of an RT

surface for a zero-belt-width entangling surface at a time given in eq. (3.58). Accidentally,

the relation between r and ζ works out in such a way that the cutoff of r agrees with the

cutoff on ζ in the previous calculation. As τΣ becomes larger, the numerics become less

reliable. However, for moderately sized belt widths we are already well into the regime in

which the area of the RT surface grows linearly in time. Therefore, we use a linear fit to

extrapolate the last few numeric data points to late times, τΣ ≫ χΣ. We verified that the

resulting slope agrees with the analytic result given in eq. (4.9).

In figure 16b, we show how the Page curve and Page time change as we vary the brane

angle. As we see, increasing θB decreases the Page time, or in other words decreases the

number of microstates available to the black hole on the brane. This can also be understood

from the CFT point of view where the defect entropy is given in terms of an RT surface

in the island phase [59, 60]. As the brane angle approaches zero, the Page time diverges.

The reason is that in this limit the area of the island diverges. The absence of islands in

this limit was already noted in [33]. The divergence as θB → 0 goes like θ2−d
B

, and in the

small-angle approximation we find that

τP ∼ (d − 1)
d−1

2

(d − 2)
d
2

1

θd−2
B

. (4.11)

For example, the numerical coefficient which multiplies θ2−d
B

can be estimated from the

above formula to be 1.30 for d = 4. A fit to the numerical data plotted in figure 16b agrees

with this value.
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(a) This figure shows the onset of the Page curve

for different values of the location of the entan-

gling surface χΣ = 0.1, 1, 2, 2.5 (bottom to top)

in four dimensions.
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(b) The same plot, but with axes rescaled by

χΣ. The solid lines are numerical results, while

the dashed lines are the bounds explained in the

main text.

Figure 17. The initial behaviour of the Page curve in four dimensions (left) and a rescaled version

of the same plot with bounds (dashed) on the onset (right).

Figure 16c shows the dependence of the Page curve and Page time on the DGP cou-

pling. As we decrease the DGP coupling (i.e. increase Geff) the Page time goes to zero. The

linearity can be easily explained be recalling that in the small θB regime we are interested

in the island sits close to the horizon and thus has a fixed location for varying values of

λb. The Page transition occurs whenever the area of the RT surface in the no-island phase

exceeds the area of the RT surface in the island phase. Since the area in the no-island

phase approximately grows linearly with time and the area in the island phase depends

approximately linearly on λb, cf. eq. (4.6), we obtain a linear relationship between the Page

time τP and λb. Based on this argument, we can estimate the slope of the graph to be

τP /λb ∼ (d − 1)
d−1

2

(d − 2)
d
2

1

θd−2
B

, (4.12)

which for the parameters in 16c (i.e. θB = 0.1 and d = 4) evaluates to τP ∼ 130 λb and

agrees with the fitted value of the slope.

The Page curve and Page time only depends very weakly on the belt size. In fact, the

only significant effect can be seen at very early times of the evaporation. Figure 17a shows

that for wide belts, the entanglement between the belts and baths starts growing convexly

(i.e. ∂2∆s/∂τ2
Σ > 0), then enters a period of concave growth (i.e. ∂2∆s/∂τ2

Σ < 0) before

entering the linear regime.

Generally, we can separate the time-dependence of the Page curve into four different

regimes. At times of the order of the thermal scale β (∼ 0.16 in figure 17a) the entanglement

growth increases until it enters a phase of fast growth between τΣ ∼ O(β) and τΣ ∼ O(χΣ).

This fast growth depends on the belt size. At time τΣ ∼ O(χΣ) a universal, linear behavior

takes over, which is independent of the belt width. The entanglement keeps growing until

at the Page time τP it saturates and stays constant.

In the following we will explain the region of fast growth and its transition into the

region of universal linear growth. To understand the behaviour of the Page curve, first
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consider a few characteristics of our belt geometries. As can be seen from the metric in

eq. (3.7), points on any of our entangling surfaces are a fixed distance χΣ from the surface

at χ = 0, where the defect is located, i.e. where the bath is coupled to the black hole.23

However, the extrinsic curvature of the entangling surfaces which we consider depends on

this distance. Similarly, the entangling surfaces with larger χΣ have a larger regulated

volume.

In [99], it was proposed that the growth of entropy S[Σ] for an arbitrary entangling

surface Σ is bound by

1

R

dS[Σ]

dτ
=

dS[Σ]

dt
≤sth vent A(Σ) , (4.13)

where A(Σ) is the area of the entangling surface Σ, as measured by the boundary metric

in eq. (3.7). The thermal entropy density sth and the entanglement velocity vent are region

independent constants. The entropy density is given by the black hole entropy (i.e. 1
4Gbulk

times horizon area) divided by the CFT volume of the spatial slices (again, measured by

the metric (3.7)):

sth =
1

4Gbulk

Ld−1

Rd−1
. (4.14)

In [99] which primarily considers flat space, vent is defined such that eq. (4.13) is

saturated at times just above the thermal scale for sufficiently straight entangling surfaces

— this definition is well-defined in the sense that vent turns out to be independent of the

shape of the entangling surface, provided it is sufficiently straight [100, 101]. In hyperbolic

space, vent can be similarly defined by demanding that the straight surface χ = 0 saturates

eq. (4.13) — we shall justify this choice further below — specifically,

vent =
(d − 2)

d−2
2

(d − 1)
d−1

2

, (4.15)

obtained by comparison of eq. (4.13) with the zero-width belt result in eq. (3.44).

It is clear that (4.13) cannot be tight at late times for belts of finite width. The reason

is that the area factor on the right hand side A[χ > 0] is exponentially large compared to

A[χ = 0], while, as can be seen from figure 17a, all belts share the same rate of entanglement

growth at late times. To more tightly bound the late time behavior of finite width belts,

we will therefore need to combine eq. (4.13) with the monotonicity of mutual information.

It will turn out that the optimal bound obtained in this way for finite-width belts uses

eq. (4.13), but always evaluated for the χ = 0 surface Σ at late times; thus we will find

that the χ = 0 surface acts as a bottleneck for entanglement growth even for finite width

belts.

To see why the surface at χΣ = 0 acts as a bottleneck, let us formulate the more

refined combined bound now, following closely [99]. To this end, it will be less helpful to

consider the entanglement entropy of the bath intervals R; instead we will consider their

23The proper distance would be RχΣ in the boundary metric (3.3).
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complement R̄, i.e. belts surrounding the defects, whose entropy is the same as R since the

state of both Rindler patches is pure. Considering R̄ instead of R is equivalent to looking

at the Page curve of the black hole instead of that of the radiation. It is useful to rewrite

the entropy displayed in the Page curve as

∆S = I[R̄L : R̄R](0) − I[R̄L : R̄R](τ), (4.16)

where I[R̄L : R̄R](τ) = S(R̄L) + S(R̄R) − S(R̄L ∪ R̄R) is the mutual information between

the regions R̄ in the left (L) and right (R) CFT at time τ .

Similar to [99], we now assume that information is only transported with the butterfly

velocity vbut or less.24 For the hyperbolic geometries considered here and the temperature

T = 1
2πR , this velocity is given by [103, 104]

vbut =
1

d − 1
. (4.17)

This implies that a belt region R̄
′ at time τ ′ can be considered a subsystem of the original

belt R̄ at τ if
χΣ−χ′

Σ
vbut

≥ |τ − τ ′|. We can then use monotonicity of mutual information

I[R̄L : R̄R](τ) ≥ I[R̄′
L : R̄

′
R](τ ′) = S[R̄′

L](τ ′) + S[R̄′
R](τ ′) − S[R̄′

L ∪ R̄
′
R](τ ′). (4.18)

In our setup, we have that the one-sided entropies are time-independent, S[R̄′
R/L](τ ′) =

S[R̄′
R/L](0). Using eq. (4.13) we can then bound S[R̄′

L ∪ R̄
′
R](τ ′) from above

S[R̄′
L ∪ R̄

′
R](τ ′) ≤ Rsth vent A(∂R̄

′) τ ′ + S[R̄′
L ∪ R̄

′
R](0). (4.19)

Collecting everything, we find a bound on the Page curve of the black hole,

∆S[R̄L ∪ R̄R] ≤ Rsth vent A(∂R̄
′) τ ′ + I[R̄L : R̄R](0) − I[R̄′

L : R̄
′
R](0) . (4.20)

To find a tightest bound this has to be minimized over all choices of χ′
Σ, see below. For

any fixed χ′
Σ it is sufficient to focus on the case where τ ′ < τ , which will always give the

smaller bound. The mutual information appearing on the right hand side are evaluated on

the initial time slice and can be obtained numerically by using the results of section 3.3.

From eq. (4.20), it is now easy to see why the entanglement growth becomes universal

at late times. Note that eq. (4.20) is in fact a family of inequalities, parametrized by a

choice of regions R̄
′. The time τ ′ is chosen such that R̄

′ at τ ′ is just barely a subsystem

of R̄ at τ , in the sense described below eq. (4.17). For times before τ ′ we assume that the

mutual information of subregions R̄
′ is allowed to decrease as fast as possible, while still

compatible with eq. (4.13). Since the regions R̄
′ at time τ ′ are subregions of R̄ at time

τ , their mutual information bounds the mutual information of regions R̄. We can find a

tight bound on the Page curve by minimizing over all choices of R̄
′, or in other words, by

minimizing over all χ′
Σ with τ ′ = τ − χΣ−χ′

Σ
vbut

. It turns out that, for sufficiently large τ , the

tightest bound is obtained for χ′
Σ = 0, yielding the prescription stated below eq. (4.15).

24The butterfly velocity is defined as the spread of the region in which the commutator of an operator

O1(t) with O2(t) is bigger than 1 [102].
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We thus see from the first term on the right hand side of eq. (4.20) that this surface acts

as a bottle neck for information transfer and thus controls the late time growth of entropy.

Matching this behaviour to the late time rate of growth of the exact Page curve provides

further justification, a posteriori, for the choice of the entanglement velocity stated in

eq. (4.15).

The bounds found in this way are presented in figure 17b. We see that a fast growth

at early times is allowed by the bounds, before the linear growth phase is entered. Further,

as can be seen from the figure, these bounds are fairly loose. It would be interesting

to understand how to make them tighter. Note that the blue curve in figure 17b behaves

qualitatively different than the other curves. The reason is that the early convex onset of the

curve is controlled by the thermal scale and thus lasts for roughly ∆τ ∼ O(β), independent

of the belt width. The rescaling in figure 17b magnifies the early time behavior of belts with

χΣ < 1 while it reduces the early time behavior of belts of width χΣ < 1. Thus, while all

other curves show the linear entanglement spreading for time scales τ ∼ O(χΣ) > O(β), the

behavior of the blue curve is dominated by entanglement spreading through thermalization,

since the belt width is of order of the thermalization scale. The quadratic25 growth at times

below the thermal scale is reminiscent of the ‘pre-local-equilibration growth’ described

in [100, 101].

Let us end with a few observations regarding the structure of entanglement spreading

in our system. First, we note that the entanglement velocity (4.15) for Rindler spacetime

with hyperbolic spatial slices differs from the analogous velocity
√

d(d−2)
1
2

− 1
d /[2(d−1)]1− 1

d

in flat space [93] dual to AdS planar black holes. Furthermore, for d > 3, the entangling

velocity for a CFT on hyperbolic space exceeds the butterfly velocity, eq. (4.17). Typically,

whenever vent > vbut, one might worry about contradictions to entanglement monotonicity

laws [99, 105] which apply above the thermal scale. However, no immediate contradictions

appear in the present case, as we now explain.

For concreteness, let us interpret eq. (3.44) as describing the entanglement growth in

hyperbolic space without defects, specifically, computing the entropy for a region consisting

of half-spaces χ > 0 on either side of the TFD.26 This growth saturates eq. (4.13) with

vent > vbut in d > 3 so one might worry that entanglement is spreading faster than the speed

vbut permitted by operator commutator growth [102]. Specifically, by applying an analysis

similar to the one reviewed around eq. (4.17) to thermal relative entropies, [99, 105] argue

that, for regions and times above the thermal scale, entanglement growth must be bounded

by the thermal entropy density sth times the volume between the entangling surface and

a tsunami wavefront propagating with speed vbut away from the entangling surface (in

either direction). Said differently, the rate dS/dt of entanglement growth is bounded by

sthvbut times the area of the tsunami wavefront — this is essentially eq. (4.13) with vbut

25Note that time-reflection symmetry demands that the Page curve have an early time expansion con-

taining only even powers of τ . For the zero-width, it is easily verified, at least numerically, from eq. (3.41)

that
√

1 − r∗ ∼ τ so that the growth is indeed quadratic by eq. (3.42). For finite-width belts, plugging

eqs. (3.55) and (3.56) into eq. (3.12) shows that early time evolution is equivalent to holding the cutoff

at fixed ζ and shifting the ξ of the entangling surface by ∼ τ2, again leading to quadratic entanglement

growth.
26To be precise, we should multiply eq. (3.44) by 1

2
· 1

4Gbulk

with the factor of 1/2 due to our focus on

just two copies of the entangling surface χ = 0 — one on either side of the TFD.
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Figure 18. The Poincare patch models a zero temperature extremal black hole. The brane

intersects the CFT Poincaré patch at the origin and infinity.

replacing vent and the tsunami wavefront replacing the entangling surface. In flat space,

the tsunami wavefront can be typically chosen to propagate in a direction away from the

entangling surface such that it shrinks or does not grow in time (e.g., propagating inward

from a spherical entangling surface). Thus, for the flat space equivalent of eq. (4.13) to be

saturated, one must require vent < vbut. In hyperbolic space however, it is possible for the

tsunami wavefront to grow in both directions away from the entangling surface. Indeed,

this is precisely what happens for the hyperbolic half-space which has an entangling surface

χ = 0 of minimal area; within a few thermal times, the tsunami wavefront propagating in

either direction grows to an area exponentially large compared to the entangling surface.

