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QUANTUM FIELD THEORY IN NINETY MINUTES 

PAUL FEDERBUSH 

These notes grew out of a ninety-minute lecture delivered in a seminar at the 
University of Michigan. The audience consisted of mathematicians with a very 
wide spectrum of research interests. In fact, there was only one other mathe
matical physicist present. We here attempt to preserve some of the casual 
flavor of the live seminar. There will be some generalizations, imprecise 
statements, and disputable implications. These are natural in trying to cover so 
broad an area as Euclidean quantum field theory, so briefly, demanding no 
specialized background. On the other hand, we proudly hold up to the experts 
the accomplishment of here presenting a complete, precise, rigorous definition 
of the two-dimensional quantum field theory p(<t>)2, easily accessible to most 
graduate students in mathematics. The concepts of cutoffs, renormalization, and 
perturbation series are touched on, as are some of the features of more 
complicated theories. Recent theoretical developments have made possible the 
simplicity and elegance of the present treatment. 

Defining a Euclidean quantum field theory (as pioneered by E. Nelson) is 
exactly the problem of making sense of an initially only formally defined 
functional integral. We start by listing several example theories in (space-time) 
dimensions one through four. 

I. A particle moving in the potential V(x) (a one-dimensional field theory). 
Here one integrates over the space whose points are paths, 

(1) <j>(x): Rl -> Rl. 

One should here be impressed with the problem of establishing an integral, or 
measure, on such a huge, infinite-dimensional space. We put a weighting on 
the path, <t>(x), given by e~S(<l>), 

« ™-f\i(%)'+™ dx. 
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94 PAUL FEDERBUSH 

S(<j>) is called the action. We desire to make sense of formal integrals such as 

(3) ƒ ^ • « • ' / ( • ) 

where, formally, 

(4) M=n(£/*(*)) 
integrates over all possible functions (paths). We will assume V is continuous 
and satisfies 

(5) V>c 

for some c. 

II. The two-dimensional p(<t>)2 field theory. The integral is now over an even 
larger space of functions; a point in the space is a mapping 

(6) $(x): R2-^R. 

The (formal) action is 

(7) s(*) = ƒ [j(v*)2 + ^ V + M*)] rf2* 
where M is the mass, assumed nonzero, and p(<j>) is a polynomial that is 
bounded below, 

(8) p(*)>c 

III. The three-dimensional ^ field theory. We have 

(9) <f>(x): R3 -* R 

and a (formal) action 

(10) S(<j>) = ƒ i(v<J>)2 + ~<t>2 + A (a*4 + b<j>3 + c<|>) ^3x 

with ö > 0. 

IV. The four-dimensional Yang-Mills theory, Y-M4. Here we consider con
nections (or potentials) A^(x\ mappings 

(11) A^x): RA^<$ 

into the Lie algebra of a simple compact Lie group. The action is taken as 

(12) 5(4,) = / \F„u(x)\2d*x 

with F^v the curvature (or field) due to A^{x). For those to whom the algebra 
of this example is foreign, we emphasize that in these notes we only tangen-
tially discuss this example. 

We first note that the dimension of each field theory is the dimension of the 
domain space of the corresponding <j>(x) (or A (x)), not of the range. In fact 
the examples I—III may be easily modified to have the dimension of the range 
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QUANTUM FIELD THEORY IN NINETY MINUTES 95 

greater than one, without substantially increasing the difficulty of their con
struction. 

We by no means claim these are the only interesting examples, but they are 
very representative. We mean them to indicate the increasing difficulty of 
constructing theories with increasing dimension. Thus one does not know how 
to modify II to replace the polynomial p with a merely continuous function 
such as V oî I. And there are strong arguments that the fourth-order poly
nomial in III may not be replaced by a higher-order polynomial, as may occur 
in II. (Again one does not know how then to define the functional integral in a 
satisfactory way. We do not here detail the set of requirements on the 
definition—the axioms of Euclidean field theory.) Finally it is believed that 
theories such as in III do not exist in four dimensions, that the Yang-Mills 
theory is the simplest four-dimensional theory. 

