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Quantum Fisher information measurement and verification of
the quantum Cramér–Rao bound in a solid-state qubit
Min Yu1, Yu Liu1, Pengcheng Yang1✉, Musang Gong1, Qingyun Cao1,2, Shaoliang Zhang1, Haibin Liu1, Markus Heyl 3,
Tomoki Ozawa 4,5, Nathan Goldman6✉ and Jianming Cai1,7,8✉

The quantum Cramér–Rao bound sets a fundamental limit on the accuracy of unbiased parameter estimation in quantum systems,
relating the uncertainty in determining a parameter to the inverse of the quantum Fisher information. We experimentally
demonstrate near saturation of the quantum Cramér–Rao bound in the phase estimation of a solid-state spin system, provided by a
nitrogen-vacancy center in diamond. This is achieved by comparing the experimental uncertainty in phase estimation with an
independent measurement of the related quantum Fisher information. The latter is independently extracted from coherent
dynamical responses of the system under weak parametric modulations, without performing any quantum-state tomography.
While optimal parameter estimation has already been observed for quantum devices involving a limited number of degrees of
freedom, our method offers a versatile and powerful experimental tool to explore the Cramér–Rao bound and the quantum Fisher
information in systems of higher complexity, as relevant for quantum technologies.
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INTRODUCTION
Quantum metrology has emerged as a key quantum technological
application. It allows for the improvement of sensors performance,
beyond any classically achievable precision, as was demonstrated
for instance in squeezed-light-based gravitational wave detec-
tors1. According to the quantum Cramér–Rao bound, the accuracy
of any unbiased estimation of an unknown system parameter is
limited by the inverse of the quantum Fisher information (QFI)2–8.
Importantly, the QFI only depends on the quantum state and is
independent of the estimator; it is a geometric property of a
quantum state in parameter space. Thus, for each parameter
estimation problem, there potentially exists an optimal quantum
measurement that saturates the Cramér–Rao bound. Such fully
efficient estimators can be found for classical systems and for
small quantum devices upon comparing to theoretical predic-
tions9 or by performing full-state tomography10, which, however,
becomes extremely challenging for quantum systems with higher
complexity. Consequently, the identification of optimal quantum
measurement schemes would highly benefit from a universal
method to measure the QFI within the experimental setting. In
general, this is a complicated task10–12, which requires (by
definition) a very precise determination of the “distance” (fidelity)
between two quantum states. The quadratic coefficients of several
fidelity-like quantities, such as Loschmidt echo13, Hellinger
distance11,12, Euclidean distance14 and Bures distance15, are
related to the QFI. Hence, in principle, this allows for the
evaluation of the QFI from the measurement of these quantities.
The corresponding experiments have been demonstrated in an
optical system14 and in Bose-Einstein condensates11. In experi-
ment, these quantities are usually determined by the statistical

distances of two experimental probability distributions, which are
obtained by measuring two quantum states upon an infinitesi-
mally small change of the system parameters4,5,16. Considering
these methods, the accurate estimation of the QFI requires precise
control of system parameters and the ability to perform multiple
measurements or even complete measurements15 on the system;
this usually scales exponentially with the system size and remains
challenging in many-qubit systems. Furthermore, the lower bound
of the QFI can be obtained using quantum optimal control
methods17, variational algorithms18,19, and random measure-
ments20,21, which typically require a large number of iterations
or measurements.
In this work, we use a nitrogen-vacancy center in diamond to

perform a fully efficient phase-estimation quantum measurement
by showing saturation of the Cramér–Rao bound. In contrast to a
previous study9, where a saturation of the bound was identified
through a theoretical estimation of the QFI, we hereby demon-
strate saturation through purely experimental means by indepen-
dently measuring the QFI within our phase-estimation setting. This
was achieved by directly probing spectroscopic responses upon
weak parametric modulations, a technique which circumvents the
stringent requirements of quantum-state tomography and avoids
heavy experimental measurement overhead. This has the
advantage of offering a more scalable approach to more complex
systems. Our method is inspired by a proposal to extract the
quantum metric tensor22,23, which was recently implemented in
NV centers24,25 and superconducting qubits26. We demonstrate
this approach in a Ramsey interferometer, which represents a
standard experimental setting for the estimation of an unknown
phase parameter. We determine the optimal sensitivity of the
phase-parameter estimation through different resource states, and
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compare these results with their individual QFI. Finally, we
demonstrate the applicability of our QFI measurement to the
case of coupled qubits, and discuss its relation to entanglement
signatures.

