QUANTUM FIELD THEORY IN A NUTSHELL

A. ZEE

Kavli Institute for Theoretical Physics University of California at Santa Barbara

> PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

Contents

Preface	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	xi
Convention, Notation, and Units	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	xv

PART I

MOTIVATION AND FOUNDATION

I.1	Who Needs It?	3
I.2	Path Integral Formulation of Quantum Physics	7
I.3	From Mattress to Field	6
I.4	From Field to Particle to Force	4
I.5	Coulomb and Newton: Repulsion and Attraction	0
I.6	Inverse Square Law and the Floating 3-Brane	8
I.7	Feynman Diagrams	1
I.8	Quantizing Canonically and Disturbing the Vacuum 6	1
I.9	Symmetry	0
I.10	Field Theory in Curved Spacetime	б
I.11	Field Theory Redux	4

PART II

DIRAC AND THE SPINOR

П.1	The Dirac Equation	89
II.2	Quantizing the Dirac Field	03
II.3	Lorentz Group and Weyl Spinors	11
II .4	Spin-Statistics Connection	17
II.5	Vacuum Energy, Grassmann Integrals, and Feynman Diagrams for Fermions 1	21
II.6	Electron Scattering and Gauge Invariance	30
II. 7	Diagrammatic Proof of Gauge Invariance	35

PART III

RENORMALIZATION AND GAUGE INVARIANCE

Ш.1	Cutting Off Our Ignorance	•	•	•	•	145
Ш.2	Renormalizable versus Nonrenormalizable				•	154
III.3	Counterterms and Physical Perturbation Theory			•		158
III.4	Gauge Invariance: A Photon Can Find No Rest	•	•		•	167
III.5	Field Theory without Relativity	•	•		•	172
III.6	The Magnetic Moment of the Electron	•	•	•		177
III. 7	Polarizing the Vacuum and Renormalizing the Charge	•	•			183

PART IV

SYMMETRY AND SYMMETRY BREAKING

IV.1	Symmetry Breaking	193
IV.2	The Pion as a Nambu-Goldstone Boson	202
IV.3	Effective Potential	208
IV.4	Magnetic Monopole	217
IV.5	Nonabelian Gauge Theory	226
IV.6	The Anderson-Higgs Mechanism	236
IV.7	Chiral Anomaly	243

PART V

FIELD THEORY AND COLLECTIVE PHENOMENA

V.1	Superfluids	257
V.2	Euclid, Boltzmann, Hawking, and Field Theory at Finite Temperature	261
V.3	Landau-Ginzburg Theory of Critical Phenomena	267
V.4	Superconductivity	
V.5	Peierls Instability	
V.6	Solitons	
V.7	Vortices, Monopoles, and Instantons	282

PART VI

FIELD THEORY AND CONDENSED MATTER

VI.1	Fractional Statistics, Chern-Simons Term, and Topological Field Theory	293
VI.2	Quantum Hall Fluids	300
VI.3	Duality	309
VI.4	The σ Models as Effective Field Theories	318
VI.5	Ferromagnets and Antiferromagnets	322
VI.6	Surface Growth and Field Theory	326
VI .7	Disorder: Replicas and Grassmannian Symmetry	330
VI.8	Renormalization Group Flow as a Natural Concept in	
	High Energy and Condensed Matter Physics	337

PART VII GRAND UNIFICATION

VII.1	Quantizing Yang-Mills Theory and Lattice Gauge Theory	353
VII.2	Electroweak Unification	361
VII.3	Quantum Chromodynamics	368
VII.4	Large N Expansion	377
VII.5	Grand Unification	391
VII.6	Protons Are Not Forever	397
VII.7	SO(10) Unification	405

PART VIII GRAVITY AND BEYOND

Gravity as a Field Theory and the Kaluza-Klein Picture	419
The Cosmological Constant Problem and the Cosmic	
Coincidence Problem	434
Effective Field Theory Approach to Understanding Nature	437
Supersymmetry: A Very Brief Introduction	443
A Glimpse of String Theory as a 2-Dimensional	
Field Theory	452
	The Cosmological Constant Problem and the CosmicCoincidence ProblemEffective Field Theory Approach to Understanding NatureSupersymmetry: A Very Brief IntroductionA Glimpse of String Theory as a 2-Dimensional

x

Closing Words	455	Э
---------------	-----	---

APPENDIXES

Α	Gaussian Integration and the Central Identity of	
	Quantum Field Theory	459
В	A Brief Review of Group Theory	461
С	Feynman Rules	471
D	Various Identities and Feynman Integrals	475
Έ	Dotted and Undotted Indices and the Majorana Spinor	479
Solutio	ons to Selected Exercises	483
Further	r Reading	501
Index		505