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Quantum feedback control and classical control theory
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We introduce and discuss the problem of quantum feedback control in the context of established formula-
tions of classical control theory, examining conceptual analogies and essential differences. We describe the
application of state-observer-based control laws, familiar in classical control theory, to quantum systems and
apply our methods to the particular case of switching the state of a particle in a double-well potential.
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I. INTRODUCTION

Experimental technology, particularly in the fields of ca
ity QED @1#, ion trapping@2#, and Bose-Einstein condens
tion @3#, has now developed to the point where individu
quantum systems can be monitored continuously with v
low noise and may be manipulated rapidly on the time sca
of the system evolution. It is therefore natural to consider
possibility of controlling individual quantum systems in re
time using feedback@4#. In this paper we consider the prob
lem of feedback control at the quantum limit. In a fully qua
tum mechanical feedback control theory the quantum
namics of the system and the back-action of measurem
must both be taken into account.

The major theoretical challenge of extending feedba
control to the quantum mechanical regime is to descr
properly the back action of measurement on the evolution
individual quantum systems. Fortunately, the formalism
quantum measurement, and particularly that of the cont
ous observation of quantum systems, is now sufficiently w
developed to provide a general framework in which to a
salient questions about this new subject ofquantum feedback
control. In fact, the formulation that results from this theo
is sufficiently similar to that of classical control theory th
the experience gained there provides valuable insights
the problem. However, there are also important differen
that render the quantum problem potentially more comp
In this paper we describe a fairly general formulation of t
classical feedback control problem, and compare it with
similarly general quantum feedback control problem. T
allows us to examine ways in which the classical probl
may be mapped to the quantum problem, to provide insi
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and to show when results from the classical theory may
applied directly to the control of quantum systems. This w
also allow us to highlight the essential features of the qu
tum problem that distinguish it from classical feedback co
trol.

The field of quantum-limited feedback was introduced
Wiseman and Milburn@4#, who considered the instantaneo
feedback of some measured photocurrent onto the dyna
of a quantum system. The master equation for the resul
evolution was then Markovian. In this work we are interest
in more general schemes in which some arbitrary functio
of the entire history of the measurement results can be u
to alter the system evolution. The resulting dynamics of
system is then non-Markovian, however the dynamics of
system and controller remain Markovian. As we shall s
this is completely analogous to the situation in classical c
trol theory.

The Wiseman-Milburn theory has been applied to t
generation of subshot noise photocurrents through feedb
and the affect of the in-loop light on the fluorescence of
atom@5#. Other proposed applications include the protect
and generation of nonclassical states of the light field@6# and
the manipulation of the motional state of atoms or the m
rors of optical cavities@7#. In related work Hofmanet al. @8#
consider the preparation and preservation of states of a
level atom through homodyne detection and feedback i
slightly different formalism. Finally the so-called dynamic
decoupling of a quantum system from its environment h
been discussed@9#, which protects states of the system
interest from the effects of coupling to the environment
situations in which it is possible to manipulate the system
times short compared to the correlation time of the envir
ment. This is the opposite limit to the Wiseman-Milbu
theory, which considers feedback slow on the time scale
the bath correlations but fast on the time scales of the di
pative or nonlinear dynamics. This work adopts, as we
ideas from classical control theory, in this case the so-ca
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bang-bang control, to open quantum systems. There is
extensive literature on the application of classical con
techniques such as optimal control toclosedquantum sys-
tems, a useful entry point into this literature being Ref.@10#.

Although the task of determining useful functionals of t
measurement current may seem daunting we argue that m
progress can be made by adopting the lessons of the clas
theory of state estimation and control. In particular it is he
ful to break the feedback control process into two steps—
propagation of some estimate of the state of the system g
the history of the measurement results, and the use of
state estimate at a given time in order to calculate approp
control inputs to affect the dynamics of the system at t
time. This approach has already yielded results for the o
mal control of observed linear quantum systems@11,12#.

A simple example of an experiment in quantum optics
which similar control strategies have already been emplo
is the work of Cohadonet al. @13#. In this experiment the aim
is to damp the thermal motion of the end mirror of a hi
finesse optical cavity. A very high precision interferomet
measurement is made of the mirror’s position and the res
ing signal is filtered in an appropriate way to generate
estimate of the current mirror momentum. This momentu
estimate signal is then used to modulate the laser power
laser driving the back of the mirror in order to exert a rad
tion pressure force in the opposite direction to the mir
momentum, thus reducing the effective temperature of
mirror. In fact the considerable thermal noise in the expe
ment means that the back-action noise is not significant
so an essentially classical treatment of the feedback is s
cient. In this paper we wish to consider a relatively gene
description of this kind of feedback technique in a way th
explicitly takes into account the quantum mechanical ba
action noise and will thus be relevant to experiments suc
@1# where truly quantum control is a near future possibilit

In the next section we describe the classical feedback c
trol problem well known in classical control theory, while
Sec. III we introduce a formulation of the quantum proble
and examine conceptual analogies between the two. We
sider optimization of the control strategy and discuss
quantum equivalent of the Bellman equation, being a gen
statement of the quantum optimal control problem in a
namic programming form. In Sec. IV we consider the pos
bility of making precise mappings between the classical
quantum problems, and examine when the quantum prob
may be addressed using the classical theory directly. In
V we consider the classical concept of observability and d
cuss ways in which this may be defined for quantum s
tems. In Sec. VI we consider the application of suboptim
control strategies developed for nonlinear classical syst
to quantum systems. As an example we consider control
the state of a particle in a double-well potential in the pr
ence of noise. Section VII concludes the article.

II. CLASSICAL FEEDBACK CONTROL

In this section we consider the classical feedback con
problem @14–18#. It is not our intention here to be com
pletely general, since the control problem is a very bro
01210
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one. We will consider explicitly only continuous time sy
tems, and these driven by Gaussian noise. Since mos
what we say will apply also to discrete systems, and th
driven by other kinds of noise sources, little is lost by th
restriction.

The problem, which classical feedback control theory a
dresses, consists of the following: A given dynamical s
tem, driven by noise, and monitored imperfectly, is driv
also by some input~s! with the intention of controlling it, and
these inputs are allowed to be a function of the results of
observations performed on the system. The dynamics of
system may be written as

dx5F~x,u!dt1G~x,u!•dW, ~1!

wherex is the state of the system~a vector consisting of the
essential dynamical variables!, u is a set of externally con-
trollable inputs to the system,dW is a set of Wiener incre-
ments, andt is time. Note that sincex anddW are vectors,G
is a matrix. In this paper we follow the terminology of th
quantum optics community and refer to the system of inte
that is to be controlled as simply thesystem. In the control
theory literature this is often termed theprocess. Hence the
noise driving the system is often referred to as theprocess
noise. To avoid confusion it may be useful to bear in min
that in the control theory literature it is common to use t
term system to refer to all the parts of the control problem
the process, the control loop, and all the noise and o
inputs. The observation process is usually written as

dy5H~x,t !dt1R~ t !•dV, ~2!

wheredV, referred to as theobservationnoise, is another se
of Wiener increments, which may or may not be correla
with the noise driving the system,dW, andR is an arbitrary
matrix.