RESULTS
Experimental setting
In the experiment, we utilize a nitrogen-vacancy center (NV) in
diamond as the quantum sensor. The ground state of the NV
center spin has three spin sublevels ms= ±1, 0. By applying an
external magnetic field Bz≃ 510 G along the NV axis, we lift the
degeneracy of the spin states ms= ±1 and use the two spin
sublevels ms= 0, −1, with states 0j i and �1j i, to form a quantum
two-level system with an energy gap ω0= D− γeBz, where the
zero-field splitting is D= (2π)2.87 GHz and γe is the electronic
gyromagnetic ratio [Fig. 1(c)]. We use a microwave field to
coherently manipulate the NV center spin sate; see Fig. 1(d) for an
illustrative Rabi oscillation.

Quantum sensing and parameter estimation have been
implemented in NV centers using different approaches27,28,
inspired by the pioneer proposal and demonstration of magne-
tometry based on Ramsey spectroscopy29–31. Building on those
developments, we hereby adopt the standard protocol of a phase-
parameter estimation measurement by means of Ramsey inter-
ferometry [Fig. 1(a)]. For that purpose, we first initialize the system
in a coherent superposition resource state, ψθð0Þj i ¼ cosðθ=2Þ 0j i
� sinðθ=2Þ �1j i, which we evolve into

ψθðβÞj i ¼ cosðθ=2Þeiβ=2 0j i � sinðθ=2Þe�iβ=2 �1j i ; (1)

according to the applied magnetic field. The phase parameter β of
ψθðβÞj i can be estimated by performing positive-operator valued
measurements (POVM)5,8, M ¼ fMjg; as explained below, these
are provided by spin-dependent fluorescence measurements (see
Supplementary Note 2). The measurement precision is defined as
the minimal change of the parameter β that can be detected from
the constructed observable above the shot-noise level,

ðδβÞM ¼ Δp=
∂p
∂β

� �
; (2)

where p is the expectation value of the POVM signal, Δp is the
uncertainty associated with the measurement signal. The funda-
mental limit of the achievable sensitivity of an unbiased estimator
is given by the quantum Cramér–Rao bound32–34

δβ � 1ffiffiffiffiffiffiffiF β

p ; (3)

where F β denotes the QFI, which for pure quantum states ψθðβÞj i,
is given by4,5

F β ¼ 4 ∂βψθðβÞj∂βψθðβÞ
� �� j ψθðβÞj∂βψθðβÞ

� �j2h i
: (4)

The QFI characterizes the distinguishability of adjacent quan-
tum states over the parameter space [Fig. 1(b)]. The purity of the
states in our experiment, and hence the validity of Eq. (4) to
capture the QFI, is discussed below. We note that the QFI is related
to the real part of the quantum geometric tensor, which can be
extracted through coherent dynamical responses22,24.
It is one of the central goals of this work to show the saturation

of the quantum Cramér–Rao bound through an independent
experimental measurement of the QFI. We extract the QFI by
probing coherent dynamical responses of the quantum system
upon perturbative parametric modulations22,24. Our measurement
protocol is shown in Fig. 2(a). The NV center spin is first initialized
in the ms= 0 spin state by applying a green (532 nm) laser pulse,
which also polarizes the nitrogen nuclear spin associated with the
NV center as we tune the magnetic field close to the excited state
level anticrossing (i.e., Bz≃ 510 Gauss). The subsequent microwave
pulse, applied for a duration tθ= (θ/Ω), rotates the NV center spin
around the ŷ axis by an angle θ according to the Hamiltonian
H1ðtÞ ¼ ðω1=2Þσz þ Ω cosðω1tÞσx , where ω1 matches the energy
gap between the spin sublevels ms= 0, −1 and Ω is the
microwave Rabi frequency. The rotation, denoted as Yθ, prepares
the NV center spin into the θ-dependent resource state ψθð0Þj i.
After the microwave pulse Yθ, the system undergoes a free
evolution for a time T, according to an effective Hamiltonian
HðeÞ
2 ¼ ½ðω0 � ω1Þ=2�σz , which results in the final state ψθðβÞj i; see

Eq. (1). Here, the effective Hamiltonian HðeÞ
2 is defined in the

interaction picture with respect to H0= (ω1/2)σz. The final state
ψθðβÞj i encodes the information about the phase parameter β=
ξT to be estimated, where ξ=ω1−ω0.

