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We introduce and discuss the problem of quantum feedback control in the context of established formula-
tions of classical control theory, examining conceptual analogies and essential differences. We describe the
application of state-observer-based control laws, familiar in classical control theory, to quantum systems and
apply our methods to the particular case of switching the state of a particle in a double-well potential.
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[. INTRODUCTION and to show when results from the classical theory may be
applied directly to the control of quantum systems. This will
Experimental technology, particularly in the fields of cav- also allow us to highlight the essential features of the quan-
ity QED [1], ion trapping[2], and Bose-Einstein condensa- tum problem that distinguish it from classical feedback con-
tion [3], has now developed to the point where individualtrol.
guantum systems can be monitored continuously with very The field of quantum-limited feedback was introduced by
low noise and may be manipulated rapidly on the time scale®iseman and Milburi4], who considered the instantaneous
of the system evolution. It is therefore natural to consider thdeedback of some measured photocurrent onto the dynamics
possibility of controlling individual qguantum systems in real of a quantum system. The master equation for the resulting
time using feedback4]. In this paper we consider the prob- evolution was then Markovian. In this work we are interested
lem of feedback control at the quantum limit. In a fully quan-in more general schemes in which some arbitrary functional
tum mechanical feedback control theory the quantum dyeof the entire history of the measurement results can be used
namics of the system and the back-action of measurements alter the system evolution. The resulting dynamics of the
must both be taken into account. system is then non-Markovian, however the dynamics of the
The major theoretical challenge of extending feedbaclksystem and controller remain Markovian. As we shall see
control to the quantum mechanical regime is to describehis is completely analogous to the situation in classical con-
properly the back action of measurement on the evolution ofrol theory.
individual quantum systems. Fortunately, the formalism of The Wiseman-Milburn theory has been applied to the
guantum measurement, and particularly that of the continugeneration of subshot noise photocurrents through feedback
ous observation of quantum systems, is now sufficiently welland the affect of the in-loop light on the fluorescence of an
developed to provide a general framework in which to askatom[5]. Other proposed applications include the protection
salient questions about this new subjectioantum feedback and generation of nonclassical states of the light fi6lcand
control. In fact, the formulation that results from this theory the manipulation of the motional state of atoms or the mir-
is sufficiently similar to that of classical control theory that rors of optical cavitie$7]. In related work Hofmaret al. [8]
the experience gained there provides valuable insights intoonsider the preparation and preservation of states of a two-
the problem. However, there are also important differencesevel atom through homodyne detection and feedback in a
that render the quantum problem potentially more complexslightly different formalism. Finally the so-called dynamical
In this paper we describe a fairly general formulation of thedecoupling of a quantum system from its environment has
classical feedback control problem, and compare it with éeen discussef®], which protects states of the system of
similarly general quantum feedback control problem. Thisinterest from the effects of coupling to the environment in
allows us to examine ways in which the classical problemsituations in which it is possible to manipulate the system on
may be mapped to the quantum problem, to provide insightimes short compared to the correlation time of the environ-
ment. This is the opposite limit to the Wiseman-Milburn
theory, which considers feedback slow on the time scale of
*Present address: Norman Bridge Laboratory of Physics 12-33he bath correlations but fast on the time scales of the dissi-
California Institute of Technology, Pasadena CA 91125. Electronigpative or nonlinear dynamics. This work adopts, as we do,
address: dohertya@its.caltech.edu ideas from classical control theory, in this case the so-called
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bang-bang control, to open quantum systems. There is amne. We will consider explicitly only continuous time sys-
extensive literature on the application of classical controtems, and these driven by Gaussian noise. Since most of
techniques such as optimal control ¢dmsedquantum sys- what we say will apply also to discrete systems, and those
tems, a useful entry point into this literature being R&f)]. driven by other kinds of noise sources, little is lost by this
Although the task of determining useful functionals of therestriction.
measurement current may seem daunting we argue that much The problem, which classical feedback control theory ad-
progress can be made by adopting the lessons of the classialikesses, consists of the following: A given dynamical sys-
theory of state estimation and control. In particular it is help-tem, driven by noise, and monitored imperfectly, is driven
ful to break the feedback control process into two steps—thelso by some inp@$) with the intention of controlling it, and
propagation of some estimate of the state of the system givethese inputs are allowed to be a function of the results of the
the history of the measurement results, and the use of thisbservations performed on the system. The dynamics of the
state estimate at a given time in order to calculate appropriatgystem may be written as
control inputs to affect the dynamics of the system at that
time. This approach has already yielded results for the opti- dx=F(x,u)dt+g(x,u)-dW, (N)
mal control of observed linear quantum systdrhs,12.
A simple example of an experiment in quantum optics inwherex is the state of the systefa vector consisting of the
which similar control strategies have already been employedssential dynamical variables is a set of externally con-
is the work of Cohadoet al.[13]. In this experiment the aim trollable inputs to the systendW is a set of Wiener incre-
is to damp the thermal motion of the end mirror of a highments, and is time. Note that since anddW are vectorsg
finesse optical cavity. A very high precision interferometricis a matrix. In this paper we follow the terminology of the
measurement is made of the mirror’s position and the resuliguantum optics community and refer to the system of interest
ing signal is filtered in an appropriate way to generate anhat is to be controlled as simply tlsystemIn the control
estimate of the current mirror momentum. This momentum+theory literature this is often termed tipeocess Hence the
estimate signal is then used to modulate the laser power of goise driving the system is often referred to as pinecess
laser driving the back of the mirror in order to exert a radia-noise To avoid confusion it may be useful to bear in mind
tion pressure force in the opposite direction to the mirrorthat in the control theory literature it is common to use the
momentum, thus reducing the effective temperature of théerm system to refer to all the parts of the control problem—
mirror. In fact the considerable thermal noise in the experithe process, the control loop, and all the noise and other
ment means that the back-action noise is not significant anghputs. The observation process is usually written as
so an essentially classical treatment of the feedback is suffi-
cient. In this paper we wish to consider a relatively general dy=H(x,t)dt+R(t)-dV, 2
description of this kind of feedback technique in a way that
explicitly takes into account the quantum mechanical backyneredv, referred to as thebservatiomoise, is another set
action noise and will thus be relevant to experiments such agf \Wiener increments, which may or may not be correlated
[1] where truly quantum control is a near future possibility. \yith the noise driving the systerdW, andR is an arbitrary
In the next section we describe the classical feedback conpatrix.
trol problem well known in classical control theory, while in The process of feedback control involves choosing the
Sec. lIl we introduce a formulation of the quantum problem;jn,tsy, at each time, as some function of the entire history
and examine conceptual analogies between the two. We CO@ the observation procesly and of the initial conditions.
sider optimization of the control strategy and_dlscuss therg complete the specification of a given control problem,
quantum equivalent of the Bellman equation, being a genergjne must define aost function which specifies the desired
statement of the quantum optimal control problem in a dy{ehayior, and the cost associated with deviations from this
namic programming form. In Sec. IV we consider the possiehayior. An important goal of control theory is then to
bility of making precise mappings between the classical andpecify y such that the cost function is minimized. Such a
quantum problems, and examine when the quantum problem.q it is referred to asptimal control
may be addressed using the classical theory directly. In Sec. pq 5 general principle we can say that as our knowledge
V we consid_er the_ classical concept o_f observability and dis'regarding the state of the system at any given time becomes
cuss ways in which this may be defined for quantum syspetter so too does the efficacy of the feedback algorithm,
tems. In Sec. VI we consider the application of suboptimakince we can better determine the appropriate feedback.
control strategies developed for nonlinear classical systemSeance the question of state-estimatidhat is, the determi-
to quantum systems. As an example we consider controllingation of our best estimate of the state from the results of the
the state of a particle in a double-well potential in the presyheasurement procesarises naturally in this context. In the
ence of noise. Section VII concludes the article. fullest description, one can decide upon a probability den-
sity, P(x), that describes one’s complete initial state of
knowledge of the dynamical variablesand then determine
how this density evolves due to the system dynamics and the
In this section we consider the classical feedback controtontinual observation. The equation governing #iposte-
problem[14—18. It is not our intention here to be com- riori probability density is called the Kushner-Stratonovitch
pletely general, since the control problem is a very broadKS) equation, being