The process of feedback control involves choosing
inputsu, at each timet, as some function of the entire histor
of the observation processdy and of the initial conditions.
To complete the specification of a given control proble
one must define acost function, which specifies the desire
behavior, and the cost associated with deviations from
behavior. An important goal of control theory is then
specify u such that the cost function is minimized. Such
result is referred to asoptimal control.

As a general principle we can say that as our knowled
regarding the state of the system at any given time beco
better, so too does the efficacy of the feedback algorith
since we can better determine the appropriate feedb
Hence the question of state-estimation~that is, the determi-
nation of our best estimate of the state from the results of
measurement process! arises naturally in this context. In th
fullest description, one can decide upon a probability d
sity, P(x), that describes one’s complete initial state
knowledge of the dynamical variablesx, and then determine
how this density evolves due to the system dynamics and
continual observation. The equation governing thisa poste-
riori probability density is called the Kushner-Stratonovit
~KS! equation, being
5-2
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dP52(
i 51

n
]

]xi
~Fi P!dt1

1

2 (
i 51

n

(
j 51

n
]2

]xi]xj
~@GGT# i j P!dt

1@H~x,t !2^H~x,t !&#T~RRT!@dy2^H~x,t !&dt#P.

~3!

Here we have written the elements ofx andF asxi andFi
respectively,@GGT# i j denotes thei j th element of the matrix
GGT, and^ & is the expectation value with respect toP at the
current time. With the exclusion of the final term, this
merely the Fokker-Planck equation for~unconditional! evo-
lution of the noise-driven system. It is the final term th
takes into account the effect of the measurement on our s
of knowledge. Note that as a result of the terms involvi
^H(x,t)& this is a nonlinear equation for the probability di
tribution. Here we have made the usual assumption that
process and measurement noises are decorrelated. The
chastic process, which drives the KS equation, is the dif
ence between the actual measured values,dy, and the value
oneexpectedto measure,̂H(x,t)&. This is referred to as the
residual, or innovation. Since the conditioned probabilit
distribution is the optimal estimate of the state that may
obtained from the measurement record, the residual has
mean and is uncorrelated with the conditioned probabi
distribution. Note that the residual is distinct from both t
process noise and the measurement noise.

It is worth mentioning that it is also possible to write
linear equation for the conditional probability densityP, if
we relax the requirement thatP be normalized. The resulting
equation, which may be found in, e.g., Ref.@17#, is called the
Zakai equation.

For linear systems driven by Gaussian noise, the KS eq
tion becomes particularly simple, with initially Gaussia
densities remaining Gaussian. As a result closed equation
motion for the means~being also the ‘‘best,’’ or maximuma
posterioriestimates of the system state! and variances can b
obtained. Evolving these moment equations is then m
simpler than trying to keep track of an entire distribution.

In addition, for linear systems the classical optimal co
trol problem is essentially solved. Under the assumption o
cost function quadratic in the dynamical variables, the o
mal control law involves makingu a linear function of the
best estimate of the dynamical variables, and the equation
determining this function may be given explicitly in terms
the ~in this case linear! functions F and G. Moreover, the
solution of the linear problem possesses certain impor
properties that make it particularly simple: It satisfies t
separation theorem, which states that the optimal control la
depends on only one estimate of the state@14,16,18#—in this
case the mean of thea posteriori probability distribution.
There is no advantage in modifying the control law based
the uncertainty of the current state estimate. The linear p
lem also satisfiescertainty equivalence. This means that the
optimal control strategy is the same as it would be eve
there was no noise driving the system and the state of
system were known exactly; in the stochastic problem
optimal state estimate simply takes the place of the sys
state in the deterministic problem. Furthermore the lin
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problem isneutral, which means that the choice of contro
does not affect the accuracy of the state estimate. If the
tion of the controller affects the uncertainty about the state
the system as the well as the evolution of the system it
this is termeddual effect.

For nonlinear systems the situation is very different. No
linear systems may satisfy only a few of the above con
tions, or none at all. Few exact results exist for optimal co
trol strategies. True optimal estimation almost invariab
requires the integration of the full KS equation, somethi
that is impractical for real-time applications. Therefore it
generally necessary to develop good approximate, but ne
theless suboptimal, estimation and control strategies,
many approaches to this problem have been developed
Sec. VI we will consider similar approaches to the quant
problem where integration of an optimal estimate of the s
tem state may also be impractical in real time.

Another reason for employing nominally suboptimal fee
back control is to account for uncertainty in the model.
parameters of the model of the system are not in fact w
known then the control that is optimal for the nominal mod
may in fact be a very poor control loop for models wi
similar but not identical values of the parameters. This pr
lem can be particularly pronounced in systems with la
numbers of degrees of freedom and the solution of this pr
lem is the domain ofrobust control@19#. Another control
technique commonly used in practice is pole placement
which quantum mechanical analogs could also be develo

III. QUANTUM FEEDBACK CONTROL

A. Continuous quantum measurement

The model of the control problem introduced abo
makes sense in classical physics—however, it is implic
assumed that it is possible to extract information about
state of the system without disturbing it. This is not a va
assumption in quantum mechanics, and hence in descri
any experiment on a quantum system it is necessary to
sider carefully, as well as the quantum dynamics of the s
tem, the coupling of the system of interest with the meas
ing apparatus. To provide a similarly useful formulation
quantum feedback control we require a model of quant
continuous measurement with a similarly wide applicabil
to the classical model of the previous section. In recent ye
in the field of quantum optics, where continuous quant
measurements are realized experimentally, a formalism
developed to accurately describe such measurements@20–
23#, and it was realized later that this description was ide
tical to that developed in the mathematical physics literat
using more abstract reasoning@24,11#. This formalism ap-
pears to fill the role for quantum systems that the class
formulation introduced above plays for classical systems
order to describe noise in quantum systems we will emp
the master equation formalism and because the measure
of the system requires some coupling to the external wo
the continuous measurement of a quantum system also
quires the consideration of master equations of a partic
type.
5-3
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If we denote the state of the quantum system that we
concerned with controlling asr and the system Hamiltonia
as H, then the effect of measurement and environmen
noise may be included by adding two Lindblad terms to
master equation forr:

ṙ52 i @H,r#1D@Q#r1D@c#r, ~4!

whereD@A#r[(2ArA†2A†Ar2rA†A)/2 for an arbitrary
operatorA. When A is Hermitian this reduces toD@A#r
52†A,@A,r#‡/2. The termD@Q#r describes theuncondi-
tional evolution resulting from a continuous measurem
where the interaction of the measuring device and the sys
is via the system operatorQ. If Q is Hermitian, then it de-
scribes a continuous measurement of the observable c
sponding toQ. By unconditional evolution we mean that th
master equation describes our state of knowledge if we m
the measurement but throw away the information~the mea-
surement record!. It is therefore the result of averaging ov
all the possible final states resulting from the measurem
history. Similarly, averaging over the measurement result
the classical Kushner-Stratonovitch equation results in
Fokker-Planck equation for the probability distribution of t
state. The second term of the master equation,D@c#r, de-
scribes the effect of noise due to the environment. Sinc
has the same form as that of the unconditional measurem
evolution, it is always possible to view it as the result o
measurement to which we have no access. Similarly, i
always possible to view the measurement process as a
teraction with an environment~bath! where we are perform
ing measurements on the bath to obtain the information, p
ducing a continuous measurement on the system.