Direct measurement of the QFI
Inspired by the protocol of Ref. 22, we extract the QFI of the final
state ψθðβÞj i by monitoring coherent transitions upon parametric
modulations. This probing method requires the implementation of

Fig. 1 Experimental setting. a Ramsey interferometry experiment
for the estimation of an unknown phase parameter β. The quantum
system is prepared in an initial resource state ψθð0Þj i, the evolution
of which results in a phase parameter β. The projective measure-
ment on the final state ψθðβÞj i allows to determine the value of the
parameter β. b The QFI of the final state ψθðβÞj i reveals the
information content relative to the unknown phase parameter β.
The larger QFI (right) implies the better distinguishability between
the states ψθðβÞj i and ψθðβþ dβÞj i that have an infinitesimal
parametric difference dβ→ 0. c The energy level structure of the
NV center spin in diamond under an external magnetic field. The
two-level quantum system is encoded by the ground state spin
sublevels ms= 0, −1. d Rabi oscillations: the population in the spin
state ms= 0 as a function of time, which facilitates efficient coherent
control of the NV center spin state.
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the following Hamiltonian

HðβÞ ¼ A
2

cos θ sin θe�iβ

sin θeiβ � cos θ

 !
; (5)

such that the state ψθðβÞj i approximately corresponds to an
eigenstate of HðβÞ. This is achieved by tuning the parameters of
the microwave driving field acting on the NV center spin. The key
step of our experiment then consists in generating parametric
modulations22. To achieve this, we synthesize and calibrate an
appropriate microwave driving field with proper amplitude and
phase modulations, see Supplementary Note 1 and22,24 using an
arbitrary waveform generator as follows

f 0ðtÞ ¼ ðA sin θÞ cos½ðω1 � A cos θÞt þ βðtÞ�; (6)

such that the “probing” Hamiltonian retains the form in Eq. (5), but
with a time-periodic modulation of the parameter β, i.e.,
HðβÞ ! H½βðtÞ� ¼ Hðβþ aβ cosðωtÞÞ, where aβ≪ 1 quantifies
the modulation amplitude.
The parametric modulation can induce a coherent transition

from the state ψθðβÞj i to the other orthogonal eigenstate ψ?
θ ðβÞ

�� �
of the Hamiltonian in Eq. (5)22,24. This transition can be monitored
by measuring the probability that the system remains in the state
ψθðβÞj i. In the experiment, without requiring any prior information
on the parameter β, we implement an inverse evolution sequence,
consisting of two pulses (Yπ and Yπ−θ) separated by a free
evolution of duration T [Fig. 2(a)]. Such an inverse evolution
rotates the states ψθðβÞj i and ψ?

θ ðβÞ
�� �

back to the states 0j i and
�1j i, respectively, see Supplementary Note 1. We then measure
the population in state 0j i, which equals to the sought population
in state ψθðβÞj i after the application of the parametric modulation.
The efficiency of the coherent transition induced by the

modulation is optimal whenever the modulation frequency matches
the energy gap between the states ψθðβÞj i and ψ?

θ ðβÞ
�� �

. In the
experiment, we first perform the modulation-induced-transition

measurement for a wide range of modulation frequencies, from
which we determine the resonant modulation frequency ω≃ A; see
Fig. 2(b). We then apply the parametric modulation at the resonant
frequency, and measure the population in the state ψθðβÞj i as a
function of the perturbation duration τ; see Fig. 2(c). This data is
fitted using a function P0 ¼ ½1þ cosðνθtÞ�=2, which defines the
effective Rabi frequency νθ. From this data, we extract the θ-
dependent QFI, F βðθÞ, using the relation (see Methods and
Supplementary Note 1)

F βðθÞ ¼ 4
νθ
aβω

� �2

: (7)

This experimental measurement of the QFI is displayed in Fig. 2
(d), which shows excellent agreement with the theoretical
prediction F β ¼ sin2θ. In particular, it clearly demonstrates the
dependence of the QFI on the initial resource state ψθð0Þj i. The
precision of our measurement relies on the accuracy of the
engineered Hamiltonian HðβÞ and on the determination of the
effective Rabi frequency νθ. The imperfection in the interrogation
step [Fig. 2(a)] may result in a mixed state rather than a pure state
ψθðβÞj i; this would decrease the contrast of the Rabi oscillations
and affect the measurement accuracy. By reconstructing the
density matrix through projective measurements, we estimate the
state fidelity to be above 95% in our experiment, see Supple-
mentary Note 2, which is evidenced by the good agreement
between our results and the theoretical predictions.