As a brief aside we note that the measure constructed for I will live on the 
continuous functions, but in the other cases the measure will be supported on 
some space of distributions. This indicates why such expressions as 

(13) ƒ <j>\x)d2x 

may be difficult to deal with, involving the pointwise multiplication of distri
butions. One could imagine an expression such as 

(14) ƒ d2xx • • • d2x4f(xl9x29x3,*4)4>(-*i) • • • <t>(*4) 

replacing (13), with ƒ smooth. Such nonlocal modifications have been studied 
by physicists, but local expressions such as (13) are the ones that lead to 
satisfactory field theories. The "renormalizations" we will see below are 
necessitated by the difficulty of defining expressions such as (13). Our route 
will not involve looking at any questions of measure. 

The functional integral of I was defined long ago as the well-known Wiener 
integral. Examples II and III were first fully treated primarily by the efforts of 
Glimm and Jaffe (who established the discipline of constructive field theory). 
The Yang-Mills theory Y-M4 is still undefined, but we may expect substantial 
progress here within a few years. 

We steer our discussion to the p(<t>)2 theory. Our formalism immediately 
provides an alternate derivation of the Wiener measure of I, which we do not 
pursue; we later make some remarks on the corresponding treatment of III. 

In II and III one singles out the free action 

(15) S0 = /Jx[|(v4>)2 + ̂ fV 
and in some sense treats the rest of S as a "perturbation." S0 is quadratic in <J>, 
and it is necessary now to study such quadratic weightings—to study Gaussian 
integrals. 

In an JV-dimensional vector space we let D be a strictly positive symmetric 
matrix. We consider the integral 

(16) 1(F) = f dae-^2)aDaF(a), with f da = f\ f°° dai9 
J J i = lJ-oo 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



96 PAUL FEDERBUSH 

and 

(17) aDa = E«,-A>«y 

F is a suitable function of the a's. We note a few examples: 

(18) ƒ(«,) = 0 

by the symmetry of the integrand under a -> -a ; 

(19) /(«,«,) = C , / ( l ) , 

where 

(20) C = Dl 

and is called the covariance. There is no difficulty checking (19); it is actually 
an immediate consequence of the following more general result. 

We assume that F and its first partials are polynomially bounded (actually 
only that they do not grow as fast as ec|a| ). We then have 

(21) 7(«,.F) = E C , 7 / ( ! f j ) . 

We refer to (21) as integration by parts. We note that in addition to (19), / of 
any polynomial may be evaluated by inductive use of (21). (We use (21) with 
F = OLJ to derive (19).) (21) follows easily from the identity 

(22) aie-(l/2)«Da = _£C^_L^-( l /2)«/>«) 

j J 

and (usual) integration by parts. 
Given a linear function of the a's 

(23) / = !>,«,. 

we now define the Wick ordering or normal ordering of powers of / (indicated 
by dots) 

s 

(24) :/5: = / 5 + £ bjls~j 

7 = 1 

where the bj are determined by (a Gram-Schmidt procedure type requirement) 

(25) I(:1S:F) = 0 if r < s. 

We note that the bj = 0 for odd j . As an example, we consider 

(26) :l2: = l2-ch 

where 

(27) 0 = / ( : /2 : / o) = ( / 2 _ C/) = /(i)(£a,cy«, - ci) 

shows 

(28) ct=aCa. 
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QUANTUM FIELD THEORY IN NINETY MINUTES 97 

:1s: is a renormalization of Is. (As a final note on the construction of the :1s:, 
we point out that the polynomials in (24) are Hermite polynomials.) 

In the Appendix we describe a countable discrete set of functions {uk(x)} 
that are in a suitable sense complete. In fact the u(x) are of the form 

(29) uk(x)=\-7===4,'k\(x), 
\ i/-A + M2 I 

where the {\p'k } form an o.n. basis of L2(Rd) (d is the dimension of the theory 
we are working with, 2 for p(<t>)2)- (-A + M2)~l/1 is an integral operator 
defined from the Laplacian. The reader unfamiliar with such operators is here 
advised to simply take the uk(x) as a given set of functions, suitably complete. 
The choice of the basis {i/4} and thus of the {uk} is not arbitrary; the 
theorem we quote below depends on certain detailed properties of the basis. 
(The renormalization group of K. Wilson is implicitly incorporated in our 
work by its natural action on this basis. Exploiting this naturally leads into the 
fundamental work of Gawedzki and Kupiainen.) We expand 

(30) <j>(x) = £«*«*(*) 

and choose to describe the field (function) <j>(x) in terms of the variables {otk}. 
Our functional integral becomes 

(3i) (9*-Yir<i«k 
J k J-oo 

where we have traded one formal expression for another. But the discrete 
product on the right side of (31) is "more reasonable" than the corresponding 
product in (4). We may view the change from (4) to (31) as a change in 
variables. The corresponding (formal) Jacobian is a constant (it is a linear 
change of variables) and is neglected. 