We thus see that, though the hyperbolic half-space saturates eq. (4.13) with vent > vbut,

this does not contradict the bound on entanglement spreading due to the butterfly velocity.

5 Extremal horizon in equilibrium with T = 0 bath

Here we turn our attention to extremal black holes. In particular, we consider the same

bulk geometry described in section 2, i.e. a backreacting codimension-one brane extending

across the spacetime which locally has the geometry of AdSd+1. However, we replace the

AdS-Rindler coordinates introduced in eq. (3.6) with Poincaré coordinates,

ds2 =
L2

z2

(
dz2 − dt2 + dx2

1 + · · · + dx2
d−1

)
. (5.1)

Of course, the coordinate singularity at z → ∞ corresponds to an extremal T = 0 horizon.

Figure 18 illustrates the Poincaré patch in our bulk geometry.

For the most part, we will be interested in limit of large tension (i.e. ℓB ≫ L), for

which the brane theory can be described as Einstein gravity coupled to two copies of the

boundary CFT. As we describe in a moment, the brane geometry naturally inherits a
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Poincaré metric from the bulk geometry. Hence the brane supports an extremal black hole

which is equilibrium with the T = 0 bath CFT on the asymptotic AdS boundary. We note

that with Poincaré coordinates, we are examining the system in a new conformal frame

where the bath CFT is living on flat d-dimensional Minkowski space,

ds2
CFT

= −dt2 + dx2
1 + · · · + dx2

d−1 . (5.2)

This brane perspective is illustrated in figure 19a.

Of course, we may also have the boundary perspective where the d-dimensional CFT

in Minkowski space is coupled to a codimension-one conformal defect. For simplicity, we

insert the latter at x1 = 0 for the metric in eq. (5.2) and so the induced geometry on the

defect is also flat, i.e. (d − 1)-dimensional Minkowski space. The Penrose diagram for this

perspective is shown in figure 19b. Note that in contrast to the finite temperature TFD

state (entangling two copies of the bath CFT) in section 3, here for the T = 0 scenario, we

only have a single copy of the bath CFT, e.g., compare the above to figures 6 and 7. Of

course, at T = 0, we are simply studying the vacuum state of the defect CFT in flat space

(analogous to what was done in [1] but in a different conformal frame).27

We may recall from [2] that for the extremal case in d = 2, one always finds islands for

the analogous belt regions. This result is a consequence of two features which hold for d = 2:

firstly, there always exists a bulk RT surface intersecting the brane to produce an island;

secondly, the alternative no-island RT candidate surface has an additional IR divergence28

and this surface is therefore subdominant. However, neither of these statements hold in

d ≥ 3. Indeed, we will find in higher dimensions that quantum extremal islands do not

appear in the large tension limit. Nonetheless, no information paradox arises since extremal

black holes do not radiate, i.e. the black hole and the bath are not exchanging radiation.

This contrasts with the non-extremal case in section 3, where the information paradox

for the eternal black hole in the effective d-dimensional gravity theory arises because of

the continuous exchange of quanta between the black hole and the bath. Of course, the

paradox is avoided by the appearance of quantum extremal islands.

The remainder of this section is organized as follows. We shall begin by first explicitly

constructing the bulk and brane metrics to be used in the extremal case and by introducing

the entanglement entropy calculation which we wish to consider. Then, in subsections 5.1

and 5.2, we carry out this calculation using RT surfaces corresponding to island and no-

island phases, respectively. Finally, we collect these results in subsection 5.3 to determine

when each phase dominates.

The Poincaré coordinates (5.1) cover a wedge of the AdSd+1 vacuum geometry. How-

ever, in the present geometry with a backreacting brane, a portion of two such wedges

would appear on either side of the brane — see figure 18. If we consider the coordinate

transformation

z = y sin θ, x1 = y cos θ , (5.3)

27Of course, this is a pure state, as is manifest in bulk since the Poincaré time slices constitute complete

Cauchy slices.
28Coming from integrating the length of the surface down to the extremal horizon.
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t = 0

horizon

defect

t = 0

defect

a. b.

Figure 19. The brane and boundary perspectives of the extremal black hole setup.

the metric (5.1) is transformed to the form given in eq. (2.3), where the AdSd slices each

inherit a Poincaré metric. As described in section 2, the brane spans one such slice at a

fixed θ = θB determined by the brane tension To according to eq. (2.4), i.e.

sin2 θB = 2 ε (1 − ε/2) . (5.4)

The induced metric on the brane then becomes

ds2
AdSd

=
L2

y2 sin2θB

(
dy2 − dt2 + dx2

2 + · · · + dx2
d−1

)
, (5.5)

and we may then read off the curvature scale of the brane as ℓB = L/ sin θB, as expected

from eq. (2.4). Here, y is interpreted as the radial Poincaré coordinate running along the

brane, and the Poincaré horizon on the brane, located at y → ∞, is inherited from the

bulk. As usual, we wish to work in the regime L2/ℓ2
B

≪ 1, or alternatively θB ≪ 1.

Following the brane perspective described above (and in section 2), eq. (5.5) is inter-

preted as an extremal black hole solution of the gravity theory induced brane at θ = θB

and the CFT of the flat asymptotic boundary at z = 0 becomes the zero temperature

bath. This then provides a direct extension of the extremal scenario in [2] to d dimensions.

The question which interests us here is then whether the entanglement wedge of certain

subregions in the bath includes islands residing on the brane.

Specifically, we consider the entanglement entropy calculation for a boundary region

R that is the complement of a “belt” geometry centered on the defect at x1 = 0, i.e.

the boundary subregion R = (−∞, −b] ∪ [b, ∞). According to the RT formula we should

consider codimension-two surfaces V sharing the same boundary ∂V = ∂R ≡ ΣCFT. To

determine RT surface candidates among these surfaces, we must search for surfaces which

extremize their area. As we discussed in the introduction, there are generally two sets of

surfaces which achieves this extremization; the RT prescription then instructs us to choose

the one with the smallest area. The first class of surfaces are those which intersect the

brane, forming a quantum extremal island on the brane which belongs to the entanglement

wedge of R — see figure 20. We will say that this RT surface is in the island phase. The
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Figure 20. The bulk dual to a d-dimensional Minkowski CFT with a defect (green dot) along a

line x1 = 0. The CFT lives on the asymptotic boundary of a Poincaré AdSd+1 spacetime with a

brane (green line) running through it. We consider the entanglement entropy of the complement

R = (−∞, −b] ∪ [b, ∞) of a belt geometry in the CFT. As considered in section 5.1, one candidate

RT surface ΣR, shown in red, intersects the brane at a QES σR, forming an island on the brane

belonging to the entanglement wedge of R. Various quantities defined in section 5.1 are marked in

this figure.

(a) Heading into the bulk ± = +. (b) Heading out of the bulk ± = −.

Figure 21. Definitions for the choice of ± in eq. (5.7) and for the corresponding ∆x1 (> 0) from

eq. (5.8) on the two branches of the RT surface.

second set of surfaces fall trivially into the bulk and do not produce islands on the brane,

i.e. these surfaces are in the no-island phase.

5.1 Island phase

As a starting point, let us review the calculation for RT surfaces of belt geometries in pure

AdS [16]. That is, we are considering the complement of R, but the RT calculations for this

region and for its complement, R = [−b, b], are equivalent. Integrating out the x2, . . . , xd−1

directions in which the brane is constant, the area functional of a codimension-2 surface V

becomes

A(V) = Ld−1vol⊥d−2

∫

V

dx1

√
1 +

(
dz

dx1

)2

zd−1
, (5.6)

where vol⊥d−2 is the volume of transverse directions {x2, . . . , xd−1}.29

29Note that in contrast to volHd−2
introduced in section 3, vol⊥d−2 has the dimensions of lengthd−2 and

so is essentially given by ℓd−2
IR where ℓIR is an IR cutoff in the x2, . . . , xd−1 directions.
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The RT surface ΣR is obtained by extremizing the area functional (5.6) with respect to

the profile z(x1). This functional, viewed as a Lagrangian, contains no explicit dependence

on x1 and hence the corresponding Hamiltonian is a constant along ΣR, allowing us to

deduce

dz

dx1
= ±

√
z

2(d−1)
∗ − z2(d−1)

zd−1
(5.7)

for some constant z∗. Further, the sign ± above is determined by whether we are on the

portion of the RT surface heading into the bulk (+) or heading out of the bulk (−) with

increasing x1 — see figures 20 and 21.30 From eq. (5.7), we see that dz/dx1 = 0 at z = z∗

and therefore z∗ is the maximal z-value attained by ΣR. We can integrate eq. (5.7) to

obtain the trajectory of the RT surface:

∆x1 =
zd

d zd−1
∗

F2 1

[
1

2
,

d

2(d − 1)
;

d

2(d − 1)
+ 1;

(
z

z∗

)2(d−1)
]

(5.8)

Here ∆x1 > 0 is the absolute x1-separation between a point on the RT trajectory and

the initial (final) endpoint on the asymptotic boundary, on the portion of the RT surface

heading into (out of) the bulk — see figure 21. If we evaluate this expression at z = z∗,

we obtain half of the width of the boundary strip (in the x1 direction) defined by the RT

surface. Denoting this width as D, which we emphasize is in the empty AdS vacuum (see

figure 20), we have

D

2
=

√
π Γ
[

d
2(d−1)

]

Γ
[

1
2(d−1)

] z∗. (5.9)

Now returning to the geometry with the backreacting brane, each half of the RT surface

ΣR on either side of the brane will follow the trajectory given in eq. (5.8) for pure AdS

prior to meeting the brane. We have placed the defect at x1 = 0 and the RT surface begins

on the asymptotic boundary at x1 = −b. Further, if we were to extend the RT surface

past the brane, it would hit the asymptotic boundary again at x1 = −b + D. In terms of

eq. (5.8), x1 along the trajectory is then given by

x1 = −b +





∆x1 when heading into bulk (towards z = z∗)

D − ∆x1 when heading out of bulk (away from z = z∗)
. (5.10)

In general, as illustrated in figure 20, D
2 6= b, rather, the relation between D (or z∗)

and b must be determined by demanding that the choice of the intersection σR of the RT

surface with the brane should extremize the RT surface’s area (plus the area of the QES,

when brane action includes an extra DGP term). As described in [1] and reviewed around

eq. (3.21), this extremization leads to a boundary condition restricting the angle at which

the RT surface meets the brane. Again, we may reduce this to a two-dimensional problem

30As noted previously, if we restrict our attention to positive tension To, we will have 0 < θB < π/2. In

this case, the RT surface must be increasing in x1 as one heads away from the boundary (z, x1) = (0, −b),

in order for the RT surface to meet the brane.
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where we view the RT surface as a geodesic in an effective two-dimensional geometry

ds2
2D =L2(d−1) (vol⊥d−2)2 dz2 + dx2

1

z2(d−1)
, (5.11)

and the area becomes the length of the geodesic in this geometry.