Associated with any given history of measurement res
will be a conditioned state,rc , being the observer’s actua
state of knowledge resulting from recording the~continuous!
series of measurement outcomes. The evolution of the c
ditioned state is referred to as a quantumtrajectory. If one
conditions on the measurement of the observableQ, the mas-
ter equation@Eq.~4!# becomes@23#

drc5dtL0rc1dtD@Q#rc1H@Q#rcdW1D@c#r, ~5!

which is described as a stochastic master equation~SME!.
HereH is defined by

H@L#r5Lr1rL†2Tr@~L1L†!r#r. ~6!

The measurement process is given in terms of the pro
dW by

dy5Tr@~Q1Q†!r#dt1dW. ~7!

Here dW is a Wiener increment, and we see that there i
close similarity between the quantum measurement pro
and the classical measurement process. It should be rem
bered that for a fixed master equation, it is, in fact, poss
to alter ones measurements to obtain different SME’s. Th
referred to as choosing a differentunravelingof the master
equation. In general the SME~and therefore the measure
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ment process! may be driven by Poisson noise as well
Wiener noise. We will return to this point later when w
consider feedback.

In the classical description of state estimation, it is t
conditional probability density, whose evolution is govern
by the Kushner-Stratonovitch equation, that describes the
server’s complete state of knowledge. The conditional pr
ability density contains the probabilities for the outcomes
all measurements that may be performed on the system
quantum mechanics it is the density matrix that may be u
to calculate probability distributions for arbitrary measur
ments on the system. It is therefore the conditional den
matrix that replaces the conditional probability density
quantum state estimation theory, and it is the SME that is
analog of the Kushner-Stratonovitch equation, being
propagator for the optimal estimate of the quantum mech
cal state given the history of the measurement curr
I [ t0 ,t)5$dy(t8)/dt:t0<t8,t%. Just as in the classical prob

lem a residual process (dW) uncorrelated with the state es
timate arises. This zero mean noise process is again the
ference between the actual measurement result and the r
expected on the basis of previous measurements.

We also note that if one allows the conditional dens
matrix to be unnormalized, it is possible to write the SME
a linear stochastic master equation. This then, is the equ
lent of the Zakai equation of classical state estimation, wh
is a linear equation propagating an unnormalizeda posteriori
probability distribution.

The SME ~5!, like any other master equation, may b
unraveled into trajectories of pure states obeying a stocha
evolution. This involves imagining that it is in fact possib
to make some kind of complete measurement on the bath
that the results of these measurements are known to the
server. In that case we would have complete informat
about the system, so that an initial pure state would rem
pure, and we could write the stochastic master equation
stead as a stochastic Shro¨dinger equation~SSE! for the state
vector. The result is

duc&5~2 iHdt1@Q2 1
2 ^Q1Q†&#dW0!uc&

1(
j

~cj2
1
2 ^cj1cj

†&!dWj uc&

2 1
2 ~Q†Q2^Q1Q†&Q1 1

4 ^Q1Q†&2!dtuc&

2 1
2 (

j
~cj

†cj2^cj1cj
†&cj1

1
4 ^cj1cj

†&2!dtuc&,

~8!

where the notation̂a&[^cuauc& was used. HereQ is once
again the measured observable, and this time we have
cluded an arbitrary number of noise sources,cj , rather than
merely a single noise source~determined previously by the
operatorc). Of the Wiener processes,dW0 results from the
measurement process of the real observer~measuring the ob-
servableQ), and thedWj from the fictitious measurement
on the bath. Many of these unravelings are possible depe
ing on what measurements are imagined to be performed
5-4
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TABLE I. Quantum/classical analogies in state estimation.

Classical-state estimation Quantum-state estimation

a posterioriprobability distribution conditioned density matrix
Kushner-Stratonovitch equation nonlinear stochastic master equation
Zakai equation linear stochastic master equation
innovation/residual process quantum residuals (dy2^Q1Q†&dt)
Fokker-Planck equation fora priori distribution master equation
fictitious noise to simulate KS equation using SDE fictitious noise to simulate SME using
state vector operators for system observables
process noise bath noise operators
measurement noise meter field noise operators
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the bath~for example a Poisson process might be used,
any of the noise sources, rather than a Wiener process!, the
property that all unravelings will have in common is that t
average of the SSE over many realizations will produce
correct SME. It turns out that the measurement proces
now given by

dy5^cuQ1Q†uc&dt1dW0 . ~9!

By comparing Eqs.~7! and~9!, we see that for a given rea
ization of the measurement processdy, since in general
Tr@(Q1Q†)r#Þ^cuQ1Q†uc&, the processesdW anddW0
arenot the same.

Since the SSE is an equation for the state vector cho
such that the average over all trajectories correctly rep
duces the SME, the equivalent classical object would b
stochastic equation for the state vectorx such that the aver
age reproduced the KS equation. Such an equation can
tainly be constructed, with the introduction of fictitious noi
sources corresponding todWj in the SSE introduced above
The use of stochastic differential equations to propag
Fokker-Planck equations is well known in classical theori
the Kushner-Stratonovitch equation is simply a nonline
stochastic Fokker-Planck equation for thea posterioriprob-
ability distribution. It should be noted that these fictitio
noises do not correspond to the process noise.

While we have presented quantum analogies here
many of the objects in classical state estimation, we have
presented analogies for the objects that describe the und
ing classical system, being the classical state vector, pro
noise, and measurement noise. Such analogies may be
at the cost of replacing the state vector, process noise,
measurement noise by operators in appropriate Hilb
spaces. This requires the formulation of the problem in te
of quantum stochastic differential equations~QSDE’s!.
Space prevents us from examining this in detail here, and
reader is referred to the work of Gardineret al. for a discus-
sion of QSDE’s in the context of continuous measurem
@21#. In Table I we include the analogous quantities th
result from such an analysis along with the tentative ana
gies we have discussed in detail in this section.

B. Controlled quantum systems

The goal of feedback control of quantum systems will
to use the continuous stream of measurement results to
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pare some desired state or enforce some desired evolutio
the system. In the classical formulation this involves effe
tively altering the system Hamiltonian by adding the cont
inputs u, which are functions of the measurement reco
Quantum mechanically the equivalent action is to make
HamiltonianH a function of the measurement record. In
actual experiment the variation of the Hamiltonian involv
the modulation of classical parameters such as externa
fields, laser phases, and driving strengths.