Reaching the quantum Cramér–Rao bound
The QFI measurement enables us to experimentally show that our
phase-parameter estimator exhibits optimal performance by
saturating the quantum Cramér–Rao bound in Eq. (3). In order
to analyze the relation between the measurement precision and
the QFI, we now determine the measurement sensitivity for the

Fig. 2 Direct measurement of the QFI. a The pulse sequence for the measurement of the QFI using the NV center spin. The NV center spin is
first polarized in the state 0j i by applying a green (532 nm) laser pulse and the θ-dependent resource state ψθð0Þj i is prepared via a
subsequent microwave pulse Yθ. The interrogation (i.e., the free evolution) for time T results in the parameter-dependent final state ψθðβÞj i.
The parametric modulation via the amplitude and phase-modulated microwave driving is described by the Hamiltonian H[β(t)] with
βðtÞ ¼ βþ aβ cosðωtÞ. The spin-dependent fluorescence after the inverse evolution, which rotates the state ψθðβÞj i back to the state 0j i,
monitors the coherent transition probability induced by the parametric modulation. b The parameter-modulation induced resonant transition
measurement shows the probability that the NV center spin stays in the state ψθðβÞj i as a function of the modulation frequency ω for a time
τ= 450 ns. c The resonant coherent oscillation between the state ψθðβÞj i and ψ?

θ ðβÞ
�� �

under parametric modulation. The other experiment
parameters in (b) and (c) are θ= π/3, A= (2π)15.98 MHz, aβ= 0.1 and ξ= (2π)5.025 MHz. d The QFI measured in our experiment (red circle) is
compared with the theoretical prediction (brown curve).
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estimation of the parameter β within our Ramsey interferometry
experiment. To do so, we first apply the rotation Yθ on the NV
center spin qubit to prepare the initial state ψθð0Þj i; the system
then evolves freely for a time T= β/ξ. To build an estimator of the
parameter β, we apply a rotation Yα, which is equivalent to a
projective measurement Pα ¼ ϕαj i ϕαh j on the final state ψθðβÞj i,
where ϕαj i ¼ cosðα=2Þ 0j i þ sinðα=2Þ �1j i [Fig. 1(a)]. The observa-
ble of interest is then provided by the function pðβ; θ; αÞ ¼
ψθðβÞh jPα ψθðβÞj i, from which we aim to estimate the parameter β

with optimal accuracy [Eq. (3)]. We tune the free evolution time
such that the parameter β= ξT is close to the working point where
the best sensitivity occurs, i.e., β≃ π/2 where the slope ∂p/∂β is
maximal [Fig. 3(a)].
Ramsey parameter estimation can, in principle, achieve optimal

efficiency. However, in practice, this would require an ideal
projective measurement of the sensor upon reaching the shot-
noise limit. Such an ideal measurement cannot be perfectly
performed, due to a limited collection efficiency or other types of
measurement noise (e.g., Gaussian fluctuations in the photon
number). To overcome this limitation, one may adopt the
technique of single-shot readout35–38, which consists in setting a
threshold ns of photon number to distinguish the state ms ¼ �1j i
and ms ¼ 0j i and assign a value s= 0 or 1 depending on whether
nj > ns or nj < ns.
In our experiment, the observable pðβ; θ; αÞ ¼ ψθðβÞh jPα ψθðβÞj i

is estimated from the collected photons of a fluorescence signal

(see Methods). Due to the limited collection efficiency, the signal
photons are accumulated over many sweeps of an experimental
sequence, which constitutes one experimental run of our
measurement. In the j-th run, based on the photon number nj
detected from the rotated spin state Yα ψθðβÞj i, we define the ratio
pj= (nj− n1)/(n0− n1) where n0 and n1 are the average photon
numbers obtained from the bare spin states ms= 0 and ms=−1,
respectively. We proceed to assign a measurement value sj= k+ 1
or k according to the probabilities pðkÞj ¼ pj � k and 1� pðkÞj for
⌊pj⌋= k, see Methods. This allows us to introduce a quantity
S ¼ ð1=NÞPN