We now let A be any finite subset of the {otk}. We define the "cutoff field" 
4>A(X) 

(32) <j>A(x) = £ otkuk(x). 
k<=A 

We note that (referring to (15)) 

(33) Stf = So(*A(x)) = E akp£ikak2 = aDAa, 
kly k2^A 

where DA is a strictly positive symmetric matrix on a space of dimension the 
number of elements in A. (We suppress the fact that DA is the identity 
matrix.) We let :1s: A denote the Wick ordering of /5, / linear in elements in A, 
with respect to the Gaussian integral defined by DA. We let 

(34) S^So + St 

with (from (7)) 
AT 

(35) S^xf /?(<#>) </2x = A £ ct f tfix) d2x. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



98 PAUL FEDERBUSH 

(The subscript I stands for interaction.) We now seek to define SA, the action 
for functions restricted to the subspace generated by {uk(x)}keA. We already 
have defined Stf; we seek SA so that 

(36) SA = S£ + SA. 

SA is obtained from Sl in two steps. The first step changes Sl in (35) to 

(37) *Lcj4fA(x)d2x. 
i-o J 

We have performed cutoffs in going from (35) to (37). In the next step we 
change (37) to 

(38) Sf^XZcJ :<$>A(x):Ad2x. 
i - 0 J 

The step from (37) to (38) is the renormalization of the action. (It is important 
that terms added in renormalization be formally local.) If we look at the single 
term :^>A(x):A and take the formal limit as A becomes the infinite set of all uk 

we write (from (26)-(28)) 

(39) :4à(x):A - <J>2(*) - Mm £ uki(x)CA
ukuk2(x) 

A/ii k-,, k2(=A 

(40) ^<j>2(x)- oo. 

The value of the Hmit is easily established—with a little technique. This is an 
infinite renormalization—but note that in our procedure we see no infinities. 

We assume our "observables," the /(<J>) of (3), are polynomials in the ak. 
We define 

\e-s\ (41) M L = I l f f dal 
k^A\J-oo I 

and 

(42) (fi)A = [fi]A/[l]A. 

[1]A is the "normalization", or "partition function". We now state our main 
theorem for p(<j>)2, a prototype for other theories. 

MAIN THEOREM. If X > 0 is sufficiently small, then the following limit exists, 
for all ft as above: 

(43) < / > = l i m < / > , . 
A /*M 

The limit is taken over ascending sequences of sets that eventually exhaust all 
elements. The same limit is obtained for all such ascending sequences. {{f)A is 
a net on the directed set of finite subsets of the uk. This net converges.) 

This theorem establishes expectation values of observables, from which the 
functional integral and the corresponding measure may be recovered. At this 
point we claim we have defined the p(<j>)2 theory. The main theorem is proven 
in the formalism of the phase cell cluster expansion. The proof is technical, 
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QUANTUM FIELD THEORY IN NINETY MINUTES 99 

involving the machinery of constructive quantum field theory. We hope some 
of you are inspired to read the proof. (Our references are given at the end.) The 
formalism is powerful, and not specialized to the two-dimensional situation. 

The main theorem for <j>* will be identical, but the corresponding SA will be 
defined in a more complex way. An additional renormalization will be neces
sary, adding a further term to the SA of the general form 

(44) ƒ </V(*)tf(*). 

This is a mass renormalization. 
The limit in (43) is very elegant; to one in the field, compellingly so. It treats, 

on one footing, the infinite volume limit and the removal of the ultraviolet cutoff. 
We turn to our final topic, perturbation series, that we treat very cursorily. 