As before, we may use eq. (3.21) to determine the variation of the RT surface area

under perturbations of σR, the QES on the brane. Here, hij is given by eq. (5.11), the

deviation vector Xj is chosen to be ∂y, and the tangent T i determined from eq. (5.7), with

both Xj and T i normalized with respect to hij . Hence, upon perturbing the intersection

of the RT surface with the brane, the RT area varies as

∂A(ΣR)

∂yQES
=

2Ld−1vol⊥d−2

zd−1
QES

cos θQES = 2Ld−1vol⊥d−2




cos θB

zd−1
∗

±
√√√√ 1

z
2(d−1)
QES

− 1

z
2(d−1)
∗

sin θB


 ,

(5.12)

where θQES is the angle between the RT surface and the brane, yQES is the y coordinate

of σR — see figure 20 — and the ± sign is the same one as introduced in eq. (5.7) and

illustrated in figure 21. An extra factor of 2 is included to account for the two components

of the RT surface on either side of the brane. From eq. (5.5), we read off the area of σR:

A(σR) =vol⊥d−2

(
L

yQES sin θB

)d−2

,
∂A(σR)

∂yQES
= − (d − 2)vol⊥d−2Ld−2 sin θB

zd−1
QES

. (5.13)

The extremality condition

0 =
∂

∂yQES

(
A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

)
(5.14)

is satisfied if

cos θQES = λb sin θB ⇐⇒ zQES = z∗

[
sin θB

(
λb cos θB +

√
1 − λ2

b sin2θB

)] 1
d−1

,

(5.15)

where λb is defined in eq. (2.7). The relationship between z∗ and b may then be determined

by substituting (x1, z) = (zQES cot θB, zQES) into eq. (5.10), and using eqs. (5.9), (5.8)

and (5.15) to find

b = ± ∆x1 +
1 ∓ 1

2
D − zQES cot θB = F(d, λb, θB) z∗ (5.16)

F(d, λb, θB) ≡ ±
zd

QES

d zd
∗

F2 1

[
1

2
,

d

2(d − 1)
;

d

2(d − 1)
+ 1;

(
zQES

z∗

)2(d−1)
]

+ (1 ∓ 1)

√
πΓ
[

d
2(d−1)

]

Γ
[

1
2(d−1)

] − zQES

z∗
cot θB

(5.17)
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d =3
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(a) Position of σR as a function of brane angle.
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(b) Critical brane angle as a function of the ratio

of Gbulk to Gbrane.

Figure 22. Plots of the position of σR, the intersection of the RT surface with the brane, and the

critical brane angle at which this surface runs off to yQES → +∞.

where the top (bottom) signs chosen above if the RT surface intersects the brane to the

left (right) of the extremal point z = z∗. We have noted in the second equality of eq. (5.16)

that all terms of the previous expression are linear in z∗; in particular, note in eq. (5.17)

that the ratio zQES/z∗ is determined by eq. (5.15). In figure 22a, we have plotted the

position of the intersection σR between the RT surface and the brane as a function of the

brane angle θB for various λb and d = 3. In section 5.3, we shall discuss the fact that, for

θB below some critical angle θc, the extremal surfaces discussed here fail to exist. That is,

yQES, the position of the QES on the brane, runs off to infinity as θB → θc from above.

Having determined the profile of the RT surfaces, we may proceed to evaluate their cor-

responding entropies using the RT formula (1.2) — keeping in mind that we have not shown

that these surfaces minimize the entropy functional yet. Inserting eqs. (5.7) and (5.13) into

the generalized entropy functional, we find that the entropy of the belt geometry R and

hence of the complementary bath region R is given by

A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

=
Ld−2

4Gbrane

vol⊥d−2

zd−2
QES

+
Ld−1

4Gbulk





(1 ∓ 1)
√

πΓ
[

2−d
2(d−1)

]

(d − 1)Γ
[

1
2(d−1)

] vol⊥d−2

zd−2
∗

+
2

d − 2


vol⊥d−2

δd−2
∓ vol⊥d−2

zd−2
QES

F2 1


1

2
,

d

2(d − 1)
− 1;

d

2(d − 1)
;

(
z∗

zQES

)2(d−1)









(5.18)

where z = δ defines the UV cutoff surface near the asymptotic AdS boundary, and zQES and

z∗ are linearly related to b by eqs. (5.15) and (5.17). For zQES ≪ z∗, the hypergeometric

function becomes 1 + O[(zQES/z∗)2(d−1)], giving

A(ΣR)

4Gbulk

+
A(σR)

4Gbrane
=

Ld−1

4Gbulk

{
2

d − 2

vol⊥d−2

δd−2
− 2

d − 2




2
√

π Γ
[

d
2(d−1)

]

(d − 2) Γ
[

1
2(d−1)

]




d−1

vol⊥d−2

Dd−2

}

+ vol⊥d−2

(
L

zQES

)d−2{
1

4Geff
+ O

[
1

Gbulk

(
zQES

z∗

)2(d−1)
]}

,

(5.19)
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where we have used eq. (5.9) to replace z∗ with D in the first line. Note from eq. (5.15)

that zQES/z∗ ∼ [(λb + 1)θB]1/(d−1) so the correction is indeed smaller than the other terms

shown here in high tension limit.

Using the brane perspective, let us examine the various contribution to the generalized

entropy on the right-hand side of eq. (5.19). Beginning with the leading term of the second

line in eq. (5.19), we find that it corresponds to Bekenstein-Hawking of the QES, i.e. 1
4Geff

times the area of σR. It is interesting to note that there are no higher curvature corrections

to the generalized entropy of the QES as might have been expected from the Wald-Dong

entropy formula.31 Turning to the first term in the first line of eq. (5.19), we have the

area law divergence associated with the two components of the entangling surface ΣCFT at

x1 = ±b. This leaves us with the second term in the first line. Upon closer examination can

be recognized as the finite contribution to the entanglement entropy for a belt of width D,

up to an additional factor of 2, e.g., see [16, 17]. Further, we note that both contributions

on the first line of eq. (5.18) contain a prefactor proportional to Ld−1/Gbulk ∼ cT , which

measures the number of degrees of freedom in the boundary CFT, e.g., [85].

We can see that these results correspond approximately to the expected entropy from

the brane perspective as follows: we begin by considering the contribution from the CFT

to one side of the conformal defect, say x1 < 0. Imagine we begin with a single copy of

the CFT in flat space (5.2), and evaluate the entropy of a belt of width D with entangling

surfaces at x1 = −b and x1 = D − b. For this geometry, the holographic entanglement

entropy becomes [16, 17]

SEE =
Ld−1

4Gbulk

{
1

d − 2

vol⊥d−2

δd−2
+

1

d − 2

vol⊥d−2

δd−2
− 1

d − 2




2
√

π Γ
[

d
2(d−1)

]

(d − 2) Γ
[

1
2(d−1)

]




d−1

vol⊥d−2

Dd−2

}
,

(5.20)

where we have separated the area law contributions of the two components of the entangling

surface. Now from the brane perspective in our system, the bath CFT reside in flat space for

x1 < 0 but the corresponding copy of the CFT resides onto the AdSd geometry of the brane

for x1 > 0. However the latter can be produced by making a local Weyl transformation in

the positive x1 domain:

ds2 =
δ2

x2
1 sin2 θB

ds2
CFT

=
δ2

x2
1 sin2 θB

(
−dt2 + dx2

1 + · · · + dx2
d−1

)
. (5.21)

Note that this is geometry is not the induced metric (5.5) but rather we are considering the

standard conformal frame where one strips off the factor of (L/δ)2 from the bulk metric.32

31One can argue that all of the higher curvature corrections to the Wald-Dong entropy must cancel against

one another as follows: in the present case, these terms would arise from integrating out the boundary CFT

on the gravitating brane and so should be conformally invariant, e.g., see [106]. However, by a simply Weyl

transformation, the brane metric becomes flat and further both the intrinsic and the extrinsic curvatures of

σR vanish. Hence in this flat conformal frame, the higher curvature corrections to the Wald-Dong entropy

individually vanish. Hence while these curvatures do not vanish in the original conformal frame, the higher

curvature entropy corrections must all cancel against one another.
32Further, we are only performing the Weyl transformation (5.21) for x1 > δ/ tan θB , which corresponds

to the intersection of the brane with the UV cutoff surface z = δ.
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Now the net effect of this Weyl transformation on the entanglement entropy (5.20) is to

modify the cutoff appearing in the area law contribution for the surface at x1 = D − b, i.e.

δ → (D −b) sin θB ≃ zQES, where the latter assumes that θB ≪ 1. Hence the entropy (5.20)

becomes

S′
EE

≃ Ld−1

4Gbulk

{
1

d − 2

vol⊥d−2

δd−2
− 1

d − 2




2
√

π Γ
[

d
2(d−1)

]

(d − 2) Γ
[

1
2(d−1)

]




d−1

vol⊥d−2

Dd−2

}

+
1

4

L

(d − 2)Gbulk

(
L

zQES

)d−2
vol⊥d−2

δd−2
. (5.22)

Now using eq. (2.7), the term on the second line can be recognized as the contribution of

one of the boundary CFTs to the Bekenstein-Hawking entropy of the quantum extremal

surface on the brane. Hence combining the above contribution (5.22) with that from

the other copy of the boundary CFT (which extends to the bath for x1 > 0) and the

DGP contribution to the Bekenstein-Hawking entropy, we precisely recover the leading

contributions in eq. (5.19). Hence this simple CFT argument allows us to match the

leading contributions in the holographic result with the expected entanglement entropy.

5.2 No-island phase

Above, we studied the set of candidate RT surfaces which intersect the brane. In fact

(for θB < π/2), there exists another set of simple extremal surfaces which must also be

considered under the RT prescription (1.2). These surfaces are constant x1 planes anchored

on the entangling surface ΣCFT on the asymptotic boundary and fall straight into the bulk.

By reflection symmetry about x1 = ±b, these planes trivially extremize the area functional,

which becomes

A(V) = 2Ld−1vol⊥d−2

∫

V

dz

zd−1
. (5.23)

A factor of 2 has been included above to account for the two planes at x1 = ±b.33 Unlike

the surfaces considered in section 5.1, these planes do not intersect the brane and thus no

islands are formed on the brane. The entropy in this no-island phase is easily obtained

from evaluating the area functional (5.23), which then yields

A(ΣR)

4Gbulk

=
Ld−1

2(d − 2)Gbulk

vol⊥d−2

δd−2
, (5.24)

where δ is again the UV cutoff in the boundary CFT.

5.3 Islands at T = 0 for d > 2

Altogether, we have two candidate RT surfaces: the extremal surfaces described in sec-

tion 5.1 which intersect the brane to form a quantum extremal island, and the extremal

planes described in section 5.2 corresponding to the no-island phase. To determine which

33Further, let us note that for the special case d = 2, the integral produces an IR divergence at z → ∞.

However, there is no such IR divergence for d ≥ 3.
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is the correct RT surface, we must first study the parameter space for which each surface

exists. When both types surfaces exist simultaneously, the correct RT surface is given by

the one which has the smallest generalized entropy, as in eq. (1.2). Below, we first observe

that on a brane at angle θB < π/2, an island can only possibly exist when −1 < λb < 1;

more specifically, for this range of the DGP parameter λb, there is a critical angle θc < π/2

which gives the minimum θB that supports the island phase — recall that this critical angle

was plotted in figure 22b. For θB > θc, the island phase exists and is dominant. At θB = θc

the entropies computed by the island and no-island RT surfaces equalize, leading to a tran-

sition to the no-island phase below θc. As we shall find that θc scales as (1 + λb)
1

d−2 at

its smallest, this precludes the possibility of islands in the regime where the brane is well-

described by QFT on semiclassical gravity — see footnote 5. This differs from the d = 2

case, where the island phase always exists; furthermore, while the no-island RT surface in

d > 3 has an IR-finite area, the analogous surfaces in d = 2 produce an IR divergence and

thus are never dominant.

Let us begin our analysis by constraining the parameter space in which each type of RT

candidate surface exists. It is easy to see that the extremal planes of the no-island phase

exist if and only if θB ≤ π/2.34 It is slightly more involved to determine when the extremal

surfaces in the island phase exists. For a start, the first equality of eq. (5.15) indicates

that for θB < π/2, sensible extremal surfaces intersecting the brane can only possibly exist

when −1 < λb < 1.35 From figure 22a, we see that this is the range of λb for which there

exists some θB < π/2 such that the DGP gradient has not overpowered the bulk term of

eq. (5.14) to push the QES to the asymptotic boundary y = 0 or to the horizon y = ∞.

To be more precise, we must consider properties of the F function introduced in

eq. (5.17). For −1 < λb < 1, some (numerically deduced) facts about F(d, λb, θB) are that

it is decreasing in λb and increasing in θB. Moreover,

F(d, λb, θB close to 0) = − (1 + λb)
1

d−1 θ
− d−2

d−1
B [1 + O(θ2

B
)] +

D

z∗
(5.25)

F(d, λb, θB close to π) = (1 − λb)
1

d−1 (π − θB)− d−2
d−1 {1 + O[(π − θB)2]}. (5.26)

Since the former diverges negatively while the latter diverges positively, it follows that

there exists a critical angle θc for which F(d, λb, θc) = 0. For −1 < λb < 1, we have

0 < θc < π/2 with θc → 0, π/2 as λb → −1, 1, respectively.36 The physical significance of

34Of course, this was our regime of interest, as this was the regime where a (nearly) massless graviton is

induced on the brane.
35Specifically, this can be seen as follows: let us take the extreme case of λb = 1 (λb = −1). Then

eq. (5.15) indicates that θQES = θB − π/2 (θQES = θB + π/2). For λb = 1, this implies that when θB > π/2,

the RT surface falls straight into the bulk until it hits the brane, i.e. z∗ = ∞ — see figure 20. Now as

θB → π/2 from above, the QES runs off towards the horizon and consequently no QES exists for θB < π/2.

