
 

Quantum Fluctuation Theorems for Arbitrary Environments:
Adiabatic and Nonadiabatic Entropy Production

Gonzalo Manzano,1,2,* Jordan M. Horowitz,3 and Juan M. R. Parrondo1
1
Departamento de Física Atómica, Molecular y Nuclear and GISC,

Universidad Complutense Madrid, 28040 Madrid, Spain
2
IFISC (UIB-CSIC), Instituto de Física Interdisciplinar y Sistemas Complejos,

UIB Campus, E-07122 Palma de Mallorca, Spain
3
Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology,

400 Technology Square, Cambridge, Massachusetts 02139, USA

(Received 25 October 2017; revised manuscript received 30 May 2018; published 6 August 2018)

We analyze the production of entropy along nonequilibrium processes in quantum systems coupled to
generic environments. First, we show that the entropy production due to final measurements and the loss
of correlations obeys a fluctuation theorem in detailed and integral forms. Second, we discuss the
decomposition of the entropy production into two positive contributions, adiabatic and nonadiabatic, based
on the existence of invariant states of the local dynamics. Fluctuation theorems for both contributions hold
only for evolutions verifying a specific condition of quantum origin. We illustrate our results with three
relevant examples of quantum thermodynamic processes far from equilibrium.

DOI: 10.1103/PhysRevX.8.031037 Subject Areas: Quantum Physics,
Quantum Information,
Statistical Physics

I. INTRODUCTION

Classical thermodynamics and statistical mechanics
provide a systematic approach to the phenomenology of
a system immersed in a large environment. Within these
frameworks, two complementary strategies are employed.
The first is to explicitly model the environment—often
an equilibrium thermal reservoir—to obtain an effective
reduced dynamics for the system alone, which then can be
analyzed. The second is to derive fundamental constraints
in the form of inequalities using the second law of
thermodynamics and magnitudes like entropy, entropy
production, and free energy. The recent introduction of
an entropy for stochastic trajectories [1] allows one to refine
these inequalities with exact equalities for arbitrary non-
equilibrium processes, results generically known as fluc-
tuation theorems (FT’s) [2,3].
These two strategies have also been successfully applied

to quantum systems. Open quantum system dynamics—
the determination and analysis of the system’s reduced
dynamics—is a well-developed and active field [4,5].
Complementing this approach, a variety of quantum

FT’s have been derived [6–11] to assess the statistics of
the relevant quantities. Different proposals to obtain these
statistics in the laboratory have been reported, using tech-
niques related to quantum tomography [12–17], and some of
them have already been used to carry out experimental
verifications of FT’s [18,19]. However, most of the research
on quantum FT’s is only valid for equilibrium reservoirs with
a focus on the energy exchange between the system and the
environment in the form of heat and work. By contrast,
classical FT’s have been formulated more generally for
generic Markov systems [20–24] using the entropy produc-
tion instead of heat and work, which are only meaningful in
physical situations where a system exchanges energy with
equilibrium reservoirs.
In light of the success of classical FT’s, it is desirable to

obtain complementary FT’s for generic quantum dynamics
[25–35]. They could be of particular relevance since
quantum mechanics allows for a richer phenomenology
in finite baths [36–38], as well as novel and interesting
nonthermal environments such as coherent [39,40], corre-
lated [41], or squeezed [42–45] reservoirs. Such environ-
ments induce an interesting phenomenology that goes
beyond the thermodynamics of thermal equilibrium reser-
voirs, such as heat engines that outperform Carnot effi-
ciency [46] and may exhibit new regimes of operation
[45,47] or tighter bounds on Landauer’s principle [48,49].
The task of deriving FT’s for generic quantum dynam-

ics also implies a more detailed characterization of
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entropy production in nonequilibrium quantum contexts, a
problem that has attracted a growing interest in recent
years [8,30,31,33,50–57]. In Ref. [33], we derived a FT
for a class of completely positive trace-preserving (CPTP)
quantum maps, which model a variety of quantum
processes. Through this analysis, we identified a quantity
that coincides with the entropy production for thermal-
ization processes and resembles the nonadiabatic entropy
production introduced in the classical context [21–23].
The purpose of this paper is to clarify and extend those
results, considering together the system and its surround-
ings. By tracing over the environment, we can then
recover the quantum map for the reduced system dynam-
ics. This setup allows us to unveil the origin of entropy
production in arbitrary processes from coarse graining and
derive corresponding FT’s. We also split the entropy
production into an adiabatic and a nonadiabatic contri-
bution, exactly as in classical stochastic thermodynamics.
However, contrary to what happens in classical systems,
the split is not always possible. A condition, derived in
Ref. [33], is necessary. We explore the similarities and
differences between classical and quantum FT’s in con-
crete examples.
The paper is organized as follows. In Sec. II, we

introduce a thermodynamic process for a generic bipartite
system that models a system and its environment. In this
section, we define the entropy production along the process
and the concomitant reduced system dynamics. We develop
a FT for this entropy production in Sec. III using a time-
reversed or backward thermodynamic process. In Sec. IV,
FT’s for the adiabatic and nonadiabatic entropy production
are derived. Our results are also extended both to the case
of concatenations of CPTP maps and multipartite environ-
ments. This is applied to the specific case of quantum
trajectories unraveled from Lindblad master equations in
Sec. V. Finally, relevant examples to illustrate our results
are given in Sec. VI, and we conclude in Sec. VII with some
final remarks.

II. QUANTUM OPERATIONS AND

ENTROPY PRODUCTION

Throughout the paper, we consider an isolated quantum
system composed of two parts, system and environment (or
ancilla), with Hilbert space H≡HS ⊗ HE, where HS and
HE are the local Hilbert spaces of the system and the
environment, respectively. We focus our attention on the
entropy production along the generic process depicted in
Fig. 1, consisting of initial and final local projective
measurements that bracket a unitary evolution. The out-
comes of the measurements constitute a quantum trajectory,
which plays a crucial role in the formulation of FT’s.

A. The (forward) process

The process begins with the global system in an
uncorrelated product state ρSE ¼ ρS ⊗ ρE. The spectral
decomposition of the local states reads

ρS ¼
X

n

pnPn; ρE ¼
X

ν

qνQν; ð1Þ

where pn and qν are the eigenvalues, and fPng and fQνg
are orthogonal projectors onto their respective eigensubpaces
(for simplicity, we assume they are rank-1 projectors).
At t ¼ 0, an initial projective measurement on the system

and environment is performed using the eigenprojectors in
Eq. (1), and outcomes n and ν are obtained. This meas-
urement projects the system and environment onto pure
states jψnihψnjS ≡ Pn and jϕνihϕνjE ≡Qν, without modi-
fying the average or unconditional state of the global
system (½PnQν; ρSE� ¼ 0).
Subsequently, we evolve the compound system during

the time interval ½0; τ�. The corresponding unitary
operator UΛ is generated by the Hamiltonian HðtÞ ¼
HðλtÞ, which depends on time through an external param-
eter λt that we vary according to a prescribed protocol
Λ ¼ fλt∶0 ≤ t ≤ τg:

FIG. 1. Schematic picture of the forward process presented in the main text. The system and environment start from an uncorrelated
state ρS ⊗ ρE. A local measurement of observables with projectors fPn;Qνg is carried out, which does not alter the density matrix in the
average evolution but selects a pure state jψni ⊗ jϕνi at the trajectory level. The system and environment then interact with each other
according to the unitary evolution UΛ, ending in an entangled state ρ0SE. Finally, we measure again, now using projectors fP�

m;Q
�
μ:g. In

the last measurement, quantum correlations in state ρ0SE are erased, while the final state ρ�SE may still have, in general, nonzero classical
correlations. The reduced evolution of the system conditioned to the measurement in the environment is described through the quantum
operation Eμν (shaded area).
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UΛ ≡ T þ exp

�

−
i

ℏ

Z

τ

0

dtHðλtÞ
�

; ð2Þ

where T þ denotes the time-ordering operator. As a result,
the compound system at time t ¼ τ is described by the new
density matrix

ρ0SE ¼ UΛðρS ⊗ ρEÞU†

Λ
; ð3Þ

which, in general, contains classical and quantum
correlations. The reduced (or local) states of the system
and the environment can be obtained by partial tracing:
ρ0S ¼ TrE½ρ0SE� and ρ0E ¼ TrS½ρ0SE�.
To complete the process, a second local projective

measurement is performed at time t ¼ τ on both the
system and the environment. The measurement operators
are arbitrary (rank-1) orthogonal projectors, denoted as
fP�

mg and fQ�
μg. Unlike in the first measurement, in this

case, the average global state is disturbed, transforming into

ρ�SE ¼
X

m;μ

ðP�
m ⊗ Q�

μÞρ0SEðP�
m ⊗ Q�

μÞ

¼
X

m;μ

ϱ�mμðP�
m ⊗ Q�

μÞ: ð4Þ

Notice also that this is not a product state: The final local
measurement does not eliminate the classical correlations
contained in ρ�SE [58]. However, the measurement collapses
the local states of the system and environment into pure
states jψ�

mihψ�
mjS ≡ P�

m and jϕ�
μihϕ�

μjE ≡Q�
μ. Thus, the

spectral decomposition of the reduced states after the final
measurement is

ρ�S ≡ TrEðρ�SEÞ ¼
X

m

p�
mP

�
m; ð5Þ

ρ�E ≡ TrSðρ�SEÞ ¼
X

μ

q�μQ
�
μ; ð6Þ

where p�
m ¼ P

μϱ
�
mμ and q�μ ¼

P

mϱ
�
mμ are the correspond-

ing classical marginal distributions.

B. Reduced dynamics: Maps and operations

The global manipulation described above induces a
reduced dynamics on the system alone. The shaded area in
Fig. 1 can be considered as an effective transformation of the
state of the system, ρS → ρ0S, described by the action of a
quantumCPTPmap E that admits aKraus representation [59]

ρ0S ¼ EðρSÞ ¼
X

μ;ν

MμνρSM
†
μν; ð7Þ

with a set of Kraus operators Mμν satisfying
P

μ;νM
†
μνMμν ¼ I.

There exist many Kraus representations fMμνg that
reproduce the reduced dynamics on the system. We choose

Mμν ¼
ffiffiffiffiffi

qν
p hϕ�

μjEUΛjϕνiE: ð8Þ

This specific representation retains all the details of the
evolution of the environment, unequivocally relating each
Kraus operator Mμν with a transition jϕνiE → jϕ�

μiE in the
environment. This is a key point in order to characterize
the thermodynamics of the process at the trajectory level,
as we will see shortly. Let us finally define the quantum
operation:

EμνðρSÞ ¼ MμνρSM
†
μν; ð9Þ

which describes the conditioned evolution of the system
when the environment starts in the pure state jϕνiE and ends
in the state jϕ�

μiE after measurement [60].