In physics one is mainly interested in correlation functions such as (<(>(x)<j>(y)). 
This may be defined as 

(45) < * ( * ) * ( ƒ ) > - ^mUA(xhA(y))A-
A /u 

(One of the axioms of Euclidean field theory is that the value of such 
correlation functions as (<j>(x)<t>(y)) is invariant if the arguments are changed 
by a Euclidean translation or rotation.) The perturbation series for this is the 
series 

(46) <*(*)*(ƒ)> = £X"Ç,(*,.V). 
0 

One expects such series to never converge, but to be asymptotic (as has been 
proved in many cases). In QED, the physical theory of electrons and photons, 
one believes the corresponding functional integrals do not exist. (QED is not a 
mathematically consistent field theory.) Yet the formal perturbation series is 
amazing. Agreements between theory and experiment (between predictions of 
the first few terms in perturbation series and experiment) have been obtained 
to one part in 1012! Thus there is some basis for believing in perturbation series 
predictions—even when the theory is in mathematical purgatory. Because of 
the limits involved (as we will see below) the definition of the individual terms, 
Cn(x, y) say in (46), is highly nontrivial. These arise evaluated as "Feynman 
integrals" associated to "Feynman diagrams." 

One may "cleanly" expand 

(47) (<t>A(x)<t>A(y))A = tx'Cn
A(x,y) 

0 

(still an asymptotic series), and find 

(48) Cn(x,y)= \imC„A(x,y). 
ASÜ 

The definition of C„(x, y) as the limit in (48) is very close (identical in spirit) 
to definitions currently being pursued by such researchers as Gallavotti and 
Nicolö. But the definition in (48), or the similar expressions in the work of the 
above-named authors, are not as effective for computation as the limiting 
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procedures used by physicists. Though one may verify that different limiting 
procedures give the same answer, some may be used to do calculations and 
others are only of theoretical interest. (One has not established all the equiva
lences one would like; this is a difficult occupation.) In the evaluations of the 
Cn(x, y ) via one or another limiting procedure, use of the Hmiting procedures 
is called renormalization (a related but different use of the word from one we 
made before). 

We apply the integration by parts identity (21) to get the identity 

(49) (l>A(x)F)A= £ uk(x)cdl^-FdSt 

We now take the formal limit of (49) term by term. 

SF „ SSf 
(50) >i*AX)F) = jdzC0(X,Z)^^-F^ 

The quotes indicate our embarassment at writing the expression down. This 
expression has difficulties from C0(x, z) when x ~ z (C0(x, z) is as in (46), is 
called the free propagator, and is singular at x = z), from the singular formal 
limit 

(51) "S? = lim S f " 

and from the product "JFSSf/S^z)". We have used the formal "functional 
derivatives" 

(52) "j±-jf dwV>(w) = n<S>"-\z)r 

Disregarding these "difficulties," we note that in (50) if F is a polynomial in 
<£'s, then so is the expression in parentheses on the right side of (50). Use of 
this "identity" either lowers the degree of the polynomial, or introduces a 
power of X. Thus iterated use of (50) generates each term in (48) in a finite 
number of steps. (This requires a moment's reflection.) We consider an 
artificial "example" in which 

(53) "S? = \f <f>4(x)dx" 

(we neglect renormalization terms). We seek an expression for C2(x, y), 
derived by iterated use of (50). One finds 

(54) C2(*,.y) = /1 + I2 + /3, 

(55) I^x.y) = c.f dzj dwC0(x,z)(C0(z,w))3C0(w,y), 

(56) I2(x,y) = c2j dzj dwC0(x, z)C0(z,w)C0(w, y)C0(w,w)C0(z,z), 

(57) h(x,y) = c3f dzj dwC0(x,z)C0(z,y)(C0(z,w))2C0(w,w). 
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Most of these expressions will certainly be undefined (infinity)—we have 
neglected renormalization terms in Sf1 that "cancel" some of these infinities. 
The ct are numerical factors we choose not to keep track of. These three Ii9 

each a "Feynman integral," are associated to the "Feynman diagrams" in 
Figure 1(a), (b), and (c) respectively. Each propagator C0(-, •) is a line in the 
Feynman diagram. The coordinates are here indicated in the figures: C0(xv x2) 
is a line from xx to x2. Usually one does not indicate coordinates in the 
figures. We do not teach the reader the physicists' technique in "renormalizing" 
the divergent integrals; however, we point out (as the diligent reader may 
verify) that Wick ordering the <j>4 in (53) formally cancels identically I2 and 73. 
Ix is finite for two-dimensional theories, and infinite for three-dimensional 
theories. (The mass renormalization (44) is designed to handle this infinity.) 

w _o o_„ . 8 : 
(a) (b) (c) 

FIGURE 1 

Physicists start with formal expressions such as in (55)—(57) and then apply 
their "renormalization prescriptions," rather than using limits in expressions 
such as (48). We have only touched the surface; much beautiful and difficult 
structure resides in individual perturbation series terms. 