j¼1 sj , whose expectation value yields the desired
function Sh i ¼ pðβ; θ; αÞ. Using this quantity, we can construct an
estimator for the parameter β, and find that the influence of
measurement noise on S is eliminated to a large extent (apart
from the shot-noise), which also provides a data analysis
alternative for the spin readout techniques of NV centers35–38,
see Methods. The data obtained from repeated measurements
[Fig. 3(a)] allows us to determine the slope of the signal, which is
defined as χα ¼ ∂p=∂β ¼ pðβþ dβÞ � pðβÞ½ �=dβ. From the
experimental data, we can also extract the measurement
uncertainty Δp associated with the observable S; see Fig. 3(b).
We note that the uncertainty scales with the number of repetitions
N as Δp ¼ Δ0=

ffiffiffiffi
N

p þ ξ0, see Methods. The first term arises from
the shot-noise with Δ0= [p(1−p)]1/2, while the second term ξ0
represents the contribution from the measurement fluctuation
that cannot be averaged out. We remark that other advanced
readout techniques, such as the single-shot measurement based
on spin to charge conversion39, can further reduce such
measurement noise (see Eq. ((18), (21)) in Methods) and enhance
the sensitivity.
We first compare the sensitivity δβ= Δp/χα obtained by

projective measurements over different bases Pα. The experimental
results shown in the inset of Fig. 3(c) demonstrate that the optimal
measurement sensitivity is obtained when α= π/2, which agrees
with the theoretical prediction (see Supplementary Note 2),
ðδβÞ2 ¼ ½1� ðcos β sin θÞ2�=j sinβ sinθj2. The slight deviation
arises from other sources (apart from shot noise). The measure-
ment precision also depends on the angle θ of the resource state
ψθð0Þj i, which accounts for the QFI of the final state ψθðβÞj i: we
proceed by determining the optimal measurement sensitivity with
different resource states ψθð0Þj i in view of testing the quantum
Cramér–Rao bound in Eq. (3). It can be seen from the results shown
in Fig. 3(c) that the optimal measurement sensitivity improves as
the angle θ approaches π/2, i.e., when the resource state ψθð0Þj i
becomes a maximally coherent superposition state. We remark
that the result in the inset of Fig. 3(c) is skewed as the pulse Yα is
off-resonant; the influence of the corresponding detuning is the
asymmetry observed around α= π/2. Moreover, the optimal
measurement sensitivity verifies the quantum Cramér–Rao bound
[Eq. (3)], as we finally demonstrated in Fig. 3(d).

Generalization to entangled qubits
Single NV centers in diamond allow to perform quantum sensing
with unprecedented spatial resolution40. In this context, the
saturation of the Cramér–Rao bound is of particular importance as
it may allow quantum sensing with unparalleled accuracy. Still, it is
a natural question whether our QFI measurement can also be
extended to the multi-qubit case, where quantum entanglement
can provide a further key factor to increase the performance of a
quantum sensor.
For that purpose, we now demonstrate the applicability of our

parametric modulation scheme in view of measuring the QFI in a
realistic two-qubit correlated system24, which consists of an NV
center and a nearby strongly coupled 13C nuclear spin via the
hyperfine interaction. The effective Hamiltonian of the system is

Fig. 3 Saturating the quantum Cramér–Rao bound. a The Ramsey
interferometry measurement signal p ¼ Sh i. The measurement data
allows us to obtain the susceptibility χα= ∂p/∂β of the measurement
signal close to the working point β= π/2. The error bars represent

the uncertainty of the parameter estimation Δp ¼ ½ S2� �� Sh i2�1=2
with the number of repetitions N= 9. The parameters are θ= π/3,
α= π/2, ξ= (2π)2.27 MHz and A= (2π)11.34 MHz. b The uncertainty
of the parameter estimation Δs as a function of the number of
repetitions N can be fitted by a function of the form Δp ¼ Δ0=