C. Average entropy production

We now discuss the entropy change along the
process. We analyze here the von Neumann entropy,
SðρÞ ¼ −Tr½ρ ln ρ�, of the global system. Recall that the
von Neumann entropy coincides with the thermodynamic
entropy for equilibrium states (setting the Boltzmann
constant k ¼ 1). For nonequilibrium states, there are some
situations where the von Neumann entropy can still be
interpreted as a thermodynamic entropy [61]. However,
in this paper, we refrain from identifying SðρÞ with a
thermodynamic entropy and refer to it simply as the
entropy or the quantum entropy of state ρ.
Along the process described above, the quantum entropy

of the global system changes as

ΔiSinc ≡ Sðρ�SEÞ − SðρSEÞ: ð10Þ

This quantity is the quantum entropy production along
the process. We refer to ΔiSinc as the inclusive entropy
production to distinguish it from the entropy production
when the system and the environment are separated at the
end of the process and the final classical correlations are
lost (see below). The inclusive entropy production is
always non-negative; this is because von Neumann entropy
cannot decrease in a projective measurement, and it stays
constant along any unitary evolution, i.e., SðρSEÞ ¼
Sðρ0SEÞ ≤ Sðρ�SEÞ. Notice also that SðρÞ equals the classical
Shannon entropy of the probability distribution of pure
states in the eigenbasis of ρ. In particular, we have

SðρSEÞ ¼ −
X

n;ν

pnqν lnðpnqνÞ; ð11Þ

Sðρ�SEÞ ¼ −
X

m;μ

ϱ�mμ ln ϱ�mμ: ð12Þ
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To express the entropy of the global state in terms of
local entropies and correlations, one can use the mutual
information. For an arbitrary state σSE with reduced states
σS and σE, the mutual information is defined as

IðσSEÞ≡ SðσSÞ þ SðσEÞ − SðσSEÞ
¼ SðσSEjjσS ⊗ σEÞ: ð13Þ

Here, we have introduced the quantum relative entropy,
SðρjjσÞ≡ Tr½ρðln ρ − ln σÞ�, a nonsymmetric and non-neg-
ative measure of the distinguishability between states ρ and
σ, which vanishes if and only if ρ ¼ σ [62]. This property
implies that mutual information becomes zero only for
product (uncorrelated) states σSE ¼ σS ⊗ σE. Using mutual
information, the inclusive entropy production can be
rewritten as

ΔiSinc ¼ Sðρ�SÞ − SðρSÞ þ Sðρ�EÞ − SðρEÞ − Iðρ�SEÞ
¼ Sðρ�SÞ − Sðρ0SÞ þ Sðρ�EÞ − Sðρ0EÞ
þ Iðρ0SEÞ − Iðρ�SEÞ ≥ 0; ð14Þ

where we have taken into account that the initial state is
uncorrelated and, therefore, IðρSEÞ ¼ 0. The second equal-
ity shows that there are two sources of entropy production.
The first one is the measurement disturbance of the final
local states ρ0S → ρ�S and ρ0E → ρ�E, which can be avoided
only by measuring in the eigenbasis of the reduced states
ρ0S and ρ0E. The second source, captured by the term
Iðρ0SEÞ − Iðρ�SEÞ ≥ 0, is the erasure of quantum correla-
tions in the state ρ0SE. This is due to the local character of the
measurements, which is zero only if the global interaction
UΛ does not generate quantum correlations [63,64].
In most situations, the classical correlations remaining

after the final measurement are irreversibly lost, with an
entropic cost equal to the mutual information Iðρ�SEÞ. This
is the case if we separate the system and environment after
the process and all subsequent manipulations are local and
do not incorporate any feedback based on the outcomes of
the final measurements. The entropy production in those
situations is

ΔiS≡ Sðρ�SÞ − SðρSÞ þ Sðρ�EÞ − SðρEÞ: ð15Þ

We refer to ΔiS as the noninclusive entropy production or
simply entropy production. The positivity of the non-
inclusive entropy production in Eq. (15) has already been
identified with the second law [48] and the existence of a
thermodynamic arrow of time [65,66]. Notice that ΔiS ≥

ΔiSinc ≥ 0 since the mutual information Iðρ�SEÞ is always
non-negative.
The differences between inclusive and noninclusive

entropy production will be illustrated in a specific example
in Sec. VI A.

III. BACKWARD PROCESS AND FLUCTUATION

THEOREM FOR THE ENTROPY PRODUCTION

A. Forward and backward trajectories

We now extend the previous analysis to stochastic
entropy changes at the level of individual quantum trajec-
tories. A trajectory γ of the process introduced in the
previous section (hereafter, we call it the forward process)
is simply given by the outcome of the four measurements,
i.e., γ ¼ fn; ν; μ; mg. This trajectory corresponds to the
following transition between pure states:

jψniS ⊗ jϕνiE → jψ�
miS ⊗ jϕ�

μiE: ð16Þ

Notice that, in virtue of our choice of the Kraus represen-
tation for the reduced dynamics [Eq. (8)], a trajectory γ is
also a trajectory of the reduced dynamics, where the pair
ðν; μÞ now indicates the Kraus operation affecting the
system instead of the initial and final states of the
environment (which is otherwise hidden in the reduced
dynamics). The probability to observe trajectory γ is given
by

PðγÞ ¼ pnqνTr½ðP�
m ⊗ Q�

μÞUΛðPn ⊗ QνÞU†

Λ
�: ð17Þ

To introduce the backward process, we make use of the
antiunitary time-reversal operator in quantum mechanics,
Θ, satisfying ΘΘ

† ¼ Θ
†
Θ ¼ I and Θi ¼ −iΘ. This oper-

ator changes the sign of odd variables under time reversal,
like linear and angular momenta or magnetic fields [6,67].
We consider the separate time-reversal operators for the
system, ΘS, and environment, ΘE, as well as the one for the
total bipartite system, Θ ¼ ΘS ⊗ ΘE.
The backward process is defined as follows. We start

with a generic initial state of the form

ρ̃SE ¼
X

m;μ

ϱ̃mμΘSP
�
mΘ

†

S ⊗ ΘEQ
�
μΘ

†
E: ð18Þ

As in the forward process, the first step at time t ¼ 0 is a
local measurement of the family of projectors fΘSP

�
mΘ

†

S;

ΘEQ
�
μΘ

†
Eg. According to Eq. (18), the outcomes m and μ

are obtained with probability ϱ̃mμ. We then let the
global system evolve under the Hamiltonian ΘHðλtÞΘ†

inverting the time-dependent protocol as Λ̃≡fλ̃tj0≤ t≤ τg
with λ̃t ¼ λτ−t. This evolution is given by the unitary
transformation

U
Λ̃
≡ T þ exp

�

−
i

ℏ

Z

τ

0

dtΘHðλ̃tÞΘ†

�

: ð19Þ

Finally, at time t ¼ τ, we perform new local measurements
on the system and environment using projectors fΘSPnΘ

†

S;

ΘEQνΘ
†
Eg. The outcome induces a quantum jump
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Θðjψ�
miS ⊗ jϕ�

μiEÞ → ΘðjψniS ⊗ jϕνiEÞ; ð20Þ

and the corresponding backward trajectory γ̃ ¼ fm; μ; ν; ng
occurs with probability

P̃ðγ̃Þ ¼ ϱ̃mμTr½ΘðPn ⊗ QνÞΘ†U
Λ̃
ΘðP�

m ⊗ Q�
μÞΘ†U†

Λ̃
�:

ð21Þ

B. Fluctuation theorem

The unitary transformations corresponding to the forward
and the backward process satisfy the so-called microrever-
sibility principle for nonautonomous systems [6,68]:

Θ
†U

Λ̃
Θ ¼ U−1

Λ
¼ U†

Λ
: ð22Þ

This is the key property that relates the probabilities of
trajectories γ and γ̃ in a quantum FT. By comparing the
probabilities (17) and (21), using microreversibility (22) and
the cyclic property of the trace, we immediately get

Δisγ ≡ ln
PðγÞ
P̃ðγ̃Þ ¼ ln

pnqν
ϱ̃m;μ

¼ σSnm þ σEνμ − Ĩmμ; ð23Þ

where we have defined the quantities

σSnm ¼ lnpn − ln p̃m; σEμν ¼ ln qν − ln q̃μ; ð24Þ

Ĩm;μ ¼ ln ϱ̃m;μ − ln p̃mq̃μ: ð25Þ

The terms in Eq. (24) are related to entropy changes per
trajectory in the system and the environment, whereas Ĩm;μ in
Eq. (25) corresponds to the stochastic version of the mutual
information [25,69] in the initial state of the backward
process (18). From the detailed FT in Eq. (23), we
immediately have the integral version

he−Δisγ i ¼
X

γ

PðγÞe−Δisγ ¼
X

γ

P̃ðγ̃Þ ¼ 1; ð26Þ

and, using Jensen’s inequality hexi ≥ ehxi, one obtains a
second-law-like expression hΔisγi¼hσSiþhσEi−hĨi≥0.
The interpretation of Δisγ depends on the choice of ρ̃SE,

the initial global state of the backward process. If we
set ρ̃SE ¼ Θρ�SEΘ

†, then ϱ̃mμ ¼ ϱ�mμ and Δisγ becomes the
inclusive entropy production per trajectory. Its average,

hΔisγi ¼ −
X

m;μ

ϱ�mμ ln ϱ�mμ þ
X

n

pn lnpn þ
X

ν

qν ln qν

¼ Sðρ�SEÞ − SðρSÞ − SðρEÞ ¼ ΔiSinc; ð27Þ

equals the inclusive entropy production defined in Eq. (10).
If the initial condition for the backward process is the

uncorrelated state ρ̃SE ¼ Θðρ�S ⊗ ρ�EÞΘ†, then ϱ̃mμ ¼ p�
mq

�
μ

and Δisγ is the noninclusive entropy production per
trajectory, whose average yields the entropy production
defined in Eq. (15),

hΔisγi ¼ Sðρ�SÞ − SðρSÞ þ Sðρ�EÞ − SðρEÞ ¼ ΔiS: ð28Þ

A third choice sets the environment in the (inverted) initial
state of the forward process, ρ̃SE ¼ Θðρ�S ⊗ ρEÞΘ†, which
yields ϱ̃mμ ¼ p�

mqμ. In this case, both initial and final local
measurements in the environment are performed in the
same basis Q�

μ ¼ Qμ, and we obtain

hΔisγi ¼ ΔiSþ Sðρ�EjjρEÞ; ð29Þ

which includes an extra contribution measuring the dis-
turbance on the environment during the process. The term
Sðρ�EjjρEÞ, unlike Sðρ�EÞ − SðρEÞ, is negligible when the
environmental state is modified only infinitesimally (see
Appendix A), as is the case, e.g., of a large reservoir.
Moreover, when ρE is a Gibbs state, Eq. (29) is the entropy
production proposed in Ref. [50], and Sðρ�EjjρEÞ corre-
sponds to the thermodynamic entropy production due to
irreversibly resetting the ancilla back to ρE in contact with
an equilibrium reservoir at the same temperature. Finally,
we stress that for equilibrium canonical initial conditions
both in the forward and in the backward processes, the
trajectory entropy production (23) equals the stochastic
dissipative work, and one recovers the celebrated Crooks
work theorem and the original Jarzynski equality [6,7].

IV. DUAL PROCESSES: ADIABATIC AND

NONADIABATIC ENTROPY PRODUCTION

We now focus on the reduced dynamics. Our aim is to
obtain FT’s involving only the quantum trajectory defined
in Sec. III and the initial and final states of the system.
To do that, we follow our previous work [33], where we
derived a FT for CPTP maps based on the dual dynamics
introduced by Crooks in Ref. [70]. Remarkably, the
resulting FT goes beyond the one that we have obtained
considering the global dynamics, Eq. (23), as it will reveal
an interesting split of the total entropy production into two
terms: the adiabatic entropy production, which accounts for
the irreversibility of the stationary regime, and the non-
adiabatic entropy production, which measures how far the
system is from that stationary state.
We apply the formalism in Ref. [33] to E, the map

governing the reduced dynamics of the process, as well as
to the map corresponding to the backward dynamics.
Therefore, we first need to introduce the reduced dynamics
in the backward process, which will be described by a new
CPTP map Ẽ. To do that, it is necessary that the system and
the environment start the backward process in an uncorre-
lated state ρ̃SE ¼ ρ̃S ⊗ ρ̃E; i.e., we have to impose Ĩmμ ¼ 0
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[see Eq. (25)]. Otherwise, the CPTP map of the backward
reduced dynamics would depend on the initial state of the
system. In that case, similarly to our choice (8) for the
forward process, a useful representation of Ẽ is

Ẽνμðρ̃SÞ ¼ M̃νμρ̃SM̃
†
νμ; ð30Þ

where the backward Kraus operators are given by

M̃νμ ¼
ffiffiffiffiffi

q̃μ
p

hϕνjEΘ†
EUΛ̃

ΘEjϕ�
μiE: ð31Þ

Notice that here we have swapped subscripts with respect to
the definition of the forward operators given by Eq. (8).
This can be done since the pair ðμ; νÞ is just a label of the
Kraus operator. The choice in Eq. (31) means that the
operation Ẽνμ is equivalent to obtaining μ in the initial
measurement of the backward process and ν in the final
one. Now, microreversibility (22) implies an intimate
relationship between the forward and backward Kraus
operators:

Θ
†

SM̃νμΘS ¼
ffiffiffiffiffi

q̃μ
p

hϕνjEU†

Λ
jϕ�

μiE ¼ e−σ
E
μν=2M†

μν: ð32Þ

It is important to notice that the FT for the total entropy
production (23) can be derived directly from the above
equation. In other words, Eq. (32) expresses the funda-
mental symmetry under time reversal, yielding the FT.

