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Abstract

This is the first in a series of papers aiming to develop a relativistic quan-
tum information theory in terms of unequal-time correlation functions in quantum
field theory. In this work, we highlight two formalisms which together can pro-
vide a useful theoretical platform suitable for further developments: 1) Quantum
field measurements using the Quantum Temporal Probabilities (QTP) method; 2)
Closed-Time-Path (CTP) formalism for causal time evolutions. QTP incorporates
the detector into the quantum description, while emphasising that the records of
measurement are macroscopic and can be expressed in terms of classical spacetime
coordinates. We first present a new, elementary derivation of the QTP formulas
for the probabilities of n measurement events. We then demonstrate the relation
of QTP with the Closed-Time-Path formalism, by writing an explicit formula that
relates the associated generating functionals. We exploit the path integral repre-
sentation of the CTP formalism, in order to express the measured probabilities
in terms of path integrals. After this, we provide some simple applications of
the QTP formalism. In particular, we show how Unruh-DeWitt detector models
and Glauber’s photodetection theory appear as limiting cases. Finally, with quan-
tum correlation being the pivotal notion in relativistic quantum information and
measurements, we highlight the role played by the CTP two-particle irreducible
effective action which enables one to tap into the resources of non-equilibrium
quantum field theory for our stated purpose.
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1 Introduction

Quantum information theory (QIT) is a quantum extension of classical information the-
ory. The primary force behind the explosive developments of QIT during the last decades
is entanglement, the uniquely quantum feature which provides the new and powerful re-
source for quantum computing, quantum communication, quantum metrology and more.

While potential applications of quantum information technologies have drawn close
attention of government and private research and development, the theoretical foun-
dation of QIT is surprisingly lacking in a major portion. Our understanding of QIT
is far lagging behind the fully developed quantum theory of nature, namely, quantum
field theory (QFT), which has proven its validity and worth in the full range of physical
sciences from particle-nuclear physics to atomic, optical and condensed matter physics,
from quarks to black holes and the early universe. So far, quantum information theory
has been largely developed in the context of non-relativistic quantum mechanics, which
is a small corner of full QFT. It is ostensibly inadequate when basic relativistic effects
like locality, causality and spacetime covariance, need be accounted for.

1.1 QITs not based on QFT are incomplete

QFT is a quantum theory that also includes axioms about the effect of spacetime struc-
ture on the properties of quantum systems, especially regarding the causal propagation
of signals. In contrast, current quantum information theories do not incorporate the
latter axioms. Their notion of causality, based on the sequence of successive operations
on a quantum system, lacks a direct spacetime representation. As a result, current QITs
cannot make crucial relativistic distinctions, for example, between timelike and spacelike
correlations, it does not describe real-time signal propagation, and it ignores relativistic
constraints on permissible measurements. A genuinely relativistic QIT must overcome
such limitations [1].

Furthermore, experiments that study causal information transfer or gravitational
interaction in multi-partite quantum systems require a QFT treatment of interactions for
consistency. A non-QFT description may severely misrepresent the theoretical modeling
of the system or the physical interpretation of the results. This point is crucial for tests
of foundational issues of quantum theory invoking quantum information concepts such as
entanglement and decoherence or methods such as signaling and communication. This
is especially so for quantum information experiments in space [2,3] and for experiments
designed to explore quantum effects from gravity [4–7].

The introduction of the key concepts of spacetime covariance and causality in QIT
forces us to address problems that originate from the foundations of QFT. We draw an
incomplete list of noteworthy issues below.

Quantum States. In set-ups that involve more than two quantum measurements, the
standard state update rule implies that the quantum state is genuinely different when
recorded from different Lorentz frames [8–10]. There is no problem with the theory’s
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physical predictions that are expressed in terms of (multi-time) probabilities [11]. How-
ever, the usual notions of quantum information (entropy, entanglement) are defined
through the quantum state, and as such, they are ambiguous in relativistic measure-
ment set-ups.

Local Operations. It is a challenging problem to formalize the notion of a localized quan-
tum system in QFT. There are powerful theorems demonstrating that even unsharp
localization in a spatial region leads to faster than light signals [12,13]. Hence, express-
ing the crucial quantum informational notion of a local operation in terms of spatial
localization can lead to conflicts with relativistic causality.

Projective Measurements. There are strong arguments that ideal (i.e., projective) mea-
surements in QFT are incompatible with causality [14, 15], essentially because they
change the quantum state over a full Cauchy surface. However, existing quantum in-
formation notions (even the very notion of a qubit) presuppose maximal extraction of
information through ideal measurements.

We contend that the development of consistent relativistic QIT requires a measure-
ment theory that (i) respects causality and locality, and (ii) it is expressed in terms of
quantum fields1. Furthermore, this measurement theory ought to be practical, i.e., it
must provide non-trivial predictions for experiments that are accessible now or in the
near future. For other reasons why a QFT measurement theory is needed, see Ref. [20].

1.2 Past work on QFT measurements

To the best of our knowledge, the earliest discussion of measurements on quantum fields
was by Landau and Peierls [21]. They derived an inequality for the localization of
particles. Bohr and Rosenfeld criticized some of their assumptions [22], and proved that
the measurement of field properties requires a test particle of macroscopic scale: the
particle’s charge Q must be much larger than the electron charge e.

Arguably the first explicit model for QFT measurements was Glauber’s photodetec-
tion theory [23, 24], which was developed as a quantum generalization of the classical
theory of electromagnetic coherence. Glauber’s theory defines unnormalized probabil-
ities for photon detection in terms of the electric field operators Epxq and the field’s
quantum state |ψy. The joint probability density P px1, x2, . . . , xnq for the detection of a
photon at each of the spacetime points x1, x2, . . . , xn is given by

P px1, x2, . . . , xnq “ xψ|Ep´qpx1qEp´qpx2q . . . Ep´qpxnqEp`qpxnq . . . Ep`qpx2qEp`qpx1q|ψy, (1)

where Ep`q is the positive-frequency component and Ep´q the negative-frequency compo-
nent of the projected field vector field n¨Epxq. The probability density (1) is essential for
the definition of higher-order coherences of the electromagnetic field, and consequently,

1The explicit formulation in terms of QFT is the point of divergence of our approach from past works
on formulating a relativistic QIT [16–19].
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for the description of phenomena like the Hanbury-Brown-Twiss effect, photon bunching
and anti-bunching [25].

The success of Glauber’s theory in quantum optics has been immense. However, its
applicability is limited to measurements of photons. Another problem is that the field
splitting into positive and negative frequency components is non-local. The probability
density (1) assumes the Rotating Wave Approximation for the interaction of the field to
the detector [26,27]. This approximation misrepresents the retarded propagation of the
electromagnetic field. This means that the model may face problems with causality in
set-ups that involve propagation along long distances [28–30].

A very common class of models for QFT measurements are based on the notion
of Unruh-DeWitt detectors [31, 32]. These models first appeared in the study of the
Unruh effect, in order to demonstrate the effects of acceleration on the quantum field
vacuum. In an Unruh-DeWitt detector, the quantum field is coupled to a point-like
system that moves along a pre-determined spacetime trajectory xpτq, where τ is the
trajectory proper-time. An Unruh-DeWitt detector model essentially describes a 0+1
field theory interacting with a 3+1 field theory through an interaction that is defined by
and embedding of the 0+1 spacetime to the 3+1 spacetime (i.e., the detector’s trajec-
tory). Hence, the detector is kinematically pointlike: physical observables by necessity
are defined along the trajectory. However, the dynamics may well involve field couplings
that correspond to an extended system [33, 34].

While a first-principles derivation of the detector’s response for non-inertial motion
is still missing, Unruh-DeWitt detector models are the simplest models for describing
QFT measurements [35], and they have found several applications—for a sampling of
the latter, see Ref. [36]. Unruh-DeWitt detectors are limited in that detector degrees of
freedom are not described by a QFT. Non-pointlike Unruh-DeWitt detectors may lead to
non-causal signals in set-ups that involve multiple detectors. For different perspectives
about causality in Unruh-DeWitt detectors, see Refs. [37–39].

Measurement models have also been constructed in the context of algebraic QFT
[40–45], primarily in order to address issues of causality and locality. For example, Ref.
[43] considers a system and a probe / apparatus, both described by a QFT. The two field
systems start separated and interact within a bounded spacetime region. In Minkowski
spacetime, this interaction is described by an S matrix, and it leads to correlations
between observables on the system and records on the apparatus. Then, one defines
probabilities for the latter in terms of operators that are well defined on the probe’s
Hilbert space. The overall analysis is fully consistent with QFT. Furthermore, it also
works for curved spacetimes and it is not tied to the existence of an S-matrix, i.e., the
existence of asymptotic in-out regions. It is straightforwardly generalized to sequences of
measurements [46]. However, this approach has not yet been developed into a practical
tool capable of concrete physical predictions.
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1.3 Our approach

In this work, we describe QFT measurements using the Quantum Temporal Probabil-
ities method [47–49]. The original motivation of this method was to provide a general
framework for temporally extended quantum observables [50–52], hence, the name. The
key idea in QTP is to distinguish between the time parameter of Schrödinger’s equation
from the time variable associated to particle detection [53,54]. The latter is then treated
as a macroscopic quasi-classical variable associated to the detector degrees of freedom.
Here, we use the word ‘quasi-classical’ as in the decoherent histories approach to quan-
tum theory [55–59, 61]. A quasi-classical variable is a coarse-grained quantum variable
that satisfies appropriate decoherence conditions, and as a consequence its dynamics can
be approximated by classical evolution equations [59, 61]. Hence, the detector admits a
dual description: in microscopic scales it is described by quantum theory, but its macro-
scopic records are expressed in terms of classical spacetime coordinates. Furthermore,
in QTP the detector is also described in terms of quantum fields. Its interactions with
the detector respect causality, because the interaction Hamiltonian is a local functional
of quantum fields.

QTP provides room for sufficient freedom when dealing with the model for the appa-
ratus, when compared with other approaches. However, at the current practical appli-
cations of the framework, it converges with the results of other approaches. The current
emphasis is on the derivation of probabilities for measurements, while incorporating the
effects of the apparatus in a small number of phenomenological quantities that can be
related to experiments.

Glauber’s detection theory and Unruh-DeWitt detector models emerge from QTP as
limiting cases that characterize specific regimes: Glauber’s theory appears at the limit of
very small characteristic timescales for the detector, while Unruh-DeWitt models appear
at the limit of very short length-scales. In comparison to the algebraic QFT approaches
to measurements, QTP provides the same results to leading order in perturbation the-
ory, but allows for the definition of observables for the spacetime observables, and it is
embedded within a nuanced analysis of the quantum-classical transition in the detector
through the decoherent histories approach.

A key insight from QTP is that probabilities for measurements are defined in terms
on specific unequal-time correlation functions of the quantum field. This is particularly
important, as such correlation functions are a staple of QFT. Powerful methods have
been developed for their calculation and the analysis of their properties. The specific
correlation functions relevant to QTP are not the usual ones of S-matrix theory (in-out
formalism), but they appear in the Closed-Time-Path (CTP) (Schwinger-Keldysh or ‘in-
in’) formalism [62–66]. The CTP formalism improves over the in-out formalism, in that
it allows for causal equations of motion, and it has found many applications in early
universe cosmology [67, 68], nuclear-particle process [66, 69–71] and condensed matter
physics [72, 73].

The connection that we establish between the two formalisms allows us to translate
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between the concepts of quantum measurement theory and of quantum field theory. The
former is based on operational notions like Positive-Operator-Valued measures (POVMs)
and effects, while the latter employs functional methods like path integrals in order to
express its predictions in a manifestly covariant language. In this work, we show, for
example, how to express POVMs for particle detection in terms of path-integrals.

A key point of our analysis is the central role played by the unequal-time correla-
tion functions. In the QTP description, they contain all information about measured
probabilities. The detection probability for N events depends on an 2N -unequal time
correlation function. This has the following implication. Two-event measurements typ-
ically characterize bipartite systems, and as such the corresponding probabilities are
related to entanglement. Hence, field four-point functions contain all information that
pertains to bipartite entanglement. A relation at the level of non-relativistic fields was
shown in [49].