ffiffiffiffi
N

p
(green curve). c The optimal measurement sensitivity δβ (achieved
by the projective measurement Pα with α= π/2) by using different θ-
dependent resource states ψθð0Þj i. Inset: The sensitivity δβ, achieved
by applying the projective measurement Pα as a function of α when
θ= π/2 and β= π/2, shows that the optimal measurement sensitivity
in our Ramsey interferometry experiment is obtained when α= π/2.
The green curve is obtained from numerical simulation, see further
details in Fig. S4. d The linear relation δβ / 1=

ffiffiffiffiffiffiffiF β

p
, where F β is the

quantum Fisher information; the measured proportionality factor is
1.041 ± 0.036. The number of repetitions in (c, d) is N= 1. The curves
in (a, c, d) are theoretical predictions.
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given by (see Supplementary Note 3)

H ¼ A
2 cos βσz þ sin βðcosϕσx þ sinϕσyÞ
� 	
� Ak

4 σzτz � A?
4 σzτx þ ωC

2 � Ak
4


 �
τz � A?

4 τx;
(8)

where σ and τ denote the Pauli matrices of the NV center and of
the 13C nuclear spin, respectively. We denote the four eigenstates
of this Hamiltonian as Ψ1j i, Ψ3j i, Ψ3j i and Ψ4j i, with their
associated eigenvalues ϵ1 < ϵ2 < ϵ3 < ϵ4. Similarly to the single
qubit case treated above, we are interested in the quantum-
parameter-estimation problem associated with the parameter β,
and in particular, to the related QFI. Without loss of generality, we
focus our study on the QFI contained in the lowest-energy
eigenstate Ψ1j i.
Considering the parametric modulation βðtÞ ¼ βþ a cosðωtÞ,

the QFI can be related to the three Rabi frequencies νk associated
with the induced transitions between the ground state Ψ1j i and
the other three eigenstates Ψkj i according to

F β ¼ 4
X4
k¼2

νk
akωk

� �2

; (9)

where ωk= ϵk− ϵ1. We have performed a numerical simulation of
this setting and we present the results in Fig. 4(a). We find that the
QFI of the ground state reaches its peak value when the energy of
the corresponding eigenstate becomes very close to another
eigenenergy, in the form of an avoided crossing (see Supplemen-
tary Note 3). In this situation, a small variation of the parameter
(i.e., a perturbation) would indeed result in a significant change of
the ground state. Importantly, this increase of the QFI is
accompanied with a significant growth of entanglement, as
quantified by the concurrence41, as we demonstrate in Fig. 4(b).
The connection between the QFI and the entanglement of such a
coupled-qubit setting (see Supplementary Note 3) is known to
arise from the level anticrossing42,43, which represents a general
feature in systems beyond the single-qubit context. These results
suggest that a large QFI is linked to strong entanglement upon
measuring the QFI based on parametric modulations as intro-
duced here. We remark that the proposed protocol can be
extended to experimentally determine the QFI of many-body
quantum systems by measuring the excitation rate under
parametric modulation following the idea as presented in
Ref. 22. The approach does not require full state tomography,
which is an experimentally demanding task for a multi-qubit
system. The present technique which allows us to estimate the
QFI, and hence the quantum Cramér–Rao bound, will be helpful in
resolving the challenging task of determining the optimal

measurement for many-body ground states that can reach the
bound.

DISCUSSION
In this work, we have introduced an experimental technique to
measure the QFI in a solid-state spin system based on spectro-
scopic responses. Importantly, this approach does not require full
state tomography, and it can therefore be potentially applied to
more complex systems. We have shown that this technique offers
a genuine experimental probe of the quantum Cramér–Rao bound
saturation, which does not rely on any theoretical knowledge,
hence providing a universal tool to identify fully efficient
estimators. The presented technique provides a versatile tool to
explore the fundamental role of the QFI in various physical
scenarios, including quantum metrology, but also entanglement
properties of many-body quantum systems23,44 and the quantum
speed limit in the context of optimal control45–49.