Suggested study. To someone who wished to work along the Unes discussed 
herein, I would recommend they read in detail [1], work joint with G. Battle, 
that establishes the phase cell cluster expansion formalism. (One should replace 
the expansion functions described in §2 therein, by the o.n. basis {\f/'k } of the 
present Appendix. This eliminates a small error in [1].) [7,8, and 9] contain 
some excellent expository material, particularly on cluster expansions, that 
should be digested before the details in [1]. I would recommend that at the 
same time they sit in on a one-year graduate course in quantum mechanics, 
followed by a one- or two-term course in quantum field theory, in a physics 
department. The same goal can be accomplished with greater difficulty by 
reading physics text books. 

References [3,4, and 5] are pleasant reference books, and fun to browse in. 
In particular [3] of Glimm and Jaffe presents the more standard formalism of 
constructive quantum field theory. The reader of these notes will find in [3] the 
axioms of Euclidean field theory (due to Osterwalder and Schrader), and the 
recovery of the Minkowski field theory from the Euclidean field theory. These 
are also present in [4]. [3] also provides an introduction to the substantial 
literature in constructive quantum field theory, a guide to many more topics 
than we have discussed. At the technical level, we prefer the formalism of [1], 
to the more standard approach of [3]. 
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Recent work of Brydges, Fröhlich, Sokal, and Spencer (see [2]) has exploited 
random walk techniques to study quantum field theories. This is an equally 
powerful, but more specialized, formalism than the present one. This is very 
beautiful work and should be studied. The important work of Feldman, 
Magnen, Rivasseau, and Sénéor is in a formalism similar to ours, and may be 
read in parallel. 

We have offered enough suggestions to the reader, that with diligence he or 
she may enter the area of research. There will be much exciting but difficult 
work ahead as one attempts to tame the four-dimensional Yang-Mills theory. 
[The author has a sequence of preprints on the Yang-Mills Theory available.] 

Appendix. The functions uk(x) are related to the functions \p'k(x) via (29) 
above. We herein describe the properties of the basis (*/4), without giving 
their construction. We first describe a basis of functions {\pk}, the "ondelettes" 
of Y. Meyer [6], and then describe the \p'k, a modification of the \pk due to I. 
Daubechies. 

Ondelettes. We consider compatible lattices ££r in Rd of edge size Lr = 
l / 2 r , r = 0, ± 1 , ± 2 , . . . We now state some of the properties of the o.n. basis 
{\f/k } developed by Y. Meyer associated to these lattices. 

(1) Each \pk is associated to some cube, in some ££\ r = r(k). There are the 
same number of \pk associated to each cube. Given the set of \pk associated to 
any cube, the set of \pk associated to any other cube are the natural dilation, 
translation, and multiple of these \pk. More exactly, there are a number of 
functions f l 9 . . . , fa such that the \pk associated to cube y in ££\ r = r(y), are 

Lr(y) Ji\ 7 > / = ! , . . . , a, 

where x ( y ) is the center of y. 
(2) \pk is C00, its Fourier transform is C°° and of compact support. 
(3) ƒ \pkx

a = 0, all a, i.e. all the moments of the \pk are zero. 
(4) 

|(JC - xM)fiDyk(x) | < cajLf-W-d/2 

for compatible r, y, k. That is, the \pk fall off faster than any power, along with 
their derivatives, with distance from their associated cube (in the appropriate 
length scale). 

Modified ondelettes. The basis of Y. Meyer above may be modified to yield a 
basis {\p'k} with the \pk associated only to cubes in ££\ r ^ 0. (We have a 
maximum cube size.) The modified basis satisfies the following properties: 

(iy To a cube in J^r, r > 0, the associated functions are the same as above. 
(2)' To each cube in J£?° the associated \p'k include the set of associated \pk9 

and a finite additional number of functions. 
(3)r The additional functions associated to cubes in J^° need not have zero 

moments, but they satisfy (2) and (4) above. The additional functions associ
ated to any cube in J?0 are the natural translates of the additional functions 
associated to any other cube in J^°. 
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