Il. CLASSICAL FEEDBACK CONTROL
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noy 1 92 problem isneutral which means that the choice of controls
dP= —E —(F;P)dt+ = E Z ([ggT]ij P)dt does not affect the accuracy of the state estimate. If the ac-
=1 0% 2 (51171 9% tion of the controller affects the uncertainty about the state of
+H,) = (HOC DY T(RRD[dy— (H(x,t))dt]P. the system as the well as the evolution of the system itself
this is termeddual effect
) For nonlinear systems the situation is very different. Non-

linear systems may satisfy only a few of the above condi-
Here we have written the elementsxfndF asx; andF; tions, or none at all. Few exact results exist for optimal con-
respectively[ggT]ij denotes thejth element of the matrix trol strategies. True optimal estimation almost invariably
GGT, and( ) is the expectation value with respectRat the  requires the integration of the full KS equation, something
current time. With the exclusion of the final term, this is that is impractical for real-time applications. Therefore it is
merely the Fokker-Planck equation farnconditional evo-  generally necessary to develop good approximate, but never-
lution of the noise-driven system. It is the final term thattheless suboptimal, estimation and control strategies, and
takes into account the effect of the measurement on our stateany approaches to this problem have been developed. In
of knowledge. Note that as a result of the terms involvingSec. VI we will consider similar approaches to the quantum
(H(x,t)) this is a nonlinear equation for the probability dis- problem where integration of an optimal estimate of the sys-
tribution. Here we have made the usual assumption that theem state may also be impractical in real time.
process and measurement noises are decorrelated. The sto-Another reason for employing nominally suboptimal feed-
chastic process, which drives the KS equation, is the differback control is to account for uncertainty in the model. If
ence between the actual measured valdgsand the value parameters of the model of the system are not in fact well
oneexpectedo measure{H(x,t)). This is referred to as the known then the control that is optimal for the nominal model
residual or innovation Since the conditioned probability may in fact be a very poor control loop for models with
distribution is the optimal estimate of the state that may besimilar but not identical values of the parameters. This prob-
obtained from the measurement record, the residual has zelem can be particularly pronounced in systems with large
mean and is uncorrelated with the conditioned probabilitynumbers of degrees of freedom and the solution of this prob-
distribution. Note that the residual is distinct from both thelem is the domain ofobust control[19]. Another control
process noise and the measurement noise. technique commonly used in practice is pole placement for

It is worth mentioning that it is also possible to write a which quantum mechanical analogs could also be developed.
linear equation for the conditional probability densRy if
we relax the requirement thRtbe normalized. The resulting
equation, which may be found in, e.g., Ref7], is called the lIl. QUANTUM FEEDBACK CONTROL
Zakai equation.

For linear systems driven by Gaussian noise, the KS equa-
tion becomes particularly simple, with initially Gaussian The model of the control problem introduced above
densities remaining Gaussian. As a result closed equations afakes sense in classical physics—however, it is implicitly
motion for the meangbeing also the “best,” or maximura  assumed that it is possible to extract information about the
posterioriestimates of the system stagnd variances can be state of the system without disturbing it. This is not a valid
obtained. Evolving these moment equations is then muclssumption in quantum mechanics, and hence in describing
simpler than trying to keep track of an entire distribution. any experiment on a quantum system it is necessary to con-

In addition, for linear systems the classical optimal con-sider carefully, as well as the quantum dynamics of the sys-
trol problem is essentially solved. Under the assumption of aem, the coupling of the system of interest with the measur-
cost function quadratic in the dynamical variables, the optiing apparatus. To provide a similarly useful formulation of
mal control law involves making a linear function of the quantum feedback control we require a model of quantum
best estimate of the dynamical variables, and the equation f@ontinuous measurement with a similarly wide applicability
determining this function may be given explicitly in terms of to the classical model of the previous section. In recent years,
the (in this case linearfunctionsF and G. Moreover, the in the field of quantum optics, where continuous quantum
solution of the linear problem possesses certain importanthieasurements are realized experimentally, a formalism was
properties that make it particularly simple: It satisfies thedeveloped to accurately describe such measurenjts
separation theorenwhich states that the optimal control law 23], and it was realized later that this description was iden-
depends on only one estimate of the sfa#16,18—in this  tical to that developed in the mathematical physics literature
case the mean of tha posteriori probability distribution.  using more abstract reasonih@4,11. This formalism ap-
There is no advantage in modifying the control law based omears to fill the role for quantum systems that the classical
the uncertainty of the current state estimate. The linear probfoermulation introduced above plays for classical systems. In
lem also satisfiesertainty equivalenceThis means that the order to describe noise in quantum systems we will employ
optimal control strategy is the same as it would be even ithe master equation formalism and because the measurement
there was no noise driving the system and the state of thef the system requires some coupling to the external world
system were known exactly; in the stochastic problem thehe continuous measurement of a quantum system also re-
optimal state estimate simply takes the place of the systemuires the consideration of master equations of a particular
state in the deterministic problem. Furthermore the lineatype.