A. Dual-reverse process and nonadiabatic

entropy production FT

In order to go beyond the FT for the total entropy
production, we proceed as in Refs. [33,70]. These works,
inspired by classical stochastic thermodynamics, introduce
a quantum dual dynamics that reveals the irreversibility
associated with a map at the steady state. In the following,
we denote π as an invariant state of the forward map,
EðπÞ ¼ π, which we indeed assume to be positive definite.
The dual dynamics—which we call here dual-reverse
dynamics, following the criterion used for classical systems
[21–23]—is defined as a map D̃ðρÞ such that π̃ ≡ ΘSπΘ

†

S is
an invariant state, i.e., D̃ðπ̃Þ ¼ π̃. Furthermore, when the
map is applied several times starting from the stationary
state π̃, it generates trajectories γ̃ distributed as P̃Dðγ̃jπ̃Þ ¼
PðγjπÞ. Here, the trajectories are γ ¼ fn; ðν1; μ1Þ;…;
ðνN ; μNÞ; mg and γ̃ ¼ fm; ðμN ; νNÞ;…; ðμ1; ν1Þ; ng, corre-
sponding to N applications of the map.
Summarizing, in the stationary regime, the dual-reverse

dynamics generates the same ensemble of trajectories as the
forward process, but reversed in time. For instance, if the
map describes the dynamics of a system in contact with a
single thermal bath (thermalization), then the forward
process generates reversible trajectories (indistinguishable
from their reversal) and the dual-reverse map coincides
with the forward map. In nonequilibrium situations, the

dual generically inverts flows. For instance, for a system in
contact with two thermal baths at different temperatures,
the dual-reverse dynamics is usually obtained by swapping
the temperatures of the baths, hence inverting the flow
of heat.
In any case, one can prove that a Kraus representation of

the dual-reverse map is given by the operators [33,70]

D̃νμ ¼ ΘSπ
1
2M†

μνπ
−1
2Θ

†

S: ð33Þ

Finally, the dual-reverse process is the dual-reverse map
complemented by a specific choice of the initial condition
for the system (the environment does not appear explicitly
in the dual map, which acts only on the system). The
appropriate initial condition for the dual-reverse process is
ρ̃S, i.e., the same as the backward process.
We now have three processes: the forward E, the back-

ward Ẽ, and the dual-reverse D̃, each one inducing an
evolution in the system characterized by trajectories
γ ¼ fn; ν; μ; mg. We can compute the probability of
observing a trajectory γ or its reverse γ̃ ¼ fm; μ; ν; ng in
each of those evolutions. With a self-explanatory notation,
these probabilities read

PðγÞ ¼ pnTr½P�
mMμνPnM

†
μν�; ð34Þ

P̃ðγ̃Þ ¼ p̃mTr½ΘSPnΘ
†

SM̃νμΘSP
�
mΘ

†

SM̃
†
νμ�; ð35Þ

P̃Dðγ̃Þ ¼ p̃mTr½ΘSPnΘ
†

SD̃νμΘSP
�
mΘ

†

SD̃
†
νμ�: ð36Þ

To obtain FT’s from these expressions, we need a condition
of proportionality between operators M†

μν and D̃νμ, similar

to the relationship (32) between M†
μν and M̃νμ.

In Ref. [33] inspired by Ref. [71], we found that a
necessary and sufficient condition for that proportionality
is the following. We first define the nonequilibrium
potential Φ ¼ − ln π from the invariant state π. Its spectral
decomposition reads

Φ ¼
X

i

ϕijπiihπij; ð37Þ

where ϕi ¼ − ln πi, and πi and fjπiig are, respectively,
the eigenvalues and eigenstates of the invariant density
matrix π. Now, we require that each Kraus operator Mμν

is unambiguously related to a nonequilibrium potential
change Δϕμν (note, however, that the converse statement is
not necessarily true; i.e., we may, have for different values
of μ and ν, the same value of Δϕμν). In the invariant-state
eigenbasis, this condition reads

Mμν ¼
X

i;j

m
μν
ij jπjihπij; ð38Þ
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with m
μν
ij ¼ 0 whenever ϕj − ϕi ≠ Δϕμν. As pointed out in

Ref. [33], this condition does not imply single jumps
between pairs of π eigenstates, but it could account for
any set of correlated transitions between different pairs with
the same associated Δϕμν. An extreme example is a unital
map, where π is proportional to the identity matrix. In that
case, Δϕμν ¼ 0, and any complex coefficients mμν

ij satisfy
Eq. (38). It is not hard to show that condition (38) is
equivalent to [33]

½Φ;Mμν� ¼ ΔϕμνMμν; ½Φ;M†
μν� ¼ −ΔϕμνM

†
μν: ð39Þ

This alternative formulation of Eq. (38) indicates that, when
Δϕμν ≠ 0,Mμν can be interpreted as ladder operators in the
eigenbasis of the invariant state π.
For thermalization or Gibbs preserving maps, with

π ¼ e−βðH−FÞ, β ¼ ðkTÞ−1 being the inverse temperature
and F the equilibrium free energy, the potential is
Φ ¼ βðH − FÞ and kTΔΦ is the energy transfer between
the system and the environment, i.e., the heat. In this case,
condition (38) implies that the Kraus operators produce
jumps between levels with the same energy spacing or,
equivalently, jumps with a well-defined value of the heat.
Introducing condition (38) in Eq. (33), one easily derives

the following relationship between the forward and the
dual-reverse Kraus operators [33]:

Θ
†

SD̃νμΘS ¼ eΔϕμν=2M†
μν; ð40Þ

and, using Eq. (32), one gets

D̃νμ ¼ eðσ
E
μνþΔϕμνÞ=2M̃νμ: ð41Þ

Finally, inserting Eqs. (40) and (41) into the expressions
for the probability of trajectories, Eqs. (34)–(36), we obtain
the following FT’s:

Δis
na
γ ≡ ln

PðγÞ
P̃Dðγ̃Þ

¼ σSnm − Δϕμν; ð42Þ

Δis
a
μν ≡ ln

P̃Dðγ̃Þ
P̃ðγ̃Þ ¼ σEμν þ Δϕμν: ð43Þ

We call Δis
a
μν the adiabatic entropy production and Δis

na
μν

the nonadiabatic entropy production, following the termi-
nology used in classical stochastic thermodynamics
[21–23]. They contribute to the total entropy production
per trajectory, Δisγ ¼ Δis

a
μν þ Δis

na
γ , as defined in Eq. (23).

Below, we discuss the averages of the adiabatic and
nonadiabatic entropy production in some cases, clarifying
the origin of the terms.

B. Dual process and adiabatic entropy production FT

Notice that Eq. (43) is not a proper FT for the forward
process. In particular, we cannot derive a Jarzynski-like
equality for expðΔis

a
μνÞ averaged over forward trajectories,

PðγÞ. To achieve this goal, we need a further assumption
that will allow us to apply the results of Ref. [33] to the
backward process. In this way, we obtain the dual reverse of
the backward process, which we simply call the dual map
D. If condition (38) is satisfied, then, by virtue of Eq. (32),
the backward Kraus operators can be written as

M̃νμ ¼ e−σ
E
μν=2

X

i;j

ðmμν
ij Þ�ΘSjπiihπjjΘ†

S

¼
X

i;j

m̃
νμ
ij jπ̃jihπ̃ij; ð44Þ

with m̃νμ
ij ≡ e−σ

E
μν=2ðmμν

ji Þ�. We observe that, setting Δϕ̃νμ ¼
−Δϕμν, condition (38) is recovered for the backward
process. However, a requirement to apply the theoretical
framework developed in Ref. [33] is that jπ̃i≡ ΘSjπi is an
invariant state of the backward map Ẽ. This is not warranted
by the definition of Ẽ, not even when the Kraus operators
are of the form (38). Therefore, we have to add this extra
assumption. In particular, it is satisfied when the driving
protocol associated with the map is time symmetric, the
Hamiltonian of the environment is invariant under time
reversal, and we perform the same measurements at the
beginning and the end of the process on the environment.
This is the case of the infinitesimal maps that govern the
dynamics of a quantum Markov process since, even in the
case of arbitrary driving, each map is generated by a
constant Hamiltonian.
We now obtain the dual operators Dμν, applying trans-

formation (33) to the backward Kraus operators M̃νμ (with

the role of ΘS and Θ
†

S swapped [33]). Similarly to Eq. (40),
condition (38) on the backward operators implies

ΘSDμνΘ
�
S ¼ eΔϕ̃νμ=2M̃†

νμ ¼ e−Δϕμν=2M̃†
νμ; ð45Þ

and, using Eq. (32),

Dμν ¼ e−ðσ
E
μνþΔϕμνÞ=2Mμν: ð46Þ

The dual process is given by the dual map with initial
condition ρS. The trajectories generated by this process are
distributed as

PDðγÞ ¼ pnTrS½P�
mDμνPnD

†
μν�: ð47Þ

Combining Eqs. (34) and (47) and using condition (32),
we get a new FT for the adiabatic entropy production:

Δis
a
μν ¼ ln

PðγÞ
PDðγÞ

¼ σEμν þ Δϕμν: ð48Þ
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C. Integral fluctuation theorems

We can now derive integral FT’s for the adiabatic and
nonadiabatic entropy productions:

he−Δis
nai ¼ 1; he−Δis

ai ¼ 1; ð49Þ

which follow from the detailed versions by averaging
over trajectories γ. Finally, convexity of the exponential
function provides the following two second-law-like
inequalities as a corollary hΔis

na
γ i ≥ 0 and hΔis

a
γi ≥ 0.

As for the FT for the total entropy production (23), the
meaning of these average entropies becomes clearer if the
initial condition of the backward process is specified.
Setting ρ̃ ¼ Θðρ�S ⊗ ρ�EÞΘ†, the average of the adiabatic
and nonadiabatic entropy production defined by Eqs. (40)
and (41) reads

ΔiSna ≡ hΔis
na
γ i ¼ Sðρ�SÞ − SðρSÞ − hΔϕi ≥ 0; ð50Þ

ΔiSa ≡ hΔis
a
γi ¼ Sðρ�EÞ − SðρEÞ þ hΔϕi ≥ 0; ð51Þ

and the sum equals the total noninclusive average entropy
production ΔiS [see Eq. (15)]. It is interesting to notice that
the average change of the potential,

hΔϕi ¼
X

μ;ν

PðγÞΔϕμν ¼
X

μ;ν

Tr½MμνρSM
†
μν�Δϕμν; ð52Þ

can be alternatively written in terms of averages over the
states of the system, ρ0S and ρS, if condition (38) is fulfilled.
That condition implies ½Φ;Mμν� ¼ MμνΔϕμν (see also
Ref. [33]). We introduce the commutator in Eq. (52),

hΔϕi ¼
X

μ;ν

Tr½ðΦMμν −MμνΦÞρSM†
μν�

¼ Tr½Φðρ0S − ρSÞ�; ð53Þ

where we have used the cyclic property of the trace and
Eqs. (7) and (8). Therefore, the average potential change
hΔϕi can be expressed as the change in the expected value
of the operatorΦ due to the map. Recall that the operatorΦ
acts on the Hilbert space of the system HS, i.e., is a local
observable on the system.
If the final measurement does not alter the state of the

system, i.e., if ρ�S ¼ ρ0S, or if the final measurement is
skipped, as is the case when we concatenate maps and the
system is measured only after the whole concatenation (see
Sec. IV E), we can write the average nonadiabatic entropy
production in an appealing form:

ΔiSna ¼ Sðρ0SÞ − SðρSÞ − hΔϕi
¼ Tr½ρSðln ρS þΦÞ� − Tr½ρ0Sðln ρ0S þΦÞ�
¼ SðρSjjπÞ − Sðρ0SjjπÞ ≥ 0; ð54Þ

where we have used the definition Φ ¼ − ln π of the
potential operator in terms of the invariant state π. Here,
we see that the nonadiabatic entropy production is related to
the distance between the state of the system and the invariant
state π. During the evolution, the state of the system can only
approximate the invariant state, and the nonadiabatic entropy
production is a measure of the irreversibility associated with
such convergence. In fact, inequality in Eq. (54) follows
from direct application of Ulhman’s inequality (monotonic-
ity of quantum relative entropy) holding for general CPTP
evolutions [51,62].