An analysis at the level of the correlation functions brings us closer to the main ideas
of non-equilibrium QFT, where irreversibility is implemented by the truncation of the
hierarchy of field correlation functions, and the slaving of higher correlation functions
to the two-point function. Again, there is a natural relation between QTP and non-
equilibrium formalisms that are based on CTP. We argue that the QTP probabilities
function as a registrar of information for the quantum field, as it keeps track of how
much information resides in which level of correlation functions, and how it flows from
one level to the other during dynamical evolution.

We believe that the scheme presented here has good potential to systemize quantum
information in QFT, and to identify the parts of this information that is relevant to the
field’s statistical, stochastic and thermodynamic behavior. Hence, this formalism could
provide a concrete method for defining quantum information in QFT via the correlation
hierarchy, as has been proposed in [74]. Such a definition would be very different from
definitions of information in standard QIT that is based on the properties of the single-
time quantum state.

1.4 Our results

Our results are the following.
First, we present a new derivation of the QTP formulas for the probabilities of n

measurement events. The derivation is intuitive and pedagogical, as it only requires
elementary perturbation theory. It reproduces the results of the more rigorous QTP
analysis to leading order with respect to the system-apparatus coupling. This suffices
for most applications. Then we analyze the mathematical structure of the probability
formulas. In particular, we show how they provide an explicit connection between the
concepts of quantum measurement theory and QFT concepts, namely, unequal-time field
correlation functions.

Second, we demonstrate the relation of QTP with the Closed-Time-Path formalism,
by deriving an explicit formula that relates the associated generating functionals. The
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Closed-Time-Path formalism has a natural path integral formulation, which allows us to
express the QTP probabilities in terms of path integrals. Conversely, QTP provides a
theory of observables appropriate to the in-in formalism.

Third, we provide some demonstrative applications of the formalism. We briefly
review the construction of time-of-arrival probabilities for relativistic particles. Then
we show how the commonly employed models of Glauber’s photodetection and Unruh-
DeWitt detectors appear as limiting cases of the QTP formalism. This implies, in
particular, that there exists regimes in which QTP provides different predictions from
Glauber’s theory, and these differences may be experimentally distinguishable.

Fourth, we explore the links between QTP and non-equilibrium QFT. For field
states with a large number of particles, QTP probabilities provide natural definitions
for Boltzmann-type observables. They also allow us to explore how information flows
between the different levels of the Schwinger-Dyson hierarchy of correlation functions.

This paper is structured as follows. In Sec. 2, we present the main ideas of the QTP
method, and we derive the probability formula for n-detection events. In Sec. 3, we
derive the connection with the CTP formalism, and also derive a path integral expression
for QTP probabilities. In Sec. 4, we present some applications of the formalism, and
in Sec. 5, we explore the links to non-equilibrium QFT. In Sec. 6, we summarize and
discuss our results. The Appendix A contains a conceptually more rigorous derivation
of the QTP probability formula.

2 Probabilities for QFT measurements

In this section, we present the QTP approach to quantum field measurements. First,
we explain in more detail the need for a QFT measurement theory. Then, we derive
the QTP probability formulas and we analyze their structure. The key feature of the
probability formula is that probability densities pertaining to n measurement events are
linear functionals of specific 2n unequal-time correlation functions.

2.1 The need for a QFT measurement theory

Most QFT predictions involve set-ups with a single state preparation and a single-
detection event, which can be described in terms of the S-matrix. For example, S-matrix
amplitudes determine scattering cross-sections; S-matrix poles determine the spectrum
of composite particles and decay rates. This gives the general impression that there is
no further need for an elaborate measurement theory.

However, this over-simplified view is deceptive. There are at least two cases where
the S-matrix analysis is insufficient. First, in quantum optics, we need joint detection
probabilities in order to describe phenomena like photon bunching and anti-bunching
[25]. A first-principles calculation of joint probabilities requires a non-trivial description
of quantum measurements. In non-relativistic physics, such a calculation involves the
use of the state-update rule, i.e., quantum state reduction. In QFT, a universal rule for
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reduction is missing, it is absent even from axiomatizations2. In practice, joint detection
probabilities relevant to experiments are constructed through photodetection models,
like Glauber’s, whose derivation is rather heuristic. However, planned experiments in
deep space [2, 3] that involve measurement of electromagnetic field correlations at large
separations will arguably require a first-principles analysis of joint probabilities in order
to take into account the relative motion of detectors and delayed propagation.

The second case where S matrix theory does not suffice is when the expectation
values of physical quantities at finite moments of time are called for, rather than just the
asymptotic amplitudes offered in the ‘in-out’ S-matrix theory. A notable example is the
construction of dynamical equations for the evolution of spacetime metric in the early
universe and in black holes from the solutions to the semiclassical Einstein equation [76,
77]; these equations require the evaluation of the expectation values of the stress-energy
and its fluctuations. Wherever causal time evolution is needed, rather than transitions
between asymptotic states, this ‘in-in’ formulation of QFT, as in the CTP formalism, is
indispensable. This is certainly true for the description of non-equilibrium processes such
as quantum transport in quantum many-body systems. Powerful functional techniques
have been developed to deal with such problems. Indeed, in this paper we demonstrate
a connection between those techniques and our account of QFT measurements.

A crucial challenge in incorporating quantum informational concepts in QFT is the
lack of a common mathematical language. QIT focuses on the Hilbert space aspects
of quantum theory, for example, the geometry of the space of quantum states, the
characterization of entanglement and the identification of physically permissible state
transformations. It relies crucially on the way quantum theory describes the extrac-
tion of information through measurements. In contrast, QFT is commonly described
through functional methods that lead to the evaluation of unequal-time field correlation
functions. The latter contain all information about the system, and they can be easily
manipulated to derive quantities like perturbative scattering amplitudes, expectations
of stress-energy tensors and single-particle Wigner functions.

The mathematical difference is not only technical, as it pertains to fundamental
notions like locality and causality. In QIT, these issues are usually expressed through
the Local Operations and Classical Communication (LOCC) paradigm [78]: The Hilbert
space of a quantum informational system is split up as a tensor product biHi, where Hi

is the Hilbert space of the i-th subsystem. A local operation on the i-th subsystem is a
set of completely positive maps Cpiqpaq on states of Hi, such that

ř

a C
piqpaq “ Î, where

a denotes measurement outcomes. Then, the causal structure of the system involves
the notion of classical communication. An operation Cpiqpaq on a subsystem i may
depend on the outcome b of an operation Dpjqpbq on a subsystem j, if the outcome can
be communicated to i through a classical channel prior to the operation Cpiqpaq. QIT
usually does not deal with real-time quantum signal propagation between disconnected

2Rules for reduction can be obtained a posteriori if a QFT measurement scheme provides probability
distributions for multiple measurements: see [48] for such definitions in QTP, [35] for the Unruh-DeWitt
detectors and [43, 75] in the algebraic QFT approach.
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subsystems.
In contrast, QFTs focus on spacetime propagation of information, as expressed in

the theory’s dynamics and spacetime symmetries. These properties are nicely captured
by the unequal-time correlation functions, which can be chosen to be manifestly space-
time covariant. Causality is implemented by the requirement that specific correlation
functions vanish if their arguments are spacelike separated3.

2.2 The Quantum Temporal Probabilities Approach: key points

The key features of the QTP approach to measurements on quantum fields are the
following. First, the apparatus is fully incorporated into the quantum description and it
is also treated via QFT. The interaction between the measured system and the apparatus
local and causal, in the sense that it is governed by an interaction Hamiltonian that is
a local functional of quantum fields.

The measurement apparatus is a macroscopic system that exhibits classical behavior.
We describe this behavior through the decoherent histories approach to emergent classi-
cality [56,59]. We assume that the pointer variable is a highly coarse-grained observable,
so that histories for measurement outcomes satisfy appropriate decoherence conditions.

QTP treats measurements events as localized in space and in time, as is the case for
all physical measurement outcomes. For example, consider a solid-state detector that is
elementary in the sense that can record only a single event. The detector has a fixed
location in a lab, and it records an event at a moment of time that is determined with
finite accuracy. In principle, both position and time can be random variables. When
directing a single particle towards an array of elementary detectors, both the specific
detector that records the particle (i.e., the locus of the record) and the time of recording
vary from one run of the experiments to the other. Hence, physical predictions are
expressed in terms of probability densities

P px1, q1; x2, q2, . . . , xn, qnq, (2)

for multiple detection events. In Eq. (2), xi stand for spacetime points, qi stand for any
other recorded observable and P is a probability density with respect to both xi and qi.

Since there is no self-adjoint operator for time, there are no ideal (i.e., projective)
measurements for time. It follows that none of the probabilities densities (2) corresponds
to an ideal measurement, not even ones that involve single-measurement event. The
probabilities (2) are defined through Positive Operator Valued Measures (POVMs).

3To be precise, causality is incorporated in the cluster decomposition property [79]: there
is specific hierarchy of correlation functions Gnpx1, x2, . . . , xnq, where n “ 0, 1, 2, . . . such that
Gn`mpx1, . . . , xn, x

1

1
, . . . , x1

m
q “ Gnpx1, x2, . . . , xnqGnpx1

1
, x1

2
, . . . , x1

m
q, if the cluster of events x1, . . . , xn

is spacelike separated from the cluster x1

1, . . . , x
1

m
.
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2.3 Detection probability for a single detector

Consider a QFT on Minkowski spacetimeM , with Heisenberg-picture fields φ̂rpxq defined
on a Hilbert space F that carries a unitary representation of the Poincaré group. The
index r runs over spacetime and internal indices.

We denote the Hilbert space associated to an apparatus by K. We assume that the
apparatus follows a world tube W “ R ˆ U in Minkowski spacetime, for some U Ă R

3.
We assume that the size of the apparatus is much larger than the scale of microscopic
dynamics. We will elaborate on the properties of the apparatus later.

We assume a field-apparatus coupling with support in a small spacetime region
around a point x. The finite spacetime extent of the interaction mimics the effect of
a detection record localized at x. Working in the interaction picture, we express the
coupling term as

V̂x “
ż

FxpyqĈapyq b Ĵapyq, (3)

where Ĉapxq is a composite operator on F that is local with respect to the field φ̂rpxq
and a runs over spacetime and internal indices. The current operators Ĵapxq are defined
on K. The switching functions Fxpyq are dimensionless. They vanish outside the inter-
action region and they depend on the motion of the apparatus. The spacetime volume
associated to a switching function is υ “

ş

dY F 2
x pyq.

The problem with the interaction term (3) is that it is not Poincaré covariant, be-
cause of the presence of the switching function. Indeed, physical interactions are not
switched on and off in measurements. The switching function originates from von Neu-
mann’s modeling of measurements [60], and its role is to localize the system-apparatus
interaction in spacetime. Since the switching function is a priori fixed, time cannot be an
random variable, in apparent contradiction to statements in Sec. 2.2. Indeed, the QTP
method, does not require a switching function, and it treats time explicitly as a random
variable. However, the resulting expressions for the probabilities are the same to leading
order in perturbation theory, modulo some assumptions that are explicitly stated in Sec.
2.4. Since the treatment with the switching functions employs more familiar techniques
and it is computationally easier, we chose to employ this for the construction of proba-
bilities in the main text. For completeness, we present the QTP derivation of the same
probability formula in the Appendix. The difference between the two derivations is not
be important in the context of the QIT applications considered here, but certainly it
is important for any discussion of the relativistic quantum measurement problem, and
related foundational issues.

The S-matrix associated to Eq. (3) is Ŝx “ T expr´i
ş

d4yFxpyqĈapyqb Ĵapyqs, where
T stands for time ordering. To leading order in the interaction,

Ŝx “ Î ´ iV̂x. (4)

Let the initial state of the system be |ψy P F and the initial state of the apparatus be
|Ωy. A particle record appears if the detector transitions from |Ωy to its complementary
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subspace K1. Furthermore, on K1, we measure a property of the particle through a pointer
observable q. The latter is described by a family of positive operators Π̂pqq, such that
ř

q Π̂pqq “ Î ´ |ΩyxΩ|. The pointer observable is typically very coarse, and we assume
that it is stationary under spacetime translations by the self-dynamics of the detector,
so that the record is preserved after the end of the measurement.