A. Continuous quantum measurement
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If we denote the state of the quantum system that we arment procegsmay be driven by Poisson noise as well as
concerned with controlling as and the system Hamiltonian Wiener noise. We will return to this point later when we
as H, then the effect of measurement and environmentatonsider feedback.
noise may be included by adding two Lindblad terms to the In the classical description of state estimation, it is the

master equation fop: conditional probability density, whose evolution is governed
. by the Kushner-Stratonovitch equation, that describes the ob-
p=—Ii[H,p]+D[Q]p+D[c]p, (4 server's complete state of knowledge. The conditional prob-

ability density contains the probabilities for the outcomes of

where D[A]p=(2ApAT—ATAp—pATA)/2 for an arbitrary  all measurements that may be performed on the system. In
operatorA. When A is Hermitian this reduces t®@[A]p quantum mechanics it is the density matrix that may be used
=—[A,[A,p])2. The termD[Q]p describes thaincondi- to calculate probability distributions for arbitrary measure-
tional evolution resulting from a continuous measurementments on the system. It is therefore the conditional density
where the interaction of the measuring device and the systematrix that replaces the conditional probability density in
is via the system operat®. If Q is Hermitian, then it de- quantum state estimation theory, and it is the SME that is the
scribes a continuous measurement of the observable corranalog of the Kushner-Stratonovitch equation, being the
sponding toQ. By unconditional evolution we mean that the propagator for the optimal estimate of the quantum mechani-
master equation describes our state of knowledge if we makeal state given the history of the measurement current
the measurement but throw away the informatitre mea- Iy, y={dy(t")/dt:to<t’<t}. Just as in the classical prob-
surement recoid It is therefore the result of averaging over |em a residual processi{V) uncorrelated with the state es-
all the possible final states resulting from the measuremenfmate arises. This zero mean noise process is again the dif-
history. Similarly, averaging over the measurement results ifierence between the actual measurement result and the result
the classical Kushner-Stratonovitch equation results in @xpected on the basis of previous measurements.
Fokker-Planck equation for the probablllty distribution of the We also note that if one allows the conditional density
state. The second term of the master equatidic]p, de-  matrix to be unnormalized, it is possible to write the SME as
scribes the effect of noise due to the environment. Since i linear stochastic master equation. This then, is the equiva-
has the same form as that of the unconditional measuremepint of the Zakai equation of classical state estimation, which
evolution, it is always possible to view it as the result of djs a linear equation propagating an unnorma"aq]:bsteriori
measurement to which we have no access. Similarly, it igrobability distribution.
always possible to view the measurement process as an in- The SME (5), like any other master equation, may be
teraction with an environmertbath where we are perform- ynraveled into trajectories of pure states obeying a stochastic
ing measurements on the bath to obtain the information, proevolution. This involves imagining that it is in fact possible
ducing a continuous measurement on the system. to make some kind of complete measurement on the bath and

Associated with any given history of measurement resultshat the results of these measurements are known to the ob-
will be a conditioned statep., being the observer’s actual server. In that case we would have complete information
state of knowledge resulting from recording tfeentinuou$  about the system, so that an initial pure state would remain
series of measurement outcomes. The evolution of the corpure, and we could write the stochastic master equation in-

ditioned state is referred to as a quanttrajectory. If one  stead as a stochastic Stieger equatiorfSSB for the state
conditions on the measurement of the observ@hlthe mas-  vector. The result is

ter equation Eq.(4)] becomeg23]
dl¢)=(—iHdt+[Q—3(Q+Q")]dWo)|#)
dp=dtLop.+dtD[Q]p.+H[QlpdW+D[C]p, (5)
+ e+ i A
which is described as a stochastic master equat&ME). 2 (¢j=2(cj+cp) dWi[ )
HereH is defined by
—3(Q"Q—(Q+QNHQ+(Q+Q"*)dt ¢)
H[Alp=Ap+pAT=TH{ (A+A")p]p. (6) ) ) . ) .
—52 (¢ cj—(cj+cj>cj+z(cj+cj>2)dt|¢//),
The measurement process is given in terms of the process !
dW by 8

dy=Tr[(Q+Q")p]dt+dW. (7)  where the notatiofa)=(|a|¢) was used. Her€ is once
again the measured observable, and this time we have in-
HeredW is a Wiener increment, and we see that there is aluded an arbitrary number of noise sourags, rather than
close similarity between the quantum measurement processerely a single noise sour¢determined previously by the
and the classical measurement process. It should be rememperatorc). Of the Wiener processedW, results from the
bered that for a fixed master equation, it is, in fact, possiblaneasurement process of the real obse(m@asuring the ob-
to alter ones measurements to obtain different SME's. This iservableQ), and thedW; from the fictitious measurements
referred to as choosing a differeabravelingof the master on the bath. Many of these unravelings are possible depend-
equation. In general the SMEnd therefore the measure- ing on what measurements are imagined to be performed on
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TABLE |. Quantum/classical analogies in state estimation.

Classical-state estimation

Quantum-state estimation

a posterioriprobability distribution
Kushner-Stratonovitch equation

Zakai equation

innovation/residual process

Fokker-Planck equation fa priori distribution

fictitious noise to simulate KS equation using SDE

state vector
process noise
measurement noise

conditioned density matrix

nonlinear stochastic master equation

linear stochastic master equation

quantum residudg—<(Q+ Q" dt)
master equation

fictitious noise to simulate SME using SSE

operators for system observables

bath noise operators

meter field noise operators

the bath(for example a Poisson process might be used, fopare some desired state or enforce some desired evolution of

any of the noise sources, rather than a Wiener proctss

the system. In the classical formulation this involves effec-

property that all unravelings will have in common is that thetively altering the system Hamiltonian by adding the control
average of the SSE over many realizations will produce thénputs u, which are functions of the measurement record.
correct SME. It turns out that the measurement process i9uantum mechanically the equivalent action is to make the

now given by

dy=(|Q+Q'|y)dt+dWp. ©)

By comparing Eqs(7) and(9), we see that for a given real-
ization of the measurement procedy, since in general
T (Q+ Q") p]#(4|Q+QT|¢), the processedW anddW,
arenot the same

HamiltonianH a function of the measurement record. In an
actual experiment the variation of the Hamiltonian involves
the modulation of classical parameters such as external dc
fields, laser phases, and driving strengths.

However, while feedback control of the system Hamil-
tonian is sufficient to cover the full classical control problem,
it is not sufficient in the quantum case. This is because, in

Since the SSE is an equation for the state vector chosegeneral, the quantum measurement process changes the dy-
such that the average over all trajectories correctly repronamics of the system. Consequently the formulation of the
duces the SME, the equivalent classical object would be il quantum feedback control problem must also allow for

stochastic equation for the state vecxosuch that the aver-

the possibility that the measurement process is also changed

age reproduced the KS equation. Such an equation can cefs a result of the observations. There are two distinct possi-
tainly be constructed, with the introduction of fictitious noise pjjities for the modification of the measurement. The first is
sources correspondlng tﬂ/\/J in thg SSE mFroduced above. iy control the coupling between the system and the tiath

The use of stochastic differential equations to propagatghange the operat®) and we might refer to this as altering

Fokker-Planck equations is well known in classical theories
the Kushner-Stratonovitch equation is simply a nonlinear

stochastic Fokker-Planck equation for tgosterioriprob-

ability distribution. It should be noted that these fictitious

noises do not correspond to the process noise.