D. Multipartite environments

The results obtained so far can also be applied to a
multipartite environment. The corresponding Hilbert
space is decomposed as HE ¼⊗R

r¼1 Hr, corresponding
to R independent ancillas or reservoirs interacting with
the open system. We assume an uncorrelated initial state
of the environment, ρE ¼ ρ1 ⊗ … ⊗ ρR, and that the
measurements are performed locally in each environ-
mental ancilla.
In this case, the adiabatic entropy production per

trajectory and its average read (see details in Appendix B)

Δis
a
μν ¼

X

R

r¼1

σr
μðrÞνðrÞ

þ Δϕμν; ð55Þ

ΔiSa ¼
X

R

r¼1

Sðρ�rÞ − SðρrÞ þ hΔϕi ≥ 0: ð56Þ

E. Concatenation of CPTP maps

Up to now, we have considered a single interaction of
duration τ between the system and the environment [see
Eq. (2)]. The CPTP map E describes the evolution of the
system when the environment is measured before and
after the interaction. This framework can be extended to
concatenations of CPTP maps, where the system inter-
acts sequentially with the environment. Each single
interaction in a time interval ½t; tþ τ� is described by
a single CPTP map like E. The map describing the
reduced dynamical evolution for N interactions, from
t ¼ 0 to t ¼ Nτ, is

Ω ¼ EðNÞ
∘ � � � ∘EðlÞ

∘ � � � ∘Eð1Þ; ð57Þ

where, in particular, each map EðlÞ may have a different
(positive-definite) invariant state πðlÞ. We assume that
the system interacts from time tl−1 ≡ ðl − 1Þτ to time
tl ≡ lτ with a “fresh” (uncorrelated) environment in a

generic state ρ
ðlÞ
E ≡

P

αq
ðlÞ
α Q

ðlÞ
α , and, as in the single map

case, the environment is measured before and after
interaction with the system by projective measurements.
On the other hand, the system is only measured at the
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beginning and end of the whole concatenation (57), as
depicted in Fig. 2.
In this case, trajectories are specified by the set of

outcomes γ ¼ fn; ðν1; μ1Þ;…; ðνN ; μNÞ; mg, which can be
compared to the backward trajectories γ̃¼fm;ðνN ;μNÞ;…;
ðν1;μ1Þ;ng generated by the reverse sequence of maps
Ω̃ ¼ Ẽð1Þ

∘ � � � ∘ẼðlÞ
∘ � � � ∘ẼðNÞ. We find that all of our above

results apply as well to the concatenations setup (see
Appendix C), yielding the following three detailed fluc-
tuation theorems:

Δis
na
γ ¼ ln

PðγÞ
P̃Dðγ̃Þ

¼ σSnm −
X

N

l¼1

Δϕ
ðlÞ
μlνl ; ð58Þ

Δis
a
γ ¼ ln

PðγÞ
PDðγÞ

¼
X

N

l¼1

ðσEμlνl þ Δϕ
ðlÞ
μlνlÞ; ð59Þ

Δisγ ¼ ln
PðγÞ
P̃ðγ̃Þ ¼ Δis

na
γ þ Δis

a
γ; ð60Þ

where σSnm is given by Eq. (24), σEμlνl ¼ ln qðlÞνl − ln q̃ðlÞμl is
the entropy change in the environment due to the lth map,

and Δϕ
ðlÞ
μν ¼ − ln πðlÞμ þ ln πðlÞν is the change in nonequili-

brium potential for the lth map.

V. LINDBLAD MASTER EQUATIONS

The results of the last section can be applied to Lindblad
master equations [31,52]. Consider the following master
equation in Lindblad form [4,60,72], depending on an
external parameter λt:

_ρt ¼ −
i

ℏ
½H; ρ� þ

X

K

k¼1

�

LkρtL
†

k −
1

2
fL†

kLk; ρtg
�

≡ Lλt
ρt;

ð61Þ

where HðλtÞ is the system Hamiltonian in the selected
picture and LkðλtÞ are positive Lindblad operators, which
generally depend on the control parameter λt and describe
jumps in some (possibly time-dependent) basis. We assume
that there exists an instantaneous invariant state πλ, which is
the steady state of Eq. (61) when the external control
parameter is frozen: Lλπλ ¼ 0 [5].
The Lindblad equation (61) can be written as a concat-

enation of CPTP maps,

ρtþdt ¼ ðIS þ dtLλt
Þρt ≡ EðρtÞ; ð62Þ

with the Kraus representation

M0ðλtÞ≡ IS − dt

�

i

ℏ
H þ 1

2

X

K

k¼1

L†

kðλtÞLkðλtÞ
�

; ð63Þ

MkðλtÞ≡
ffiffiffiffiffi

dt
p

LkðλtÞ; k ¼ 1;…; K: ð64Þ

Recall that this Kraus representation is not unique [60]. As
before, the representation in Eqs. (63) and (64) is related to
a specific detection scheme for the jumps; that is, it implies
a specific choice of the initial state and the local observ-
ables to be monitored in the environment (the set of
projectors fQνg and fQ�

μg).
The Kraus representation in Eqs. (63) and (64) is based

on a family of operations Mk, with k ¼ 1;…; K, that
induce jumps in the state of the system and occur with
probabilities of order dt, and a single operation M0 that
induces a smooth nonunitary evolution and occurs with
probability of order 1. This implies that a trajectory γ

consists of a large number of 0’s punctuated by a few jumps
Mk, with k ¼ 1;…; K. An alternative way of describing the
trajectory is to specify the jumps kj and the times tj where

FIG. 2. (a) Schematic diagram of a trajectory generated by the map concatenation. Projective measurements on the system are only

performed at the beginning and at the end of the concatenation. (b) Any operation EðlÞ
μl;νl in the concatenation consists in the interaction of

the system with an environmental ancilla in the state ρ
ðlÞ
E via the unitary Û

ðlÞ
Λ

depending on the protocol Λl. The ancilla is measured
before and after interaction, generating outcomes νl and μl, respectively.

QUANTUM FLUCTUATION THEOREMS FOR ARBITRARY … PHYS. REV. X 8, 031037 (2018)

031037-9



they occur, i.e., γ¼fn;ðk1;t1Þ;…;ðkj;tjÞ;…;ðkN ;tNÞ;mg,
where, as before, n andm denote the outcomes of the initial
and final measurements in the system at times t ¼ 0 and
t ¼ tf. Jump k is given by the operation EkðρÞ≡MkρM

†

k,
whereas between two consecutive jumps at tj and tjþ1, the
evolution is given by the repeated application of the
operation corresponding to the Kraus operator M0ðλtÞ
in Eq. (63). This results in a smooth evolution given by
the operator

Ueffðtjþ1; tjÞ ¼ T þ exp

�

−
i

ℏ

Z

tjþ1

tj

dsHeffðλsÞ
�

; ð65Þ

with an effective non-Hermitian Hamiltonian that reads

HeffðλtÞ ¼ HðλtÞ −
iℏ

2

X

K

k¼1

L†

kðλtÞLkðλtÞ: ð66Þ

In this representation, the probability of a trajectory γ ¼
fn; ðk1; t1Þ;…; ðkj; tjÞ;…; ðkN ; tNÞ; mg is

PðγÞ ¼ Tr½P�
mU tf ;tN

EkN
U tN ;tN−1

…

× Ekl
…U t2;t1

Ek1
U t1;0

ðPnρ0PnÞ�; ð67Þ

with U tjþ1;tj
ðρÞ ¼ Ueffðtjþ1; tjÞρU†

effðtjþ1; tjÞ.

A. Backward, dual, and dual-reverse dynamics

Consider now the backward dynamics. The time inver-
sion of the evolution of the global system corresponds to a
time-reversed version of the Lindblad master equation (61).
As in the previous section, the backward process is
generated by inverting the sequence of operations together
with the time inversion of each operation in the sequence.
The map corresponding to an infinitesimal time step in
the time-reversed dynamics, ρ̃tþdt ¼ Ẽðρ̃tÞ, admits a Kraus
representation with Kraus operators M̃kðλtÞ. To obtain the
backward map, we would need to know details about the
environment that induces the Markovian dynamics given
by the Lindblad equation (61). However, in the previous
sections, we have derived a relationship between the
forward and backward CPTP maps, namely, Eq. (32):

M̃0 ¼ e−σ
E
0
=2
ΘSM

†

0Θ
†

S; ð68Þ

M̃k ¼ e−σ
E
k
=2
ΘSM

†

kΘ
†

S: ð69Þ

Imposing the backward maps to be trace preserving, that
is, M̃†

0M̃0 þ
P

kM̃
†

kM̃k ¼ I, we obtain σE0 ¼ 0, and the
consistency condition

X

K

k¼1

ðL†

kLk − LkLk
†e−σ

E
k Þ ¼ 0: ð70Þ

Any set of numbers fσEk g satisfying Eq. (70) defines,
through Eq. (68), an admissible backward process. The
existence of such a set is warranted since any Lindblad
equation can be derived from the interaction between the
system and an ancilla.
For any trajectory γ ¼ fn; ðk1; t1Þ;…; ðkN ; tNÞ; mg gen-

erated in the forward process with probability PðγÞ, there
exists a backward trajectory γ̃¼fm;ðkN ;tNÞ;…;ðk1;t1Þ;ng
occurring in the backward process with probability P̃ðγ̃Þ.
The backward trajectory can also be identified by the times
of successive jumps. In this representation, the probability
of trajectory γ̃ can be written as

P̃ðγ̃Þ ¼ Tr½ΘSPnΘ
†

SŨ t1;0
Ẽk1

Ũ t2;t1
…Ẽkl

…

× Ũ tN ;tN−1
ẼkN

Ũ tf ;tN
ðΘSP

�
mρtfP

�
mΘ

†

SÞ�; ð71Þ

where Ẽkðρ̃Þ ¼ M̃kρ̃M̃
†

k. The smooth evolution between
jumps Ũ t0;tðρ̃tÞ ¼ Ũeffðt0; tÞρ̃tŨ†

effðt0; tÞ is given by the
operator

Ũeffðt0; tÞ ¼ T þ exp

�

i

ℏ

Z

t0

t

dsΘSH
†

effðλ̃sÞΘ†

S

�

; ð72Þ

where fλ̃tg again corresponds to the inverse sequence of
values for the control parameter. It can be shown that this
smooth evolution obeys the microreversibility relationship
Θ

†

SŨeffðt0; tÞΘS ¼ Ueffðt0; tÞ†.
Let us discuss now the dual and dual-reverse dynamics.

The condition (39), which is necessary to define the dual-
reverse process, reads [31,52]

½Φ; Lk� ¼ ΔϕkLk; ½Φ; L†

k� ¼ −ΔϕkL
†

k: ð73Þ

These commutation relationships indicate that the Lindblad
operators LkðλtÞ promote jumps between the eigenstates
of πλt . Furthermore, as the condition must be fulfilled
for the operator M0 in Eq. (63) as well, we need
½H;

P

kL
†

kLk� ¼ ½H;Φ� ¼ 0, which in turn implies
Δϕ0 ¼ 0. This means that the instantaneous steady state
of the dynamics must be diagonal in the basis of the
Hamiltonian term appearing in Eq. (61). This condition
is fulfilled by equilibrium Lindblad equations and in
situations in which the operator H becomes the identity
operator in an appropriate interaction picture (see, e.g.,
Refs. [45,73]). However, the condition can be broken in
nonequilibrium situations, a genuine quantum effect. In
Sec. VI C, we present an example of a periodically driven
cavity mode where the adiabatic entropy production can
be negative. Finally, as discussed in Sec. IV B, we recall
that the fluctuation theorem for the adiabatic entropy
production can be stated when the backward maps Ẽ

admits π̃λ ≡ ΘSπλΘ
†

S as an invariant state.
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If these conditions are fulfilled, the dual process is defined
by the dual operations Dkð·Þ ¼ Dkð·ÞD†

k with Kraus oper-
ators fDkg as defined in Eq. (46), whereas the dual-reverse
process is given by operations D̃k ¼ D̃kð·ÞD̃†

k with Kraus
operators fD̃kg defined in Eq. (40) [see also Eqs. (C7) and
(C8) in Appendix C]. The probability of a trajectory γ in the
dual process, PDðγÞ, can be calculated from Eq. (67) by
using the same map U t0;t for the no-jump time evolution
intervals and by replacing the operations Ek by the dual
operationsDk. Analogously, for the dual-reverse process, the
probability of trajectory γ̃, P̃Dðγ̃Þ, can be constructed from
Eq. (71) with Ũ t0;t for the no-jump evolution and dual-reverse
operations D̃k. We further notice that, in general, Dk ≠ Mk

and D̃k ≠ M̃k; that is, σEk ≠ −Δϕk.
In many applications, the Lindblad operators come in

pairs, and the corresponding pair of terms in the sum (70)
cancel. This occurs if, for a specific pair of operators
fLi; Ljg, we have Li ¼

ffiffiffiffiffi

Γi

p
L and Lj ¼

ffiffiffiffiffi

Γj

p

L†, with
ΓiðλtÞ and ΓjðλtÞ being positive transition rates, and
LðλtÞ some arbitrary (possibly time-dependent) system
operator. Then, condition (70) implies (cf. Ref. [74])