METHODS
QFI and parametric modulation-induced transition
At first we can rewrite the QFI (4) of ψnðβÞj i which is the n-th eigenstate of
Hamiltonian HðβÞ, i.e., HðβÞ ψnðβÞj i ¼ EnðβÞ ψnðβÞj i
F β ¼ 4

P
k≠n

∂βψnðβÞ
� ��ð ψkðβÞj i ψkðβÞh jÞ ∂βψnðβÞ

�� �
¼ 4

P
k≠n

j ∂βψnðβÞjψkðβÞ
� �j2

¼ 4
P
k≠n

j ψk ðβÞh j∂βHðβÞjψnðβÞj2
Ek ðβÞ�EnðβÞ½ �2 ;

(10)

with the following identity

1 ¼
XN
k¼1

ψkðβÞj i ψkðβÞh j: (11)

Now, we consider the weak parametric modulation i.e., aβ≪ 1, the time-
periodic Hamiltonian can be expanded as

H½βðtÞ� ¼ Hðβþ aβ cosðωtÞÞ ’ HðβÞ þ aβ∂βHðβÞ cosðωtÞ: (12)

According to time-dependent perturbation theory, if the system is
initialized in the eigenstate state ψnðβÞj i, the second term will excite the
system to another eigenstate ψkðβÞj i under a resonate condition ω=
ωkn= Ek(β)− En(β). In the subspace spanned by f ψkðβÞj i; ψnðβÞj ig, the
parametric modulation Hamiltonian can be written as

H½βðtÞ� ¼ EnðβÞ ψnðβÞj i ψnðβÞh j þ EkðβÞ ψkðβÞj i ψkðβÞh j
þ ðΩkn ψkðβÞj i ψnðβÞh j þ h.c. Þ cosðωtÞ; (13)

with Ωkn ¼ aβ ψkðβÞh j∂βHðβÞ ψnðβÞj i. This Hamiltonian induces a Rabi
oscillation between ψnðβÞj i and ψkðβÞj i with the corresponding Rabi
frequency νk ¼ jΩknj ¼ aβj ψnðβÞh j∂βHðβÞ ψkðβÞj ij, and the QFI becomes22,24

F β ¼ 4
X
n≠k

νk
aβωkn

� �2

; (14)

which gives the two specific forms ((7), (9)) in the qubit system.

Quantum parameter estimation protocol
The sensitivity of quantum parameter estimation is dependent on the
measurement protocol. In the experiment, we perform projective
measurement on the NV center spin that is described by the operator
P̂α ¼ ϕαj i ϕαh j with the basis state ϕαj i ¼ cosðα=2Þ 0j i þ sinðα=2Þ �1j i. We
count the number of photons in the first 300 ns of the laser pulse as the
signal photons. Due to the limit of collection efficiency, the signal
photons are accumulated over a number of sweeps of an experimental
measurement sequence, which constitutes one experiment run of
measurement. We denote the averaged photon number obtained from
the bare spin state ms = 0 and ms =−1 as n0 and n1 respectively. We
introduce a variable s= 1/0 to represent the spin state ms= 0/ms =−1.
For the NV center spin system, the signal photons are spin-dependent,
namely (n0 − n1)/n0 ≃ 30%, see Fig. 5(a). For a quantum state ρ with the

Fig. 4 Numerical simulation of the QFI and quantum entangle-
ment in a strongly correlated two-qubit system. a The QFI F β of
the ground state Ψ1j i. The data points obtained from the simulation
of the experiments agree well with the exact theoretical values
(solid lines). b The concurrence C of ground state Ψ1j i. The
parameters we use are A⊥= (2π)2.79 MHz, A∥= (2π)11.832 MHz
and Bz= 504 G. The values of the modulation strength, ak, are
chosen such that the Rabi frequency of the induced coherent
oscillation is much smaller than the corresponding energy gaps, see
Ref. 22.
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state 0j i population p ¼ 0h jρ 0j i, the number of photons nj collected in
the j-th experiment run fluctuates and follows the distribution nj �
pNðn0; σ20Þ þ ð1� pÞN ðn1; σ21Þ, see an example shown in Fig. 5(b).
According to the properties of the normal distribution, the random
variable pj = (nj − n1)/(n0 − n1) follows the probability distribution Q(pj)

pj � QðpjÞ ¼ pNð1; ~σ20Þ þ ð1� pÞN ð0; ~σ21Þ ¼ Nðp; p2~σ20 þ ð1� pÞ2~σ21Þ; (15)

where Δn= n0− n1 and ~σm ¼ σm=Δn; m ¼ 0; 1. Q(pj) is shown in Fig. 6
and is divided into a series of intervals by the integers k= ⌊pj⌋.
Based on the distribution Q(pj), we proceed to assign a measurement