While we have presented quantum analogies here f

(0)

the measured observable, or altering the measurement inter-
action. The second is that even for a fixed system-
environment coupling one can control the nature of the mea-
surements made on the bath. Since in this case the master
equation describing the unconditional evolution remains the

many of the objects in classical state estimation, we have n

presenteq analogies for.the objects that describe the underl¥hrement$25] may have distinct advantages in the setting of
ing classical system, being the classical state vector, proce antum control

noise, and measurement noise. Such analogies may be ma ®n a general feedback scheme, the three tools of control

Er;tgzseufg;te% r?]glizgmg thg z[?;teorvsecifr’aprorgesr; tr;0|ls-|ei|'b2rﬂ1e Hamiltonian, the measured observable, and the measure-
y op pprop ent unravelingare chosen to be some integral of the mea-

spaces. This requires t_he fqrmulati_on of the _problem in term§urement record. In particular, for state-observer based con-
of quantum stochastic differential equatioiQSDE’S. trol, at each point in time they are chosen to be a function of

Space prevents us from examining this in detail here, and t . .
reader is referred to the work of Gardiredral. for a discus- h?e best estimate of the state of the system at that time

éame, but the trajectories change, we may may refer to this
s altering the measurement unraveling. Such adaptive mea-

sion of QSDE'’s in the context of continuous measuremen which is also, naturally, an integral of the measurement
Q . > ecord. Note that in the situation considered by Wiseman
[21]. In Table | we include the analogous quantities that

) . X and Milburn it is only the measurement result at the latest
“?S“'t from such an anaIyS|s alqn.g W'.th the .tentatlve analo(most recenttime that is used in the feedback. This leads to
gies we have discussed in detail in this section.

various complications since the feedback must always act
after the measurement and so it is necessary to be very care-
ful of this ordering when deriving stochastic master equa-
The goal of feedback control of quantum systems will betions. It is important to note that as long as the kernel of the
to use the continuous stream of measurement results to prattegral of the measurement record is not singular and con-

B. Controlled quantum systems
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centrated at the latest time, these complications do not arighe ensemble as well as this density mafég]. It remains a

(for the same reason that they do not arise in classical contrabpic for future work to determine whether problems such as

theory). Certainly, the integral required to obtain the optimal this will constitute an important application of quantum feed-

state estimate is not singulésince it results from integrating back control. We will restrict ourselves here to what might

the SMB, and this remains true in all cases we consider her®e referred to as “orthodox” control objectives in which it is

(such as the suboptimal strategy in Sec). VI only the future behavior of the system that is important, and
With the addition of feedback the various terms in thethis is captured by cost functions that depend only on the

SME are in general functionals of the measurement record€nsity matrix(ensemble independent cost functipns

up to the latest time. In general, this new SME is not Mar- 1 ne general statement of our optimal control problem

kovian. However, in the special case in which the tools of '3V therefore be written as

control are chosen to be a function of the optimal state esti- T

mate[i.e., p(t)], it follows immediately that this SME is C=<f f(pt),u(t),t)dt+fi(p(T),T)). (10

Markovian. Since it follows from the quantum Bellman 0

equation (derived be_lov)/ that the o_ptimal conftrol strategy Here C denotes the total average cost for a given control
may always be achieved when using a function of the besétrategyu(t), f is the cost function up until the final timg

estimate, it follows that the optimal control strategy can al-; . : , , '
ways be achieved with an SME that is Markovian. The mas—]c ¢ IS the cost function associated with the final state, @]d :
X denotes the average over all trajectories. The solution is

ter equation that results from averaging over the SME tralecgiven by minimizingC overu(t), to obtain the minimal cost

tories howexer, Wi”hin general rr‘]OI be klvla_rkovian. In :hﬁc*, and resulting optimal strategy* (t). Note that the values
Wiseman-Milburn scheme even the Markovian nature of t &f u will be different for different trajectories. In this formu-

master equation is preserved, but that is not the case herejaiign g cost is specified at each point in time, with the total

cost merely the integral over time, and an allowance is ex-
C. Quantum optimal control: the quantum Bellman equation plicitly made for extra weighting to be given to the cost of
Classically, the optimal control problem can be written inthe state at the final time. It is crucial that the cost function
a form that is, at least in principle, amenable to solution viatakes this “local in time” form in order that it be rewritten as
the method of dynamic programmir(gp be explained be- & Bellman equation.
low). This form is called the Bellman equation, and one can To derive the quantum Bellman equation we will consider
also write an equivalent quantum Bellman equation. Thighe problem to be discrete in time, since this provides the
was first done by Belavkifi26,11,27, but since the treat- clearest treatment. In any case the continuous limit may be
ment in[26] is very abstract, and since neither optimizationtaken at the end of the derivation, if the result is desired. In
over unravelings, nor the possibility of ensemble dependerthis case, dividing the interv40,T] into N steps, the cost
cost functions were mentioned there, we feel it worthwhilefunction consists of a sum of the costs at timés
deriving this equation here using a simpler, although less=ti, - .. tn+1, With ty, ;=T denoting the final time. The
rigorous method. idea of dynamic programmingvhich results from the Bell-
To define an optimal control problem we must specify aman equatiohis that if the period of control is broken into
cost functionf (p(t),u(t),t), which defines how far the sys- two steps, then the optimal control during the second step
tem is from the desired state, how much this “costs,” andmust be the control that would be chosen by optimizing over

how much a given control “costs” to implement. The prob- the later time period alone given the initial state reached after
lem then involves finding the control that minimizes the the first step. This allows the optimal control to be calculated

value of the cost function integrated over the time duringfrom a recursion relation that runs backwards from the final
which the control is acting. The important point to note istime, or in the continuous-time case from a backwards time
that the cost function can almost always be written as a funcdifferential equation. To derive the Bellman equation one
tion of the conditional density matrix followed by an averageproceeds as follows.

over trajectories. This is because the density matrix deter- Trivially, at the final time, given the stajg(T), the mini-
mines completely the probabilities of all future measure-mal cost is merely the final cost, €5 (ty 1) = fi(p(T),T).
ments that can be made on the system, and consequenfiext, stepping back to the timg, the total cost-to-go,
captures completely the future behavior of the system as fagiven the state(ty) is

as future observers are concerrigi/en that the dynamics

are known, of courge which is what one almost always  C(tn)=f(pc(tn), u(ty),tn)At

wants to control.

_ The pos_sible exce_ptions to t_his ru_Ie come Whe_n one is +f f(p(T), T)P(p(T)| pe(tn),u(ty))dp(T)
interested in preserving or manipulating unknown informa-

tion that has been encoded in the system by a previous ob- (11
server who prepared it in one of a known ensemble of states.