σEi ðλtÞ ¼ lnðΓi=ΓjÞ;
σEj ðλtÞ ¼ lnðΓj=ΓiÞ ¼ −σEi ðλtÞ; ð74Þ

and the (inverted) Kraus operators of the backward map are
also operators of the forward map:

Θ
†

SM̃iΘS¼e−σ
E
i
=2M†

i ¼
ffiffiffiffiffi

dt
p

e−σ
E
i
=2L†

i ¼
ffiffiffiffiffi

dt
p

Lj¼Mj; ð75Þ

where we have used the detailed-balance relation (32).
Moreover, π̃λ ≡ ΘπλΘ

† is invariant under the backwardmap:

Ẽðπ̃λÞ ¼
X

k

M̃kΘSπλΘ
†

SM̃
†

k ¼
X

k

ΘSMkπλM
†

kΘ
†

S ¼ π̃λ:

ð76Þ

B. Entropy production rates

The above considerations lead us to reproduce the three
different detailed FT’s in Eq. (60) for quantum trajectories
generated by Lindblad master equations. From the integral
fluctuation theorems, we can derive second-law-like
inequalities analogous to Eqs. (50) and (51) for the entropy
production rates [31]:

_Si ¼ _Sna þ _Sa ¼ _Sþ h _σEi ≥ 0; ð77Þ

_Sna ¼ _S − _ϕ ≥ 0; _Sa ¼ h _σEi þ _ϕ ≥ 0; ð78Þ

where _S ¼ −Tr½_ρt ln ρt� is the derivative of the von
Neumann entropy of the system, _ϕ≡ Tr½_ρtΦðλtÞ� ¼
−Tr½_ρt ln πλt � is the nonequilibrium potential change rate,

and h _σEðλtÞidt ¼
P

kl
Tr½Ekl

ðρtÞ�σEklðλtÞ the entropy change
in the monitored environment during dt [52]. The three
above equations guarantee the monotonicity of the average
entropy production, ΔiS, and the adiabatic and nonadia-
batic contributions, ΔiSna and ΔiSa, during the whole
evolution.
The physical interpretation of the adiabatic and non-

adiabatic entropy production now becomes clear. The
nonadiabatic part can be written as

_Sna ¼ Tr½_ρtðln πλt − ln ρtÞ�; ð79Þ

which is the continuous time version of Eq. (54). If the
control parameter changes quasistatically, we have ρt ≃ πλt ;
therefore, the nonadiabatic entropy production vanishes.
This is analogous to the classical nonadiabatic entropy
production introduced in Refs. [20–23]. On the other hand,
the adiabatic contribution _Sa is, in general, different from
zero even if the driving is extremely slow. In a physical
system, this term accounts for the entropy production
required to keep the system out of equilibrium when λ is
fixed, and the associated dissipated energy is usually
referred to as housekeeping heat [20].
At this point, it is worth remarking an important differ-

ence between classical and quantum systems. In classical
systems, the split of the entropy production in two terms,
adiabatic and nonadiabatic, can always be done at the level
of trajectories, and both terms obey fluctuation theorems
that ensure the positivity of their respective averages. This
is possible for quantum systems only if Eq. (39) [or Eq. (73)
for Lindblad operators] is met. One can still use Eq. (79) as
a definition for the average nonadiabatic entropy produc-
tion _Sna and _Sa ¼ _Si − _Sna for the average adiabatic entropy
production rate. However, these definitions cannot be
extended to single trajectories; furthermore, they do not
obey a fluctuation theorem. In the next section, we discuss a
specific example where the condition is not fulfilled and, as
a consequence, the average adiabatic entropy production
rate can be negative.
Finally, it is also important to notice that _S and h _σEi in

Eq. (77) are exact differentials, i.e., can be written as the
time derivative of the system and the environment entropy,
respectively. On the other hand, the term _ϕ≡ Tr½_ρtΦðλtÞ�,
as well as the adiabatic and nonadiabatic entropy produc-
tion rates in Eq. (78), cannot be expressed, in general,
as a time derivative. One important exception is the case of
a constant invariant state πλt ¼ π like, for instance, in a
relaxation in the absence of driving. In that case, all the
quantities in Eqs. (77) and (78) are exact differentials. In
particular, the nonadiabatic entropy production when the
system relaxes from ρ0 to ρt is given by

ΔSna ¼ −SðρτjjπÞ þ Sðρ0jjπÞ ≥ 0; ð80Þ
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which equals ΔSna ¼ Sðρ0jjπÞ for a full relaxation to
ρτ ¼ π. The latter coincides with the entropy production
introduced by Spohn [75].

VI. EXAMPLES

We illustrate our findings with three paradigmatic
examples. In the first one, we consider a two-qubit CNOT
gate as a simple process with a finite-size environment to
illustrate the differences between the inclusive and non-
inclusive entropy production introduced in Sec. II C. The
second and third examples correspond to two representative
examples of nonequilibrium quantum Markov systems.
The second example is an autonomous system coupled to
several thermal baths. In this case, the nonadiabatic entropy
production is zero except during the transient relaxation to
the steady state. However, it provides an intuitive picture
of how entropy is produced in nonequilibrium setups. The
third example is a driven system that does not fulfill
condition (38) and, consequently, does not admit the
splitting of the entropy into adiabatic and nonadiabatic
contributions with positive averages.

A. Two-qubit CNOT gate

The difference between the inclusive and noninclusive
entropy production introduced in Sec. II C becomes espe-
cially relevant for processes where the system of interest
repeatedly interacts with a finite-size reservoir. As an
extreme case, we consider both the system and environment
to be qubits with the same energy spacing ϵ. Their
Hamiltonians are given by HS ¼ ϵj1ih1jS and HE ¼
ϵj1ih1jE. We assume that the initial state of the system
is partially coherent, ρS ¼ ðI þ ασxÞ=2, with 0 ≤ α ≤ 1,
and the environmental qubit starting in a thermal state
ρE ¼ e−βHE=ZE at inverse temperature β ¼ 1=kBT ≥ 0,
with ZE ¼ 1þ e−βϵ being the partition function. The initial
state can be written as

ρSE ¼ ρS ⊗ ρE ¼ 1

4
ðI þ ασxÞ ⊗ ðI þ κσzÞ; ð81Þ

where κ ≡ tanhðβϵ=2Þ, σj with j ¼ x, y, z are the Pauli
matrices, and we take the standard qubit basis fj0i; j1ig for
both the system and the environment. The eigenbasis of ρSE
determines the projectors of the initial measurements
fPn;Qνg, which are, in this case, P� ¼ jψ�ihψ�j with
jψ�i ¼ ðj0i � j1iÞ=

ffiffiffi

2
p

and Qν ¼ jνihνj with ν ¼ 0, 1.
The system and environment interact through a CNOT

gate, UCNOT, where the system acts as the control qubit
[62]. The interaction leads to the following global system-
environment state:

ρ0SE ¼ UCNOTðρS ⊗ ρEÞU†

CNOT

¼ 1

4
ðI þ ασx ⊗ σx − ακσy ⊗ σy þ κσz ⊗ σzÞ: ð82Þ

Notice that ρ0SE has maximally mixed reduced states both
in the system and the environment. As a consequence, for
any choice of the final projectors fP�

m;Q
�
μg, we have

ρ0S ¼ ρ�S ¼ ρ0E ¼ ρ�E ¼ I=2. In contrast, the global state ρ�SE
depends on the final projectors. The average work done
during the interaction is W¼Tr½ðHSþHEÞðρ0SE−ρSEÞ�¼
ϵð1=2−e−βϵ=ZEÞ>0, while there is no further energy
contribution from local measurements.
The inclusive entropy production in Eq. (14) is just given

by the erasure of quantum correlations in the final mea-
surements, ΔiSinc ¼ Iðρ0SEÞ − Iðρ�SEÞ. This is the so-called
mutual induced disturbance introduced by Luo [63].
Moreover if, following Refs. [76,77], we maximize
Iðρ�SEÞ over fP�

m;Q
�
μg, then the inclusive entropy produc-

tion is equal to the (symmetric) quantum discord [64,78] of
the state ρ0SE. On the other hand, the noninclusive entropy
production in Eq. (15) is given by the total correlations in
state ρ0SE, that is, ΔiS ¼ ΔiSinc þ Iðρ�SEÞ ¼ Iðρ0SEÞ, and it
is independent of the choice of the local projectors of the
final measurements fP�

m;Q
�
μg.

The entropy production per trajectory Δisγ can be
calculated as explained in Sec. III. Recall that we may
obtain both the inclusive and noninclusive entropy pro-
duction depending on our choice for the initial state of the
backward process, and that the two quantities verify the
integral fluctuation theorem (26).
In Fig. 3, we show the probability distribution of

the entropy production PðΔisγÞ for βϵ¼2.5 and α¼0.8.
Blue solid bars correspond to the noninclusive version,
and purple dashed bars correspond to the inclusive one. The
latter depends on the final measurements. Here, we have
taken, as final projectors, the local energy eigenbasis,
fP�

m ¼ jmihmjS;Q�
μ ¼ jμihμjEg for m, μ ¼ 0, 1. The

different types of average entropy production are plotted
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FIG. 3. Probability distribution PðΔisγÞ of the entropy pro-
duction per trajectory for noninclusive (blue solid line) and
inclusive (purple dashed line) cases. Initial states of the system
and environment correspond to parameters α ¼ 0.8 and βϵ ¼ 2.5.
Inset: Plot of the different versions of the average entropy
production as a function of β (ϵ ¼ 1 and α ¼ 0.8).
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in the inset figure as functions of β for the same value of
α ¼ 0.8. There, black and blue solid lines correspond to the
average noninclusive entropy production with and without
the term Sðρ�EjjρEÞ due to local disturbance of the envi-
ronment [see Eq. (29)], respectively. Dashed and dotted
lines show the average inclusive entropy production for
different choices of the local projectors in the final
measurement fP�

m;Q
�
μg. The purple dashed line is obtained

when the final projectors are given by the local energy
eigenbasis fP�

m ¼ jmihmjS;Q�
μ ¼ jμihμjEg for m, μ ¼ 0,

1. The orange dotted line is the symmetric quantum
discord, obtained when maximizing Iðρ�SEÞ.
As mentioned in Sec. II C, inclusive and noninclusive

entropy production apply to different physical situations
depending on how the system and the environment are
manipulated after the process. If the system and environ-
ment are separated and every further manipulation is local,
then we do not make use of the classical correlations
given by the mutual information Iðρ�SEÞ; in this case,
the noninclusive entropy production is the magnitude
that adequately describes the increase of entropy. On the
other hand, global operations on the whole systemþ
environment can make use of those correlations and, for
instance, extract more energy from a thermal bath. We
illustrate this possibility in our simple example by consid-
ering a second CNOT interaction after the final local
measurements. For simplicity, we perform the final mea-
surements in the local energy basis, fP�

m ¼ jmihmjS;Q�
μ ¼

jμihμjEg for m, μ ¼ 0, 1. Applying these projectors to
state ρ0SE in Eq. (82), one obtains the final global state

ρ�SE ¼ 1

4
ðI þ κσz ⊗ σzÞ: ð83Þ

Applying the second CNOT to this state, one gets

ρ00SE ¼ UCNOTρ
�
SEU

†

CNOT ¼ ρ�S ⊗ ρE; ð84Þ

where ρE is the initial thermal state of the environment.
As we can see, in this second process, the system and
environment become completely decorrelated after inter-
action, while a work Wext ¼ Tr½ðHS þHEÞðρ00SE − ρ�SEÞ� ¼
ϵð1=2 − e−βϵ=ZEÞ is extracted when performing the second
gate. Notice that the extracted work equals the work
performed in the first gate. This work extraction is
impossible if we only have local operations at our disposal,
for which the final state ρ�SE is completely equivalent to the
uncorrelated state ρ�S ⊗ ρ�E.
This simple example highlights the importance of dis-

tinguishing between inclusive and noninclusive entropy
production in a small finite-size environment. Similar
conclusions can be applied for the term Sðρ�EjjρEÞ.