However, while feedback control of the system Ham
tonian is sufficient to cover the full classical control proble
it is not sufficient in the quantum case. This is because
general, the quantum measurement process changes th
namics of the system. Consequently the formulation of
full quantum feedback control problem must also allow f
the possibility that the measurement process is also chan
as a result of the observations. There are two distinct po
bilities for the modification of the measurement. The first
to control the coupling between the system and the bath~i.e.,
change the operatorQ) and we might refer to this as alterin
the measured observable, or altering the measurement i
action. The second is that even for a fixed syste
environment coupling one can control the nature of the m
surements made on the bath. Since in this case the m
equation describing the unconditional evolution remains
same, but the trajectories change, we may may refer to
as altering the measurement unraveling. Such adaptive m
surements@25# may have distinct advantages in the setting
quantum control.

In a general feedback scheme, the three tools of con
~the Hamiltonian, the measured observable, and the meas
ment unraveling! are chosen to be some integral of the me
surement record. In particular, for state-observer based
trol, at each point in time they are chosen to be a function
the best estimate of the state of the system at that t
~which is also, naturally, an integral of the measurem
record!. Note that in the situation considered by Wisem
and Milburn it is only the measurement result at the lat
~most recent! time that is used in the feedback. This leads
various complications since the feedback must always
after the measurement and so it is necessary to be very c
ful of this ordering when deriving stochastic master equ
tions. It is important to note that as long as the kernel of
integral of the measurement record is not singular and c
5-5
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centrated at the latest time, these complications do not a
~for the same reason that they do not arise in classical con
theory!. Certainly, the integral required to obtain the optim
state estimate is not singular~since it results from integrating
the SME!, and this remains true in all cases we consider h
~such as the suboptimal strategy in Sec. VI!.

With the addition of feedback the various terms in t
SME are in general functionals of the measurement rec
up to the latest timet. In general, this new SME is not Mar
kovian. However, in the special case in which the tools
control are chosen to be a function of the optimal state e
mate @i.e., rc(t)], it follows immediately that this SME is
Markovian. Since it follows from the quantum Bellma
equation~derived below! that the optimal control strateg
may always be achieved when using a function of the b
estimate, it follows that the optimal control strategy can
ways be achieved with an SME that is Markovian. The m
ter equation that results from averaging over the SME tra
tories however, will in general not be Markovian. In th
Wiseman-Milburn scheme even the Markovian nature of
master equation is preserved, but that is not the case he

C. Quantum optimal control: the quantum Bellman equation

Classically, the optimal control problem can be written
a form that is, at least in principle, amenable to solution
the method of dynamic programming~to be explained be-
low!. This form is called the Bellman equation, and one c
also write an equivalent quantum Bellman equation. T
was first done by Belavkin@26,11,27#, but since the treat-
ment in @26# is very abstract, and since neither optimizati
over unravelings, nor the possibility of ensemble depend
cost functions were mentioned there, we feel it worthwh
deriving this equation here using a simpler, although l
rigorous method.

To define an optimal control problem we must specify
cost functionf „r(t),u(t),t…, which defines how far the sys
tem is from the desired state, how much this ‘‘costs,’’ a
how much a given control ‘‘costs’’ to implement. The pro
lem then involves finding the control that minimizes t
value of the cost function integrated over the time dur
which the control is acting. The important point to note
that the cost function can almost always be written as a fu
tion of the conditional density matrix followed by an avera
over trajectories. This is because the density matrix de
mines completely the probabilities of all future measu
ments that can be made on the system, and consequ
captures completely the future behavior of the system as
as future observers are concerned~given that the dynamics
are known, of course!, which is what one almost alway
wants to control.

The possible exceptions to this rule come when one
interested in preserving or manipulating unknown inform
tion that has been encoded in the system by a previous
server who prepared it in one of a known ensemble of sta
Thus as far as the second observer is concerned the sta
the system is found by averaging over these states with
weighting appropriate to the ensemble. However, in this c
it may well be sensible to use a cost function that depend
01210
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the ensemble as well as this density matrix@28#. It remains a
topic for future work to determine whether problems such
this will constitute an important application of quantum fee
back control. We will restrict ourselves here to what mig
be referred to as ‘‘orthodox’’ control objectives in which it
only the future behavior of the system that is important, a
this is captured by cost functions that depend only on
density matrix~ensemble independent cost functions!.

The general statement of our optimal control proble
may therefore be written as

C5K E
0

T

f „rc~ t !,u~ t !,t…dt1 f f„rc~T!,T…L . ~10!

Here C denotes the total average cost for a given con
strategyu(t), f is the cost function up until the final timeT,
f f is the cost function associated with the final state, and^ &
denotes the average over all trajectories. The solution
given by minimizingC overu(t), to obtain the minimal cost
C* , and resulting optimal strategyu* (t). Note that the values
of u will be different for different trajectories. In this formu
lation a cost is specified at each point in time, with the to
cost merely the integral over time, and an allowance is
plicitly made for extra weighting to be given to the cost
the state at the final time. It is crucial that the cost functi
takes this ‘‘local in time’’ form in order that it be rewritten a
a Bellman equation.

To derive the quantum Bellman equation we will consid
the problem to be discrete in time, since this provides
clearest treatment. In any case the continuous limit may
taken at the end of the derivation, if the result is desired
this case, dividing the interval@0,T# into N steps, the cos
function consists of a sum of the costs at timest i
5t1 , . . . ,tN11, with tN115T denoting the final time. The
idea of dynamic programming~which results from the Bell-
man equation! is that if the period of control is broken into
two steps, then the optimal control during the second s
must be the control that would be chosen by optimizing o
the later time period alone given the initial state reached a
the first step. This allows the optimal control to be calcula
from a recursion relation that runs backwards from the fi
time, or in the continuous-time case from a backwards ti
differential equation. To derive the Bellman equation o
proceeds as follows.

Trivially, at the final time, given the stater(T), the mini-
mal cost is merely the final cost, soC* (tN11)5 f f„r(T),T….
Next, stepping back to the timetN , the total cost-to-go,
given the stater(tN) is

C~ tN!5 f „rc~ tN!,u~ tN!,tN…Dt

1E f f„r~T!,T…Pc„r~T!urc~ tN!,u~ tN!…dr~T!

~11!

wherePc is the conditional probability density for the state
time T given the staterc(tN), which is conditioned on any
earlier measurement results and controls, and the con
u(tN) at time tN , so that the integral is simply the cond
5-6
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QUANTUM FEEDBACK CONTROL AND CLASSICAL . . . PHYSICAL REVIEW A 62 012105
tional expectation value of the cost at the final time. No
that the choice of the controlu(tN) may depend on the mea
surement result attN and that the conditional probability den
sity is conditioned not only on the chosen value ofu(tN) but
also on the measurement result attN . Since, f f„r(T),T… is
C(tN11), we have

C~ tN!5 min
u(tN)

F f „r~ tN!c ,u~ tN!,tN…Dt

1E C~ tN11!Pc„r~ tN11!ur~ tN!c ,u~ tN!…dr~ tN11!G .
~12!