For λb = −1, one can argue that for θB < π/2, the QES is stuck to the defect, i.e. zQES = ∞. As increasing

(decreasing) λb beyond 1 (−1) means the DGP entropy contribution exerts a greater force pushing the

QES towards the horizon (the defect), it follows that no QES exists for θB < π/2 when λb > 1 (λb < −1).

In these parameter ranges, the naive ‘solutions’ obtained from eq. (5.15) are unphysical, i.e. have the RT

surface anchored in the unphysical region behind the brane.
36In particular then, no islands form with λb > 1 in the regime of interest with θB ≤ π/2.
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θc can be seen from the second equality of eq. (5.16): for θB above θc, there exist extremal

surfaces which intersect the brane; as θB → θc from above, z∗, zQES, yQES run off to +∞ as

∼ (θB − θc)
−1; finally, for θB < θc, no extremal surfaces exist which intersect the brane. In

Figure 22b, we plot the critical angle θc as a function of λb for various d.

Before continuing, let us briefly note a number of peculiarities which arise when |λb| >

1. First, for λb > 1, there exists a range of θB & π/2 for which no extremal surfaces of any

kind exists, i.e. the RT prescription fails completely. This may indicate that there is no CFT

plus defect theory which can be dual to a bulk with this range of parameters — of course,

the brane has a negative tension in this regime and so there is no effective gravitational

theory on the brane. Second, recall that as λb → −1 from above, the coefficient of the

Einstein-Hilbert action vanishes, leading to a breakdown of semiclassical Einstein gravity, as

mentioned in footnote 5. Further taking λb < −1 then corresponds leads to an unphysical

ghost-like gravity action in the brane theory. At any rate, from here on, we shall restrict

our focus to −1 < λb < 1.

Now we have two competing possible RT surfaces: for θB ≤ π/2, extremal planes

anchored on the entangling surfaces to either side of the brane, which correspond to a no-

island phase; and, for θB > θc, extremal surfaces which intersect the brane, corresponding

to an island phase. As both types of surfaces exist for θc < θB < π/2, the RT formula

instructs us to choose the surface with the smallest area in this parameter space. Thus, we

consider the area difference:

[
A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

]

isl.
−
[

A(ΣR)

4Gbulk

]

✟✟isl.
= − Ld−1vol⊥d−2

2(d − 2)Gbulkzd−2
∗

F(d, λb, θB) (5.27)

where we have used eqs. (5.17), (5.18), (5.24), and the hypergeometric function identity37

F2 1

[
1

2
,

d

2(d − 1)
− 1;

d

2(d − 1)
; w

]
=

√
1 − w +

(
w

d

)
F2 1

[
1

2
,

d

2(d − 1)
;

d

2(d − 1)
+ 1; w

]
.

(5.28)

From eq. (5.27), we see that whenever the island- and no-island-type surfaces coexist, the

island-type surface always gives a lower area and is thus the surface picked out by the RT

formula. Moreover, we see that entropy transitions continuously between the island and

no-island phases at the critical angle θc where F(d, λb, θc) = 0. Altogether, we find that,

for θB < θc, we are in the no-island phase where the RT surface is given by planes falling

straight into the bulk, and, for θB > θc, we transition to an island phase where the RT

surface is given by extremal surfaces which intersect the brane and form an island.

To gain intuition for the critical angle θc from the brane perspective, we note from

37This can be proven using eq. (15.1.8) and (15.2.25) of [107].
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eq. (5.19) that eq. (5.27) can may be approximated as

[
A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

]

isl.
−
[

A(ΣR)

4Gbulk

]

✟✟isl.

= − Ld−1

4Gbulk

4
√

π Γ
[

d
2(d−1)

]

(d − 2) Γ
[

1
2(d−1)

] vol⊥d−2

zd−2
∗

+ vol⊥d−2

(
L

zQES

)d−2{
1

4Geff
+ O

[
1

Gbulk

(
zQES

z∗

)2(d−1)
]}

(5.29)

in the small θB limit. Building upon the discussion given below eq. (5.19), we interpret

the r.h.s. as giving a change in generalized entropy due to the introduction of the island in

the effective theory of the asymptotic boundary and brane. Namely, comparing with the

island rule (1.1), the first term on the r.h.s. of eq. (5.29) gives the change in SQFT due to

the introduction of the island, and the second term gives Bekenstein-Hawking entropy of

the QES. Hence, for θB > θc, the island phase is favoured as the introduction of the island

reduces generalized entropy. For θB < θc, the QES ceases to exist and only the no-island

phase is possible.

We briefly comment that, unlike for the CFT region considered in [1], the addition of

topological terms to the bulk gravity theory does not change the favourability between the

island and no-island phases of the belt geometry. This is because such a modification can

only effect a topological contribution to the Wald-Dong entropy formula and, for the belt

geometry, the RT surfaces in both phases have vanishing Euler characteristic. Namely, the

RT surface of the island phase has the topology of an infinite strip while the RT surface of

the no-island phase consists of two half-planes. Thus, the topological contribution would

not favour one phase over the other.

In closing, we note that, unlike the d = 2 case [2], we have found that in the small

θB limit, where an effective theory of gravity plus quantum matter emerges on the brane,

islands typically do not exist for extremal black holes in d ≥ 3. To be more precise,

eq. (5.25) and figure 22b suggest that θd−2
c ∼ 1 + λb. It is still possible to stay in the

island phase by tuning 1 + λb to scale as ∼ θd−2
B

. However, from eq. (2.7), we see that this

limit λb → −1+ corresponds to Geff → +∞, leading to a breakdown of the semiclassical

description of the effective brane theory [1] (as mentioned in footnote 5.). We remark that,

unlike for non-extremal black holes to be discussed in section 3, there is no immediate

information paradox that arises as a result of the lack of islands in the extremal case here.

6 Two dimensions revisited

In this section, we specialize to the case of d = 2 which, as mentioned in the main text,

requires a slightly different treatment. We begin with a discussion of the induced action

on the brane, supplemented with JT gravity. Next, we review the bulk AdS3 and brane

AdS2 geometries. Finally, we study extremal surfaces serving as candidate RT surfaces to

determine the entropy in the two phases, with and without an island, leading to the Page

curve. At leading order in an expansion in terms of small brane angles, i.e. θB → 0, our
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results precisely agree to those of [2]. However, we can also retain the subleading terms,

which produce corrections due to the finite UV cutoff on the brane.

6.1 Brane action

We begin by briefly reviewing the modifications for the induced brane action in two di-

mensions — a more complete discussion can be found in [1].

Let us start in the absence of JT gravity, considering only the brane action Iinduced

induced by the bulk Einstein-Hilbert action (with cosmological constant) given in eq. (2.1),

its corresponding Gibbons-Hawking action on the brane, and the brane tension term

Ibrane = −To

∫
d2x

√
−g̃. (6.1)

As we saw in section 2, the induced action evaluated for higher dimensions contains coef-

ficients with factors of (d − 2) (see eq. (2.6)), which prevent a naive substitution d → 2.

Instead, redoing the calculation specifically in two dimensions, the induced brane action is

found to be

Iinduced =
1

16πGeff

∫
d2x

√
−g̃

[
2

ℓ2
eff

− R̃ log

(
−L2

2
R̃

)
+ R̃ +

L2

8
R̃2 + · · ·

]
. (6.2)

where the two effective scales are

(
L

ℓeff

)2

= 2 (1 − 4πGbulkLTo) , Geff = Gbulk/L . (6.3)

Notice that while the first equality follows the same definition as in higher dimensions,

the second one must be redefined for d = 2 (cf. eq. (2.7)). The unusual logarithmic term

above arises from the nonlocal Polyakov action [108], which appears from integrating out

the two-dimensional CFT on the brane — see the discussion in [1]. In the absence of any

DGP terms in the brane, extremization of Iinduced leads to an AdS2 brane with radius of

curvature ℓB related to ℓeff in the same way as in higher dimensions (i.e. through eqs. (2.4)

and (2.7)):

L2

ℓ2
eff

= f

(
L2

ℓ2
B

)
≡ 2

(
1 −

√

1 − L2

ℓ2
B

)
. (6.4)

Thus, as in the higher dimensional case, the large tension limit leads to ℓB ≫ L and

a small brane angle θB in eq. (2.4). In this limit, the brane moves towards the would-

be AdS3 boundary at θ = 0, giving rise to a logarithmic UV divergence in eq. (6.2) as

L/ℓB → 0.

Throughout the main text, we considered supplementing the brane action with a DGP

term — compare eqs. (2.2) and (6.1). In two dimensions, an Einstein-Hilbert action is

topological and so it is common to instead consider Jackiw-Teitelboim (JT) gravity [109,

110] in the brane theory (e.g., see recent discussions of quantum extremal islands in d = 2,

e.g., [2, 13, 15, 111]). Following [1], we then choose the brane action as

Ibrane = IJT − 1

4πGbulkL

∫
d2x

√
−g̃ , (6.5)
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with the JT action taking the usual form (again as in section 2, we are omitting boundary

terms),

IJT =
1

16πGbrane

∫
d2x

√
−g̃

[
Φ0 R̃ + Φ

(
R̃ +

2

ℓ2
JT

)]
. (6.6)

The Einstein-Hilbert term, though topological, still contributes to the generalized entropy

with weight Φ0. With the addition of JT gravity on the brane in eq. (6.5), we arrive at the

following induced action on the brane,

Iinduced =
1

16πGeff

∫
d2x

√
−g̃

[
−R̃ log

(
−L2

2
R̃

)
+

L2

8
R̃2 + · · ·

]

+
1

16πGbrane

∫
d2x

√
−g̃

[
Φ̃0 R̃ + Φ

(
R̃ +

2

ℓ2
JT

)]
, (6.7)

where we have redefined the topological part of the dilaton upon collecting the coefficients

multiplying an Einstein-Hilbert terms, i.e.

Φ̃0 = Φ0 + Gbrane/Geff . (6.8)

Note that we have discarded the usual tension coefficient To in eq. (6.5) and instead chosen

the tension such that no cosmological constant appears in the first line of eq. (6.7) for

simplicity. In eq. (6.7), it is clear that varying Φ yields an equation of motion simply

setting the radius of curvature on the brane to ℓB = ℓJT. The limit of small brane angle

θB, related to ℓB still through the first equality of eq. (2.4), is therefore obtained by taking

ℓJT ≪ L. Note that this leads to a logarithmic UV divergence in eq. (6.7) similar to the

non-JT case, as mentioned below eq. (6.4). Similarly, the source-free equations of motion

for the dilaton can then be obtained by varying the metric and further shifting the dilaton,

as discussed in [1].

The above reviews our discussion of the induced action in [1]. However, we would like

to compare our results for the quantum extremal surfaces and the Page curve to those

derived in [2]. To facilitate this comparison, we make the following field redefinitions

φ0 =
Φ0

4Gbrane
, φ = φ0 +

Φ

4Gbrane
, (6.9)

φ̃0 = φ0 − 1

2Geff

log

(
L

ℓJT

)
, φ̃ = φ − 1

2Geff

log

(
L

ℓJT

)
, (6.10)

giving the bare and renormalized values of the dilaton — we shall clarify the meaning of

this renormalization shortly. In terms of the latter, induced action (6.7) now reads

Iinduced =
1

16πGeff

∫
d2x

√
−g̃

[
−R̃ log

(
−ℓ2

JT

2
R̃

)
+ R̃ +

L2

8
R̃2 + · · ·

]

+
1

4π

∫
d2x

√
−g̃

[
φ̃ R̃ +

2

ℓ2
JT

(φ̃ − φ̃0)

]
.

(6.11)

Here, the first line eq. (6.11) may be interpreted as the renormalized effective action pro-

duced by integating out the brane CFT, and the second line contains the renormalized
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JT action, which can be compared to eq. (2) in [2]. Here, ‘renormalized’ means that we

have absorbed the logarithmic UV divergence that would otherwise appear in the induced

action38 as L/ℓB → 0 into the JT action, which was achieved by the renormalization of

φ0 → φ̃0 in eq. (6.10).