B. Autonomous thermal machine

Consider an autonomous three-level thermal machine
powered by three thermal reservoirs at different temper-
atures, as depicted in Fig. 4 [44,79–82]. Each bath mediates
a different transition between the energy levels, fjgi; jeAi;
jeBig. The Hamiltonian of the system is

HS ¼ ℏω1jeAiheAj þ ℏðω1 þ ω2ÞjeBiheBj; ð85Þ

that is, the three possible transitions g ↔ eA, eA ↔ eB, and
g ↔ eB have frequency gaps ω1, ω2, and ω3 ≡ ω1 þ ω2,
respectively. Each transition is weakly coupled to a bosonic
thermal reservoir in equilibrium at inverse temperature
βr ¼ 1=kTr with r¼1, 2, 3, where we assume β1≥β3≥β2
for concreteness.
The dynamics of the three-level thermal machine can be

described by a Lindblad master equation obtained in the
weak coupling limit by standard techniques from open
quantum systems theory [4,5,60]. It reads

_ρt ¼ −
i

ℏ
½HS; ρt� þ L1ðρtÞ þ L2ðρtÞ þ L3ðρtÞ; ð86Þ

where ρt is the density operator of the three-level system
and Lamb-Stark shifts have been neglected. The three
dissipative terms in the above equation describe the
irreversible dynamical contributions induced by each of
the three thermal reservoirs:

FIG. 4. Schematic diagram of a three-level thermal machine
acting as a refrigerator. The three transitions of the machine are
weakly coupled to thermal reservoirs at temperatures β1, β2, and
β3, inducing jumps between the machine energy levels (double
arrows). In a refrigeration cycle, the machine performs a sequence
of three jumps jgi → jeAi → jeBi → jgi, where it absorbs a
quantum of energy ℏω1 from the cold reservoir, together with
a quantum ℏω2 from the hot one, while emitting a quantum ℏω3

into the reservoir at intermediate temperature.
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LrðρtÞ ¼ Γ
ðrÞ
↓

�

arρta
†
r −

1

2
fa†rar; ρtg

�

þ Γ
ðrÞ
↑

�

a†rρtar −
1

2
fara†r ; ρtg

�

; ð87Þ

r ¼ 1, 2, 3, where a1 ¼ jgiheAj, a2 ¼ jeAiheBj and a3 ¼
jgiheBj are the ladder operators of the three-level system.
Equation (87) describes the emission and absorption
of excitations of energy ℏωr to or from reservoir r, at

rates Γ
ðrÞ
↓ ¼ γrðnthr þ1Þ and Γ

ðrÞ
↑ ¼ γrn

th
r , fulfilling detailed

balance ΓðrÞ
↓ ¼ eβrℏωrΓ

ðrÞ
↑ . Here, nthr ¼ ðeβrℏωr − 1Þ−1 is the

mean number of excitations of energy ℏωr in reservoir r,
and γr ≪ ωr0 ∀r, r0 ¼ 1, 2, 3 are the spontaneous emission
decay rates associated with each transition. The heat
fluxes entering from the reservoirs associated with the
imbalance in emission and absorption can be defined as
_Qr ¼ Tr½HSLrðρtÞ� for r ¼ 1, 2, 3, and the first law of
thermodynamics reads _U ¼ Tr½HS _ρS� ¼ _Q1 þ _Q2 þ _Q3.
Therefore, in our example, we have six Lindblad

operators (r ¼ 1, 2, 3),

L
ðrÞ
↓ ¼

ffiffiffiffiffiffiffiffi

Γ
ðrÞ
↓

q

ar; L
ðrÞ
↑ ¼

ffiffiffiffiffiffiffiffi

Γ
ðrÞ
↑

q

a†r ; ð88Þ

that define the infinitesimal CPTP map (62) with the Kraus
representation given by Eqs. (63) and (64). In particular,

M
ðrÞ
↓ ¼

ffiffiffiffiffi

dt
p

L
ðrÞ
↓ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

dtΓ
ðrÞ
↓

q

ar; ð89Þ

M
ðrÞ
↑ ¼

ffiffiffiffiffi

dt
p

L
ðrÞ
↑ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

dtΓ
ðrÞ
↑

q

a†r : ð90Þ

Here, the stochastic jumps during the evolution correspond
to simple transitions between the energy levels fjgi; jeAi;
jeBig. Therefore, the stochastic dynamics is completely
equivalent to a classical Markov process if the initial state
of the machine is diagonal in the Hamiltonian eigenbasis.
In particular, the stationary state reads

π ¼ πgjgihgj þ πAjeAiheAj þ πBjeBiheBj: ð91Þ

In Appendix D, we explicitly calculate the occupation
probabilities πg, πA, and πB. Nevertheless, the transient
dynamics could exhibit some quantum effects when the
initial state exhibits coherences in the Hamiltonian eigen-
basis. For instance, it has recently been pointed out that
initial coherence can be used to reach lower temperatures
during the transient dynamics [83,84].
The backward trajectory γ̃¼fm;ðkN ;tNÞ;…;ðk1;t1Þ;ng

is defined by the inverse sequence of events with respect to
γ, occurring in the backward process. We consider the
initial state of the backward process as the inverted final
state of the forward process, ΘSρtfΘ

†

S, while the thermal

reservoirs have the same state as in the forward process.
We further assume the simplest form for the time-inversion
operator ΘS, namely, the complex conjugation, i.e.,
ΘSψ ¼ ψ�, which commutes with any matrix with real
entries, as the Hamiltonian and the jump operators ar, a

†
r .

The Lindblad operators in this case come in pairs LðrÞ
↓ ¼

eβrℏωr=2L
ðrÞ†
↑ . Hence, the stochastic entropy change in the

environment σEk for each operator Lk is given by Eq. (74),
where the label k takes on the six possible values k ¼ ð↑; rÞ
and k ¼ ð↓; rÞ with r ¼ 1, 2, 3:

σ
ðrÞ
↓ ¼ βrℏωr; σ

ðrÞ
↑ ¼ −βrℏωr: ð92Þ

This is as expected since the upward jump r induced by the

operator LðrÞ
↓ in the forward trajectory γ dissipates a heat

ℏωr to the reservoir at inverse temperature βr. Equivalently,
in the downward jump r, a heat ℏωr is extracted from the
thermal bath, reducing its entropy by an amount βrℏωr.
The Kraus operators of the backward map are given by

Eq. (75): M̃ðrÞ
↓ ¼ M

ðrÞ
↑ , M̃ðrÞ

↑ ¼ M
ðrÞ
↓ , and M̃0 ¼ ΘSM0Θ

†

S

for the no-jump evolution. Indeed, by virtue of Eq. (72), we
obtain Ũeff ¼ ΘSU

†

effΘ
†

S ¼ Ueff for the effective evolution
operator describing the dynamics between jumps in the
backward process. From the above equations, we see that
the backward map Ẽ is obtained from the forward map E

inverting the jumps. We also notice that, consequently,
the backward map Ẽ admits the time-reversed steady state
π̃ ¼ ΘSπΘ

†

S ¼ π as an invariant state.
We next construct the dual and dual-reverse processes for

the model. The condition for the Lindblad operators to be of
the form in Eq. (38) is fulfilled here. Indeed, the non-
equilibrium potential, Φ ¼ − ln π, obeys ½Φ; HS� ¼ 0 and

½Φ; L
ðrÞ
k � ¼ Δϕ

ðrÞ
k L

ðrÞ
k ; ½Φ; L

ðrÞ†
k � ¼ −Δϕ

ðrÞ
k L

ðrÞ†
k ; ð93Þ

where the nonequilibrium potential changes associated
with each jump in the trajectory read

Δϕ0 ¼ 0; Δϕr↓ ¼ −β0rℏωr; Δϕr↑ ¼ β0rℏωr: ð94Þ

Here, we have introduced the quantities β01 ¼ lnðπ0=π1Þ=
ℏω1, β02¼ lnðπ1=π2Þ=ℏω2, and β03¼ lnðπ1=π2Þ=ℏω3, which
can be seen as the local inverse temperature (or virtual
temperature [85–87]) of each transition in the steady
state π. As shown in Appendix D, they determine the
direction of the heat flow in the stationary regime; i.e., if
β0r > βr, then the temperature of reservoir r is higher than
the local temperature of the machine and the heat _Qr is
positive (energy flows from the reservoir to the machine),
and vice versa. Moreover, for β0r ≃ βr, the heat flow is
proportional to β0r − βr; therefore, the difference β0r − βr
can be considered as a thermodynamic force for the heat
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flow between the reservoir r and the system. In Fig. 5, we
plot the local inverse temperatures β0r compared to the
reservoir temperatures βr for a specific choice of β2 ¼ 0.5
and β3 ¼ 4 and as a function of β1, the inverse temperature
of the coldest bath [we use units of ðℏω1Þ−1]. There is a
point, around β1 ¼ 9.3, where β0r ¼ βr and all the heat
flows in the stationary regime vanish. Below that point, the
steady heat flow from the coldest reservoir at inverse
temperature β1 is positive; i.e., the machine acts as a
refrigerator that extracts energy from the coldest bath 1.
On the other hand, for β1 > 9.3, heat flows from the
machine to the hottest bath at inverse temperature β2, so
the machine acts as a heat pump capable of heating up the
hottest reservoir 2.
The Kraus operators for dual and dual-reverse maps, D

and D̃, can be obtained from Eqs. (46) and (41), respec-
tively, by using Eqs. (92) and (94). They read

D
ðrÞ
↓ ¼

ffiffiffiffiffi

dt
p

eðβ
0
r−βrÞℏωrL

ðrÞ
↓ ; ð95Þ

D
ðrÞ
↑ ¼

ffiffiffiffiffi

dt
p

e−ðβ
0
r−βrÞℏωrL

ðrÞ
↑ ; ð96Þ

D̃
ðrÞ
↓ ¼

ffiffiffiffiffi

dt
p

e−β
0
rℏωrL

ðrÞ
↓ ; ð97Þ

D̃
ðrÞ
↑ ¼

ffiffiffiffiffi

dt
p

eβ
0
rℏωrL

ðrÞ
↑ : ð98Þ

We see that the dual and dual-reversed dynamics induce
similar jumps in the three-level system but with modified

rates depending on the differences β0r − βr. Only when
β0r ¼ βr for each r does the dual process become equal to
the forward process, and hence the dual-reverse process
equals the backward process (see Fig. 5).
Notice that Eq. (93), together with the backward map

having π̃ ¼ π as an invariant state, gives sufficient con-
ditions to ensure the existence of the three fluctuation
theorems for the adiabatic, nonadiabatic, and total entropy
productions during trajectory γ. They explicitly read

Δis
a
γ ¼

X

3

r¼1

ðβ0r − βrÞqðrÞγ ; ð99Þ

Δis
na
γ ¼ σSnm −

X

3

r¼1

β0rq
ðrÞ
γ ; ð100Þ

Δisγ ¼ σSnm −
X

3

r¼1

βrq
ðrÞ
γ ; ð101Þ

where σSnm is the stochastic entropy increase in the system,

and q
ðrÞ
γ ¼ ℏωrðnðrÞ↑ − n

ðrÞ
↓ Þ is the stochastic heat entering

the system from reservoir r, with n
ðrÞ
↑↓ being the total

number of upward or downward jumps in transition r.
The expression for the adiabatic entropy production is
particularly interesting since it is equal to the entropy
generated by the heat transfer between reservoirs at inverse
temperatures βr and β0r. In particular, the adiabatic entropy
production is identically zero when βr ¼ β0r, even though it
is possible to have transient flows of heat.
We can now calculate the average rates of nonequili-

brium potential and reservoir entropy changes:

h _σðrÞi ¼
X

k¼↑;↓

Tr½LðrÞ†
k L

ðrÞ
k ρt�σðrÞk ¼ −βr _Qr; ð102Þ

_Φr ¼
X

k¼↑;↓

Tr½LðrÞ†
k L

ðrÞ
k ρt�ΔϕðrÞ

k ¼ β0r _Qr; ð103Þ

where we split into three parts the nonequilibrium potential
flow _Φ ¼ _Φ1 þ _Φ2 þ _Φ3 ¼ −Tr½_ρS ln π�. The entropy pro-
duction rates hence read

_Sa ¼
X

r

ðβ0r − βrÞ _Qr ≥ 0; ð104Þ

_Sna ¼ _S −
X

r

β0r _Qr ≥ 0; ð105Þ

_Si ¼ _S −
X

r

βr _Qr ≥ 0; ð106Þ

showing the same structure as the trajectory entropies in
Eqs. (99)–(101). Since there is no driving in this example,
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FIG. 5. Comparison between the inverse effective (or virtual)
temperatures β0r (solid lines) and the real inverse temperatures of
the reservoirs βr (dashed lines) for r ¼ 1, 2, 3 (blue, red, orange),
as a function of β1 when ℏω1 ¼ 1 and ℏω2 ¼ 1.5. In the
refrigerator regime, the transition g ↔ eA is, at an effective
temperature, colder than the coldest reservoir, β01 ≥ β1, inducing
heat extraction from it, while the other transitions induce
dissipation of heat to the reservoir at intermediate temperature,
β2 ≥ β02, and absorption of heat in the hotter one, β02 ≥ β2. In the
heat pump regime, the three heat flows change directions as the
previous inequalities become inverted.
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the nonadiabatic entropy production reads as in Eq. (80),
and it equals ΔSna ¼ Sðρ0jjπÞ for a full relaxation to the
steady state π.
In the steady state, we have _Sna ¼ 0, and the first law

becomes
P

r
_Qss
r ¼ 0. This implies that the only contribu-

tion to the entropy production rate is the adiabatic one,
which can be written as

_Sa ¼ _Si ¼ ðβ3 − β2Þ _Qss
2 − ðβ1 − β3Þ _Qss

1 ≥ 0: ð107Þ

This equation can be used to bound the efficiency of the
machine in the different regimes of operation. For instance,
the efficiency of the machine acting as a refrigerator is
given by

ϵ ¼
_Qss
1

_Qss
2

≤
β3 − β2

β1 − β3
≡ ϵC; ð108Þ

where ϵC is the so-called Carnot efficiency of a
refrigerator [85].