The important step comes when we consider the total c
to-go at the third-to-last timetN21. This time there are three
terms in the sum. Nevertheless, using the Chapm
Kolmogorov equation for the conditional probability dens
ties, it is straightforward to write the equation forC(tN21) in
preciselythe same form as that forC(tN): it is simply Eq.
~12! with N replaced withN21. In fact, this equation holds
for everyC(t i),i 51, . . . ,N.

From this point, the crucial fact that results in the Bellm
equation is this: since the conditional probability densit
are positive definite, it follows that the minimum ofC(t i) is
only obtained by choosingC(t i 11) to be minimum. We can
therefore write a backwards-in-time recursion relation for
minimum cost, being

C* ~ t i !5min
u(t i )

F f ~rc~ t i !,u~ t i !,t i !Dt

1E C* ~ t i 11!Pc„r~ t i 11!urc~ t i !,u~ t i !…dr~ t i 11!G ,
~13!

which is the discrete time version of the Bellman equati
In other words, this states that an optimal strategy has
property that, whatever any initial states and decisions,
remaining decisions must constitute an optimal strategy w
regard to the state that results from the first decision, wh
is referred to as the ‘‘optimality principle.’’

The quantum Bellman equation confirms the intuitive
sult that any optimal quantum control strategy concern
only with the future behavior of the system is a function on
of the conditional density matrix, and further, that the str
egy at timet is only a function of the conditioned densit
matrix at that time.

The procedure of stepping back through successive t
steps from the final time to obtain the optimal strategy
referred to as dynamic programming. This could be used
least in principle, to solve the problem numerically. In pra
tice it will be useful to employ some approximate strateg
Much progress in this direction has been made for clo
quantum systems, see, for example, Ref.@29#.
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IV. CLASSICAL ANALOGIES
FOR THE QUANTUM CONTROL PROBLEM

In the preceding sections we have examined the conc
tual mappings between the elements of the classical
quantum control problems. In this section we want to exa
ine the possibility of making such a mapping precise. That
to address the question of if and when it is possible to mo
a given quantum control problem exactly as a classical c
trol problem. When this is possible it allows the quantu
problem in question to be solved using the relevant class
methods.

One can always formulate a given quantum control pr
lem using the quantum Bellman equation, but the differ
cost functions will be motivated by different control obje
tives, and to formulate an equivalent classical control pr
lem we should examine these objects of control. For
ample, as the object of control one might focus on t
expectation values of a set of observables, the state vect
the quantum system, or the entire set of density matrix e
ments describing one’s state of knowledge. Once we hav
vector of quantities to control, we can ask whether, if w
identify this set of quantities with the classical object of co
trol ~being the system state vectorx), there exists an identica
classical control problem. In what follows we examine wh
this can be achieved for the three objects of control we h
mentioned.

A. Correspondence using physical observables

In this case we wish to control a vector consisting of t
expectation values of a set of observables~or, more pre-
cisely, theconditionalexpectation values of a set of obser
ables!. To formulate an equivalent classical problem w
identify these with the conditional expectation values of t
classical vectorx, and ask whether there exists a classi
problem corresponding to a given quantum problem. It
immediately clear that in general there will not be, becau
the conditional joint probability density~e.g., the Wigner
function! for the quantum observables will in general not
positive definite, while the classical equivalent is forced
be. However, it turns out that whenever both the quant
dynamics and the measurement is linear in the observab
and the measurement process~unraveling! is Gaussian, there
exists an identical linear classical problem driven by Gau
ian noise, and therefore the quantum problem reduces
classical one. This is possible because in this case the q
tum dynamics preserves the positivity of the joint condition
probability density.

The simplest example of this is the quantum single p
ticle in a quadratic potential. The equivalent classical con
problem is that for a single classical particle subject to
same potential, driven by Gaussian noise, and with an im
fect measurement on whatever observable is being meas
in the quantum problem. Because it is the expectation va
of quantum observables that correspond physically with
classical dynamical variablesx, we can denote this formula
tion as using a physical correspondence between the q
tum and classical systems. Because the equivalent clas
problem is linear, it provides immediately an analytic so
5-7
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DOHERTY, HABIB, JACOBS, MABUCHI, AND TAN PHYSICAL REVIEW A62 012105
tion to the optimal quantum control problem for those c
functions for which solutions have been found for the cl
sical problem. Solutions exist for cost functions that are q
dratic in the classical variables@the so-called linear-
quadratic-gaussian~LQG! theory# and also those exponentia
in the variables@linear-exponential-gaussian~LEG! theory#.
A detailed treatment of this analogy, and the resulting qu
tum LQG theory is given in Ref.@12#, and a rigorous math
ematical treatment using a different approach may be fo
in Ref. @11#.

An interesting feature of this quantum-classical cont
analogy is that fornonlinearquantum systems it transform
smoothly from a quantum control problem~not amenable to
a classical formulation! to a classical control problem acros
the quantum-to-classical transition: from a number of n
merical studies, it is now clear that continuously observ
quantum systems behave as classical systems in the cla
regime ~even in the absence of any source of decohere
other than the measurement process! @30#. By the classical
regime we mean the regime in which macroscopic obje
exist, with\ small compared to the classical action, and t
therefore provides an explanation for the emergence of c
sical mechanics from quantum mechanics. This has an
mediate connection to the problem of feedback contro
quantum systems since feedback controlled systems are
served systems~and the ones we are interested in here
continuously observed!. Since it is the expectation values o
the physical observables that behave as the classical ob
ables in the classical regime, in this regime the above pro
dure will provide an effective equivalent classical cont
problem. Effective nonlinear classical control strategies w
therefore work in the classical regime, and a natural ques
to ask is then how they perform as the system makes
quantum-to-classical transition, and especially, whether s
classical control strategies will still work deep in the qua
tum regime. We explore this question in Sec. VI.

B. Correspondence using the quantum state vector

In this case it is the quantum state vectoruc& that is the
object of control, and so we wish to see whether we can fo
an equivalent classical problem withx identified as the state
uc&. In the classical case our state of knowledge is descri
by the probability density,P(x), so that in order to pursue
classical formulation we must consider a probability dens
over the states,Pq(uc&). However, there are important dif
ferences between the roles ofP and Pq . While in the clas-
sical case a complete knowledge ofP is required to predict
the results of measurements performed on the system, in
quantum case it is only the density matrix that is requir
being the set of second moments ofPq :

r5E duc&Pq~ uc&)uc&^cu. ~14!