As before, the dilaton φ̃ acts as a Lagrange multiplier which fixes the brane geometry

to be locally AdS2 with radius of curvature ℓB = ℓJT. The equation of motion for the

induced metric g̃ij , on the other hand, yields the dilaton equation of motion

− ∇i∇jφ̃ + g̃ij

(
∇2φ̃ − φ̃ − φ̃0

ℓ2
JT

)
= 2π T̃ CFT

ij = − g̃ij

4L2Geff

f

(
L2

ℓ2
JT

)
. (6.12)

In the final expression, we evaluated the renormalized CFT stress tensor T̃ CFT

ij using the

function f defined in eq. (6.4).39 The standard discussions of JT gravity (e.g., [13, 112])

refer to the source-free dilaton equation, i.e. the r.h.s. vanishes, but this is easily accom-

modated by a further shift40

φ̂0 = φ̃0 +
ℓ2

JT

4L2Geff

f

(
L2

ℓ2
JT

)
. (6.13)

6.2 Bulk and brane geometries

Let us now review the geometry for our current setup. Due to the simplicity of AdS3, we

will find it convenient to describe RT surfaces using global coordinates, even though we

will be considering Rindler time evolution, as in the main text. In global coordinates, we

may write the bulk AdS3 metric as

ds2 =
L2

cos2 r̃

[
−dτ̃2 + dr̃2 + sin2 r̃ dϕ2

]
(6.14)

where τ̃ ∈ R, r̃ ∈ [0, π/2] and ϕ ∈ [−π, π].

In the AdS-Rindler coordinates, the AdS3 geometry becomes

ds2 = L2

(
−(r2 − 1) dτ2 +

dr2

r2 − 1
+ r2dχ2

)
, (6.15)

which is just the special case of eq. (3.6) for d=2. Here, τ, χ ∈ (−∞, ∞) and one exterior

region is given by r > 1. As described in section 2, the AdS-Rindler coordinates are useful

38Recall that we also removed the power law divergence corresponding to the induced cosmological con-

stant term by introducing a counterterm in eq. (6.5).
39As noted in [1], f(L2/ℓ2

JT) = L2/ℓ2
JT + O(L4/ℓ4

JT) and hence this expression yields the expected trace

anomaly 〈(T̃ CFT)i
i〉 = 2× c

24π
R̃ to leading order in L/ℓJT. But the latter also receives additional corrections

due to the finite UV cutoff on the brane — see eq. (2.45) in [1]. Recall that the central charge of the boundary

CFT is given by c = 3L/2Gbulk and the extra factor of two in the trace anomaly arises because the brane

supports two copies of this CFT.
40Note that implementing this shift in the action (6.11) introduces a new cosmological constant term.

Hence an alternative approach would be to introduce a general brane tension To in eq. (6.5) and then tune

the latter to absorb both the corresponding (power law) UV divergence in the induced action and the r.h.s.

of the dilaton equation (6.12).
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for the description of vacuum AdS as a topological black hole, such that the boundary CFT

is in a thermofield double state. The inverse temperature with respect to time τ is 2π,

giving the periodicity of iτ necessary for a smooth Euclidean continuation — we shall also

define a dimensionful time and temperature shortly. Indeed, these coordinates describe a

horizon at r = 1. Note that in d = 2, the boundary geometry is flat, i.e. it is simply two

copies of R
2. The AdS-Rindler coordinates (τ, r, χ) are related to the global coordinates

(τ̃ , r̃, ϕ) in eq. (6.14) by

tanh τ =
sin τ̃

cos ϕ sin r̃
, tanh χ =

sin ϕ sin r̃

cos τ̃
, r2 =

cos2 τ̃ − sin2 ϕ sin2 r̃

cos2 r̃
. (6.16)

As described above in section 6.1, extremizing the brane action in eq. (6.7) with respect

to Φ (or eq. (6.11) with respect to φ̃) fixes the intrinsic brane geometry to be AdS2 with

radius of curvature ℓB = ℓJT. This becomes the θ = θB slice of the AdS3 metric written as

in eq. (2.3), where θB is determined by

sin θB =
L

ℓJT

, (6.17)

as in eq. (3.8). We write the induced metric on the brane as

ℓ2
JT

ds2
AdS2

= ℓ2
JT

(
−(ρ2 − 1) dτ2 +

dρ2

ρ2 − 1

)
= −4π2 ℓ2

JT

β2

dy+dy−

sinh2
(

π(y+−y−)
β

) . (6.18)

The first line element with (τ, ρ) is simply the special case of AdS-Rindler coordinates given

in eq. (3.10) with d = 2. The light-cone coordinates (y+, y−) in the second line element

are those used by [2], whose results we wish to compare against. The relationship between

(τ, ρ) and (y+, y−) is given by

τ =
π(y+ + y−)

β
=

2πt

β
, ρ = coth

[
π(y+ − y−)

β

]
. (6.19)

Given that the TFD has temperature 1
2π with respect to dimensionless time τ , we have

introduced the dimensionful time t = y++y−

2 where the temperature becomes T = 1/β.41

On the brane, eq. (6.12) is easily solved for the dilaton profile in terms of ρ or y±:

φ̃ = φ̂0 +
2πφr

β
ρ = φ̂0 +

2πφr

β
coth

[
π(y+ − y−)

β

]
, (6.20)

where φr is a constant introduced in [2] (see eq. (18) and discussion below (2) there).

In the AdS-Rindler metric given in eq. (6.15), we introduce a surface of large constant

r = rUV which will serve as the UV cutoff surface. Then following [2], we take the induced

metric on this surface as the background metric for the bath CFT, i.e.

ds2
CFT

= L2r2
UV(−dτ2 + dχ2) , (6.21)

41This is the same time coordinate introduced below eq. (3.6), though the relation β = 2π R loses its

meaning as there is no spatial curvature in d = 2.
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with the conformal defect at χ = 0. Now the light-cone coordinates y± can be extended to

describe the geometry of AdS3 bulk, and in particular the bath region on the asymptotic

boundary near θ = π as well as the brane geometry given in eq. (6.18) at θ = θB, by taking

an AdS3 metric in the form eq. (2.3). Indeed, on the asymptotic boundary, with metric

given in eq. (6.21), y± are related to (τ, χ) with42

y± =
β(τ ∓ χ)

2π
, ds2

CFT
= −

(
2πLrUV

β

)2

dy+dy− . (6.22)

As in higher dimensions, we are interested in computing the entanglement entropy

of a boundary region R comprised of all of the points with |χ| ≥ χΣ in the two baths

(associated with the two copies of the CFT entangled in the TFD state). That is, this

region is the complement of two intervals (‘belts’) centered on the conformal defects in the

two boundaries (which corresponds to the intersection of the brane with the asymptotic

boundary — see figure 23). Focusing on a single Rindler wedge and on one side of the

brane, the entangling surface is located at a fixed χ = −χΣ < 0, which we define as

y+ − y−

2
= b > 0 with b =

β

2π
χΣ , (6.23)

for all Rindler times τ . Similar assignments apply for the patches covering the other

portions of the boundary.

Finally, we note that going to the asymptotic boundary (with r̃ → π/2 and r → ∞),

eq. (6.16) yields the relation of the global and Rindler coordinates on the boundary:

tan ϕ =
sinh χ

cosh τ
, tan τ̃ =

sinh τ

cosh χ
, (6.24)

which allow us to simplify some calculations below. It will be useful to denote the (time-

dependent) global coordinate angle of the entangling surface at χ = −χΣ as ϕΣ.

6.3 Entropies: island and no-island phases

Now we turn to the problem of computing entropies using the RT formula in the background

of the hyperbolic AdS3 black hole coupled to the AdS2 brane with JT gravity. Specifically,

we wish to compute the entropy of the region R complementary to belts centered on the

defects, as described at the end of subsection 6.2. In the island and no-island phases the

RT formula equates the entropy to:
[

A(ΣR)

4Gbulk

+ φQES

]

isl.
,

[
A(ΣR)

4Gbulk

]

✟✟isl.
. (6.25)

The RT variational problem instructs us to consider extremal co-dimension two surfaces

ΣR in the bulk, which in AdS3 are simply geodesics. Although we are primarily concerned

42We should note that the geometry in [2] can be seen as a Z2 orbifold of our setup (see section 2.2).

Hence they would only consider χ < 0 of the flat boundary geometry in eq. (6.21). Therefore, the extension

of the null coordinates that we are discussing here has to be considered separately for each side of the

conformal defect. As a technical point, let us add that in [2], the sign of the spatial coordinate on the brane

is reversed so that y+ − y− > 0 describes the asymptotic boundary while y+ − y− < 0 describes the brane.

Here, y+ − y− is always positive and θ = π, θB correspond respectively to the bath and brane.
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with evolution in Rindler time, the boundaries of the entangling surface are simply four

points; these can always be simultaneously placed on a surface of constant global time.

This property, not present in higher dimensions, allows us to simplify the analysis by using

global coordinates43 as seen below.

Now just as in higher dimensions, the minimization procedure yields two competing

phases. At early times, the minimal surfaces cross the Rindler horizon avoiding the brane

and the entropy is given purely by the bulk length of the RT surface, as in the second

of the expressions (6.25). This length stretches with Rindler time and leads to a growing

entropy. At late times the RT surfaces go across the brane instead, leading to an island

where the contribution of the dilaton becomes important, as shown in the first of the

expressions (6.25). As in the rest of the paper, we restrict to the regime of small brane

angle θB.

We begin by considering geodesics and their lengths in global coordinates. As is well

known, a convenient way to parametrize the RT surfaces on constant global time τ̃ is by

using two anchoring points ϕ1, ϕ2, where geodesics are given by

sin(r̃) cos

(
ϕ − ϕ1 + ϕ2

2

)
= cos

(
ϕ2 − ϕ1

2

)
. (6.26)

such that the curves hit the boundary r̃ → π/2 at ϕ1 and ϕ2. The area (length in d = 2)

of an RT surface with this trajectory is given by

A = L
∑

i∈{1,2}

tanh−1

[
csc

(
∆ϕ

2

)√

− cos

(
∆ϕ

2
+ r̃i

)
cos

(
∆ϕ

2
− r̃i

)]
(6.27)

= L log

[
4 sin2 (∆ϕ/2)

ǫ1ǫ2

]
− L

12

(
1 + 3 cot2 ∆ϕ

2

)
(ǫ2

1 + ǫ2
2) + O(ǫ4

1) + O(ǫ4
2) , (6.28)

where

∆ϕ = |ϕ1 − ϕ2|, ǫi =
π

2
− r̃i (i ∈ {1, 2}) (6.29)

are respectively the opening angle of the RT surface and the UV cutoffs (in the global

radial coordinate) at which the area integral is terminated, see figure 23.

The leading order term in eq. (6.28) corresponds to the standard entanglement en-

tropy formula of an interval on the circle [17, 113] (but allowing now for two different UV

cutoffs). We have also included the next-to-leading order terms as these will be important

for computing corrections to entropy formulas on the brane.

Now as usual, one must appropriately regularize the areas of the RT surfaces. As

explained above, we place the cutoff surface at a large holographic radius r = rUV in the

Rindler radial coordinate. In terms of global coordinates, this describes the surface

sin2(τ̃) = (sin r̃ cos ϕ)2 − (r2
UV − 1) cos2(r̃) . (6.30)

43The fact that the endpoints reside at constant global time, together with the conservation of the charge

associated with the global time Killing vector (obtained by dotting with the RT tangent) implies that the

RT surfaces themselves must reside on constant global time slices.

– 58 –



J
H
E
P
1
2
(
2
0
2
0
)
0
2
5

ǫ1

ǫ2

ϕ

r = rUV

UV cutoff

ϕQES

ϕ2

ϕ1 = −ϕb

Figure 23. A slice of constant global time in AdS3, showing the two phases of the generalized

entropy. The two cutoffs ǫ1,2 involved in the computation are associated to the UV cutoff at the

asymptotic boundary and the brane, respectively. The global coordinate angles ϕ1, ϕ2 relate to the

RT surface opening angle, while ϕQES is the angle at which the RT surface intersects the brane and

corresponds to the boundary of the island. Recall the geometry is cut at the brane and continued

by gluing it to another copy.

Expanding to leading order in rUV, one finds that the UV cutoff is associated with a length

in eq. (6.29) given by

ǫ1 =
1

rUV

√
2

cosh(2τ) + cosh(2χ)
+ O(r−3

UV) . (6.31)

where we have used eq. (6.24). Here and below, we shall use ǫ1 to denote the cutoff at

the end-point of the RT surface at the asymptotic boundary; ǫ2, on the other hand, will

either be a cutoff at the asymptotic boundary or due to the brane, depending on whether

we are in the no-island or island phase. Note that although the entropies diverge with the

regulator rUV, these contributions will cancel once we consider the difference between the

island and no island phases, as seen below.

Equipped with this, we can now compute the generalized entropy in the two phases

and reproduce the Page curve found in [2].