value sj= k+ 1 or k according to the probabilities pðkÞj ¼ pj � k and 1�
pðkÞj in the kth interval. This allows us to construct a quantity as
S ¼ ð1=NÞPN

j¼1 sj , the expectation value of which is

Sh i ¼ 1
N

PN
j¼1

sj

* +

¼ 1
N

PN
j¼1

P
k

R kþ1
k dpj ðk þ 1Þðpj � kÞQðpjÞ þ kð1� pj þ kÞQðpjÞ

� 	� 


¼ 1
N

PN
j¼1

P
k

R kþ1
k dpjpjQðpjÞ

� 

¼ p:

(16)

The variance of the quantity S is given by

ðΔsÞ2 ¼ S2
� �� Sh i2

¼ ½1N
PN
j

sj � p
� ��2

* +

¼ 1
N2

PN
j¼1

s2j þ
PN
j≠k

sjsk � 2Np
PN
j¼1

sk þ N2p2
* +

¼ 1
N hs2j i � p2

 �

:

(17)

The first term can be calculated as

hs2j i ¼
P
k

R kþ1
k dpj ðk þ 1Þ2ðpj � kÞQðpjÞ þ k2ð1� pj þ kÞQðpjÞ

h i
¼P

k

R kþ1
k dpjQðpjÞ½ð2k þ 1Þpj � kðk þ 1Þ�

¼P
k

R kþ1
k dpj pjQðpjÞ

� 	þP
k

R kþ1
k dpj kð2pj � k � 1ÞQðpjÞ

� 	
¼ pþP

k
Fk :

(18)

We define pj= ⌊pj⌋+ δj= k+ δj with δj∈ [0, 1), and Fk can be write as

Fk ¼
Z kþ1

k
dpjkðk � 1þ 2δjÞQðpjÞ: (19)

It can be seen that for all k∈ Z, Fk ≥ 0, and if and only if k= 0, Fk= 0.
Therefore, Eq. (18) satisfies

hs2j i � p; (20)

and the variance of the quantity S is bounded by the shot noise

ðΔsÞ2 � 1
N
ð1� pÞp: (21)

If the distribution Q(pj) is strictly localized in the zeroth (k= 0) interval, i.e
the black areas in Fig. 6 are negligible, all the components Fk≃ 0.
Therefore, the variance of the observable S achieves the shot noise

ðΔsÞ2 ¼ 1
N
ð1� pÞp: (22)

In our experiment, the measurements are performed at the working
points β= π/2, which makes p≃ 1/2 and

QðpjÞ ’ N ð1=2; σ2Þ; (23)

with σ ¼ ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~σ20 þ ~σ21

q
. The distribution of pj obtained in our experiment

satisfies
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~σ20 þ ~σ21

q
’ 1=2, which guarantees a more than 95% confidence

interval of k= 0 (see Fig. 6).
Furthermore, we note that

p ¼ 1
2

1þ cos θ cos α� sin θ sin α cos βð Þ; (24)

thus we can construct the following estimator for the parameter β as

�β ¼ arccos
1 þ cos θ cos α � 2S

sin θ sin α

� �

¼ arccos
1

sin θ sin α
cos θ cos α� N0 � N1

N

� �� �
;

(25)

where N0 and N1 represents the number of sj= 0 and 1 respectively. With
α= π/2, the estimator becomes

�β ¼ arccos
1

sin θ
N1 � N0

N

� �� �
: (26)

The precision can be written as

δβ ¼ Δs

∂ Ŝh iβ̂
��� ��� ¼

2Δs
j sin θ sin α sin βj : (27)

which gives the optimal sensitivity with α= π/2 satisfying the quantum
Cramér–Rao bound at the working point β= π/2.

Fig. 5 Photon-counting histogram. a shows the histogram of the
number of photons collected from the spin state �1j i (red) and 0j i
(blue) with the averaged number of photons n1 and n0 respectively.
b shows the histogram of the number of photons collected while
the NV center spin is in the superposition state þj i ¼ ð1= ffiffiffi

2
p Þð 0j i

þ �1j iÞ.

Fig. 6 Probability distribution. The probability distribution Q(pj) is
divided into a series of intervals by k= ⌊pj⌋.
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