Two important consequences of this are the following. Fi
that because it is only the set of second moments that c
acterize our state of knowledge, many different densitiesPq
may be chosen to correspond to this state of knowledge,
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in particular, these can have different modes or means. S
the classical best estimate is usually defined as a m
~maximuma posteriori estimator! or a mean, we must im-
mediately conclude that there is no quantum ‘‘best estima
for the state vector in the classical sense. Referring bac
Sec. II then, it follows that there are no separable quan
control problems when it is the state vector that is the ob
of control. Nevertheless, this does not rule out the possib
that it might be useful to construct definitions of quantu
‘‘best estimates’’ for the state vector in the development
suboptimal control laws.

Second, because the equation that propagates our sta
knowledge is an equation for the density matrix, the quant
problem automatically has moment closure. In general,
term moment closure means that the equation for the ev
tion of some finite set of moments of the conditional pro
ability density can be written only in terms of themselve
without coupling to the infinite set of higher moments. In
sense, this fact introduces a simplification into the quant
problem.

To obtain a classical model one requires that there exis
noise driven classical system, with state vectorx, such that
the equation of motion forx, along with the continuous ob
servation, whatever it may be, gives a conditional probabi
density, the second moments of which obey the quan
SME. We now present strong evidence to suggest that thi
in fact, not possible. That is, there existsno observed classi-
cal system that reproduces the SME, and consequently
not possible to think of the quantum measurement proces
a classical estimation process on the state vector. Note
this is not directly connected to the Heisenberg uncerta
principle: the quantum state vector can be determined c
pletely during the observation process, just as can the cla
cal state. Nevertheless, the processes are fundamentally
ferent.

To see this first consider the equation for the second m
ments that results from the the KS equation@Eq. ~3!#, for
time invariant linear observations on a time invariant line
system. In this caseF5Fx, H5Hx andF, H, G, andR are
constant matrices. The equation for the second moments
be written

dC5@CF †1FC#2GG†dt1^x&dW†ARRTH~C2^x&^x†&!

1~C2^x&^x†&!H †ARRTdW^x†&, ~15!

whereC5^xx†& is the matrix of second moments. While th
terms involvingF reproduce the commutator for the Ham
tonian evolution of the density matrix~with the choiceF5
2 iH ), as expected, the deterministic and stochastic te
resulting from the observation are quite different. In partic
lar, the deterministic part is constant~i.e., not a function of
C), and the stochastic part depends upon the first mome
The first moments themselves obey a stochastic equa
where the deterministic part is given byF. We therefore
cannot choose a linear classical estimation problem dire
equivalent to the quantum problem. If we consider class
systems with nonlinear deterministic dynamics, then the
terministic motion fails to match the quantum evolutio
5-8
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QUANTUM FEEDBACK CONTROL AND CLASSICAL . . . PHYSICAL REVIEW A 62 012105
which is strictly linear. If one chooses the noise or the m
surement process to be nonlinear, then, in general, the
ment closure is lost.

We can gain some insight into the difference betwe
quantum and classical estimation by considering the cha
in the quantum probability density,P(uc&), upon the result
of a measurement. Given a measurement described by
positive operator valued measure~POVM! (yVy

†51, and an
initial density matrixr, the postmeasurement density mat
for result y is given by r85VyrVy

†/Tr(rVy
†Vy). Writing

this in terms ofP(uc&), we have the postmeasurement de
sity for resulty as

P8~ ucy&!5
1

N
P(yuuc&)P~ uc&!Uducy&

duc&
U, ~16!

where

ucy&5
Vyuc&

A^cuVy
†Vyuc&

~17!

and P(yuuc&) is the conditional probability for the resulty
given the stateuc&, with N a normalization. In contrast to
this, the classical result is simply Bayes’ rule, being

P8~x!5
1

N
P~x!P~yux!. ~18!

We see that the quantum result is Bayes rule, with
addition of a nonlinear transformation of the states, sinc
we setucy&5uc& for all uc& in the quantum rule, we recove
the classical Bayes rule. This is the sense in which we
view the quantum measurement process as an active pro
since it is equivalent to a classical~passive! measuremen
process, with the addition of an~active! transformation of the
states.

C. Correspondence using the density matrix

In this case one considers the elements of the~condi-
tional! density matrix as the vector to control. Since the de
sity matrix characterizes our state of knowledge, by defi
tion we always know what it is. Consequently the SM
becomes the fundamental dynamical equation, and the
no longer any estimation in the control problem. This is e
actly analogous to considering the conditional probabi
density of the classical control problem as the object of c
trol. Since there is no estimation the control problem is
tomatically a classical one, and all the techniques of class
control theory can be applied. However, the problem is n
essarily nonlinear since the SME is nonlinear.

V. OBSERVABILITY AND CONTROLLABILITY

Observability and controllability are two key concepts
classical control theory, and here we want to examine w
in which they may be extended to the quantum domain. T
are useful because they indicate the existence of abso
limits to observation and control in some systems. If it is n
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possible to completely determine the state of a system g
a chosen measurement or to prepare an arbitrary state o
system given the chosen control Hamiltonian, then this w
place severe limitations on the feedback control of that s
tem. It is important to note that the definitions of observab
ity and controllability apply classically to noiseless syste
~that is, systems with neither process nor measurem
noise!, although they are relevant for stochastic systems,
it is these systems in which we are naturally interested h

Consider the concept of observability. A system is defin
to be observable if the initial state of the system can
determined from the time history of the output~i.e. the mea-
surements made on the system from the initial time onwa!
@19#. It follows that in an observable system,everyelement
in the ~classical! state vector affects at least one element
the output vector, so that the relation can be inverted to
tain the initial state from the outputs. If one considers add
process and measurement noise, then observability is s
useful concept, because it tells us that the outputs, w
corrupted by noise, nevertheless provide information ab
everyelement in the state vector. Consequently, given imp
cise initial knowledge of the state, we can expect our kno
edge of all the elements to improve with time. For an uno
servable system, there will be at least one state element a
which the measurement provides no information. The s
plest example of this is a free particle in which the mome
tum is observed. Since the position never affects the mom
tum, any initial uncertainty in the position will not b
reduced by the measurement. Note that observability
joint property of a system and the kind of measurement t
is being made upon it.

It is interesting that there are at least two inequivale
ways in which this concept of observability may be appli
to a measured quantum system, and these result from
choice of making an analogy either in terms of the quant
state vector, or a set of quantum observables. First cons
observability defined in terms of a set of observables. T
concept of observability applies in this case to whether or
the output contains information about all the physical o
servables in question. A simple example once again cons
of the single particle, in which we can use the position a
momentum as the relevant set of observables. If we cons
the observation of the position, then the system is obse
able: the output contains information about both the posit
and momentum since the momentum continually affects
position. As a result a large initial uncertainty in both va
ables is reduced during the observation. Naturally this
eventually limited by the uncertainty principle. The cond
tioned state may eventually become pure but there will b
finite limiting variance in the measured quantity since th
state must obey the uncertainty relations. In linear syste
the measurement back action noise has a role rather sim
to process noise in a classical system since process noise
leads to nonzero limiting variances of the measured prop
of the state. This kind of behavior is discussed in Ref.@31#.