No-island phase. We begin with the no-island phase. Here once again due to the

simplicity of AdS3, the minimal surfaces lie on constant global time slices. The RT surface

consists of two pieces, one connected piece on either side of the brane with trajectory

given by eq. (6.26) where ϕ1 = −ϕΣ and ϕ2 = −π + ϕΣ (recall the definition of ϕΣ below

eq. (6.24)). The total RT length is given by double eq. (6.28) (due to the two pieces) with

both cutoffs ǫ1, ǫ2 given by eq. (6.31). Substituting this into eq. (6.28) with ∆ϕ = π − 2ϕΣ
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and using eq. (6.24), the associated entanglement entropy in the no-island phase is

[
A(ΣR)

4Gbulk

]

✟✟isl.
=

L

Gbulk

log (2rUV cosh τ)

=
2c

3
log

[
β

πδ
cosh

(
2πt

β

)]
, (6.32)

where we used the Brown-Henneaux central charge

c =
3L

2Gbulk

. (6.33)

In the second line of eq. (6.32), we have expressed the answer in terms of the dimensionful

time t, as in eq. (6.19) (see also below eq. (3.6)) and the short-distance cutoff in the

boundary CFT

δ =
β

2π rUV
(6.34)

in the y± coordinates on the boundary.44 Eq. (6.32) matches the entropy from eq. (29)

of [2], accounting for the fact that here the central charge is doubled since we include the

regions on both sides of the brane.45 For times much larger than the thermal scale,

[
A(ΣR)

4Gbulk

]

✟✟isl.
=

2c

3

[
log

(
β

2πδ

)
+

2πt

β

]
+ O

(
ce−4πt/β

)
, (6.38)

which corresponds to the linear growth predicted by Hawking.

Island phase. Let us next consider the island phase. As explained in section 2, since

translations in Rindler time are an isometry, we can use this symmetry to bring the problem

to the τ̃ = 0 = τ slice. Notice that this is also a symmetry of the dilaton profile as is clear

from eq. (6.20).

44To be precise, eq. (6.32) computes the entropy of R in a CFT with metric −dy+dy− and short distance

cutoff δ — here, δ is both the proper distance cutoff and the cutoff in y±. We may equivalently take

the CFT metric to be the induced metric −
(

L
δ

)2
dy+dy−, in eq. (6.22), with coordinate cutoff δ in y±,

corresponding to a proper distance cutoff L as measured by the induced metric.
45There is a typo in eq. (29) of [2]: inside the logarithm, it should be β/π rather than π/β. The UV

cutoff δ is also hidden. The full answer is obtained by applying the conformal transformation

w± = tanh

(
πy±

R

β

)
= − coth

(
πy±

L

β

)
(6.35)

(mapping the vacuum to a TFD) to the entropy formula

S[−dw+dw−, δ] =
c

6
log

[
− (w+

R − w+
L )(w−

R − w−

L )

δ2

]
(6.36)

→ S[−dy+dy−, δ] =S[−dw+dw−, δ] − c

12
log(∂y+

R

w+
R∂

y−

R

w−

R∂y+

L

w+
L ∂

y−

L

w−

L ), (6.37)

where y±

R = t±b and y±

L = t∓b are the entangling surfaces on the R and L sides respectively. We have used

the notation S[ds2, δ] to denote entropy in a CFT living in ds2 with proper distance cutoff δ as measured

by ds2. Eq. (6.37) gives the length of the piece of the RT surface to one side of the brane; eq. (6.32) is then

exactly double eq. (6.37).
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We will leave point 1 anchored on the cutoff surface near the asymptotic boundary

at global coordinate ϕ1 = −ϕΣ, as in the no-island phase. But, the RT surface will now

intersect the brane at its other endpoint. Here it is important to distinguish between two

different angles appearing in the island calculation — see figure 23. First, ϕ2 (together with

ϕ1) characterize the trajectory of the RT surface, as in eq. (6.26), such that the trajectory,

when maximally extended (even behind the brane), reaches the asymptotic boundary at

ϕ1 and ϕ2. The opening angle ∆ϕ appearing in eq. (6.28) is defined in terms of ϕ1 and

ϕ2 as per eq. (6.29). Second, there is the global angular coordinate ϕ = ϕQES of the QES

where the RT surface intersects the brane. In the limit of vanishing brane angle θB → 0,

ϕQES → ϕ2 but, at finite θB, ϕQES 6= ϕ2.

While ǫ1 is still given by eq. (6.31), the regulator ǫ2 is now provided by the brane

position and is given by

ǫ2 = tan−1 [tan(θB) sin(ϕQES)] (6.39)

= θB sin(ϕQES) +
θ3

B

3
sin(ϕQES) cos2(ϕQES) + O(θ5

B
) , (6.40)

which we use below perturbatively in the regime of θB ≪ 1. From eq. (6.28), the area of

the RT surface (including the pieces to either side of the brane and to either side of the

horizon) is given in terms of ϕΣ and ϕQES by

[
A(ΣR)

4Gbulk

]

isl.
=

L

Gbulk

log


 4

ǫ1θB

sin2
(

ϕΣ+ϕQES

2

)

sin(ϕQES)




+
Lθ2

B

Gbulk


−1

3
+

sin2 ϕQES

4 sin2
(

ϕΣ+ϕQES

2

)


+ O

(
Lθ4

B

Gbulk

)
.

(6.41)

We can also write this in terms of the y± coordinates of [2], reviewed around eqs. (6.18)

and (6.22) (see also footnote 42). Placing the belt boundary at θ = π, y+−y−

2 = b and the

QES at θ = θB, y+−y−

2 = a (matching the a and b of [2]), we find

[
A(ΣR)

4Gbulk

]

isl.

=
L

Gbulk

log





4rUV

θB

sinh2
[

π(a+b)
β

]

sinh 2πa
β



+

Lθ2
B

12Gbulk





3 sinh2
[

π(a−b)
β

]

sinh2
[

π(a+b)
β

] − 1



+ O

(
Lθ4

B

Gbulk

)

(6.42)

=
2c

3
log





2βℓJT

πδδ̃

sinh2
[

π(a+b)
β

]

sinh 2πa
β



− cδ̃2

6ℓ2
JT

sinh
(

2πa
β

)
sinh

(
2πb
β

)

sinh2
[

π(a+b)
β

] + O

(
cδ̃4

ℓ4
JT

)
, (6.43)

where, in the second line, we have written the answer in terms of the CFT central charge

c and cutoff δ (in y±) in the bath, given in eqs. (6.33) and (6.34); we have also used the

proper distance UV cutoff δ̃ = L on the brane (hinted at earlier below eq. (6.12)) with

the induced metric given in eq. (6.18) — see discussion in [1]. Using eq. (6.17) (as well as
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ℓB = ℓJT), we can write

θB =
δ̃

ℓJT

(
1 +

δ̃2

6ℓ2
JT

+ O

(
δ̃4

ℓ4
JT

))
. (6.44)

Eq. (6.43) is to be interpreted as the von Neumann entropy of the effective CFT spanning

the asymptotic boundary and the brane. The first term of eq. (6.43) precisely recovers the

expected CFT result,46 while the higher orders in δ̃/ℓJT may be interpreted as corrections

due to the finite UV cutoff on the brane. Curiously, the leading order correction in eq. (6.43)

vanishes for the case of a zero-width belt b = 0, i.e. when R completely contains the baths.

We may add eq. (6.43) to the bare dilaton profile φ, given by eqs. (6.10) and (6.20),

evaluated at the QES, to obtain the generalized entropy

[
A(ΣR)

4Gbulk

+ φQES

]

isl.
= 2φ̂0 +

4πφr

β
coth

(
2πa

β

)
+

2c

3
log





2β

πδ

sinh2
[

π(a+b)
β

]

sinh 2πa
β





− cδ̃2

6ℓ2
JT

sinh
(

2πa
β

)
sinh

(
2πb
β

)

sinh2
[

π(a+b)
β

] + O

(
cδ̃4

ℓ4
JT

)
,

(6.47)

where we have included dilaton contributions from the QES points on both the left and

the right of the TFD. Recall that φ̂0 conveniently absorbs the part of eq. (6.43) which

becomes logarithmically divergent on the brane as we take the UV limit δ̃/ℓJT → 0 —

see eqs. (6.10) and (6.13). This is unsurprising given that the renormalized entropy is

derivable from the renormalized matter effective action, and that the renormalization of

φ0 → φ̃0 ∼ φ̂0 is precisely designed to eliminate the UV divergence of the matter effective

action on the brane. The first line of eq. (6.47) matches exactly47 eq. (19) of [2], accounting

for the doubling and quadrupling of the dilaton and von Neumann entropies here (since

eq. (19) of [2] considers only one side of the TFD and they work with an end of the world

brane with bulk spacetime only to one side). The terms of higher order in δ̃/ℓJT are the

corrections due to the UV cutoff, inherited from the von Neumann entropy in eq. (6.43).

46To see this, we may apply the transformation between w and yR written in eq. (6.35) to

S








− L2dw+dw−

δ2 bath

− 4ℓ2

JT
dw+dw−

(w+−w−)2 brane



 , L


 =

c

6
log

[
2ℓJT

L(w+
QES − w−

QES)

−(w+
Σ − w+

QES)(w−

Σ − w−

QES)

δ

]
(6.45)

→ S








− L2dy+dy−

δ2 bath

− 4ℓ2

JT
dw+dw−

(w+−w−)2 brane



 , L


 = S








− L2dw+dw−

δ2 bath

− 4ℓ2

JT
dw+dw−

(w+−w−)2 brane



 , L


− c

12
log(∂y+

Σ

w+
Σ ∂

y−

Σ

w−

Σ ),

(6.46)

where we have used the notation S[•, •] introduced in footnote 45, and y±

Σ = t ± b and y±

QES = t ∓ a

correspond to the entangling surface and the QES respectively. (In this footnote, we have swapped the

sign of y+ − y− on the AdS2 brane relative to the main text, so that here y+ − y− > 0 and y+ − y− < 0

correspond respectively to the bath and brane.) Then, the first term of eq. (6.43) is precisely four times

eq. (6.46).
47In fact, the match between the first line if eq. (6.47) and (19) in [2] is exact even after keeping all

terms collected in their “constant”. This can be checked by keeping all constant terms in the von Neumann

entropy calculation, described in eq. (6.46), as well as the topological dilaton contribution φ̂0.
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To find the location y+−y−

2 = a of the QES, the RT prescription instructs us to

extremize the generalized entropy given in eq. (6.47). Symmetry has already allowed us

to restrict the QES to the same slice of Rindler time τ ∝ t = y++y−

2 as the anchoring

point on the asymptotic boundary. It thus remains only to extremize eq. (6.47) in the

spacial direction. Setting the derivative of eq. (6.47) in y+−y−

2 = a to zero, we obtain the

extremization condition:

6πφr

cβ
=

sinh
(

2πa
β

)
sinh

[
π(a−b)

β

]

sinh
[

π(a+b)
β

]



1 +

δ̃2

4ℓ2
JT

sinh
(

2πa
β

)
sinh

(
2πb
β

)

sinh2
[

π(a+b)
β

]



+ O

(
δ̃4

ℓ4
JT

)
. (6.48)

At leading order in δ̃/ℓJT, this matches eq. (20) in [2] accounting for the fact that we have

two copies of the CFT versus a single copy of JT gravity. This equation can be solved

for the QES position a in terms of the belt width b numerically or analytically with an

additional expansion in φr

cβ ≫ 1:

a = b +
β

2π

[
log

(
12πφr

cβ

)
− δ̃2

4ℓ2
JT

(
1 − e

− 4πb
β

)
+ O

(
δ̃4

ℓ4
JT

)
+ O

(
cβ

φr

)]
, (6.49)

matching eq. (21) in [2] at leading order in δ̃/ℓJT, again accounting for the doubling of

the CFT. We see that the leading order correction due to finite δ̃/ℓJT is to push the QES

further from the bifurcation point at y+−y−

2 = +∞.

Having found the location of the QES, we may re-evaluate the generalized entropy of

the island phase by substituting eq. (6.49) into eq. (6.47), obtaining

[
A(ΣR)

4Gbulk

+ φQES

]

isl.
= 2

(
φ̂0 +

2πφr

β

)
+

2c

3
log

(
β

πδ

)
+

4πcb

3β
− cδ̃2

6ℓ2
JT

(
1 − e

− 4πb
β

)

− c2β

18πφr
e

− 4πb
β + c

[
O
(
δ̃4/ℓ4

JT

)
+ O

(
c2β2/φ2

r

)]
. (6.50)

(We have also dropped terms of order c2βδ̃2

φrℓ2
JT

as these are inherently smaller than either the

cδ̃4/ℓ4
JT

or c3β2/φ2
r corrections.) The first line simply evaluates the generalized entropy,

given in eq. (6.47), at the bifurcation surface, i.e. taking a → +∞. In particular, we

recognize the first term as giving the Bekenstein-Hawking result for the course-grained

entropy of two black holes

2SBH = 2

(
φ̂0 +

2πφr

β

)
. (6.51)

This classical contribution dominates eq. (6.50) in the limit SBH ≫ c and corresponds to

eq. (30) in [2]. The other terms on the first line of eq. (6.50) evaluate the von Neumann

entropy, given in eq. (6.43), after re-absorbing the UV divergence on the brane into φ̂0.