Thus as far as the second observer is concerned the statewfiereP. is the conditional probability density for the state at
the system is found by averaging over these states with thigme T given the state.(ty), which is conditioned on any
weighting appropriate to the ensemble. However, in this casearlier measurement results and controls, and the control
it may well be sensible to use a cost function that depends on(ty) at timety, so that the integral is simply the condi-
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tional expectation value of the cost at the final time. Note IV. CLASSICAL ANALOGIES

that the choice of the contrai(ty) may depend on the mea- FOR THE QUANTUM CONTROL PROBLEM
surement result df, and that the conditional probability den-
sity is conditioned not only on the chosen valueu¢fy) but
also on the measurement resulttgt Since,f:«(p(T),T) is
C(ty11), we have

In the preceding sections we have examined the concep-
tual mappings between the elements of the classical and
quantum control problems. In this section we want to exam-
ine the possibility of making such a mapping precise. That is,
to address the question of if and when it is possible to model

a given quantum control problem exactly as a classical con-
C(tn)=min| f(p(ty)c, u(ty), ty)At trol problem. When this is possible it allows the quantum
u(tn) problem in question to be solved using the relevant classical
methods.
+f Cltnr1) Pelp(tys )| p(tan) e, u(ty))dp(tys 1) |- One can always formulate a given quantum control prob-

lem using the quantum Bellman equation, but the different
(12 cost functions will be motivated by different control objec-
tives, and to formulate an equivalent classical control prob-
lem we should examine these objects of control. For ex-
) . o Ieimple, as the object of control one might focus on the
t0-go at the third-to-last timéy—;. This time there are three expectation values of a set of observables, the state vector of
terms in the sum. Nevertheles;,. using the. .Chapmr.:mthe guantum system, or the entire set of density matrix ele-
Kolmogorov equation for the conditional probability densi- ments describing one’s state of knowledge. Once we have a
ties,.it is straightforward to write the equqtiqn m(rthl) N vector of quantities to control, we can ask whether, if we
preciselythe same form as that fai(ty): it is simply EQ.  jgenity this set of quantities with the classical object of con-
(12) with N replaced withN—1. In fact, this equation holds 5| (peing the system state vectd, there exists an identical
for everyC(t;),i=1, ... N. classical control problem. In what follows we examine when

From this point, .the crucial fact. 'Fhat results in_ Fhe BellrT],anthis can be achieved for the three objects of control we have
equation is this: since the conditional probability densities.niioned.

are positive definite, it follows that the minimum 6¢t;) is
only obtained by choosing(t; ;) to be minimum. We can _ )
therefore write a backwards-in-time recursion relation for the A. Correspondence using physical observables

minimum cost, being In this case we wish to control a vector consisting of the
expectation values of a set of observables, more pre-
cisely, theconditionalexpectation values of a set of observ-
f(pu(t)),u(t)),t)At ables. To formulate an equivalent classical problem we
identify these with the conditional expectation values of the
classical vector, and ask whether there exists a classical
roblem corresponding to a given quantum problem. It is
+f C*(ti+ ) Pelp(tiv o) pelti), u(ti)dp(tiv ) | iF;nmediater cIer)ir thatgin gengral thgre will no? be, because
(13) the conditional joint probability densitye.g., the Wigner
function) for the quantum observables will in general not be
positive definite, while the classical equivalent is forced to
which is the discrete time version of the Bellman equationbe. However, it turns out that whenever both the quantum
In other words, this states that an optimal strategy has thdynamics and the measurement is linear in the observables,
property that, whatever any initial states and decisions, aland the measurement procésaraveling is Gaussian, there
remaining decisions must constitute an optimal strategy witlexists an identical linear classical problem driven by Gauss-
regard to the state that results from the first decision, whiclian noise, and therefore the quantum problem reduces to a
is referred to as the “optimality principle.” classical one. This is possible because in this case the quan-
The quantum Bellman equation confirms the intuitive re-tum dynamics preserves the positivity of the joint conditional
sult that any optimal quantum control strategy concernegbrobability density.
only with the future behavior of the system is a function only  The simplest example of this is the quantum single par-
of the conditional density matrix, and further, that the strat-ticle in a quadratic potential. The equivalent classical control
egy at timet is only a function of the conditioned density problem is that for a single classical particle subject to the
matrix at that time. same potential, driven by Gaussian noise, and with an imper-
The procedure of stepping back through successive timéect measurement on whatever observable is being measured
steps from the final time to obtain the optimal strategy isin the quantum problem. Because it is the expectation values
referred to as dynamic programming. This could be used, aif quantum observables that correspond physically with the
least in principle, to solve the problem numerically. In prac-classical dynamical variables we can denote this formula-
tice it will be useful to employ some approximate strategy.tion as using a physical correspondence between the quan-
Much progress in this direction has been made for closetum and classical systems. Because the equivalent classical
guantum systems, see, for example, R2€). problem is linear, it provides immediately an analytic solu-

The important step comes when we consider the total cos

C* (t;)=min|

u(t;)
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tion to the optimal quantum control problem for those costin particular, these can have different modes or means. Since
functions for which solutions have been found for the clasthe classical best estimate is usually defined as a mode
sical problem. Solutions exist for cost functions that are quafmaximuma posteriori estimatoy or a mean, we must im-
dratic in the classical variable$the so-called linear- mediately conclude that there is no quantum “best estimate”
quadratic-gaussiafb QG) theory] and also those exponential for the state vector in the classical sense. Referring back to
in the variableqlinear-exponential-gaussighEG) theory].  Sec. Il then, it follows that there are no separable quantum
A detailed treatment of this analogy, and the resulting quaneontrol problems when it is the state vector that is the object
tum LQG theory is given in Ref.12], and a rigorous math- of control. Nevertheless, this does not rule out the possibility
ematical treatment using a different approach may be founthat it might be useful to construct definitions of quantum
in Ref.[11]. “best estimates” for the state vector in the development of
An interesting feature of this quantum-classical controlsuboptimal control laws.
analogy is that fononlinearquantum systems it transforms  Second, because the equation that propagates our state of
smoothly from a quantum control problemot amenable to knowledge is an equation for the density matrix, the quantum
a classical formulationto a classical control problem across problem automatically has moment closure. In general, the
the guantum-to-classical transition: from a number of nuterm moment closure means that the equation for the evolu-
merical studies, it is now clear that continuously observedion of some finite set of moments of the conditional prob-
guantum systems behave as classical systems in the classiedlility density can be written only in terms of themselves,
regime (even in the absence of any source of decoherenceithout coupling to the infinite set of higher moments. In a
other than the measurement proggd&9]. By the classical sense, this fact introduces a simplification into the quantum
regime we mean the regime in which macroscopic objectproblem.
exist, with7z small compared to the classical action, and this To obtain a classical model one requires that there exists a
therefore provides an explanation for the emergence of clasioise driven classical system, with state vectpsuch that
sical mechanics from quantum mechanics. This has an inmthe equation of motion fox, along with the continuous ob-
mediate connection to the problem of feedback control irservation, whatever it may be, gives a conditional probability
guantum systems since feedback controlled systems are oblensity, the second moments of which obey the quantum
served system&nd the ones we are interested in here ar6SME. We now present strong evidence to suggest that this is,
continuously observedSince it is the expectation values of in fact, not possible. That is, there exists observed classi-
the physical observables that behave as the classical obsewal system that reproduces the SME, and consequently it is
ables in the classical regime, in this regime the above proceaiot possible to think of the quantum measurement process as
dure will provide an effective equivalent classical controla classical estimation process on the state vector. Note that
problem. Effective nonlinear classical control strategies willthis is not directly connected to the Heisenberg uncertainty
therefore work in the classical regime, and a natural questioprinciple: the quantum state vector can be determined com-
to ask is then how they perform as the system makes thpletely during the observation process, just as can the classi-
guantum-to-classical transition, and especially, whether sucbal state. Nevertheless, the processes are fundamentally dif-
classical control strategies will still work deep in the quan-ferent.