If we consider alternatively the measurement of mom
tum on a quantum free particle, the system is unobserva
in exactly the same fashion as the classical system is un
servable, since the momentum provides no information ab
the position. It is not entirely coincidental that in quantu
5-9
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DOHERTY, HABIB, JACOBS, MABUCHI, AND TAN PHYSICAL REVIEW A62 012105
mechanics momentum is a quantum nondemolition~QND!
observable of the free particle while classically moment
measurement of a free particle does not constitute an obs
able system. This is clearly a general result: when it i
QND observable that is observed, the system is always
observable. This follows from the fact that a QND obse
able is defined as one that commutes with the Hamilton
Since it commutes with the Hamiltonian, no other syst
observable can appear in its equation of motion, with
result that its observation can provide no information ab
any other observable. There will, however, be measurem
on systems, which, while they are not classically observa
are also not QND measurements.

An alternative way to define quantum observability is
terms of the state vector. In this case the question of obs
ability concerns whether or not the output contains inform
tion about all the elements of the quantum state vector. C
sider a quantum system in which the observation is the o
source of noise. Then, if the system is observable with
spect to a particular measurement, as time proceeds one
tains increasingly more information about all the elements
the state vector, and the conditioned state tends to a
state ast→`. For an unobservable system, any initial unc
tainty in at least one state vector element remains, eve
the long time limit. A simple example of a system that
observable in this sense is the measurement of momentu
a free particle~recall that this isunobservablein the previous
sense!. In this case it is a simple matter to calculate the tim
evolution of the purity of the conditioned state~using, for
example, the method in Ref.@32#!, to verify that the system
is observable. An example of an unobservable system is
of two non-interacting spins, in which it is an observable
only one of the spins that is measured. In this case, while
state of the measured spin may become pure, clearly the
of the joint system can remain mixed for a suitable choice
an initial state.

A key factor that differs between these examples is tha
the observable case the measured quantity~being the mo-
mentum! has a nondegenerate eigenspectrum, whereas in
unobservable case the measured quantity~being any observ-
able of the first spin! has degenerate eigenvalues when w
ten as an operator on the full~two-spin! system. It is clear
that in the case that the measured observable commutes
the system Hamiltonian the nondegeneracy of the eigen
ues of the observable is a necessary and sufficient cond
for observability in this sense. Writing the evolution of th
system as multiplication by a series of measurement op
tors alternating with unitary operators~due to the Hamil-
tonian evolution!, the measurement operators may be co
bined together since they commute with the unita
operators, and it is readily shown that ast→`, one is left
with a projection onto the basis of the measured observa
If the eigenvalues of the observable are all different, then
measurement results distinguish the resulting eigenvec
and the result is a pure state. However, if any two of
eigenvectors are degenerate, the measurement results w
distinguish those two states. Consequently, if the system
ists initially in a mixture of these two states it will remain s
for all time. Whether this continues to be true in the gene
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case remains an open question.
We need not consider controllability in any detail her

since this has been considered elsewhere. The controllab
of quantum mechanical systems—that is, whether the in
action Hamiltonians available are able to prepare an arbit
state of a quantum system—has been considered by app
directly the ideas of classical control theory@33#. Interest-
ingly, this has a new interpretation in quantum computati
The gates of the computer must be able to perform an a
trary unitary operation on the register of qubits; a set of ga
with this property is termed universal. Since it may perfo
arbitrary unitary operations a universal quantum compu
may prepare any desired state of the system from any g
initial state. The conditions for controllability of a quantu
system were therefore rediscovered as the conditions for
versality of a quantum computer@34#.

VI. SUBOPTIMAL ESTIMATION AND CONTROL
FOR A NONLINEAR QUANTUM SYSTEM

Here we examine the application of suboptimal estimat
and control laws, developed for nonlinear classical syste
to the corresponding quantum systems, where the objec
control are the expectation values of physical observab
This gives a simple initial example of the use of state o
server based control systems outside of the regime of lin
systems considered in Ref.@12#. Since, for this particular
control objective, it is possible to completely solve the pro
lem of the feedback control of linear quantum systems us
classical methods for linear systems, and since continuo
observed non-linear quantum systems in the classical reg
are clearly amenable to classical control strategies, it rem
to examine the effectiveness of classical nonlinear con
strategies for quantum systems deep in the quantum reg
For nonlinear systems, optimal estimation involves integ
tion of the KS equation for classical systems, and the S
for quantum systems. For real time control this is alm
always computationally impractical, so that it is important
develop simpler~suboptimal! algorithms, which are suffi-
ciently accurate.

It is important to note that the use of a suboptimal es
mation algorithm also makes the task of simulating the c
trolled quantum system computationally less expensive. T
is because it allows the system, including control, to
simulated using an SSE rather than the full SME. The rea
for this is that regardless of whether the observer is dyna
cally changing the inputs to the system the SSE corre
simulates the SME—the full SME need only be integrated
the actual conditioned state is required to calculate the
quence of controls. As a result, to simulate a control
quantum system, one need only integrate the suboptima
timator, if one is available, and the SSE for the system.

Here we use as an example system a particle in a dou
well potential with the control objective of keeping the pa
ticle in a given well, and switching it from one well to th
other when desired, in the presence of a coupling to an~in-
finitely! high temperature bath. As discussed in previous s
tions, the first important choice in such a problem is that
the measurement, as this should be chosen so as not to c
5-10
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QUANTUM FEEDBACK CONTROL AND CLASSICAL . . . PHYSICAL REVIEW A 62 012105
any unwanted dynamics~i.e. it should not force the particle
away from the desired states! and since it is the position o
the particle that is to be controlled, a position measureme
a sensible choice.

Various approximate estimators have been developed
classical systems, and these usually involve a moment t
cation of the KS equation. For example, one can assume
the conditional probability density will remain Gaussian, a
truncate the moments accordingly. More generally, fo
given control problem certain characteristics of the con
tional probability density might be known, and motivate a
other approximation. In both the classical and the quan
mechanical systems it is a reasonable expectation tha
conditioned states will remain Gaussian for sufficien
strong position measurement which is the regime we w
investigate here.

For the purposes of feedback control we will assume t
the observer has the ability to apply a linear force to
double well, so the feedback Hamiltonian is proportional
x. When the quantum state is close to Gaussian, quan
dynamics follows closely the equivalent classical dynam
and we can expect nonlinear classical control strategie
work. The strategy we will apply is that of linearized LQ
optimal control. In this method, for each timestep, the syst
dynamics are linearized about the current state estimate,
the corresponding optimal LQG strategy is chosen for
next timestep. In this way the control is always ‘‘local
optimal.’’ Clearly the key requirement for the strategy w
have outlined is that the conditioned state remains clos
Gaussian during the evolution. The control will fail if th
measurement fails to maintain the Gaussian distribution, o
the measurement only maintains a Gaussian at the expen
introducing an intolerable amount of noise.