Specifically, the second term gives the UV contribution from the entangling surface on

the asymptotic boundary (also appearing in the no-island phase in eq. (6.32)), and the

third and fourth terms give finite contributions to the renormalized entropy including a

δ̃2/ℓ2
JT

correction. Moving to the second line in eq. (6.50), we have a correction due to

the displacement of the QES location a from the bifurcation point. Here, the dilaton
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and von Neumann components of generalized entropy both receive contributions at order
φr

β · c2β2

φ2
r

∼ c2β
φr

. Note that there are no dilaton corrections at orders φr

β · cβ
φr

and φr

β · cβδ̃2

φrℓ2
JT

because the bifurcation point extremizes the dilaton profile.48 The order δ̃2/ℓ2
JT

correction

in the QES location given in eq. (6.49) is not visible at the order shown in eq. (6.50).

6.4 Page curve

Collecting together the results of the previous subsection, we have two phases. At early

times, we have the no-island phase, with generalized entropy given by eq. (6.32). Over

time, this entropy grows at a rate proportional to the temperature 1/β and the number c of

matter degrees of freedom participating in Hawking radiation, as emphasized in eq. (6.38).

This growth, however is capped off by an island phase, where quantum extremal surfaces

on the brane just outside the black hole horizon surround an island, containing a portion

of the black hole interior, now belonging to the entanglement wedge of the bath. In this

latter phase, generalized entropy is given by the constant value written in eq. (6.50) which

is dominated by double the Bekenstein-Hawking black hole entropy, as given in eq. (6.51).

Viewing eq. (6.51) as the course-grained entropy for the two sides of the black hole, this is

precisely the expected maximal entropy of the system.

To find the Page time τP = 2πtP /β marking the transition between the two phases,

we equate the corresponding generalized entropies given in eqs. (6.38) and (6.50):

τP =
2πtP

β
=

3

c

(
φ̂0 +

2πφr

β

)
+ log(2) +

2πb

β
− δ̃2

4ℓ2
JT

(
1 − e

− 4πb
β

)
− cβe

− 4πb
β

12πφr

+O
(
δ̃4/ℓ4

JT

)
+ O

(
c2β2/φ2

r

)
. (6.52)

Overall, we recover a Page curve, with entropy growing linearly in a no-island phase up

to the Page time, and saturating to a constant maximal value in an island phase after the

Page time. In figure 24, we plot the Page curve after subtracting off the initial entropy

(which includes the UV divergences from the asymptotic boundary).

7 Discussion

In this paper, we applied the framework introduced in [1], which uses Randall-Sundrum

plus DGP gravity, to extend the discussion of quantum extremal islands in [2] to higher

dimensional black holes. As reviewed in section 2, this setup precisely realizes the three

different perspectives of the holographic system described in [15]. From the boundary per-

spective, the system is described in terms of the d-dimensional boundary CFT coupled

to a conformal defect. The usual holographic dictionary then yields the bulk perspective,

48It is helpful to consider the coordinate ̺ =
√

ρ2 − 1, in terms of which eq. (6.20) reads φ̃ = φ̂0 +

2πφr

β

√
1 + ̺2 and the brane metric ℓ2

JTds2
AdS2

= ℓ2
JT

(
−̺2dτ2 + d̺2

̺2+1

)
, near the horizon ̺ = 0, resembles

the standard flat metric −̺2dτ2 + d̺2 in polar coordinates with ̺ the usual radial coordinate. The dilaton

and the von Neumann entropy in eq. (6.47) should then have an expansion in terms of non-negative integer

powers of ̺QES. Eq. (6.49) gives the first corrections to ̺QES = 0 at orders cβ
φr

and cβδ̃2

φrℓ2

JT

, leading to the

corrections mentioned in the main text.
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∆S

2SBH

t

Figure 24. Page curve for the equilibration of our topological black hole in d = 2. We plot the

entropy ∆S = S(t) − S(0) of the subregion on the CFT which is associated to the radiation, where

we subtract the value of the entropy at t = 0.

where the dual description is Einstein gravity in a (d + 1)-dimensional AdS bulk space-

time bi-partitioned by a d-dimensional brane. The brane perspective is an intermediate

characterization of this system given by the d-dimensional effective theory induced by the

bulk theory on the asymptotic boundary and the brane. That is, in this description, the

boundary CFT spans the asymptotic boundary, which is non-gravitational, and the brane

which supports a gravitational theory by the usual Randall-Sundrum mechanism.

We have considered the vacuum state of the system with respect to global time, which

simplifies the bulk geometry to be pure AdS. However, as discussed in sections 3 and 4,

by viewing this setup in AdS-Rindler coordinates, the global vacuum can be re-interpreted

as in terms of a massless hyperbolic black hole. This induces a similar description of the

brane geometry as a black hole of one lower dimension. The ‘two’ asymptotic boundaries

then play the role of bath CFTs in equilibrium with the black hole on the brane at a finite

temperature T = 1
2πR . Similarly, as explained in section 5, viewing our setup in Poincaré

coordinates, we have an extremal horizon in the bulk and on the brane. The latter was

coupled to a (single) T = 0 bath CFT on the asymptotic boundary.

While islands have been numerically studied previously in [30], our approach provides

a relatively simple setting in which analytic calculations are possible. In particular, the

doubly-holographic nature of our model reduces the entropy calculations involving islands

in the presence of massless hyperbolic, or extremal black holes of arbitrary dimension

to holographic entanglement entropy calculations in (locally) pure AdS in one dimension

higher. From the d-dimensional brane perspective, when computing the entropy of a bound-

ary region R in the island phase, a quantum extremal surface σR marks the boundary of an

island on the brane stretching to the horizon; this island belongs to the entanglement wedge

of the bath region R. From the bulk perspective, the RT surface of R runs into the bulk

from its anchoring surface ΣCFT = ∂R and intersects the brane at σR. As noted in [30], the

entanglement wedge of σR stretches through the bulk and is manifestly connected to the

island on the brane in this higher-dimensional picture, despite the apparent disconnection

in the effective d-dimensional theory. To determine the RT surface in an island phase, we

must not only extremize the area functional locally within the bulk, but also extremize

with respect to the intersection of the RT surface and the brane. Since the deep bulk

(IR) and near-brane (UV) contributions (further modified by DGP contributions) to the
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RT area, respectively, can be interpreted as renormalized von Neumann and gravitational

Wald-Dong entropies [1], this bulk calculation is equivalent to the island prescription of

extremizing generalized entropy over candidate quantum extremal surfaces.

The most striking difference between our holographic construction and the two-dimen-

sional model of [2] is that, as detailed in section 6, JT gravity does not appear automatically

but has to be added by hand to the brane theory for d = 2, in analogy to the DGP terms

in higher dimensions. However, this may be contrasted with the induced gravity on the

branes in higher dimensions, where adding a DGP term provides finer control over the

model, but is not strictly necessary for interpreting the brane perspective as an effective

CFT coupled to gravity. Having added JT gravity as a DGP term, we showed in section 6

that applying the RT formula in the AdS3 bulk and including the DGP entropy, as in the

d = 2 analogue of eq. (1.2), correctly reproduces the results of [2] at leading order in an

expansion in terms of small brane angles, i.e. θB ≪ 1. A finite θB imposes a finite UV cutoff

in the effective brane theory, as shown in eq. (6.44), and therefore subleading corrections

to entropy formulas appear in the island phase — see eq. (6.50). Of course, with a finite

UV cutoff, we would not, for instance, expect the holographic entropy to precisely satisfy

the CFT transformation rules of the entanglement entropy used by [2] in deriving their

results [1]. These corrections have the effect of pushing the QES slightly further from the

horizon, lowering the entropy of the island phase, and shifting the Page transition to an

earlier time.

As discussed extensively in [1], our braneworld construction clarifies further concep-

tual puzzles that appeared early discussions of quantum extremal islands in a holographic

framework, e.g., [2, 15, 111]. One particularly confusing feature of the island rule is the

(implicit) appearance of the entanglement entropy of the QFT degrees of freedom in the

region R on both sides of eq. (1.1). Our model puts the explanation of this fact given in [2]

on solid footing. The entanglement entropy in the left hand side of eq. (1.1) computes the

full entanglement entropy in the UV complete picture (the boundary perspective), while

the entropy on the right hand side is to be interpreted in an effective, semiclassical theory

(our brane perspective). In partiular, as noted in section 2, the interpretation of the brane

perspective as d-dimensional Randall-Sundrum gravity coupled to a CFT only holds for

the low energy physics at scales longer than the short distance cutoff δ̃ ≃ L. At shorter

distance scales, gravity is no longer localized to the brane. In contrast, the boundary

perspective or the bulk perspective gives a complete description of quantum state.49

Non-extremal black holes in higher dimensions. As noted above, in section 3,

we considered AdS-Rindler coordinates in the bulk, providing a description of the pure

AdS spacetime as a two-sided massless non-extremal black hole. A similar black hole

geometry is induced on the brane, coupled to and in equilibrium with bath regions on the

asymptotic boundary in both Rindler wedges. We considered the entropy of bath regions

R complementary to belts centered around the defects in the two Rindler wedges. This

49By the standard rules of the AdS/CFT correspondence, the boundary and bulk perspectives give an

equivalent descriptions of the physical phenomena.
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setup, from the perspective of the effective theory on the brane and asymptotic baths, is

analogous to the two-dimensional setup at finite temperature considered in [2].

We find, in particular, that the information paradox for eternal black holes and its res-

olution studied in [2] makes an expected re-appearance in higher dimensions, as reviewed

in section 3.6. Again, this information paradox is resolved by the appearance of a quan-

tum extremal island when a second quantum extremal surface minimizes the generalized

entropy in the island rule (1.1). Our holographic construction translates this competition

between quantum extremal surfaces to the usual competition between different possible RT

surfaces in the holographic formula (1.2). In particular, at late times, the minimal RT en-

tropy is provided by a second extremal surface with components which cross the brane, as

illustrated in figure 2. From the brane perspective, the intersection of this RT surface with

the brane becomes the quantum extremal surfaces bounding the island in the black hole

background. The island belongs to the entanglement wedge of the bath region R. Without

the appearance of islands, the entropy of bath subregions would grow ad-infinitum. With

the islands however, the ever-growing entropy of the no-island phase is eventually capped

off by the constant finite entropy of this island phase at late times. Further, our higher-

dimensional discussion provides a simple explanation for the saturation of entropy: the

connected pieces of the RT surface in the island phase are isolated to individual Rindler

wedges and are thus invariant under time translation (i.e. forward boosts in both wedges).

Recall that the global state is pure, i.e. from the boundary perspective, it is a ther-

mofield double state of two copies of the boundary CFT plus conformal defect. Hence the

entropy of R is identical to that of its complement R. This gives a useful alternative view

of the evolution of the entropy. The region R consists of a belt region centered on the

conformal defect in the two bath regions. Hence from this point of view, we are consid-

ering the entanglement entropy of two isolated boundary regions A and B on either side

of the corresponding eternal black hole in the bulk. This is essentially the same system

studied in [93], except that here the spatial sections of the bath geometry are hyperbolic

in the present case. As in [93], the entropy grows at early times but then quickly thermal-

izes. In this case, the growth of the entropy stops, because it is bounded by subadditivity,

i.e. S(A ∪ B) ≤ S(A) + S(B). In fact, for the holographic system, the late time entropy

saturates this inequality which erases the mutual information between two boundary sub-

regions. The primary difference between the framework studied in [93] and our setup, is

the addition of a backreacting brane which creates extra spacetime geometry for the RT

surfaces to traverse in this late-time island phase and so delays the onset of this phase

where the entropy is saturated. From the boundary perspective, this longer thermalization

time relative to [93] can be understood as a consequence of the large number of degrees of

freedom introduced by the conformal defect.

Further as in [2], we find that the island extends outside the event horizon, i.e. the

quantum extremal surfaces appear outside of the horizon. If we focus on the entropy of R

as above, this feature again has a simple explanation in our holographic setup, in terms

of entanglement wedge nesting. Recall in the island phase, the individual components of

the RT surface yield the entropy of the individual belt regions on the boundary of either

Rindler wedge. Since these belts are subregions of the full hyperbolic slice on which the
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corresponding CFT resides, the RT surface must remain within the corresponding Rindler

wedge. That is, the bifurcation surface of the Rindler horizon in the bulk is the RT

surface corresponding to either of the copies of the CFT in the TFD state [92], and the

Rindler wedge is the corresponding entanglement wedge. Hence, by entanglement wedge

nesting [114, 115], the RT surface and entanglement wedge for any subregion of Hd−1 on the

boundary must lie within the corresponding Rindler wedge. Finally it was straightforward

to see from eq. (3.11) that the horizon on the brane is precisely the intersection of the

Rindler horizon in the bulk with the brane. Hence the quantum extremal surface on the

brane, i.e. the intersection of RT surface with the brane, must lie outside of the black hole

horizon. This also means that if we consider regions R far away from the defect, the RT

surface will pass close to the horizon. Thus, analogously to the situation discussed in [2],

information about the horizon seems to be contained in the entanglement of CFT regions

of the bath which are furthest from the black hole.