tum regime. We explore this question in Sec. VI. To see this first consider the equation for the second mo-
ments that results from the the KS equatidty. (3)], for
B. Correspondence using the quantum state vector time invariant linear observations on a time invariant linear

system. In this case=Fx, H="Hx andF, H, G, andR are
constant matrices. The equation for the second moments may
Mbe written

In this case it is the quantum state vectg) that is the
object of control, and so we wish to see whether we can for
an equivalent classical problem withidentified as the state
| ). In the classical case our state of knowledge is described ¢ + + - +
by the probability densityP(x), so that in order to pursue a 9C=[CF"+FC]=gG'dt+ (x)dW YRR "H(C— (x)(x"))
classical formulation we must consider a probability density _ + t 5T +
over the statesl?q(w)). However, there are important dif- FC=OOANHIVRR AW, (19

ferences between the roles Bfand P,. While in the clas- hereC = (xx™ is th o of q While th
sical case a complete knowledge Bfis required to predict whereC = (xx') is the matrix of second moments. lle the

the results of measurements performed on the system, in ttjg"™MS involvingF reproduce the commutator for the Hamil-

quantum case it is only the density matrix that is requiredionian evolution of the density matrixvith the choicef =
being the set of second momentsRy: —iH), as expected, the deterministic and stochastic terms

resulting from the observation are quite different. In particu-
lar, the deterministic part is constafite., not a function of
P:J dlg) Pyl ) (¥l (14 ), and the stochastic part depends upon the first moments.
The first moments themselves obey a stochastic equation,
where the deterministic part is given By We therefore
Two important consequences of this are the following. Firstcannot choose a linear classical estimation problem directly
that because it is only the set of second moments that chaequivalent to the quantum problem. If we consider classical
acterize our state of knowledge, many different densiigs systems with nonlinear deterministic dynamics, then the de-
may be chosen to correspond to this state of knowledge, artérministic motion fails to match the quantum evolution,
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which is strictly linear. If one chooses the noise or the meapossible to completely determine the state of a system given
surement process to be nonlinear, then, in general, the meé chosen measurement or to prepare an arbitrary state of the
ment closure is lost. system given the chosen control Hamiltonian, then this will
We can gain some insight into the difference betweerplace severe limitations on the feedback control of that sys-
quantum and classical estimation by considering the chang€m. It is important to note that the definitions of observabil-
in the quantum probability densit®(|4)), upon the result ity and controllability apply classically to noiseless systems

of a measurement. Given a measurement described by thhat is, systems with neither process nor measurement
positive operator valued measuROVM) ZyQ;: 1. and an noise, although they are relevant for stochastic systems, and

initial density matrixp, the postmeasurement density matrix it is these systems in which we are naturally interested here.

o o + + ” Consider the concept of observability. A system is defined
for r_esulty is given by p’=0Q,pQ,/Tr(pQ,Q,). Writing to be observable if the initial state of the system can be
this in terms ofP(|¢)), we have the postmeasurement den-getermined from the time history of the outiie. the mea-
sity for resulty as surements made on the system from the initial time onwards
[19]. It follows that in an observable systeevyeryelement

/ 1 d|¢y) in the (classical state vector affects at least one element in

P (|¢y>)_ NPMW))P(W»‘ dlg) |’ (16 the ougtput vece?or, so that the relation can be inverted to ob-

tain the initial state from the outputs. If one considers adding
where process and measurement noise, then observability is still a
useful concept, because it tells us that the outputs, while

Qyl¥) corrupted by noise, nevertheless provide information about

|‘ﬂy> T T aoto 1 17) everyelement in the state vector. Consequently, given impre-

V(U Qy 0y |y)

cise initial knowledge of the state, we can expect our knowl-
edge of all the elements to improve with time. For an unob-
servable system, there will be at least one state element about
which the measurement provides no information. The sim-
plest example of this is a free particle in which the momen-
1 tum is observed. Since the position never affects the momen-
P’ (x)= NP(X)P(y|x). (18  tum, any initial uncertainty in the position will not be
reduced by the measurement. Note that observability is a

We see that the quantum result is Bayes rule, with théoint property of a system and the kind of measurement that
' i#s being made upon it.

addition of a nonlinear transformation of the states, since i It is interesting that there are at least two inequivalent

we sef ‘/'3’.):'@ for all |¢) '”.‘h.e quantum ru[e, we recover ways in which this concept of observability may be applied
the classical Bayes rule. This is the sense in Wh".:h We cafh, 3 measured guantum system, and these result from the
view the quantum measurement process as an active PrOC€RRoice of making an analogy either in terms of the quantum

S'rr:)cczslg Isvi(tar?tjr:\(laa;?jrgititgnaofcal(fcst:sgb?rzsrg?orr:]neaati)unr%?]t?]r: state vector, or a set of quantum observables. First consider
P ' observability defined in terms of a set of observables. The

and P(y||#)) is the conditional probability for the resujt
given the statd), with N a normalization. In contrast to
this, the classical result is simply Bayes'’ rule, being

states. concept of observability applies in this case to whether or not
the output contains information about all the physical ob-
C. Correspondence using the density matrix servables in question. A simple example once again consists

tional) density matrix as the vector to control. Since the dendmomentum as the relevant set of observables. If we consider
sity matrix characterizes our state of knowledge, by definithe observation of the position, then the system is observ-
tion we always know what it is. Consequently the sME able: the output contains information about.both the position
becomes the fundamental dynamical equation, and there #d momentum since the momentum continually affects the
no longer any estimation in the control problem. This is ex-Position. As a result a large initial uncertainty in both vari-
actly analogous to considering the conditional probabilityables is reduced during the observation. Naturally this is
density of the classical control problem as the object of con€ventually limited by the uncertainty principle. The condi-
trol. Since there is no estimation the control problem is aufioned state may eventually become pure but there will be a
tomatically a classical one, and all the techniques of classicdinite limiting variance in the measured quantity since this

control theory can be applied. However, the problem is necState must obey the uncertainty relations. In linear systems
essarily nonlinear since the SME is nonlinear. the measurement back action noise has a role rather similar

to process noise in a classical system since process noise also
leads to nonzero limiting variances of the measured property
of the state. This kind of behavior is discussed in R&i].
Observability and controllability are two key concepts in  If we consider alternatively the measurement of momen-
classical control theory, and here we want to examine wayfum on a quantum free particle, the system is unobservable,
in which they may be extended to the quantum domain. Theyn exactly the same fashion as the classical system is unob-
are useful because they indicate the existence of absolutervable, since the momentum provides no information about
limits to observation and control in some systems. If it is notthe position. It is not entirely coincidental that in quantum