The Hamiltonian for the system is

H5 1
2 p22Ax21Bx4, ~19!

where we have set the particle mass to unity. We will a
use\51. The resulting SME is

drc52 i @H1H fb ,rc#dt12bD@x#rcdt

12kD@x#rcdt1A2kH@x#rcdW, ~20!

wherek gives the strength of the position measurement,
b the strength of the thermal noise. On any given traject
the corresponding measured current isI (t)5dQ(t)/dt where
dQ(t)5Tr@xrc(t)#1dW(t). The feedback Hamiltonian is
H fb52ux, whereu is a function of the history of the pho
tocurrent described below.

The estimator chosen is a variational solution of the SM
it is the Gaussian state closest to the actual conditioned
which may be obtained by integrating the SME. This a
proach to the approximate solution of the SME appears
@35#. This is a more realistic estimator for use in control th
the SME since it only requires the integration of five stoch
tic differential equations. The approximate solution is
Gaussian mixed state, which may be characterized by
mean position̂ x& and momentum̂ p& and symmetric sec
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ond order momentsVx ,Vp ,C, the position and momentum
variance and the symmetric covarianceC5(1/2)^xp1px&
2^x&^p&, respectively,

d^x&5^p&dt12A2kVxdV, ~21!

d^p&524B^x&3dt12A^x&dt212B^x&Vxdt

12A2kCdV1udt, ~22!

V̇x52C28kVx
2 , ~23!

V̇p5224B^x&2C14AC224BCVx12~k1b!\228kC2,
~24!

Ċ5Vp212B^x&2Vx12AVx212BVx
228kCVx , ~25!

where dV5dQ2^x&dt. Thus from an initial state the ob
server may propagate this Gaussian estimate of the true
ditioned state given a particular measurement record. N
that since the full SME is not in fact integrated, the noi
processesdW and dV are not the same. In our pure sta
trajectory simulations we perform the stochastic integrat
of Eq. ~20! for different realizations of the Wiener incre
mentsdW that in turn determine, for each trajectory, valu
of dQ that are used to integrate the five estimator equatio
In order to obtain equations for pure states it is also nec
sary to introduce a second Wiener increment to account
the thermal noise as described in Sec. III A.

The state estimate is then used to determine the value
u. Under linearized LQG controlu5u11u21u3, where

u052A^x&24B^x&3, ~26!

u152ũ~^x&2x0!, ~27!

u252~A2ũ1G!~^p&2p0!, ~28!

ũ5]^x&u01A@]^x&u0#21G. ~29!

The current target points in phase space arex0 andp0. Here
G is a ‘‘free’’ parameter, which one chooses to set the ov
all strength of the feedback.

As a particular example we chooseA52 andB5A/18,
which puts the two minima at63, with a well depth of 13.5.
Since we set\51, this puts the problem deep in the qua
tum regime, since the potential varies considerably over
phase space area\. Because of this, the density~Wigner
function! for the particle is forced to be broad on the scale
the occupiable phase space, which is a key limiting facto
the problem. We chooseb50.1, which gives a thermal hea
ing rated^E&/dt50.1. Due to the thermal heating, feedba
control is essential to maintain a desired behavior. In imp
menting the suboptimal estimation and control strategy
scribed above, we have the choice of measurement strenk
and feedback strengthG. We find that it is possible to obtain
a fairly effective control with a choice ofk50.3 and G
5100. A resulting trajectory for the system, given a targ
position that switches between the well minima is shown
5-11
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FIG. 1. Behavior of a particle
under the estimation/feedbac
control scheme outlined in the
text. ~a! The dashed line gives the
target position, and the two solid
lines give the ‘‘true’’ mean posi-
tion obtained from the SSE simu
lation, and the estimated position
these remaining close throughou
the simulation as required.~b! The
control strength~size of applied
force! as a function of time. The
various units areXs5A\/(mn),
us5nA\mn, and t51/n, where
m is the mass of the particle andn
is an arbitrary frequency. In the
text we have set\5m5n51, so
that all quantities are dimension
less.
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Fig. 1, along with the strength of the linear force applied
a result of the control strategy. To evaluate the efficacy of
control, we also plot the rms deviation of the average po
tion from the target position, and plot this in Fig. 2. We s
from this that the system achieves the target position wit
an average error of60.6. When the target is switched, th
system relaxes to the desired value with a time constan
;3.

While this strategy is fairly effective, it is limited by spe
cifically quantum effects. In order to maintain a Gauss

FIG. 2. rms deviation of the position from the target value a
function of time. This was obtained by averaging over 1000 traj
tories. The units areXs5A\/(mn) andt51/n, wherem is the mass
of the particle andn is an arbitrary frequency. In the text we hav
set\5m5n51, so that all quantities are dimensionless.
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state in the presence of the nonlinear potential the comb
effect of the thermal noise and measurement must be s
ciently strong, and this results in unwanted heating, wh
must be countered by the feedback. While this is a limitat
of the Gaussian estimator, there is still a more fundame
limitation. In the presence of noise, the measurement mus
sufficiently strong in order to obtain sufficient informatio
about the system to control it. In this case we found
needed a measurement strength three times that of the n
resulting in the corresponding heating. Naturally, these qu
tum limiting features are ultimately due to the size of\; as\
decreases, the measurement induced heating rate, as w
the rate at which the Wigner function deforms from Gau
ian, is reduced. It is to be expected that with the use of m
sophisticated estimation techniques, and more subtle q
tum control strategies, the simple method we have outlin
here can be beaten, possibly significantly, and the deve
ment of such techniques constitutes a central problem
future work in quantum feedback control.

VII. CONCLUSION

In this paper we have argued that it is useful to consi
quantum feedback control in the light of methods develop
in classical control theory. In order to do this it is importa
to understand the relationship between the two theories.
began by comparing the formulations of these theories
order to identify conceptual analogies. We then conside
three ways in which the quantum control problem could
formally mapped to the classical problem, and discusse
and when these formulations may be addressed directly
the classical theory.

As an example, we applied the ideas presented here to

a
-
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control of the position of a single quantum particle in a no
linear potential deep in the quantum regime. In this case
fixed both the measurement observable~system/environmen
coupling! and the unraveling, and considered the use of s
optimal estimation and control strategies. While this a
proach was fairly effective, it is clearly limited by quantu
effects.

As experimental techniques improve, and quantum te
nology becomes increasingly relevant in practical appli
tions, we can anticipate that questions of quantum feedb
control will become increasingly important. It is clear th
most questions regarding the optimal observables, unra
rs
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ings, and control strategies required for quantum feedb
control problems, and the effectiveness of suboptimal e
mation algorithms, are as yet unanswered, and that this
presents a considerable theoretical challenge for future w
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