C. Periodically driven cavity mode

Our third example consists of a single electromagnetic
field mode with frequency ω in a microwave cavity with
slight losses in one of the two mirrors. The losses of the
cavity are produced by the weak coupling of the cavity
mode to a bosonic thermal reservoir in equilibrium at
inverse temperature β ¼ 1=kT. In addition, an external
laser of the same frequency ω and weak intensity drives the
cavity mode producing excitations. The Hamiltonian of the
system can be expressed asHSðtÞ ¼ H0 þ VSðtÞ consisting
of two terms: The first one is the Hamiltonian of the
undriven mode H0 ¼ ℏωa†a, and

VSðtÞ ¼ iℏðϵa†e−iωt − ϵ�aeiωtÞ ð109Þ

describes the effect of the classical resonant laser field
with complex amplitude ϵ ¼ jϵjeiφ. Here, the subscript S
stands for the Schrödinger picture, whereas operators and
density matrices without any subscript will correspond to
the interaction picture with respect to H0 (H0 is, of course,
the same in the two pictures). Figure 6 shows a schematic
picture of the setup.
The reduced evolution of the cavity mode can be

described by the following Lindblad master equation [60]:

_ρSðtÞ ¼ −
i

ℏ
½HSðtÞ; ρSðtÞ� þ L(ρSðtÞ); ð110Þ

with the dissipative part

LðρÞ ¼ Γ↓

�

aρa† −
1

2
fa†a; ρg

�

þ Γ↑

�

a†ρa −
1

2
faa†; ρg

�

: ð111Þ

This term accounts for emission and absorption of photons
by the cavity mode from the equilibrium reservoir at
respective rates Γ↓ ¼ γ0ðnth þ 1Þ and Γ↑ ¼ γ0n

th. Here,
again, nth ¼ ðe−βℏω − 1Þ−1, and γ0 is the spontaneous
emission decay rate in the absence of driving. The
dissipative term LðρÞ does not depend on the driving:
It induces jumps in the eigenbasis of H0 and is also
invariant under the change of picture. Notice that this is
an approximation. For slow driving, for instance, the bath
induces jumps between the instantaneous eigenstates of the
Hamiltonian HSðtÞ. The dissipator (111) is valid for weak
driving and weak coupling with the thermal bath, that is,
γ0 ∼ jϵj ≪ ω [88].
In the interaction picture with respect toH0, the Lindblad

equation (110) reads [60]

_ρðtÞ ¼ −
i

ℏ
½V; ρðtÞ� þ L(ρðtÞ); ð112Þ

where V ¼ iℏðϵa† − ϵ�aÞ is the driving Hamiltonian in the
interaction picture, which turns out to be constant.
Before discussing the FT applied to this example, let us

calculate the energetics of the system from the Lindblad
equation. For this purpose, it is more convenient to express
the internal energy in the Schrödinger picture: UðtÞ ¼
Tr½HSðtÞρSðtÞ�. The first law reads _UðtÞ ¼ _WðtÞ þ _QðtÞ,
where the average work is given by

_WðtÞ ¼ Tr½ _HSðtÞρSðtÞ�
¼ ℏωTr½ðϵa†e−iωt þ ϵ�aeiωtÞρSðtÞ�
¼ ℏωTr½ðϵa† þ ϵ�aÞρðtÞ�: ð113Þ

We denote the average energy change not accounted for
by work as

FIG. 6. Schematic picture of the setup. The intracavity mode
H0 is externally driven by a resonant laser field VSðtÞ while in
weak contact with the environment at inverse temperature β,
producing the emission and absorption of photons.
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_QðtÞ ¼ Tr½HSðtÞ_ρSðtÞ� ¼ Tr½HSðtÞL(ρSðtÞ)�
¼ Tr½ðH0 þ VÞL(ρðtÞ)�; ð114Þ

although it is not necessarily equal to the heat, i.e., the
energy reversibly exchanged with a thermal reservoir that
accounts for the reservoir’s entropy change [89]. Below, we
discuss in detail the physical nature of this energy transfer.
The steady state of the dynamics (112) obeys

−ði=ℏÞ½V; π� þ LðπÞ ¼ 0. This equation can be solved
by noticing that the term ½V; ρ� in Eq. (112) cancels under
the transformation a → a − α, where α ¼ 2ϵ=γ0. The
resulting steady state is

π ¼ DðαÞ e
−βH0

Z0

D†ðαÞ; ð115Þ

where Z0 ¼ Tr½expð−βH0Þ�, and DðαÞ ¼ expðαa† − α�aÞ
is the unitary displacement operator in optical phase space,
fulfilling DðαÞaD†ðαÞ ¼ a − α, D†ðαÞ ¼ Dð−αÞ. In con-
trast to the undriven case, here the cavity does not reach
equilibrium with the reservoir: Coherences in the energy
basis do not decay to zero because of the work performed
by the external laser. Notice also that the state π defines a
limit cycle (unitary orbit) in the Schrödinger picture. In the
stationary regime, πSðtÞ ¼ e−iH0t=ℏπeiH0t=ℏ; i.e., the mode
rotates in optical phase space, according to the free
evolution _πS ¼ ð−i=ℏÞ½H0; πS�.
The energetics in this stationary regime is rather simple.

The internal energy is constant, even though the state πSðtÞ
depends on time: Uss ¼ Tr½HSπS� ¼ Tr½ðH0 þ VÞπ� ¼
Tr½H0π� ¼ ℏωðnth þ jαj2Þ, which is bigger than the
thermal average energy ℏωnth. The laser introduces energy
at a rate

_Wss ¼ ℏωTr½ðϵa† þ ϵ�aÞπ� ¼ ℏωγ0jαj2 ≥ 0; ð116Þ

which is dissipated to the thermal bath _Qss ¼ − _Wss.
The FT can be applied both to the Schrödinger and to

the interaction picture. Here, it is is more convenient to
determine the forward and backward processes in the
interaction picture, where there is no driving. The Kraus
operators for the map E in Eq. (62) read, in this case,

M0 ¼ I − dt

�

i

ℏ
V þ 1

2

X

k¼↓;↑

L†

kLk

�

;

for the no-jump evolution, and

M↓ ¼
ffiffiffiffiffi

dt
p

L↓ ¼
ffiffiffiffiffiffiffiffiffiffi

dtΓ↓

q

a;

M↑ ¼
ffiffiffiffiffi

dt
p

L↑ ¼
ffiffiffiffiffiffiffiffiffiffi

dtΓ↑

q

a†;

for the downward and upward jumps corresponding to
emission and absorption of photons.
The trajectory γ ¼ fn; ðk1; t1Þ;…; ðkN ; tNÞ; mg is then

constructed as in the previous example by counting the
jumps induced by the reservoir and registering the times at
which they occur.
Since the forward dynamics is governed by a single pair

of Lindblad operators fL↓ ¼
ffiffiffiffiffiffi

Γ↓

p

a; L↑ ¼
ffiffiffiffiffiffi

Γ↑

p

a†g, con-
dition (70) allows us to obtain the stochastic entropy
changes in the reservoir:

σE0 ¼ 0; σE↓ ¼ βℏω; σE↑ ¼ −βℏω: ð117Þ

In other words, in a downward (upward) jump, the entropy
in the environment increases (decreases) by βℏω, corre-
sponding to a transfer of energy ℏω. On average, this
transfer of energy equals Tr½H0L(ρðtÞ)�, whereas the
energy not accounted for by work is given by Eq. (114),
i.e., by _QðtÞ ¼ Tr½ðH0 þ VÞL(ρðtÞ)�. The origin of this
discrepancy is the choice of a dissipator (111) independent
of the driving. As already mentioned, the dissipator is valid
for weak driving [88], when the term Tr½VL(ρðtÞ)� ∼
Oðγjϵ0jÞ is negligible.
However, it is worth noticing that our approach does not

depend on the physical nature of the environment and its
interaction with the system. As shown in Sec. V, once a
Lindblad equation like (110), with a given set of Lindblad
operators for its unraveling, has been specified—no matter
how it has been derived—it induces an entropy change in
the environment given by Eq. (117). This is a direct
consequence of the microreversibility that yields condition
(70) on the Lindblad operators. When these operators
come in pairs, as is the case in our example, the condition
determines the entropy change in the environment
[see Eq. (74)].
Therefore, if one could conceive physical situations

where the Lindblad equation (110) is exact, then the
entropy production would be given by Eq. (117) and the
energy transfer Tr½VL(ρðtÞ)� would not contribute to
the entropy of the environment. A clue to the nature of
this energy transfer is provided by Ref. [55]. In that paper,
Elouard et al. introduce a driven two-level system in an
engineered thermal bath where excitations occur through a
third level with a very short lifetime and transitions are
monitored by measuring emitted photons. The resulting
Lindblad equation is the analog of Eq. (110) for a two-level
system, and the entropy change in the environment is
precisely Eq. (117). These results show that the energy
transfer Tr½VL(ρðtÞ)� is due to the collapse of a coherent
state induced by the photon detection. This energy transfer
does not change the entropy of the universe and has been
categorized either as “measurement work” [31,74] or as
“quantum heat” [54,55] due to measurement.
The Kraus operators of the backward map are given

by Eq. (75):
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M̃0 ¼ ΘM0Θ
† ¼ M0; ð118Þ

M̃↓ ¼
ffiffiffiffiffi

dt
p

L̃↓ ¼
ffiffiffiffiffi

dt
p

ΘL↑Θ
† ¼ M↑; ð119Þ

M̃↑ ¼
ffiffiffiffiffi

dt
p

L̃↑ ¼
ffiffiffiffiffi

dt
p

ΘL↓Θ
† ¼ M↓; ð120Þ

implying again that the forward and the backward maps are
equivalent; i.e., the jumps up (down) in the forward process
are transformed in jumps down (up) in the backward
process.
The main feature of this example is that the key condition

(38) is not fulfilled. Recall that this condition is needed to
define the dual and dual-reverse dynamics as well as the
stochastic adiabatic and nonadiabatic entropy production at
the trajectory level. Using the expression for the stationary
state, Eq. (115), we can calculate the nonequilibrium
potential in the interaction picture,

Φ ¼ − ln π ¼ βDðαÞH0D
†ðαÞ þ lnZ0

¼ βH0 − βℏωjαjðxφ − jαjÞ þ lnZ0; ð121Þ

where we have introduced the field quadrature

xφ ¼ a†eiφ þ a e−iφ: ð122Þ

The nonequilibrium potential Φ in Eq. (121) does not
obey Eq. (73) because the Lindblad operators appearing in
the dynamics (112) promote jumps among the eigenstates
of the unperturbed Hamiltonian H0, instead of the eigen-
states of the steady density matrix π. This implies that we
cannot associate a single change in the nonequilibrium
potential with each of the Lindblad jump operators, nor to
M0. As a consequence, the entropy production per trajec-
tory cannot be decomposed in adiabatic and nonadiabatic
contributions, and the corresponding fluctuation theorems

do not apply. However, the conditions in Eq. (73) can be
recovered in some cases by properly including the effect of
the driving on the Lindblad operators [74].
Even though the adiabatic and nonadiabatic entropy

production cannot be defined at the trajectory level, we can
calculate their averages [75] using, for instance, Eq. (78):