Extremal black holes in higher dimensions. In section 5, by taking a Poincaré patch

of the bulk, we considered an extremal black hole on the brane coupled to a (single) bath

CFT in a flat background. As in [2], we calculated the entanglement entropy for a bath

region R which corresponded to points greater than some distance b from the conformal

defect. In the case of extremal black holes, we did not find a transition as the system was

time evolved, but instead found that the appearance of an island is linked to the choice of

brane angle θB (or brane tension) and the DGP coupling.

Due to the scale invariance of Poincaré coordinates, it is clear that as we push the

entangling surface out in the bath region, i.e. increase b, we proportionately reduce the

size of the island. Again, this behaviour reproduces the intuition suggested in [2] that

the region near the extremal horizon deep in the gravitating region (our brane) is can

be contained within the far-away portion of the bath. Actually, our higher-dimensional

picture shows that these regions are not far from each other at all — they are both close to

the spatial infinity of the Poincaré patch which corresponds to a single point in the global

frame. In the other extreme b → 0, we find that regions of the brane arbitrarily close to

the asymptotic boundary can be recovered by portions of the bath sufficiently close to the

defect. This is in contrast to the two dimensional JT model, where a maximum island size

exists.

Interestingly, a further qualitative deviation from the two-dimensional case is seen at

small brane angles θ. Recall that, in the two-dimensional JT model, the island phase is

always dominant for belt geometries in the extremal case [2]. In contrast, we have found in

d > 3 that islands cease to exist for θB below some critical θc > 0. As θB approaches θc from

above, the quantum extremal surface of the island phase runs off infinity (i.e. towards the

extremal horizon). For θB < θc, no quantum extremal surface exists on the brane and the

bulk RT surface is simply given by two planes on either side of the brane running straight

into the bulk. Since the area of these latter surfaces is IR finite in d > 2, their candidacy for

RT surfaces must be considered even when the alternative island-phase surfaces exist. In

fact, we find that θc is precisely the angle at which the entropies of the no-island-type and

island-type surfaces match — above this angle, the island-type surfaces remain favourable

– 68 –



J
H
E
P
1
2
(
2
0
2
0
)
0
2
5

as RT surfaces. The relevance of small θB (and in particular θB < θc) is that in this

limit, the effective theory on the brane is described by Einstein gravity with small higher

curvature corrections, which is the most interesting parameter regime. While the lack of

islands for θB < θc is strikingly different from the two-dimensional case, we remark that, in

the extremal case, islands are not required from an information-theoretic standpoint and

their absence should perhaps not be terribly surprising. This is to be contrasted with the

non-extremal case, where islands are necessary, at all brane angles, to tame the otherwise

unbounded growth of black hole entropy at late times and avoid the information paradox.

Of course, an interesting question may be to examine how varying the geometry of

the entangling surface affects the appearance of quantum extremal islands at T = 0. For

example, rather than belt geometries, one might consider spherical regions bisected by the

conformal defect.

Not an ensemble. In order to derive the island formula, a crucial ingredient was the

appearance of wormholes in the replica trick. In the two-dimensional models involving

JT gravity studied so far [39, 41], the existence of wormholes follows from the fact that

JT gravity is defined by averaging over an ensemble of Hamiltonians. For example, JT

gravity emerges as the low energy effective description of the SYK model [116–119], or has

a definition in terms of a matrix model [120].

On the contrary, our construction relies only on the standard holographic rules of the

AdS/CFT correspondence where there is no such averaging of the couplings in the boundary

theory. This is in line with the general expectations for higher dimensional holography. This

lack of averaging characterizes the UV-complete description of the system, i.e. the boundary

perspective. Nonetheless, quantum extremal islands appear in the effective description of

the brane perspective and once again one likes to understand them as remnants of replica

wormholes in the limit n → 1 [1]. One might then wonder why — despite the absence of

ensemble averaging — replica wormholes should appear and connect the gravitating region

in different copies of replica trick calculations.

In fact, this is not a problem, since the different effective gravity theories in the brane

picture are UV completed by a single theory of gravity in the bulk and so it is natural to

consider geometries connecting the branes, i.e. replica wormholes in the effective theory.

In fact considering Renyi entropy calculations in the boundary theory, one sees that the

corresponding bulk geometry induces connections between the different copies of the brane

theories, i.e. replica wormholes on the brane [1]. This becomes particularly clear in our

setup where the brane lives in the bulk and does not serve as a boundary of spacetime.

We emphasize that here this discussion implicitly relies on the standard derivation of the

RT prescription for holographic entanglement entropy [121, 122] in the bulk perspective,

where again we assume that there is no ensemble averaging.50

Following the logic of [52], one might be tempted to turn the logic around and, given

the appearance of wormholes in the brane description of our model, conclude that there

is some form of ensemble averaging in the dual boundary theory. However, this line of

50Ref. [56] formulates a point of view where integrating out the bath CFT generates an averaging over

couplings in the theory of the conformal defect.
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argument implicitly assumes a precise equivalence between the boundary theory and the

‘bulk’ gravity theory (containing wormholes). We stress that this equivalence does not

hold in our construction. Rather the gravitational theory on the brane is an effective

theory and so the arguments of [52] do not extend to this situation. Instead, in our

situation replica wormholes appear, but wormholes connecting independent instances of

the boundary theory do not play a role. For example, this implies that higher powers of

the partition function of the boundary CFT with a conformal defect will still factorize.

Nonetheless, this issue is certainly worth further examination since in two dimensions,

replica wormholes have now been shown to play an important role in a variety of situations,

e.g., calculations of Renyi entropies [41, 50], the spectral form factor [120, 123], correlation

functions [89, 124], and overlap of black hole microstate wavefunctions [41, 50]. Apart from

Renyi entropies, it is not clear how to reproduce these effects in our construction, or in

higher dimensions more generally. Furthermore, it was suggested in [41, 125] that in non-

averaged theories wormholes might appear as a result of some diagonal approximation. To

obtain a full quantum gravitational answer, additional off-diagonal terms need to be added.

Given that we have a system, where wormholes appear in an approximate formulation,

while at the same time having some control over a UV complete description, one might

hope that studying our system will give an idea of how this suggestion might be realized.

Future directions. Having produced a setup in which quantum extremal islands can be

studied with relative ease, some possible avenues of further investigation were suggested

above, but a number of other possible extensions to the present work also come to mind.

For example, one may consider information-theoretic questions similar to those raised

in [2]. There, the authors investigated whether a protocol can be implemented to retrieve

information from the island. In particular, the entanglement wedge of the complete left

system plus an interval of the right bath contains an island that naively appears causally

disconnected from the left and the right bath interval. However, by acting with operators in

the left and right baths, it was argued that sufficient negative null energy can be generated

to pull information from this region into the left exterior, to be picked up by the left defect

and bath. One could try to reproduce this protocol in our higher-dimensional setup using

insertions of operators on the left and right asymptotic boundaries. The negative null

energy produced would then shift the bulk horizon and hence the induced horizon on the

brane.

Recall that above, we described how in the present discussion the appearance of the

quantum extremal surfaces outside of the horizon was a simple result of the nesting of

entanglement wedges from the bulk perspective. However, another question raised by [2] is

whether this protrusion of islands outside the horizon violates causality. In particular, the

portion of the island of the baths outside the horizon appears to be causally connected to

the defects. Naively, this appears to allow communication between the baths and defects

even if the coupling between these systems is severed. The resolution of this paradox comes

from noting that a splitting quench between the defect and bath systems would inevitably

create a positive energy shock causing an outward shift of the horizon. It was argued in [2],

using a JT version of the quantum focusing conjecture [126, 127], that this shift would

have the final event horizon swallow the island, preventing post-quench communication
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between the bath and defect. It would be interesting to re-create this problem in our

setup to probe the quantum focusing conjecture in higher dimensions. From the bulk

perspective, a splitting quench would be implemented by a bulk end-of-the-world brane

anchored asymptotically on the splitting surface [128]. In d = 2, the splitting surface on

the asymptotic boundary can be obtained by a conformal transformation from a full plane;

in the bulk, the end-of-the-world brane can similarly be obtained by a diffeomorphism

from a planar brane in pure AdS. In d > 3, however, the calculations will become more

complicated, e.g., the end-of-the-world brane will, in general, backreact on the geometry

such that the bulk is no longer locally pure AdS.

Returning to the issue of extracting information from the island, entanglement wedge

reconstruction [24, 114, 129–134] allows us to recover information about the island with

data from the boundary CFT in the corresponding boundary subregion. One interesting

question would be to evaluate the expectation value of various CFT operators in the island,

e.g., reconstructing 〈Tij〉 in the vicinity of the horizon.51 The latter is particular interesting

because while the appearance of quantum extremal islands pointed out a new resolution

of the information paradox, this does not directly address the issue of firewalls [135, 136].

Here asking if the black hole horizon develops a firewall in the late time phase of the

Page curve can be addressed by evaluating 〈Tij〉 on the horizon. While a direct boundary

reconstruction of the latter remains to be done, we are confident that no singularities arise

in our framework. The reason is that in the bulk, the system is in the vacuum state and we

are simply examining this state from a Rindler frame of reference. Hence in fact, we expect

that 〈Tij〉 = 0 on the horizon and throughout the black hole solution on the brane.52

This is related to the fact that in the present paper, for the sake of simplicity, we have

chosen to work with a bulk that is pure AdS, i.e. the temperature was tuned to T = 1
2πR .

The Rindler horizon in this geometry consequently corresponds to a massless hyperbolic

black hole. An obvious extension would then be to consider massive black holes. Again,

calculations will be made difficult by the fact that the brane and bulk equations of motion

must be solved simultaneously with the former back-reacting on the latter. In particular,

the equilibrium configuration will now involve excitations of the CFT on the brane, i.e.

the effective Einstein equations on the brane will be sourced by the stress tensor of the

boundary CFT residing there.

Yet another direction to take would be to consider our setup from the perspective of

tensor networks and error correction codes [132, 137–139]. For instance, as noted in [93],

the MERA-like tensor network constructing the time-evolved CFT thermofield double state

on the asymptotic boundary shares a similar geometry to codimension-one bulk spatial

slices stretching through the bulk wormhole. One might then be motivated, as in [138],

51We thank Ahmed Almheiri for raising this question.
52The vanishing of the stress tensor on the brane is an essential feature of our construction as the AdSd

brane geometry must be a solution of the corresponding gravitational equations. That is, the CFT on

the brane cannot provide a source in these equations (at least to leading order for large cT) otherwise the

geometry would deviate from AdS space. Recall that while the brane CFT is in its vacuum state, the

bath CFT is coupled to the brane along an accelerating trajectory — see discussion under eq. (3.11). This

acceleration allows the bath CFT to achieve equilibrium at a finite temperature.
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to view these spatial slices as supporting tensor networks implementing quantum error

correction codes between the bulk and boundary. It would be interesting to see what such

a network would tell us about the effective theory (see e.g., [140, 141]) on the brane and

how information on the brane is ultimately encoded in the asymptotic CFT and defect

theory. On a related note, one might also study the complexity of these brane configu-

rations, for example, using the higher-dimensional bulk to probe holographic complexity

conjectures [142–145], e.g., see [146].

Above, we emphasized the effective character of the gravitational theory on the brane

with the appearance of a short distance cutoff in Randall-Sundrum gravity. However, as

discussed in [1], the brane perspective also provides an effective description of the coupling

of the bath CFT to the conformal defect. In particular, it only accounts for the couplings

localized at the defect, which dominate at low energies, but ignores the subtle ‘nonlocal’

couplings, which can seen as coming through the AdSd+1 geometry with the bulk descrip-

tion. Given the simplicity of our construction, it may provide a useful framework in which

to further understand these nonlocal couplings, which implicitly provide subtle correlations

between the island degrees of freedom and those in the bath CFT [1, 147].

Lastly, in order to explain the fast growth of entanglement at early times for large

regions, in section 4.2 we computed bounds on entanglement growth in hyperbolic space.

While they display the expected qualitative behavior, they are not particulary tight. In-

stead, the difference between bounds and numerical data becomes bigger as χΣ grows. It

would be interesting to improve these bounds.
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