Then, we evaluate the probability

Probpx, qq “ xψ,Ω|Ŝ:
xrÎ b Π̂pqqsŜx|ψ,Ωy (5)

that the detector is excited and records a value q to leading order in perturbation theory

Probpx, qq “
ż

d4y1d
4y2Fxpy1qFxpy2qGabpy1, y2qxΩ|Ĵapy1qΠ̂pqqĴ bpy2q|Ωy, (6)

where

Gabpx, x1q “ xψ|ĈapxqĈbpx1q|ψy, (7)

is a correlation function for the composite operator.
The probability Probpx, qq of Eq. (6) is not a density with respect to x, because x

appears as a parameter of the switching function. We define an unnormalized probability
density W px, qq with respect to x by dividing Probpx, qq with the effective spacetime
volume υ,

W px, qq “ υ´1Probpx, qq. (8)

To further proceed in our analysis, we have to make specific assumptions about the
detector. First, we assume that the detector carries a representation of the spacetime
translation group with generators p̂µ. At a fundamental level, the detector Hilbert space
also carries a representation of the Poincaré group. However, the state |Ωy is not the
Poincaré invariant vacuum4; it defines a preferred reference system at which its center of
momentum has zero three-momentum. The fact that the apparatus cannot be described
by the vacuum breaks the covariance of the measurement model.

We choose a reference point x0 in the detector’s world-tube, and we write

Ĵapyq “ e´ip̂¨py´x0qĴapx0qeip̂¨py´x0q. (9)

It is convenient to take |Ωy to be approximately translation invariant. Intuitively, this
corresponds to the idea that the apparatus is prepared in an initial state that is homo-
geneous at the length scales that correspond to position sampling and approximately

4An actual detector involves a macroscopically large number of fermions—to be precise, it is described
by the subspace of the fermionic fields for leptons and baryons that corresponds to macroscopically large,
constant, values of the leptonic and baryonic quantum numbers.
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static at the time scales that correspond to time sampling5. In the present context,
approximate translation invariance is the requirement that

ż

d4xFxpx1qĴapx1q|Ωy »
ż

d4xFxpx1qe´ip̂¨px1´x0qĴapx0q|Ωy. (10)

With this assumption, we can write xΩ|Ĵapy1qΠ̂pqqĴ bpy2q|Ωy “ Rabpy2 ´ y1, qq, where

Rabpx, qq :“ xΩ|Ĵapx0q
a

Π̂pqqe´ip̂¨x
a

Π̂pqqĴ bpx0q|Ωy (11)

We will refer to Rabpy, qq as the detector kernel.
The simplest choice for the switching functions Fx are Gaussians,

Fxpyq “ expr´1

2
Dpx, yqs, (12)

where D a Euclidean distance function on Minkowski spacetime. Such functions are
defined in terms of a dimensionless Euclidean metric g

pEq
µν on Minkowski spacetime. A

simple and physically relevant metric is determined by the timelike vector field uµ normal
along the world-tube, by

gµν “ 1

δ2t
uµuν ` 1

δ2x
puµuν ` ηµνq. (13)

where δt is the temporal accuracy and δx is the special accuracy of the detector. As these
quantities correspond to the sampling of the detection event, they are both macroscopic
scales.

Gaussian switching functions satisfy the identity

fpxqfpx1q “ f 2

ˆ

x ` x1

2

˙

a

fpx´ x1q. (14)

The spacetime volume υ of the interaction region is υ “ π2δtδ
3
x. We note that the

function σpxq :“ 1
υ
f 2pxq is a normalized probability density on M . Then, we write

W px, qq “
ż

d4x1σpx ´ x1qP px1, qq, (15)

where

P px, qq “
ż

d4y
a

fpyqRabpy, qqGabpx´ 1

2
y, x` 1

2
yq, (16)

5In non-relativistic von Neumann measurements, one often takes the initial state of the detector to
be the ground state of the detector Hamiltonian, so it is exactly static. If the initial state is only an
approximate eigenstate, its time evolution is usually viewed as part of the measurement’s noise.
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The probability distributionW px, qq is the convolution of P px, qq with the probability
density σpxq that incorporates the accuracy of our measurements. If P px, qq is non-
negative and the scale of variation in x is much larger than both δt and δx, we can treat
P px, qq as a finer-grained version of W px, qq and employ this as our probability density
for detection.

The kernel Rabpx, qq is typically characterized by some correlation length-scale ℓ and
some correlation time-scale τ , such that Rabpx, qq » 0 if |tpξq| " τ or |xpξq| " ℓ. Both
scales ℓ and τ are microscopic and characterize the constituents of the apparatus and
their dynamics. If ℓ ! δx and τ ! δt, then R

abpx, qq
?
fpxq » Rabpx, qq and we obtain an

expression for the probability density P px, qq that is sampling-independent

P px, qq “
ż

d4yRabpy, qqGabpx´ 1

2
y, x` 1

2
yq. (17)

The probability densities (17) are not normalized to unity. In general, the total prob-
ability of detection Pdet “ ř

q

ş

W
d4xP pq, xq must be a small number, for perturbation

theory to be applicable. There is always a probability P pHq “ 1 ´ Pdet of no detection.
We normalize probabilities by dividing P px, qq{Pdet, i.e., by conditioning the probability
densities P pq, xq with respect to the existence of a detection record.

2.4 Remarks

1. The definition (8) of a spacetime density with respect to time is fully justified in
classical probability theory, but it is not rigorous for quantum probabilities. There rea-
son is that it involves a combination of probabilities defined with respect to different
experimental set-ups, i.e., different switching functions for the Hamiltonians. Nonethe-
less, Eq. (8) can be derived as a genuine probability density in the context of the QTP
method [49, 80], to leading order in the field-apparatus coupling. This derivation is
reproduced in the Appendix.

2. Probabilities are defined here using the Born rule for the pointer variable. Note that,
strictly speaking, the probabilities in von Neumann measurements are defined at a time
after the function has been switched off, and not at the time when the switching is on.
The derivation in the appendix employs a probability assignment for histories which
incorporates both the Born rule and the state reduction rule.

3. In the proper QTP derivation of detection probabilities, the interaction is present
at all times, as the total description must be time-translation invariant. The smearing
functions Fxpyq are not interpreted in terms of a switching-on of the interaction, but
they describe the sampling of the spacetime point. Hence, the spacetime volume υ̂ is a
measure of coarse-graining, i.e., of the inaccuracy in the determination of the spacetime
point. This point is important for a proper derivation, because probabilities can only be
defined for histories that satisfy a decoherence condition, for which coarse-graining is a
prerequisite. In principle, a preferred value of υ that corresponds to the coarse-graining
scale at which probabilities are well-defined is determined from first-principles—see [47]
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for explicit calculations in simple models. This means that not all sampling functions
Fxpyq are acceptable: their support cannot be made arbitrarily small. Such constraints
cannot be seen in the derivation that we presented here.

4. QTP leads to different predictions beyond the lowest order in the system-apparatus
interaction. However, in many set-ups only the lowest order terms can be said to provide
a meaningful signal, i.e., a correlation between observables in the measured field and
pointer variables in the apparatus. Higher order interaction terms often degrade such
correlations, and for this reason they can be conceptualized as noise. This is the case,
for example, in Glauber’s photodetection theory.

5. In general, the field-apparatus couplings are fixed by the standard model of particle
physics. Even in idealized models for detectors, we have to specify the physical process
through which detection takes place. This information is encoded in the composite oper-
ators Ĉpxq. Consider, for example, the case of a QFT with a single scalar field φ̂pxq. The
choice Ĉpxq “ φ̂pxq corresponds to detection of particles through absorption. The choice
Ĉpxq “: φ̂2pxq : corresponds to particle detection through scattering, through terms that
involve one creation and one annihilation operator. This observation generalizes to fields
of arbitrary spin.

2.5 Detection probability for multiple detectors

We proceed to the derivation of a probability formula for the case that the field interacts
with n detectors. Each detector corresponds to a Hilbert space Ki, i “ 1, 2, . . . , n. The
total Hilbert space of the system is F b K1 b K2 b . . . b Kn. The coupling operator of
the i-th detector is

V̂ piq
x “

ż

d4yFxpyqĈpiq
a pyq b Î b . . . Ĵa

piqpyq b . . .b Î , (18)

where Ĵa
piqpyq is a current operator for the i-th detector and Ĉ

piq
a is the associated com-

posite operator.
We denote the S-matrix for the i-th detector by Ŝ

piq
x . Again, to leading order in the

interaction Ŝ
piq
x “ Î ´ iV̂

piq
x . We also denote the initial state of the i-th detector by |Ωiy,

and the measurement operators as Π̂piqpqiq.
The key point is that the S matrix for the total interaction of the field is defined

by time ordering with respect to the spacetime points x1, x2, . . . , xn associated to the
detectors,

Ŝx1,x2,...,xn
“ T

”

Ŝp1q
x1
Ŝp2q
x2
. . . Ŝpnq

xn

ı

; (19)

here, T stands for time ordering.
To leading order in perturbation theory, the probability density for n measurement

14



events is

Wnpx1, q1; x2, q2; . . . ; xn, qnq “
ż

d4x1
1 . . . d

4x1
nσ

p1qpx1 ´ x1
1q . . . σpnqpxn ´ x1

nq

P px1
1, q1; x

1
2, q2; . . . ; x

1
n, qnq (20)

where

Pnpx1, q1; x2, q2; . . . ; xn, qnq “
ż

d4y1 . . . d
4yn

a

f p1qpy1q . . .
a

f pnqpynqRa1b1
p1q py1, q1q . . .

ˆ . . . Ranbn
pnq pyn, qnqGa1...an,b1...bnpx1 ´ 1

2
y1, . . . , xn ´ 1

2
yn; x1 ` 1

2
y1, . . . , xn ´ 1

2
ynq. (21)

Here Rpiqpx, qq is the measurement kernel for the i-th detector. The field correlation
function Ga1...an,b1...bnpx1, . . . , xn; x1

1, . . . , x
1
nq is given by

Ga1...an,b1...bnpx1, . . . , xn; x1
1, . . . , x

1
nq “ xψ|T ˚rĈp1q

b1
px1

1q . . . Ĉpnq
bn

px1
nqs

ˆT rĈpnq
an

pxnq . . . Ĉp1q
a1

px1qs|ψy (22)

where T ˚ stands for reverse time ordering.
Again we note that in the appropriate regime, the probability becomes independent

of the switching functions, and equal to

Pnpx1, q1; x2, q2; . . . ; xn, qnq “
ż

d4y1 . . . d
4ynR

a1b1
p1q py1, q1q . . . Ran1bn

pnq pyn, qnq

ˆGa1...an,b1...bnpx1 ´ 1

2
y1, . . . , xn ´ 1

2
yn; x1 ` 1

2
y1, . . . , xn ` 1

2
ynq (23)

2.6 The detector kernel

The contribution of each detector to the probability is determined by the detector kernel
Rabpx, qq, defined by Eq. (11). The detector kernel coincides with the matrix elements
of a unitary operator,

Rabpx, qq “ xa, q|eip̂¨px´x0q|b, qy, (24)

where |a, qy “
a

Π̂pqqĴapx0q|Ωy. If Π̂ is a projector, then vectors |a, qy with different
values of q are orthogonal: xa, q|b, q1y “ 0 for q ‰ q1.

The Fourier transform of the detector kernel

R̃abpξ, qq “
ż

d4xe´iξ¨xRabpx, qq, (25)

is given by

R̃abpξ, qq “ p2πq4eiξ¨x0xa, q|Êξ|b, qy, (26)
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where Êξ “ δ4pp̂ ´ ξq is the projector onto the subspace with four-momentum ξµ,

xa, q|Êξ|a, qy ě 0. The momentum four vector associated to the detector is timelike
and the associated energy p0 is positive. This means that R̃abpp, qq “ 0 for spacelike p,
or if p0 ă 0.

For a scalar composite operator Ĉpxq, we can drop the indices a, b, . . . from the
detector kernel and write simply Rpx, qq. If we record no other observable, we simply
write Rpxq :“ xω|eip̂¨px´x0q|ωy, where |ωy “ Ĵapx0q|Ωy. Hence, the detector kernel is
determined by the energy-momentum distribution of the ‘threshold’ state ω.