V. OBSERVABILITY AND CONTROLLABILITY
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mechanics momentum is a quantum nondemoli{iQiND) case remains an open question.
observable of the free particle while classically momentum We need not consider controllability in any detail here,
measurement of a free particle does not constitute an obsersince this has been considered elsewhere. The controllability
able system. This is clearly a general result: when it is &@f quantum mechanical systems—that is, whether the inter-
QND observable that is observed, the system is always uriction Hamiltonians available are able to prepare an arbitrary
observable. This follows from the fact that a QND observ-State of a quantum system—has been considered by applying
able is defined as one that commutes with the Hamiltoniardirectly the ideas of classical control thedi§3]. Interest-
Since it commutes with the Hamiltonian, no other systemNgly, this has a new interpretation in quantum computation.
observable can appear in its equation of motion, with the'N® gates of the computer must be able to perform an arbi-
result that its observation can provide no information abouf'@ry unitary operation on the register of qubits; a set of gates
any other observable. There will, however, be measuremeni¥ith this property is termed universal. Since it may perform
on systems, which, while they are not classically observabledrPitrary unitary operations a universal quantum computer
are also not QND measurements. may prepare any des[rgd state of the sy;tgm from any given
An alternative way to define quantum observability is in initial state. The condltlon§ for controllability of a.quantum '
terms of the state vector. In this case the question of obsenyStem were therefore rediscovered as the conditions for uni-
ability concerns whether or not the output contains informa-versality of a quantum computgs4].
tion about all the elements of the quantum state vector. Con-
sider a quantum system in which the observation is the only
source of noise. Then, if the system is observable with re-
spect to a particular measurement, as time proceeds one ob-
tains increasingly more information about all the elements of Here we examine the application of suboptimal estimation
the state vector, and the conditioned state tends to a pusnd control laws, developed for nonlinear classical systems,
state ag—o0. For an unobservable system, any initial uncer-to the corresponding quantum systems, where the objects of
tainty in at least one state vector element remains, even igontrol are the expectation values of physical observables.
the long time limit. A simple example of a system that is This gives a simple initial example of the use of state ob-
observable in this sense is the measurement of momentum @erver based control systems outside of the regime of linear
a free particl€recall that this isinobservablén the previous systems considered in Rdf12]. Since, for this particular
sensg In this case it is a simple matter to calculate the timecontrol objective, it is possible to completely solve the prob-
evolution of the purity of the conditioned statesing, for  lem of the feedback control of linear quantum systems using
example, the method in R€f32]), to verify that the system classical methods for linear systems, and since continuously
is observable. An example of an unobservable system is a sebserved non-linear quantum systems in the classical regime
of two non-interacting spins, in which it is an observable ofare clearly amenable to classical control strategies, it remains
only one of the spins that is measured. In this case, while the&o examine the effectiveness of classical nonlinear control
state of the measured spin may become pure, clearly the stag&rategies for quantum systems deep in the quantum regime.
of the joint system can remain mixed for a suitable choice ofFor nonlinear systems, optimal estimation involves integra-
an initial state. tion of the KS equation for classical systems, and the SME
A key factor that differs between these examples is that ifor quantum systems. For real time control this is almost
the observable case the measured quarhiging the mo- always computationally impractical, so that it is important to
mentum has a nondegenerate eigenspectrum, whereas in tlievelop simpler(suboptimal algorithms, which are suffi-
unobservable case the measured quafiiing any observ- ciently accurate.
able of the first spinhas degenerate eigenvalues when writ- It is important to note that the use of a suboptimal esti-
ten as an operator on the fuliwo-spin system. It is clear mation algorithm also makes the task of simulating the con-
that in the case that the measured observable commutes wittolled quantum system computationally less expensive. This
the system Hamiltonian the nondegeneracy of the eigenvals because it allows the system, including control, to be
ues of the observable is a necessary and sufficient conditiosimulated using an SSE rather than the full SME. The reason
for observability in this sense. Writing the evolution of the for this is that regardless of whether the observer is dynami-
system as multiplication by a series of measurement operaally changing the inputs to the system the SSE correctly
tors alternating with unitary operatofslue to the Hamil- simulates the SME—the full SME need only be integrated if
tonian evolution, the measurement operators may be com+the actual conditioned state is required to calculate the se-
bined together since they commute with the unitaryquence of controls. As a result, to simulate a controlled
operators, and it is readily shown that as <, one is left quantum system, one need only integrate the suboptimal es-
with a projection onto the basis of the measured observablgéimator, if one is available, and the SSE for the system.
If the eigenvalues of the observable are all different, then the Here we use as an example system a particle in a double-
measurement results distinguish the resulting eigenvectowell potential with the control objective of keeping the par-
and the result is a pure state. However, if any two of theticle in a given well, and switching it from one well to the
eigenvectors are degenerate, the measurement results will nather when desired, in the presence of a coupling tdiran
distinguish those two states. Consequently, if the system exinitely) high temperature bath. As discussed in previous sec-
ists initially in a mixture of these two states it will remain so tions, the first important choice in such a problem is that of
for all time. Whether this continues to be true in the generathe measurement, as this should be chosen so as not to cause

VI. SUBOPTIMAL ESTIMATION AND CONTROL
FOR A NONLINEAR QUANTUM SYSTEM
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any unwanted dynamids.e. it should not force the particle ond order moment¥,,V,,C, the position and momentum
away from the desired stajeand since it is the position of variance and the symmetric covarian€e= (1/2){xp+ pXx)
the particle that is to be controlled, a position measurement is-(x){p), respectively,
a sensible choice.

Various approximate estimators have been developed for d{x)=(p)dt+ 2\2kv,dV, (21
classical systems, and these usually involve a moment trun-
cation of the KS equation. For example, one can assume that d(p)=—4B(x)3dt+2A(x)dt—12B(x)V,dt
the conditional probability density will remain Gaussian, and
truncate the moments accordingly. More generally, for a +2y2kCdV+udt, (22)
given control problem certain characteristics of the condi- . )
tional probability density might be known, and motivate an- Vy=2C—8kV;, (23)
other approximation. In both the classical and the quantum
mechanical systems it is a reasonable expectation that theV,= —24B(x)?C+4AC—24BCV,+2(k+ B)#*—8kC?,

conditioned states will remain Gaussian for sufficiently (29
strong position measurement which is the regime we will _
investigate here. C=V,—12B(x)?V,+2AV,— 12BVZ—8KkCV,, (25