2.7 Index notation for probabilities

It is convenient to express the probability densities (23) using an abstract notation. We
use small Greek indices α, β, γ . . . for the pairs px, aq where x is a spacetime point and a
the internal index for the composite operators Ĉa. All indices in a time-ordered product
are upper, and all indices in an anti-time-ordered product are lower. Hence, we write
the correlation functions (22) as

Gα1α2...αn

β1β2...βn

We denote by z the pairs px, qq, where x is a spacetime point and q any other recorded
observable or the event H of no detection. If we denote by Γ the set of possible values
for q, then z takes values on the set Z :“ M ˆ Γ Y tHu. We will write the kernel

σrx ´ 1

2
py ` y1qs

a

fpy ´ y1qRabpy ´ y1, qq

as Rβ
αpzq where α stands for py, aq, β for py1, bq and z for px, qq. We will use the same

symbol for the approximate expression δrx´ 1
2
py`y1qsRabpy´y1, qq. We use the Einstein

summation convention over Greek indices, to denote sum over the discrete index a and
spacetime integral.

Using the index notation, we write the probability formula (23) as

Pnpz1, z2, . . . , znq “ Gα1α2...αn

β1β2...βn

p1qRβ1

α1
pz1q p2qRβ2

α2
pz2q . . . pnqRβn

αn
pznq. (27)

There are two ways of viewing Eq. (27). On one hand, it corresponds to a POVM defined
on the Hilbert space F of the quantum field, with alternatives in the set Zn. On the
other hand, we can consider a vector space S of smearing functions fa to the composite
operators Ĉapxq, so that Ĉpfq “

ş

d4xĈapxqfapxq. The detector kernel is an element of
SbS˚, where S˚ stands for the dual vector space of S. Then, Eq. (27) defines a positive
linear functional on pS b S˚qn that corresponds to the correlation functions Gα1α2...αn

β1β2...βn
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3 Relation of the QTP approach to the Closed-Time-

Path formalism

The probability density (21) for n measurement events is a linear functional of the
2n-point unequal-time correlation function (22). This correlation function has n time-
ordered arguments and n anti-time-ordered arguments. It does not appear in the usual
S-matrix description of QFT; the correlation functions in the S-matrix description in-
volve only time-ordered arguments. Rather, the correlation function (22) appears in the
Schwinger-Keldysh or Closed-Time-Path (CTP) formalism of QFT.

In what follows, we will review the motivation and function of the CTP formalism,
and then we will show how it relates to the QTP probability assignment.

3.1 S-matrix vs CTP correlation functions

By the Dyson formula, the S-matrix for any QFT involves Feynman (i.e., time-ordered)
correlation functions of local composite operators Ĉpxq of the fields. We can gener-
ate the time-ordered correlation functions of a composite operator from the variational
derivatives of a generating functional ZrJs “ x0|ÛrJs|0y, where

Û rJs “ T exp

„

i

ż

d4XJapXqĈapXq


. (28)

The generating functional admits the path integral representation

ZrJs “
ż

Dφ eitSrΦs`
ş

d4xJpxqCpxqu, (29)

where Srφs is the classical action functional and Cpxq is the classical counterpart of the
composite operator Ĉpxq.

It is convenient to work with the generating functional W rJs “ ´i lnZrJs. In per-
turbation theory, the coefficients of the series expansion of W with respect to J are the
connected Feynman graphs. In particular, we may introduce the ‘background’ or ‘mean’
field

Capxq “ δW rJs
δJapxq (30)

The Legendre transformation of W provides a more efficient representation of the cor-
relation functions

ΓrCs “ W rJs ´
ż

d4x JapxqCapxq (31)

since the series expansion of Γ involves only one-particle irreducible Feynman graphs.
Despite the formal similarity, the inverse of (30),

δΓ

δCapxq “ ´Japxq. (32)

17



is not an equation of motion for the mean field, because it is complex-valued even for
hermitian composite operators. This is due to the fact that the ‘mean’ field is not a
true expectation value, but rather a matrix element of the composite operator between
in and out states [81].

To define a proper mean-field equation of motion we adopt the Closed-Time-Path
formalism of Schwinger [62] and Keldysh [63]. To this end, we couple the field to two
different external sources Japxq and J̄apxq, and we define the CTP generating functional

ZCTP rJ, J̄s “ xψ0|Û :rJ̄sÛrJs|ψ0y, (33)

By definition, ZrJ, Js “ 1 and Z˚rJ, J̄s “ ZrJ̄ , Js. The state |ψ0y is defined in the
distant past, i.e., prior to any time at which Jpxq has support—it is an in state. Note
that a large class of initial states, relevant to particle experiments, can be reconstructed
by the action of source terms of the form (28). Hence, for a large class of problems,
the generating function ZCTP for the QFT vacuum |0y contains all physically relevant
information.

The CTP generating functional describes correlation functions with n time-ordered
and m anti-time-ordered entries,

G
n,m
a1...am,b1...bn

px1, . . . , xn; x1
1, . . . , x

1
nq “ xψ0|T ˚rĈp1q

b1
px1

1q . . . Ĉpnq
bm

px1
mqs

ˆT rĈpiq
an

pxnq . . . Ĉp1q
a1

px1qs|ψ0y (34)

as functional derivatives of ZCTP rJ, J̄s,

G
n,m
a1...am,b1...bn

px1, . . . , xn; x1
1, . . . , x

1
nq “ in´m

ˆ Bn`mZCTP

δJa
1 px1q . . . δJanpxnqδJ̄ b

1px1
1q . . . δJ̄ bmpx1

nq

˙

J“J̄“0

.

For a vacuum initial state, the generating functional has a path integral expression

ZCTP rJ, J̄s “
ż

Dφ Dφ̄ eitSrφs´Srφ̄s`
ş

d4x rJapxqCapxq´J̄pxqC̄apxqsu, (35)

where C̄ is defined a functional of φ̄. Thus we formally double the degrees of freedom
and we integrate over pairs of histories pφ, φ̄q that vanish in the asymptotic past and
future.

We can actually define two background fields Capxq and C̄apxq by taking variations
with respect to both sources,

Capxq “ δW

δJapxq C̄apxq “ ´ δW

δJ̄apxq (36)

where W rJ, J̄s “ ´i lnZCTP rJ, J̄s. The closed time-path effective action is defined as
the double Legendre transform of W

ΓrC, C̄s “ W rJ, J̄s ´
ż

d4xJapxqCapxq `
ż

d4xJ̄apxqC̄apxq. (37)
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The equations of motion now form a coupled system

δΓ

δCapxq “ Japxq δΓ

δC̄apxq “ J̄apxq (38)

These equations coincide when J “ J 1 is the physical external source, and their solution
C “ C̄ is the physical mean field. Of course, both background fields are identified only
after the computation of the variational derivative [67]. Unlike the in-out formulation,
the equations of motion (38) are always real and causal. The cases where the in-out
effective action becomes complex correspond to dissipative evolution for the mean field.
The doubling of degrees of freedom is essential for the description of dissipation, because
no action functional of a single mean field alone could possibly lead to the right equations
of motion.

The CTP effective action formalism can be used to treat fully non-equilibrium dy-
namics of open quantum systems, going far beyond the traditional linear response theory
which are confined to near-equilibrium conditions. In this context, we are often interested
in calculating mean-field expectation values xĈapxqy that may describe the evolution of
classicalized macroscopic field observables.

The CTP effective action satisfies ΓrC,Cs “ 0 and ΓrC, C̄s “ ´ΓrC̄, Cs˚. Therefore,
if we separate the CTP effective action in its real and imaginary parts, the former is an
odd function of Ca and C̄a and the latter is even. Let C

p0q
a “ C̄

p0q
a be an extremum of

the CTP effective action, which corresponds to a solution of the mean field equations
of motion with zero sources. We take linearized perturbations ∆Ca “ Ca ´ C

p0q
a and

∆C̄a “ C̄a ´ C
p0q
a . Then, the CTP effective action must take the form

Γr∆C,∆C̄s “ 1

2

ż

ddxddx1t´r∆CapxqspxqDabpx, x1qt∆Cbupx1q

`ir∆CaspxqNabpx, x1qr∆Cbspx1qu
(39)

where r∆Cas “ p∆Ca´∆C̄aq, t∆Cau “ p∆Ca`∆C̄aq, and Dab and Nab are two non-local
kernels. Superficially, Nab appears redundant, because it does appear in the mean-field
equations of motion. The latter take the simple form

ż

ddx1
D

abpx, x1q∆Cbpx1q “ Japxq, (40)

where Japxq is an external source. The kernel Nab contains information about the
departure of the actual evolution from the mean-field equation (40). This deviation
reflects the fact that the mean field is coupled to a stochastic external source [82–85],
rather than a deterministic one like Japxq in Eq. (40). This means that the effective
classical equations of motion are of the form

ż

ddx1
D

abpx, x1q∆Cbpx1q “ Japxq ` ξapxq, (41)
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where ξapxq has vanishing expectation—thus justifying Eq. (40)—but non-zero correla-
tor xξpxqaξbpx1qy “ Nabpx, x1q. This is why N is referred to as a the noise kernel. Hence,
CTP allows us to explore how higher-order correlation functions are manifested as noise
in the mean-field (classical) equations of motion.

3.2 Measurements and the CTP generating functional

The relation between the QTP description of measurements and the CTP formalism is
more transparent, if we use the index notation of Sec. 2.7. For consistency, the sources
J have a lower Greek index, and the sources J̄ have an upper Greek index. Then, we
write the CTP generating functional as

ZCTP rJ, J̄s “
8
ÿ

n,m“0

im´n

n!m!
Gα1...αn

β1...βm
Jα1

. . . Jαn
J̄β1 . . . J̄βm , (42)

or, conversely,

Gα1...αn

β1...βm
“ in´m

ˆ Bn`mZCTP rJ, J̄s
BJα1

. . . BJαn
BJ̄β1 . . . BJ̄βn

˙

J“J̄`0

. (43)

The probability densities (27) involve balanced correlation functions, i.e., correlation
functions with an equal number of upper and lower indices. We can construct a gen-
erating functional that contains only such functions. The key observation is that such
correlations contribute to the sum only through products of the form JαJ̄

β . Hence, the
natural source for a diagonal generating functional Zd

CTP that only involves balanced
correlation functions is a ‘tensor’ Lβ

α. We define

Zd
CTP rLs “

8
ÿ

n“0

1

n!
Gα1...αn

β1...βm
Lβ1

α1
. . . LβN

αN
. (44)

Suppose now that we consider only measurements of a single type, i.e., all detector
kernels Rβ

αpzq are identical. Then, we can define a moment-generating functional for all
probability densities (27), in terms of sources jpzq,

ZQTP rjs “
8
ÿ

n“0

ÿ

z1,z2,...,zn

1

n!
Pnpz1, z2, . . . , znqjpz1q . . . jpznq. (45)

It is straightforward to show that

ZQTP rjs “ Zd
CTP rR ¨ js, (46)

where pR ¨ jqBA “ ř

z R
B
ApzqJpzq.

Eq. (46) is a fundamental relation for quantum measurements in QFT, as it relates
the moment generating functional for a hierarchy of measured probability densities to
the generating functional of unequal-time correlation functions
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It is straightforward to write a path integral expression for Zd
CTP rLs for a vacuum

initial state

Zd
CTP rLs “

ż

Dφ Dφ̄ eiSrφs´iSrφ̄s`
ş

d4xd4x1CapxqC̄bpx1qLabpx,x1q. (47)

To obtain a simple path integral expression for a broader class of states, we recall that
many field initial states can be obtained from the action of an external source ζpxq
on the vacuum, i.e., they are of the form |ψ0y “ Û rζs|0y, where now we write Ûrζs “
T exp

”

i
ş

d4XζkpXqÂkpXq
ı

in terms of composite operators Âkpxq that differ, in general

from Ĉapxq.
To see this, consider the case of a free scalar field φ̂pxq. Choosing Âpxq “ φ̂pxq, Û rζs

is a Weyl operator, and |ψ0y is a field coherent state. For single-event measurements, and
for any state with a fixed number N of particles, the probability density (17) depends only
on the one-particle reduced density matrix ρ1pk,k1q “ N´1xψ0|â:

k
âk1|ψ0y, where âk and â:

k

are the creation and annihilation operators of the field. It is straightforward to show that
one can reproduce any pure ρ1 with an appropriate choice of ζpxq. For Âpxq “: φ̂pxq2 :,
Û rζs is a product of a Bogoliubov transformation with a Weyl operator, and, hence,
|ψ0y is a squeezed state. We can reproduce a large class of two-particle reduced density
matrices ρ2pk1,k2;k

1
1,k

1
2q “ N´2xψ0|â:

k1
â:
k2
âk1

2
âk1

1
|ψ0y, including entangled ones, with

appropriate choices of ζ .
Hence, for a quantum state that is obtained from an external source ζk, we write the

path integral expression

Zd
CTP rf, Ls “

ż

Dφ Dφ̄ eiSrφs´iSrφ̄s`i
ş

d4x ζkpxqrAkpxq´Ākpxqs`
ş

d4xd4x1CapxqC̄bpx1qLabpx,x1q, (48)

where we must assume that the spacetime support of the kernel Lab is later than the
support of ζ (state preparation is prior to measurement). By Eq. (46)

ZQTP rf, js “
ż

Dφ Dφ̄ eiSrφs´iSrφ̄s`i
ş

d4x ζkpxqrAkpxq´Ākpxqs

ˆe
ř

z

ş

d4xd4x1CapxqC̄bpx1qRabpx,x1;zqjpzq (49)

The probability densities for n measurement events are obtained from functional varia-
tion of ZQTP rζ, js with respect to j at j “ 0 For example, the single-event probability

density P̂1px, zq of Eq. (17) is given by the path integral

P1px, qq “
ż

Dφ Dφ̄

ˆ
ż

d4yCapx ` 1

2
yqC̄bpx´ 1

2
yqKabpy, qq

˙

ˆeiSrφs´iSrφ̄s`i
ş

d4x ζkpxqrAkpxq´Ākpxqs.

Expressions such as the above provide an explicit link between concepts of quantum
measurement theory like POVMs and the practical and highly successful functional lan-
guage of QFT. We believe that this link is essential for a local and covariant definition
of quantum informational notions in QFT.
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4 Applications

Next, we present three immediate applications of the QTP formalism. First, we review
how the QTP formalism leads to the construction of time of arrival probabilities for
relativistic particles. Second, we derive Unruh-DeWitt detectors from the QTP proba-
bility assignment at a particular limit. Third, we identify the regime in which Glauber’s
photodetection theory applies.

4.1 Time-of-arrival probabilities

The first application of the QTP formalism is the construction of probabilities for the
time-of-arrival. The simplest time-of-arrival measurement involves a particle prepared
on an initial state |ψ0y that is localized around x “ 0 and has positive mean momentum.
The issue is to construct the probability P pL, tqdt that the particle is detected at x “ L

at some moment between t and t ` δt. The problem is that no unique time-of-arrival
probability distribution exists [86, 87]. The absence of a self-adjoint time operator [88]
means that we cannot use Born’s rule for this task.

A time-of-arrival probability distribution can be constructed from Eq. (17), in ab-
sence of any additional observable q. The simplest case, corresponding to a free scalar
field φ̂pxq of mass m, was analysed in Ref. [49]. For a scalar composite operator ĈpXq,
we obtain a probability density for detection

P pxq “
ż

d4ξ RpξqGpx´ 1

2
ξ, x` 1

2
ξq. (50)

In a time-of-arrival measurement, a detector is placed at a macroscopic distance L from
the particle source. If L is much larger than the size of the detector, only particles with
momenta along the source-detector axis are recorded. Hence, the problem is reduced
to two spacetime dimensions. Hence, we express the spacetime coordinate x “ pt, Lq.
Then, Eq. (50) becomes

P pt, Lq “
ż

dpdp1

2π

ρpp, p1q
2
?
ǫpǫp1

R̃

ˆ

p ` p1

2
,
ǫp ` ǫp1

2

˙

eipp´p1qL´ipǫp´ǫp1 qt, (51)

where ǫp “
a

p2 ` m2, and R̃pE, pq is the Fourier transform of Rpxq “ Rpt, Lq.
We normalize Eq. (51) by treating L as a parameter and t as a random variable.

The procedure is described in Ref. [49]. The end result is a probability distribution

P pt, Lq “
ż

dpdp1

2π
ρ̃pp, p1q?

vpvp1Spp, p1qeipp´p1qL´ipǫp´ǫp1 qt, (52)

where vp “ p{ǫp is the particle velocity. Spp, p1q are the matrix elements xp|Ŝ|p1y of the

localization operator Ŝ, defined by

xp|Ŝ|p1y :“
R̃

´

p`p1

2
,
ǫp`ǫp1

2

¯

b

R̃pp, ǫpqR̃pp1, ǫp1q
. (53)
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By definition, xp|Ŝ|p̂1y ě 0 and Spp, pq “ 1. Its name originates from the fact that Ŝ
describes the localization of an elementary measurement event.

For a pure state initial state |ψy, Eq. (51) becomes

P pt, Lq “ xψ|Û :pt, Lq
a

|v̂|Ŝ
a

|v̂|Ûpt, Lq|ψy, (54)

where Ûpt, Lq is the spacetime-translation operator Ûpt, Lq “ eip̂L´iĤt and v̂ “ p̂Ĥ´1

is the velocity operator. Eq. (54) defines a positive probability distribution if Ŝ is a
positive operator, which is always the case if ln R̃pp, ǫpq is a convex function of p. Then,
the Cauchy-Schwarz inequality applies,

xp|Ŝ|p1y ď
b

xp|Ŝ|pyxp1|Ŝ|p1y “ 1. (55)

When Eq. (55) is saturated, i.e., xp|Ŝ|p1y “ 1, we have maximum localization. This
means that Ŝ “ δpx̂q, where x̂ “ i B

Bp
. The corresponding probability density (54) was

first identified by León [89], in terms of the eigenvectors of a non-self-adjoint time-of-
arrival operator. It generalizes the non-relativistic time-of-arrival probability distribution
of Kijowski [90].

4.2 The limit of a pointlike detector

In a pointlike detector, the detector’s world-tube shrinks to a single timelike curve xµ0 pτq,
parameterized by its proper time τ . We implement this limit, by expressing the smearing
function as

Fxpyq “
ż

dτfpτ ´ sqδ4ry ´ x0pτqs, (56)

where fpτq is a smearing function peaked around 0, and s is defined by the condition
x0psq “ x.

We choose a Gaussian switching function fpsq “ exp
”

´ s2

2δ2t

ı

. Then, we obtain a prob-

ability density for detection W pq, τq “
ş

dsσpτ ´ sqP pq, sq, where σpsq “ p?
πδtq´1f 2psq,

and

P pq, τq “
ż

ds
a

fpsqGabrx0pτ ´ 1

2
sq, x0pτ ` 1

2
sqs

xΩ|Ĵarx0pτ ´ 1

2
sqsΠpqqĴ brx0pτ ` 1

2
sqs|Ωy. (57)

The Unruh-DeWitt detection models [31,32] are a special case of pointlike detectors, in
which

Ĵarx0pτqs “ eiĥτ Ĵarx0p0qse´iĥτ , (58)
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in terms of a Hamiltonian ĥ that is defined with respect to the rest frame of the detec-
tor. Such Hamiltonians are well defined if the four-velocity 9x

µ
0 pτq is a Killing vector of

Minkowski spacetime, because then time evolution with respect to τ corresponds to the
time translation of a Lorentzian time coordinate. It is not obvious that such a Hamilto-
nian exists for non-inertial trajectories. In a general QFT, Hamiltonians that generate
time translations along non inertial time coordinates do not exist [91, 92]. However, it
may be the case that they can be defined as appropriate limits when the spatial size of
the system goes to zero, the vanishing of the system’s size canceling the ultraviolet diver-
gences that characterize such Hamiltonians. To the best of our knowledge such an anal-
ysis has not been carried out. In this sense, the defining assumption for Unruh-DeWitt
detectors—for non-inertial trajectories—remains unjustified from first principles.

Assuming the Unruh-DeWitt condition (58), and taking |Ωy as the lowest eigenstate
of ĥ, we find

P pq, τq “
ż

ds
a

fpsqGabrx0pτ ´ 1

2
sq, x0pτ ` 1

2
sqsxΩ|µ̂aΠpqqeiĥsµ̂b|Ωy, (59)

where we wrote µ̂a “ Ĵarx0p0qs. If we identify q with the energy ǫ in the rest frame of
the detector, we find that

P pǫ, τq “
ż

ds
a

fpsqeiǫsGabrx0pτ ´ 1

2
sq, x0pτ ` 1

2
sqsxΩ|µ̂a|ǫyxǫ|µ̂b|Ωy. (60)

For a scalar coupling operator, where we drop the indices a, b and so on, and for energies
such that ǫδt ąą 1, we write

P pǫ, τq “ |xΩ|µ̂|ǫy|2
ż

dseiǫsGabrx0pτ ´ 1

2
sq, x0pτ ` 1

2
sqs, (61)

i.e., we obtain the standard formula for the response of the Unruh-DeWitt detector.
Hence, the probabilities of the Unruh-DeWitt detectors for inertial path can be ob-

tained from the QTP probability formula—that is derived from full QFT—at the limit
where the world-tube of the detector shrinks to a single timelike curve.

4.3 Derivation of Glauber’s theory as a limit

Consider a detector in inertial motion, i.e., the timelike normal of its world-tube is a time-
translation vector field in Minkowski spacetime. For simplicity, we consider a quantum
scalar field φ̂pxq, with a composite operators Ĉpxq “ φ̂pxq. We consider particles with
m “ 0, i.e., scalar photons.

A coherent state |zy of the scalar field is defined as an eigenvector of the annihilation
operator

âk|zy “ zpkq|zy, (62)
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where zpkq is a square-integrable complex-valued function; here k “ pk, ωkq is an on-shell
four-vector.

It is convenient to express the initial state in the P representation

ρ̂ “
ż

DzfP pzq|zyxz|, (63)

where the functional fP pzq is the P -symbol of quantum state ρ̂ [93]. The functional
integration in Eq. (63) is defined in terms of the Gaussian measure associated to the
Bargmann representation of the quantum field [94].

For simplicity, we assume that no magnitude q is recorded. The probability density
Eq. (17) is expressed as

P pxq “
ż

DzfP pzqPzpxq, (64)

where Pzpxq is the probability density Eq. (17) evaluated for an initial coherent state.
It is straightforward to show that Pz is a sum of three contributions

Pzpxq “ P p0q
z pxq ` P p1q

z pXq ` P p2q
z pxq, (65)

where

P p0q
z pxq “

ż

d3k

p2πq3
R̃pkq
2ωk

,

P p1q
z pxq “

ż

d3k

p2πq3
?
2ωk

d3k1

p2πq3
a

2ω1
k

zpkqz˚pk1qeipk´k1q¨xR̃

ˆ

k ` k1

2

˙

,

P p2q
z pxq “ 2Re

ż

d3k

p2πq3
?
2ωk

d3k1

p2πq3
a

2ω1
k

zpkqzpk1qeipk`k1q¨xR̃

ˆ

k1 ´ k

2

˙

, (66)

The three terms in Eq. (65) have the following interpretation.

• The term P
p0q
z is essentially vacuum noise. It is constant and state independent,

and it contributes negligibly to the total detection probability.

• The term P
p1q
z is generated by the components of the coherent states that is diagonal

with respect to the total particle number.

• The term P
p2q
z involves contributions from terms with different numbers of photons.

The term P
p1q
z in Eq. (65) involves a double momentum integral over e´ipωk´ωk1 qt

(co-rotating terms), while the term P
p2q
z involves a double integral over e´ipωk`ωk1 qt

(counter-rotating terms). For sufficiently large t, co-rotating terms typically dominate
over counter-rotating terms, hence, we can invoke the Rotating Wave Approximation
(RWA) and drop the contribution of the latter terms.