For the purposes of feedback control we will assume that
the observer has the ability to apply a linear force to thewheredV=dQ—(x)dt. Thus from an initial state the ob-
double well, so the feedback Hamiltonian is proportional toserver may propagate this Gaussian estimate of the true con-
x. When the quantum state is close to Gaussian, quantuitioned state given a particular measurement record. Note
dynamics follows closely the equivalent classical dynamicsthat since the full SME is not in fact integrated, the noise
and we can expect nonlinear classical control strategies tprocesseslW and dV are not the same. In our pure state
work. The strategy we will apply is that of linearized LQG trajectory simulations we perform the stochastic integration
optimal control. In this method, for each timestep, the systen®f Eq. (20) for different realizations of the Wiener incre-
dynamics are linearized about the current state estimate, amdentsdW that in turn determine, for each trajectory, values
the corresponding optimal LQG strategy is chosen for thedof dQ that are used to integrate the five estimator equations.
next timestep. In this way the control is always “locally In order to obtain equations for pure states it is also neces-
optimal.” Clearly the key requirement for the strategy we sary to introduce a second Wiener increment to account for
have outlined is that the conditioned state remains closel{he thermal noise as described in Sec. Il A.
Gaussian during the evolution. The control will fail if the  The state estimate is then used to determine the values of
measurement fails to maintain the Gaussian distribution, or ifl. Under linearized LQG contral=u;+u,+ uz, where
the measurement only maintains a Gaussian at the expense of

introducing an intolerable amount of noise. Uo=2A(x) —4B(x)°, (26)
The Hamiltonian for the system is _
U= —Uu((X)—Xo), 27
H=31p?—Ax*+Bx*, (19

Upy=—(NV2u+T')((p)—Po), (28

where we have set the particle mass to unity. We will also
usefi=1. The resulting SME is U=dyUo+ [a<x>uo]2+l“. (29
dp.=—i[H+Hy,pldt+2B8D[x]pdt The current target points in phase spacexarandpy. Here

I' is a “free” parameter, which one chooses to set the over-
+2kD[ x]pdt+ V2kH[X]pdW, (200 all strength of the feedback.

As a particular example we chooge=2 andB=A/18,

wherek gives the strength of the position measurement, anavhich puts the two minima at 3, with a well depth of 13.5.
B the strength of the thermal noise. On any given trajectonSince we sefi=1, this puts the problem deep in the quan-
the corresponding measured current(iy =dQ(t)/dt where  tum regime, since the potential varies considerably over the
dQ(t)=Tr{ xp(t)]+dW(t). The feedback Hamiltonian is phase space arda Because of this, the densifWigner
Hp=—ux, whereu is a function of the history of the pho- function) for the particle is forced to be broad on the scale of
tocurrent described below. the occupiable phase space, which is a key limiting factor in

The estimator chosen is a variational solution of the SMEthe problem. We choos@= 0.1, which gives a thermal heat-
it is the Gaussian state closest to the actual conditioned stateg rated(E)/dt=0.1. Due to the thermal heating, feedback
which may be obtained by integrating the SME. This ap-control is essential to maintain a desired behavior. In imple-
proach to the approximate solution of the SME appears inmenting the suboptimal estimation and control strategy de-
[35]. This is a more realistic estimator for use in control thanscribed above, we have the choice of measurement strength
the SME since it only requires the integration of five stochas-and feedback strengih. We find that it is possible to obtain
tic differential equations. The approximate solution is aa fairly effective control with a choice ok=0.3 andTI’
Gaussian mixed state, which may be characterized by its=100. A resulting trajectory for the system, given a target
mean position(x) and momentun{p) and symmetric sec- position that switches between the well minima is shown in
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FIG. 1. Behavior of a particle
under the estimation/feedback
control scheme outlined in the
text. (@) The dashed line gives the
target position, and the two solid
lines give the “true” mean posi-
tion obtained from the SSE simu-
lation, and the estimated position,
these remaining close throughout
the simulation as require¢h) The
control strength(size of applied
force) as a function of time. The
various units areX = Vi/(mv),
us=vyAmy, and 7=1/v, where
mis the mass of the particle and
is an arbitrary frequency. In the
text we have seb=m=v=1, so
that all quantities are dimension-
less.

5 10 15 20 25 30 35 40 45 50
(b) it

Fig. 1, along with the strength of the linear force applied asstate in the presence of the nonlinear potential the combined
a result of the control strategy. To evaluate the efficacy of theffect of the thermal noise and measurement must be suffi-
control, we also plot the rms deviation of the average posiciently strong, and this results in unwanted heating, which
tion from the target position, and plot this in Fig. 2. We seemust be countered by the feedback. While this is a limitation
from this that the system achieves the target position withirof the Gaussian estimator, there is still a more fundamental
an average error of- 0.6. When the target is switched, the limitation. In the presence of noise, the measurement must be
system relaxes to the desired value with a time constant dfufficiently strong in order to obtain sufficient information
~3. about the system to control it. In this case we found we

While this strategy is fairly effective, it is limited by spe- needed a measurement strength three times that of the noise,
cifically quantum effects. In order to maintain a Gaussianresulting in the corresponding heating. Naturally, these quan-
tum limiting features are ultimately due to the sizeiofas#
decreases, the measurement induced heating rate, as well as
the rate at which the Wigner function deforms from Gauss-
ian, is reduced. It is to be expected that with the use of more
sophisticated estimation techniques, and more subtle quan-
tum control strategies, the simple method we have outlined
here can be beaten, possibly significantly, and the develop-
ment of such techniques constitutes a central problem for
future work in quantum feedback control.

6 T T T

VII. CONCLUSION

In this paper we have argued that it is useful to consider
quantum feedback control in the light of methods developed
in classical control theory. In order to do this it is important
‘ . : ‘ . to understand the relationship between the two theories. We

0 5 10 15 20 25 30 3% 4 45 50 began by comparing the formulations of these theories, in

% order to identify conceptual analogies. We then considered

FIG. 2. rms deviation of the position from the target value as athree ways in which the quantum control problem could be
function of time. This was obtained by averaging over 1000 trajecformally mapped to the classical problem, and discussed if
tories. The units ar¥.=\%/(mv) andr= 1/v, wheremis the mass and when these formulations may be addressed directly with
of the particle andv is an arbitrary frequency. In the text we have the classical theory.
setii=m=v=1, so that all quantities are dimensionless. As an example, we applied the ideas presented here to the
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control of the position of a single quantum particle in a non-ings, and control strategies required for quantum feedback
linear potential deep in the quantum regime. In this case weontrol problems, and the effectiveness of suboptimal esti-
fixed both the measurement observalsigstem/environment mation algorithms, are as yet unanswered, and that this field
coupling and the unraveling, and considered the use of subpresents a considerable theoretical challenge for future work.
optimal estimation and control strategies. While this ap-
proach was fairly effective, it is clearly limited by quantum

effects.

As experimental techniques improve, and quantum tech- S.H., K.J., and H.M. would like to thank Tanmoy Bhatta-
nology becomes increasingly relevant in practical applicacharya, Chris Fuchs, and Howard Barnum for helpful discus-
tions, we can anticipate that questions of quantum feedbackions. This research was performed in part using the re-
control will become increasingly important. It is clear that sources located at the Advanced Computing Laboratory of
most questions regarding the optimal observables, unravel-os Alamos National Laboratory.
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