25



The RWA is a defining approximation of Glauber’s photo-detection theory. Its do-
main of validity in photodetection has been a matter of some debate. Photodetection
probabilities obtained from the RWA appear to violate causality at short times [95, 96].
However, it has been suggested that a modified form of the RWA in photodetection can
guarantee causality [97]. Fundamentally, RWA is unacceptable because the correspond-
ing Hamiltonian is unbounded from below [98]. For details about the accuracy of the
RWA and related approximations, see, Ref. [99] and references therein.

To examine the validity of the RWA in the QTP probability assignment, we consider
a coherent state that describes a pulse of mean wave-number k0 initially (t “ 0) localized
around x “ 0. We choose a Gaussian

zpkq “ p2πq3z0p2π∆2q´3{2e´
pk´k0q2

2∆2 , (67)

where z0 is a constant complex valued vector and ∆ is the spectral width of the pulse.
First, we evaluate the term P

p1q
z pτ,Qq in Eq. (65) using a saddle point approximation.

We expand ωk “ ωk0 ` vk0 ¨ pk ´ k0q, where vk “ k{|k| is the three- velocity vector. We
also assume that R̃ varies slowly with k, so that the contribution of the detector kernel
is a constant R̃pk0q. We obtain

P p1q
z pt,xq “ 1

2
|z0|2R̃pk0qe´∆2px´vk0

tq2 . (68)

We also evaluate the term P
p2q
z in the saddle-point approximation. We find

P p2q
z pt,xq „ Re

“

z20e
ik0¨x

‰

. (69)

The oscillatory terms in Eq. (69) must be averaged over a spatial region of size δ3x and
for times of order δt. For Gaussian smearing functions, this averaging leads to multi-

plicative factors of order e´δ2t |k|2
0e

´δ2xω
2

k0 . Hence, for sufficiently large k0, the contribution
of the term P

p2q
z to the probability density (65) is suppressed, and the RWA is justified.

In general, we expect the RWA fails only for states with significant contribution from
photons in the deep infrared.

Assuming the RWA, the detection probability can be expressed as

P pxq “
ż

d4yRpyqGRWArx´ 1

2
y, x` 1

2
ys, (70)

in terms of the correlation function

GRWApx, x1q “ 2xΨ|φ̂p´qpx1qφ̂p`qpxq|Ψy, (71)

where φ̂p`q and φ̂p´q denote the positive and negative frequency part of φ̂.
Suppose now that the spacetime spread of Rpxq is much smaller than the spatial

and temporal variation of the field. For massless particles, this is a stronger form of
the dipole approximation that is often employed in quantum optics: we assume that the
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typical wavelengths and frequencies in the initial state are much larger than the size of
the detector and the associated time spread of detection. Then, we can approximate
Rpxq with a delta function, to obtain

P pxq „ GRWArx, xs. (72)

This expression coincided with the standard formula of Glauber’s photo-detection theory.
Hence, QTP recovers Glauber’s probabilities for a single measurement event by as-

suming (i) the RWA and (ii) Rpyq „ δpyq. As we showed, for a large class of initial states,
the RWA is not an independent assumption, as it arises due to the spatial and temporal
coarse-graining of the detector. Thus, the crucial assumption of Glauber’s theory is that
the characteristic scales of the detector kernel are much smaller than any time / length
parameter that characterize the initial state of the field. A more detailed analysis, with
an emphasis on the divergence from Glauber’s theory, will be undertaken elsewhere.

5 Links to non-equilibrium QFT

In Sec. 2, we saw that the QTP probabilities are linear functional of balanced correlation
functions. The measurements do not probe unbalanced correlation functions. Since the
latter include xĈapxqy, QTP probabilities cannot access mean field information. This
limitation is not fundamental. Remember that the operator Ĉpxq appears in the interac-
tion term with the apparatus. This restriction means that we cannot use couplings of the
form

ş

d4xĈapxq b ĴapXq, in order to directly measure the operator Ĉapxq. At least such
measurements are not possible with weak field-apparatus coupling where perturbation
theory is applicable6.

Suppose, for example that Ĉ coincides with the field operator φ̂—we drop the index
a for simplicity. Then, single-detector probabilities record only local information about
particles. Let the field be in a state characterized by a macroscopically large number of
particles; then, it can be viewed as a thermodynamic system. Then the single-detector
probability essentially coincides with a particle-number density function. If we also
measure the recorded particle’s momentum k, the QTP probability density P px, kq is an
operationally defined version of Boltzmann’s distribution function. By Eq. (17), P px, kq
is a linear functional of the correlation function Gpx, x1q “ xφ̂pxqφ̂px1qy, which is usually
taken to satisfy the Baym-Kadanoff equations.

From the above analysis, it follows that Boltzmann’s thermodynamic entropy, defined
on a Cauchy surface Σ,

SBpΣq “ ´
ż

Σ

d3xd3kP px, kq lnP px, kq (73)

6It is possible to measure Ĉapxq for non-perturbative couplings [103], but the resulting probabilities
are very different from those of QTP, and they are closer to those of von Neumann measurements.
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is a Shannon-type entropy for single-detection measurements. This means that quantum
informational quantities, defined through measurements, have a direct application to
non-equilibrium QFT. Furthermore, n-detector QTP probabilities probe higher-order
correlation functions of the quantum field, thus allowing an analysis that is not accessible
by traditional methods.

Such an analysis is beyond the scope of this paper. In this section, we will only
describe some structural similarities and connections between the QTP analysis and
methods of non-equilibrium QFT. A detailed analysis will be taken up in other publica-
tions.

5.1 Stochastic correlation dynamics from two-particle irreducible

effective action

As shown in Sec. 3.2, the generating functional of QTP correlation functions is defined
in terms of non-local source terms Labpx, x1q. It is structurally similar to the two-particle
irreducible effective action (2PIEA) [66, 106] that has found many applications in non-
equilibrium QFT—see, for example, [69–71].

We proceed to a brief review of the 2PIEA formalism following [107,108], emphasizing
how it can be used to define evolution equations with noise from higher-order correlation
functions.

For ease of notation, we use a version of DeWitt’s condensed notation, where capital
indices A correspond to both the spacetime dependence and the branch of the CTP
field (forward or backward in time, φ or φ̄). Hence, we will be writing φA, CA, and so
on. The action in the CTP generating functional will be SrφAs “ Srφas ´ Srφ̄as. In
the two-particle irreducible representation, the (two-point) correlation function stands
is an independent variable, not a functional of the mean field. Thus there is a separate
source KAB driving CACB over the usual JACA term in the one-particle irreducible
representation—see the similarity to Eq. (49).

From the generating functional

Z
“

KAB
‰

“ eiW rKABs “
ż

DφA e
ipS` 1

2
KABCACBq (74)

we have

GAB “
A

ĈAĈB

E

“ 2
δW

δKAB

ˇ

ˇ

ˇ

ˇ

K“0

(75)

and
δ2W

δKABδKCD

ˇ

ˇ

ˇ

ˇ

K“0

“ i

4

!A

ĈAĈBĈCĈD

E

´
A

ĈAĈB

E A

ĈCĈD

E)

. (76)

Suppose that we want to express the effective dynamics of GAB in a closed form, but to
go beyond the Baym-Kadanoff equations, by taking into account noise from higher-order
correlations. For an non-equilibrium system, we seek a formulation in terms of a new
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object GAB. This is a stochastic correlation function whose expectation value over the
noise average gives the usual two point functions. The fluctuations of GAB reproduce the
quantum fluctuations in the binary products of field operators. The simplest assumption
is to take GAB as a Gaussian process, defined by

xGABy “
A

ĈAĈB

E

; xGABGCDy “
A

ĈAĈBĈCĈD

E

(77)

The Legendre transform of W is the two-particle irreducible effective action,

Γ2PI rGABs “ W
“

KAB
‰

´ 1

2
KABGAB; KAB “ ´2

δΓ

δGAB

(78)

The Schwinger-Dyson equation for the propagators is simply, δΓ2PI

δGAB
“ 0. When including

the stochastic source GAB, it becomes

δΓ2PI

δGAB

“ ´1

2
κAB (79)

where κab is a stochastic nonlocal Gaussian source defined by

@

κAB
D

“ 0;
@

κABκCD
D

“ 4i

„

δ2Γ2PI

δGABδGCD

:

(80)

The noiseless Eq. (79) (κ “ 0) provides the basis for the derivation of transport
equations in the near equilibrium limit. Indeed, for a λφ4 theory, we obtain the Boltz-
mann equation for a distribution function f defined from the Wigner transform of Gab.
The full stochastic equation (79) leads, in the same limit, to a Boltzmann - Langevin
equation [107].

5.2 Correlation Histories

The two-particle irreducible formalism can be extended to an n-particle irreducible for-
malism, for any n. There is an effective action ΓnPI for each n, from which all effective
actions for n1 ă n can be derived. Taking n Ñ 8, we obtain a master effective action.
The functional variation of the master effective action yields the hierarchy of Schwinger-
Dyson equations [108].

To obtain effective closed dynamics for the correlations at order n, we must truncate
the Schwinger-Dyson hierarchy upon this order. Truncation renders the master effective
action complex. Its imaginary part arises from correlation functions of order higher than
n, the fluctuations of which Calzetta and Hu define as correlation noises [107] at order
n. For example, the noise κAB in Eq. (79) is the correlation noise of order two.

Calzetta and Hu defined the notion of correlation histories [109], in analogy to the
decoherent histories program. A fine-grained correlation history corresponds to the full
Schwinger-Dyson hierarchy of correlation functions. When we truncate the hierarchy at
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finite order n, we treat only correlation functions of order n as independent. Higher -order
correlations are ignored or slaved to the lowest-order ones. A truncated hierarchy defines
a coarse-grained correlation history. For example, mean field theory studies coarse-

grained correlation histories at order n “ 1; the Baym-Kadanoff equation, or Boltzmann
equation and their stochastic generalizations refer to coarse-grained correlation histories
of order n “ 2.

The key point is that the truncation of the master effective action always leads to
dissipation and noise for the coarse-grained histories. Any truncated theory is an effective
field theory in the correlation hierarchy formulation. This effective field theory does not
carry the full information, this loss of information being expressed as correlation noise.
The higher-order correlations are analogous to an environment in the theory of open
quantum systems [110]. This noise may lead to decoherence of correlation histories [109],
i.e., to the classicalization of the effective description.

The QTP approach demonstrates that the different levels of correlation histories can
be accessed by the measurement of n-detector joint probabilities. Eq. (27) assigns to each
initial state |ψy of the field a hierarchy of joint probability distributions Pnpz1, z2, . . . , znq.

In classical probability theory, a hierarchy of correlation functions defines a classical
stochastic process, if it satisfies the Kolmogorov additivity condition,

Pn´1pz1, . . . , zn´1q “
ż

dznPnpz1, z2, . . . , znq (81)

Quantum probability distributions for sequential measurements do not satisfy this condi-
tion [111]. Hence, the violation of Eq. (81) is a genuine signature of quantum dynamics;
it cannot be reproduced by classical physics, including classical stochastic processes. It
is rather different from the Leggett-Garg inequalities [112] that also refer to the behavior
of quantum multi-time probabilities. Some authors refer to the violation of Eq. (81) as
”temporal non-locality” [113]. In contrast, if measurements on a quantum field approxi-
mately satisfy Eq. (81), then the measurement outcomes can be simulated by a stochastic
process with n-time probabilities given by the probability distributions (81). Then the
generating functional ZQTP corresponds to a stochastic process, i.e., it is obtained as the
functional Laplace transform of a classical stochastic probability measure.

Hence, the hierarchy Pnpz1, z2, . . . , znq provides a natural and unambiguous classi-
cality criterion7. Given the relation between QTP probabilities and QFT correlation
functions, this criterion can be used to probe the information content of different levels
for correlation histories. For example, the validity of Eq. (81) is necessary for deriving
deterministic or classical stochastic dynamics for P1pzq, i.e., for deriving the Boltzmann
or the Boltzmann-Langevin equation. The failure of (81) means that the four-point cor-
relation functions are too ‘quantum’ to allow effective classical stochastic dynamics for
the two-point correlation function.

7For a different classicality criterion, based on the decoherent histories approach, that applies to the
special case of measurements of the field operator, see [114].
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Conversely, the failure of Eq. (81) can be used to provide a measure of irreducibly
quantum information at the level n “ 2. An example of such a measure is

SQ “
ż

dz2

ˇ

ˇ

ˇ

ˇ

ż

dz1P2pz1, z2q ´ P1pz2q
ˇ

ˇ

ˇ

ˇ

. (82)

A second informational quantity is the correlation of the probability distribution, i.e., a
measure of the deviation of P2pz1, z2q from P1pz1qP2pz2q8. This information is typically
quantified by the correlation entropy

SC “
ż

dz1dz2P2pz1, z2q ln
P2pz1, z2q

P1pz1qP1pz2q . (83)

In general, the correlation entropy will contain information for both quantum correlations
(if SQ ‰ 0) and classical stochastic ones. Indeed, SC may not have the usual properties
of correlation entropy if SQ ‰ 0, and other measures that will distinguish will be more
convenient. The third relevant informational quantity in Boltzmann’s entropy (73),
defined in terms of P1pz1q. These three quantities are the most important for describing
the flow of information at the level of the 2PIEA.

Hence, the QTP hierarchy functions as a registrar of information of the quantum
system, keeping track of how much information resides in what order, and how it flows
from one order to another through the dynamics. There is a good potential for this
scheme to systemize quantum information in QFT9: keeping track of the contents and
the flow of information and measuring the degree of coherence in a quantum system.

6 Conclusions

In this work, we presented the QTP formalism for measurements in quantum fields, and
we explored its relations to the Closed-Time-Path description of QFT. These relations
provide a direct translation between the operational language of measurement theory
(POVMs, effects, and so on) to the manifestly covariant description of QFT through
functional methods. This is an essential step towards formulating a general theory of
relativistic quantum information.

Our work highlights the central role of the hierarchy of unequal-time correlation func-
tions. On one hand, POVMs for measurement are linear functional of such correlation

8The factorization assumption of the joint probability for two events is equivalent to
Boltzmann’s Stosszahlansatz in the derivation of Boltzmann’s equation through the Bogoli-
ubov–Born–Green–Kirkwood–Yvon hierarchy [115]. The joint probability density P2 is then slaved
to P1

9Of course, several issues remain to be addressed. The probability distributions Pn depend on the
measurement apparatus through the detector kernels. We would like to avoid strong apparatus depen-
dence when deriving informational quantities. We may have to consider ideal, maximal information,
apparatuses (like the ones appearing in the study of the time-of-arrival), or look for quantities that can
be minimized with respect to all physical detector kernels.
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functions, on the other hand, these correlation functions are crucial for the implemen-
tation of perturbation theory, but also give real causal dynamics in the CTP approach.
When working at the level of non-equilibrium QFT, correlation functions are employed
in order to define both observables and effective irreversible dynamics.

Equally important is the fact that correlation functions are covariant and causal ob-
jects. For this reason, we contend that a relativistic QIT that respects both causality and
spacetime symmetry must define all informational quantities in terms of such correlation
functions. This contrasts the standard approach of QIT that is based on properties of
single-time quantum states, like von Neumann entropy or entanglement.

Building a sound theoretical foundation for relativistic QIT is not only important
for theoretical completeness. It is also needed for describing quantum experiments in
space [2,3] that will explore the effects of non-inertial motion (acceleration, rotation) and
gravity on quantum resources like entanglement. Corrections to standard photodetection
models, like the ones predicted by QTP, may be measurable in experiments that involve
long separations or large relative velocities between detectors.
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A Derivation of the QTP probability formula

In this section, we present a brief account of the QTP method, leading to the derivation
of Eq. (15), as a genuine probability density.

A.1 Amplitudes of detection

We consider a composite physical system that consists of a microscopic and a macroscopic
component. The microscopic component is the quantum system to be measured and the
macroscopic component is the measuring device.

Let H be the Hilbert space of the composite system, and Ĥ the associated Hamil-
tonian operator. In QTP, we model a measurement event as a transition between two
complementary subspaces of H. To this end, we split H in two subspaces: H “ H`‘H´.
The subspace H` describes the accessible states of the system given that the event under
consideration is realized. For example, if the event is a detection of a microscopic parti-
cle by an apparatus, H` includes all states of the apparatus with a definite macroscopic
record of detection. We denote the projection operator onto H` as P̂ and the projector
onto H´ as Q̂ :“ 1 ´ P̂ . We also assume that a pointer variable λ of the measurement
apparatus takes a definite value after the transition has occurred. The corresponding
positive operators Π̂pλq satisfy Π̂pλq satisfy

ř

λ Π̂pλq “ P̂ .
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First, we construct the probability amplitude |ψ;λ, rt1, t2sy that, given a state |ψ0y P
H´ at t “ 0, a transition occurs during the time interval rt1, t2s and a value λ is obtained
for the pointer variable. For a vanishingly small time interval, we set t1 “ t and t2 “ t`δt,
and we keep only leading-order terms with respect to δt. At times prior to t, the state
lies in H´. This is taken into account by evolving the initial state |ψ0y with the restricted
propagator in H´,

Ŝt “ lim
NÑ8

pQ̂e´iĤt{NQ̂qN . (84)

By assumption, the transition occurs at some instant within the time interval rt, t` δts,
hence, there is no constraint in the propagation from t to t ` δt; the propagation is
implemented by the unrestricted evolution operator e´iĤδt » 1 ´ iδtĤ . At time t ` δt,
the event corresponding to Π̂λ is recorded, so the amplitude is transformed by the action

of Π̂λ (
a

Π̂λ, if Π̂λ is not a projector). For times greater than t`δt, there is no constraint,
so the amplitude evolves as e´iĤpT´tq until some final moment T .

At the limit of small δt, the successive operations above yield

|ψ0;λ, rt, t` δtsy “ ´i δt e´iĤT Ĉpλ, tq|ψ0y. (85)

where

Ĉpλ, tq :“ eiĤt
a

Π̂pλqĤŜt. (86)

is a history operator. Since the amplitude (85) is proportional to δt, it defines a density

with respect to time: |ψ0;λ, ty :“ limδtÑ0
1
δt

|ψ0;λ, rt, t` δtsy. From Eq. (85)
The total amplitude that the transition occurred at some moment within a time

interval rt1, t2s is

|ψ;λ, rt1, t2sy “ ´ie´iĤT

ż t2

t1

dtĈpλ, tq|ψ0y. (87)

Eq. (87) involves the restricted propagator Ŝt. This quantity may be difficult to
evaluate in practice. Furthermore, if Ŝt is literally defined by Eq. (84), it is unitary
in H´, and may lead to quantum-Zeno-type problems in the definition of probabilities.
In Ref. [117] it was shown that these problems can be avoided by employing alternative
definitions of the restricted propagator, that involve a regularization time scale. However,
this renders Ŝt model dependent.

However, for the type of measurements considered here, the problems with the evalu-
ation of Ŝt can be avoided. We consider a Hamiltonian Ĥ “ Ĥ0 ` ĤI where rĤ0, P̂ s “ 0,
and HI is a perturbing interaction. To leading order in the interaction,

Ĉpλ, tq “ eiĤ0t
a

Π̂pλqĤIe
´iĤ0t, (88)

with no dependence on Ŝt.
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A.2 Probabilities of detection

We define the probability Probpλ, rt1, t2sq that at some time in the interval rt1, t2s a
detection with outcome λ occurred by taking the squared modulus of the amplitude Eq.
(87),

Probpλ, rt1, t2sq :“ xψ;λ, rt1, t2s|ψ;λ, rt1, t2sy “
ż t2

t1

dt

ż t2

t1

dt1Tr
”

Ĉpλ, tqρ̂0Ĉ:pλ, t1q
ı

,(89)

where ρ̂0 “ |ψ0yxψ0|.
The quantities Probpλ, rt1, t2sq do not define a probability measure with respect to

time, because they do not satisfy the Kolmogorov additivity condition Probpλ, rt1, t3sq “
Probpλ, rt1, t2sq ` Probpλ, rt2, t3sq fails, unless the quantity

Dpt1, t2, t3q :“ 2Re

„
ż t2

t1

dt

ż t3

t2

dt1Tr
´

Ĉpλ, tqρ̂0Ĉ:pλ, t1q
¯



(90)

vanishes. Clearly, Dpt1, t2, t3q does not vanish identically. However, in a macroscopic
system (or in a system with a macroscopic component) one expects that Eq. (90) holds
with a good degree of approximation, given a sufficient degree of coarse-graining [59,61]—
see also the explicit measurement models in [47]. Thus, a necessary condition for the
time of transition to be associated to macroscopic records in a measurement apparatus
is the existence of a coarse-graining time-scale σ, such that |Dpt1, t2, t3q| is negligible for
|t2 ´ t1| ąą σ and |t3 ´ t2| ąą σ. Then, Eq. (89) does define a probability measure
when restricted to intervals of size larger than σ.

We can express the time-of-transition probabilities in terms of densities with respect
to a continuous time variable by smearing the amplitudes Eq. (87) with respect to a
time-scale δt ąą σ. To this end, we introduce a family of functions fpsq of width δt,
localized around s “ 0, and normalized so that limδtÑ0 fpsq “ δpsq. Then, we define the
smeared amplitude

|ψ0;λ, tyδt :“
ż

ds
a

fps ´ tq|ψ0;λ, sy “
ż

ds
a

fps ´ tqĈpλ, sq|ψ0y. (91)

The modulus- squared amplitudes

W pt, λq “ σxψ0;λ, t|ψ0;λ, tyσ “
ż

dsds1
a

fps ´ tqfps1 ´ tqTr
”

Ĉpλ, sqρ̂0Ĉ:pλ, s1q
ı

(92)

define a probability measure: they are of the form Trrρ̂0Π̂pλ, tqs, where

Π̂pλ, tq “
ż

dsds1
a

fσps ´ tqfσps1 ´ tqĈ:pλ, s1qĈpλ, sq (93)

is a density with respect to both variables λ and t.
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The positive operator

Π̂τ pNq “ 1 ´
ż 8

0

dt

ż

dλΠ̂τpλ, tq, (94)

corresponds to the alternative N that no detection took place in the time interval r0,8q.
Since the detector is a quantum system, there exists a non-zero probability that the
microscopic particle excites no transition, and thus, no record is left.

The operator Π̂τ pNq together with the positive operators Eq. (93) define a Positive-
Operator-Valued Measure (POVM). The POVM Eq. (93) determines the probability
density that a transition took place at time t, and that the outcome λ for the value of
an observable has been recorded.

Consider a Hilbert space of the form F b K, where F describes a quantum field and
K describes the apparatus. We assume the same set-up as in Sec. 2.3, except for the
fact that the interaction Hamiltonian is Poincaré invariant, i.e., it does not involve a
switching function, ĤI “

ş

d3xĈapxqĴapxq. Then, the probability density (92) contains

a kernel xΩ|Ĵapx, tqΠ̂pλqĴ bpx1, t1q|Ωy. We take the pointer variable λ to describe the
position X of the detection record and another observable q. Since Π̂pλq is a highly
coarse-grained observable, we can approximate it as a product Π̂pXqΠ̂pλq, i.e., a product
of two commuting POVMs, for position and for the observable q. Then, we can write

Π̂pλq “
b

Π̂pXqΠ̂pλq
b

Π̂pXq.

Suppose we sample position with accuracy δx. Then we expect that

b

Π̂pXqĴapx, tq|Ωy

vanishes if |X ´ x| ąą δx. Hence, we can write

b

Π̂pXqĴapx, tq|Ωy “ C
?
gpX ´

xqĴapx, tq|Ωy, where g is a positive sampling function of width δx and C is a multi-
plicative constant. With this substitution, we recover Eq. (15), only now rather than
the switching function F px ´ x1q, we have the sampling functions

a

fpt´ t1qgpx ´ x1q.
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[35] J. Polo-Gómez, L. J. Garay, L. J. and E. Mart́ın-Mart́ınez, A detector-based measurement
theory for quantum field theory, Phys. Rev. D 105, 065003 (2022).

[36] B. L. Hu, S-Y Lin, J. Louko, Relativistic Quantum Information in Detectors–Field Inter-
actions, Class. Quantum Grav. 29, 224005 (2012).

[37] M. Cliche and A.Kempf, The relativistic quantum channel of communication through field
quanta, Phys. Rev. A 81, 012330 (2010).

[38] E. Martin-Martinez, Causality issues of particle detector models in QFT and Quantum
Optics, Phys. Rev. D 92, 104019 (2015).

[39] J. de Ramon, M. Papageorgiou and E. Martin-Martinez, Relativistic causality in particle
detector models: Faster-than-light signalling and ”Impossible measurements” , Phys. Rev. D
103, 085002 (2021).

[40] K. E. Hellwig and K. Kraus, Formal description of measurements in local quantum field
theory, Phys. Rev. D 1, 566 (1970).

[41] K. Okamura and M. Ozawa, Measurement theory in local quantum physics, J. Math. Phys.
57, 015209 (2015).

[42] S. Doplicher, The measurement process in local quantum physics and the EPR paradox,
Commun. Math. Phys. 357, 407 (2018).

[43] C. J. Fewster and R. Verch, Quantum fields and local measurements, Comm. Math. Phys.
378, 851 (2020).

[44] C. J. Fewster, A generally covariant measurement scheme for quantum field theory in
curved spacetimes, arXiv:1904.06944.

37

http://arxiv.org/abs/1904.06944


[45] H. Bostelmann, C. J. Fewster and M. H. Ruep, Impossible measurements require impossible
apparatus, Phys. Rev. D103, 025017 (2021).

[46] C. J. Fewster, I. Jubb, and M. H. Ruep, Asymptotic measurement schemes for every
observable of a quantum field theory, arXiv: 2203.09529.

[47] C. Anastopoulos and N. Savvidou, Time-of-Arrival Probabilities for General Particle De-
tectors, Phys. Rev. A86, 012111 (2012).

[48] C. Anastopoulos and N. Savvidou, Time-of-Arrival Correlations, Phys. Rev. A95, 032105
(2017).

[49] C. Anastopoulos and N. Savvidou, Time of arrival and Localization of Relativistic Parti-
cles, J. Math. Phys. 60, 0323301 (2019).

[50] C. Anastopoulos and N. Savvidou, Time-of-arrival Probabilities and Quantum Measure-
ments, J. Math. Phys. 47, 122106 (2006).

[51] C. Anastopoulos and N. Savvidou, Time-of-arrival probabilities and quantum measure-
ments. II. Application to tunneling times, J. Math. Phys. 49, 022101 (2008).

[52] C. Anastopoulos, Time-of-arrival probabilities and quantum measurements. III. Decay of
unstable states, J. Math. Phys. 49, 022103 (2008).

[53] K. Savvidou, The Action Operator for Continuous-time Histories J. Math. Phys. 40, 5657
(1999); Continuous Time in Consistent Histories, gr-qc/9912076.

[54] N. Savvidou, Space-time Symmetries in Histories Canonical Gravity, in ”Approaches to
Quantum Gravity”, edited by D. Oriti (Cambridge University Press, Cambridge 2009).

[55] R. B. Griffiths, Consistent Quantum Theory (Cambridge University Press, Cambridge
2003).

[56] R. Omnés, The Interpretation of Quantum Mechanics, (Princeton University Press,
Princeton 1994).

[57] R. Omnés, Understanding Quantum Mechanics (Princeton University Press, Princeton
1999).

[58] M. Gell-Mann and J. B. Hartle, Quantum Mechanics in the Light of Quantum Cosmology,
in ‘Complexity, Entropy, and the Physics of Information’, ed. by W. Zurek, (Addison Wesley,
Reading 1990);

[59] M. Gell-Mann and J. B. Hartle, Classical Equations for Quantum Systems, Phys. Rev.
D47, 3345 (1993).

[60] J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University
Press, Princeton, 1955).

[61] J.B. Hartle, Spacetime Quantum Mechanics and the Quantum Mechanics of Spacetime
in ‘Gravitation and Quantizations’, in the Proceedings of the 1992 Les Houches Summer
School, ed. by B. Julia and J. Zinn- Justin, Les Houches Summer School Proceedings, Vol.
LVII, (North Holland, Amsterdam, 1995); [gr-qc/9304006].

[62] J. S. Schwinger, Brownian Motion of a Quantum Oscillator, J. Math. Phys. 2, 407 (1961).

[63] L. V. Keldysh, Diagram Technique for Nonequilibrium Processes, Zh. Eksp. Teor. Fiz. 47,
1515 (1964).

[64] G. Zhou, Z. Su, B. Hao and L. Yu, Equilibrium and nonequilibrium formalisms made
unified, Phys. Rep. 118, 1 (1985).

38

http://arxiv.org/abs/gr-qc/9912076
http://arxiv.org/abs/gr-qc/9304006


[65] B. S. DeWitt, Effective action for expectation values, in ”Quantum Concepts in Space and
Time”, ed. R. Penrose and C. J. Isham (Claredon Press, Oxford, 1986)

[66] E. Calzetta and B. L. Hu, Nonequilibrium quantum fields: Closed-time-path effective ac-
tion, Wigner function, and Boltzmann equation , Phys. Rev. D37, 2878 (1988).

[67] E. Calzetta and B. L. Hu, Closed-time-path functional formalism in curved spacetime,
Phys. Rev. D35, 495 (1987).

[68] S. Weinberg,Quantum contributions to cosmological correlations Phys. Rev. D 72, 043514
(2005).

[69] E. A. Calzetta and B. L. Hu, Nonequilibrium quantum field theory (Cambridge University
Press, 2008).

[70] J. Berges, Introduction to nonequilibrium quantum field theory, AIP Conf. Proc. 739, 3
(2004).

[71] J. Berges, Nonequilibrium Quantum Fields: From Cold Atoms to Cosmology, Lecture
Notes of the Les Houches Summer School: Strongly Interacting Quantum Systems out of
Equilibrium (Oxford University Press, Oxford, 2016).

[72] A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press,
Cambridge, 2011).

[73] J. Rammer, Quantum Field Theory of Non-equilibrium States (Cambridge University
Press, Cambridge, 2009)

[74] B. L. Hu, Correlation Dynamics of Quantum Fields and Black Hole Information Paradox,
talk at the International School of Astro-fundamental Physics, Sept. 1995. Proceedings edited
by N. Sanchez and Zichichi (Kluwer Publishers, Dordrecht, 1996).

[75] I. Jubb, Causal state updates in real scalar quantum field theory, Phys. Rev. D 105, 025003
(2022).

[76] E. Calzetta and B. L. Hu, ‘Noise and Fluctuations in Semiclassical Gravity’, Phys. Rev.
D49, 6636 (1994).

[77] B. L. Hu and A. Matacz, Backreaction in Semiclassical Gravity: the Einstein-Langevin
Equation, Phys. Rev. 51 (1995).

[78] E. Chitambar, D. Leung, L. Mancinska, M. Ozols, and A. Winter, Everything You Always
Wanted to Know About LOCC (But Were Afraid to Ask), Commun. Math. Phys., 328, 303
(2014).

[79] S. Weinberg, The Quantum Theory of Fields: I. Foundations (Cambridge University
Press, Cambridge, 1996).

[80] C. Anastopoulos and N. Savvidou, Measurements on relativistic quantum fields: I. Prob-
ability assignment, arXiv:1509.01837.

[81] J. B. Hartle and B. L. Hu, Quantum effects in the early universe. II. Effective action
for scalar fields in homogeneous cosmologies with small anisotropy, Phys. Rev. D20, 1772
(1979).

[82] R. Feynman and F. Vernon, The Theory of a general quantum system interacting with a
linear dissipative system, Ann. Phys. (NY) 24, 118 (1963).

[83] R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, (McGraw - Hill, New
York, 1965).

39

http://arxiv.org/abs/1509.01837


[84] A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion,
Physica 121A, 587 (1983).

[85] B. L. Hu, J. P. Paz and Y. Zhang, Quantum Brownian motion in a general environment:
Exact master equation with nonlocal dissipation and colored noise, Phys. Rev. D45, 2843
(1992).

[86] J. C. Muga and J. R. Leavens, Arrival time in quantum mechanics, Phys. Rep. 338, 353
(2000).

[87] J. C. Muga, R. S. Mayato, and I. L. Equisquiza, Time in Quantum Mechanics, vol 1
(Springer 2008); J. G. Muga, A Ruschhaupt and A. Del Campo, Time in Quantum Mechan-
ics, vol 2 (Springer 2010).

[88] W. Pauli, The Principles of Quantum Mechanics, in Encyclopedia of Physics, edited by
S. Flugge, Vol. 5/1 (Springer, Berlin, 1958).

[89] J. León, Time-of-arrival formalism for the relativistic particle , J. Phys A: Math. Gen. 30,
4791 (1997).

[90] J. Kijowski, On the time operator in quantum mechanics and the Heisenberg uncertainty
relation for energy and time, Rep. Math. Phys. 6, 361 (1974).

[91] A. D. Helfer,The stress - energy operator, Class. Quantum Grav. 13, L129 (1996).

[92] C. G. Torre and M. Varadarajan, Functional Evolution of Free Quantum Fields, Class.
Quantum. Grav. 16, 2651 (1999).

[93] JR Klauder and B Skagerstam, Coherent States: Applications in Physics and Mathematical
Physics ( World Scientific, Singapore 1985).

[94] F. A. Berezin, The Method of Second Quantization (Academic Press, 1966).

[95] V.P. Bykov and V.I. Tatarskii, Causality violation in the Glauber theory of photodetection,
Phys. Lett. A 136, 77 (1989).

[96] M. Fleischhauer, Quantum-theory of photodetection without the rotating wave approxima-
tion J. Phys. A: Math. Gen. 31, 453 (1998).

[97] P. W. Milonni, D. F. V. James, and H. Fearn, Photodetection and causality in quantum
optics, Phys. Rev. A 52, 1525 (1995).

[98] G. W. Ford and R. F. O’Connell, The rotating wave approximation (RWA) of quantum
optics: serious defect, Physica A243, 377 (1997).

[99] C. Fleming, N. I. Cummings, C. Anastopoulos and B. L. Hu, The Rotating-Wave Approx-
imation: Consistency and Applicability from an Open Quantum System Analysis, J. Phys.
A: Math. Theor. 43, 405304 (2010).

[100] C. Anastopoulos and N. Savvidou, Quantum Temporal Probabilities in Tunneling Sys-
tems, Ann. Phys. 336, 281 (2013).

[101] C. Anastopoulos and N. Savvidou, Path of a Tunneling Particle, Phys Rev. A95 , 052120
(2017).

[102] C. Anastopoulos and N. Savvidou, Coherences of Accelerated Detectors and the Local
Character of the Unruh Effect, J. Math. Phys. 53, 012107 (2012).

[103] M. Papageorgiou and C. Anastopoulos, Field observables recorded by Unruh-Dewitt de-
tectors (in preparation).

40



[104] G. Baym and L. P. Kadanoff, Conservation Laws and Correlation Functions, Phys. Rev.
124, 287 (1961).

[105] G. Baym and L. P. Kadanoff, Quantum Statistical Mechanics, (Benjamin, New York
1962).

[106] S. A. Ramsey, and B. L. Hu, B.L., O (N) quantum fields in curved spacetime, Phys. Rev.
D56, 661 (1997).

[107] E. Calzetta and B. L. Hu, Stochastic dynamics of correlations in quantum field theory:
From the Schwinger-Dyson to Boltzmann-Langevin equation, Phys. Rev. D61, 025012 (1999).

[108] E. Calzetta and B. L. Hu, “Correlations, Decoherence, Disspation and Noise in Quantum
Field Theory”, in Heat Kernel Techniques and Quantum Gravity, ed. S. A. Fulling (Texas
A& M Press, College Station 1995).

[109] E. Calzetta and B. L. Hu, “Decoherence of Correlation Histories” in Directions in General
Relativity, Vol II: Brill Festschrift, eds B. L. Hu and T. A. Jacobson (Cambridge University
Press, Cambridge, 1993).

[110] C. Anastopoulos, Coarse grainings and irreversibility in quantum field theory, Phys. Rev.
D56, 1009 (1997).

[111] C. Anastopoulos, Classical versus quantum probability in sequential measurements,
Found. Phys. 36, 1601 (2006).

[112] A. J. Leggett and A. Garg, Quantum mechanics versus macroscopic realism: Is the flux
there when nobody looks?, Phys. Rev. Lett. 54, 857 (1985).
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