_Sna ¼ _S − βð _U − ℏωjαj _XφÞ; ð123Þ

_Sa ¼ _Si − _Sna ¼ βð _W − ℏωjαj _XφÞ: ð124Þ

Here, we have used _Si ¼ _S − β _Q and _UðtÞ¼h _H0i¼ _Qþ _W,
and introduced _Xφ ≡ Tr½xφ _ρðtÞ�, the rate at which the cavity
field mode is displaced by the laser (with phase φ) until the
steady state is reached. Since there are no fluctuation
theorems for these quantities, in principle, they could be
negative. The nonadiabatic entropy production, however,
still obeys Eq. (79) and, since the steady state π is constant in
the interaction picture, it can be written as the change of the
relative entropy between the state ρðtÞ and π, which is
always positive: _Sna ¼ − _S(ρðtÞjjπ) ≥ 0. This is not the case
of the adiabatic entropy production _Sa, which indeed can
take on negative values. The expression for _Sa in Eq. (123)
equals the entropy production in the steady state,
_Sa → βWss ¼ −βQss ≥ 0. However, it can be negative in
the transient regime, as shown in Fig. 7 (see also
Appendix E). In Fig. 7(a), we depict the evolution of
the three entropy production rates when the cavity mode
starts in a Gibbs thermal state in equilibrium with the
reservoir temperature, ρ0 ¼ expð−βH0Þ=Z0. We find that
the entropy of the mode is kept constant during the
evolution, _S ¼ 0 ∀t, which implies _Si ¼ −β _Q ≥ 0 and
_Sna ¼ βðℏωjαj _Xφ −

_UÞ ≥ 0. On the other hand, the adia-

batic entropy production rate _Sa ¼ βð _W − μ _XφÞ is negative

(a) (b)

FIG. 7. Time evolution of (a) adiabatic ( _Sa), nonadiabatic ( _Sna), and total ( _Si) entropy production rates represented by solid lines, and
(b) input power ( _W), rate at which the cavity mode absorbs energy ( _U), and displacement rate ( _Xφ). The cavity mode starts in

equilibrium with the thermal reservoir, ρ0 ¼ e−βĤ0Z, and the laser driving is switched on at t ¼ 0. The dashed line in (a) corresponds to
β _Wss, and we use vertical dotted lines to highlight the instant of time at which the adiabatic entropy production rate changes its sign (tn).
We use parameters ϵ ¼ 0.02ω, γ0 ¼ 0.01ω, and temperature kT ¼ 10ℏω, for ℏω ¼ 1 units.
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for times t < tn ≡ 2 ln 2=γ0. It is worth mentioning that for
this initial condition, the termTr½VL(ρðtÞ)� in the energetics
vanishes at any time t.
To explore the origin of this purely quantum effect, we

plot the energetics of the relaxation process in Fig. 7(b).
The cavity mode absorbs energy at constant entropy from
the external laser until the periodic steady state is reached,
_U ¼ _We−γ0t=2, where _W ¼ _Wssð1 − e−γ0t=2Þ ≥ 0 is the
input power and, consequently, heat is dissipated at a rate
− _Q ¼ _Wð1 − e−γ0t=2Þ ≥ 0. When the relaxation is com-
pleted, the input laser power is fully dissipated into the
reservoir, i.e., _Qss ¼ − _Wss. The energy absorbed by the
cavity mode during the evolution is fully employed to
generate the unitary displacement α, that is, ΔU ¼
ℏωjαjΔXφ ¼ ℏωjαj2. However, the transient dynamics
ruling this process is far from trivial. The cavity mode is
always displaced, i.e., gaining coherence, at a higher rate
than energy, _U ¼ ℏωjαj _XSð1 − e−γ0t=2Þ, in accordance with
the positive nonadiabatic entropy production rate. In
addition, by comparing Figs. 7(a) and 7(b), the energetic
meaning of the adiabatic entropy production rate can be
clarified. In the initial transient where _Sa < 0, the coher-
ence gain surpasses the input power, i.e., ℏωjαj _Xφ > _W,
which in turn implies that the rate at which the cavity mode
gains energy speeds up in this period, Ü > 0. At time tn,
when _Sa ¼ 0, we have _W ¼ ℏωjαj _Xφ ¼ _Wss=2, and _U

peaks at its maximum. After this time, the adiabatic entropy
production rate is positive _Sa > 0, implying ℏωjαj _Xφ < _W,

and _U decreases until it becomes zero in the long time run,
when the periodic steady state is reached. In conclusion,
we obtain that the sign of the adiabatic entropy production
rate spotlights the acceleration in the internal energy
changes of the cavity mode.

VII. CONCLUSIONS

In this paper, we have analyzed the production of entropy
in general processes embedded in a two-measurement
protocol, with local measurements performed in both the
system and the environment. Our first main result is the
fluctuation theorem (23), which compares the probability
of forward and backward trajectories. Particularizing this
expression to certain initial conditions of the backward
process, one can obtain FT’s for the change of inclusive
(14) and exclusive (15) entropy production, i.e., for the
entropy production that results from keeping or neglecting
the classical correlations generated between the system
and the environment during the process. These differences
have been illustrated for the case of two qubits interacting
through a CNOT quantum gate.
We have also explored whether it is possible to split the

total entropy production into adiabatic and nonadiabatic
contributions, as it is customary in classical systems far
from equilibrium [22,23]. For that purpose, we have

introduced a dual dynamics for the reduced evolution
of the system, which in turn allowed us to clarify the
interpretation of previous FT’s derived for quantum CPTP
maps [33]. We have shown that the aforementioned
decomposition is possible only if the reduced dynamics
satisfies a certain condition, namely, Eq. (38). In fact, we
give an explicit example where that condition is not
fulfilled and the adiabatic entropy production takes on
negative values. This is a pure quantum feature whose
consequences, we believe, are worth further exploring.
Our results can be applied to a broad range of quantum

processes including multipartite environments and concat-
enations of CPTP maps. In particular, we developed, in
detail, the application to processes described by Lindblad
master equations. We have introduced a general method
to identify the environmental entropy change during the
trajectories induced by quantum jumps [see Eq. (70) and
below], which allows us to recover the FT’s. The meaning
of the adiabatic and nonadiabatic terms becomes clear in
this situation since the nonadiabatic contribution tends to
zero for quasistatic driving.
Finally, we have studied the decomposition of the total

entropy production in two specific situations of interest: an
autonomous three-level thermal machine and a dissipative
cavity mode resonantly driven by a classical field.
Summarizing, our results provide an exhaustive charac-

terization of the entropy production in open quantum
systems undergoing arbitrary processes. This includes
systems in contact with nonthermal or finite-size reservoirs,
configurations with several equilibrium baths with different
temperatures or chemical potentials, driven systems, etc. In
all those cases, one should be able to assess the entropy
production and characterize its fluctuations within the
theoretical framework presented in this paper. Therefore,
our results clarify the origin of entropy production from
coarse graining and its link to thermodynamical notions
when particular choices for the environment are made.
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APPENDIX A: INFINITESIMAL CHANGES IN

THE STATE OF THE RESERVOIR

In this appendix, we show that the term Sðρ�EjjρEÞ
appearing in Eq. (29) is negligible for infinitesimal changes
in the environment density matrix. Let us assume the
change in the environment density operator in the following
general form:
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ρ�E ¼ ρE þ ϵΔρE; ðA1Þ

where Tr½ΔρE� ¼ 0 and ϵ ≥ 0 is a small real number. Using
the definition of the quantum relative entropy, we can then
write

Sðρ�EjjρEÞ ¼ SðρEÞ − Sðρ�EÞ − ϵTr½ΔρE ln ρE�: ðA2Þ

In the following, we show that if ϵ ≪ 1, then
Sðρ�EÞ − SðρEÞ ≃ −ϵTr½ΔρE ln ρE�, and consequently,
Sðρ�EjjρEÞ → 0. This can be done by applying perturbation
theory. Let the eigenvalues and eigenstates of ρ�E, the set
fq�μ; jϕ�

μig, be expanded to second order in ϵ:

q�μ ≃ qμ þ ϵq
ð1Þ
μ þ ϵ2q

ð2Þ
μ ; ðA3Þ

jϕ�
μi ≃ jϕμi þ ϵjϕð1Þ

μ i þ ϵ2jϕð2Þ
μ i; ðA4Þ

where the zeroth-order contributions obey ρEjϕμi¼qμjϕμi,
and we have, for the first-order terms,

q
ð1Þ
μ ¼ hϕμjΔρjϕμi; ðA5Þ

jϕð1Þ
μ i ¼

X

ν≠μ

hϕνjΔρjϕμi
qμ − qν

jϕνi: ðA6Þ

We now calculate the entropy change up to second order
in ϵ:

Sðρ�EÞ − SðρEÞ ¼ −
X

μ

q�μ ln q
�
μ þ

X

ν

qν ln qν

≃ −ϵ
X

μ

q
ð1Þ
μ ln qμ

− ϵ2
�

q
ð2Þ
μ ln qμ þ

X

μ

q
ð1Þ 2
μ

2qμ

�

; ðA7Þ

to be compared with

−ϵTr½ΔρE ln ρE� ¼ −ϵ
X

μ

hϕμjΔρjϕμi ln qμ

¼ −ϵ
X

μ

q
ð1Þ
μ ln qμ: ðA8Þ

The above equations (A7) and (A8) are equal up to first
order, differing in Oðϵ2Þ. Therefore, using Eq. (A2), we
conclude that

Sðρ�EjjρEÞ ≃ −ϵ2
�

q
ð2Þ
μ ln qμ þ

X

μ

q
ð1Þ2
μ

2qμ

�

¼ Oðϵ2Þ; ðA9Þ

and when ϵ ≪ 1, we can consider Sðρ�EjjρEÞ→ 0 up to first
order, in contrast to the change in entropy [Eq. (A7)].

APPENDIX B: MULTIPARTITE ENVIRONMENTS

Recall that we assume R ancillary systems in an
uncorrelated state, ρE ¼ ρ1 ⊗ … ⊗ ρR, and local measure-
ments in each separate environmental ancilla. We denote
the local density operators of the environmental ancilla r at
the beginning and at the end of the (forward) process as

ρr ¼
X

ν

q
ðrÞ
ν Q

ðrÞ
ν ; ρ�r ¼

X

μ

q
ðrÞ�
μ Q

ðrÞ�
μ ; ðB1Þ

with eigenvalues qðrÞν and q
ðrÞ�
μ , and orthogonal projectors

onto its eigenstates Q
ðrÞ
ν ¼ jχðrÞν ihχðrÞν jE and Q

ðrÞ�
μ ¼

jχðrÞ�μ ihχðrÞ�μ jE.
The generalization of the results is then straightforward

by considering the same steps and assumptions as before.
The reduced system dynamics is again given by Eq. (7), but
the operators Mμν now use collective indices

ðμ; νÞ ¼ fðνð1Þ; μð1ÞÞ;…; ðνðRÞ; μðRÞÞg; ðB2Þ

representing the set of transitions obtained in the projective
measurements of all environmental ancillas:

jχðrÞ
νðrÞ

iE → jχðrÞ�
μðrÞ

iE for r ¼ 1;…; R: ðB3Þ

In other words, the Kraus operators of the forward process
are given by

Mμν ¼
�

Y

R

r¼1

ffiffiffiffiffiffiffiffi

q
ðrÞ
νðrÞ

q

�

hχð1Þ�
μð1Þ

…χ
ðRÞ�
μðRÞ

jEUΛjχð1Þνð1Þ
…χ

ðRÞ
νðRÞ

iE;

ðB4Þ

and analogously for the Kraus operators of the backward
process (31), we have

M̃νμ ¼
�

Y

R

r¼1

ffiffiffiffiffiffiffiffi

q̃
ðrÞ
μðrÞ

r
�

× hχð1Þ
νð1Þ

…χ
ðRÞ
νðRÞ

jEΘ†
EUΛ̃

ΘEjχð1Þ�μð1Þ
…χ

ðRÞ�
μðRÞ

iE: ðB5Þ

The key relation (32) necessary to obtain the fluctuation
theorem for the total entropy production (23) hence follows
as well in this case, with a decomposition of the environ-
ment boundary term

σEμν ¼
X

R

r¼1

σ
ðrÞ
μðrÞνðrÞ

ðB6Þ

being σ
ðrÞ
μðrÞνðrÞ

≡ − ln q̃ðrÞ
μðrÞ

þ ln qðrÞ
νðrÞ

.

The application of the above formalism introducing the
dual and dual-reverse processes follows immediately in the
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same manner, leading to the fluctuation theorems for the
adiabatic and nonadiabatic entropy production in detailed
and integral versions, Eqs. (42), (48), and (49). The
adiabatic entropy production per trajectory and its average
then read, in this case,

Δis
a
μν ¼

X

R

r¼1

σr
μðrÞνðrÞ

þ Δϕμν; ðB7Þ

ΔiSa ¼
X

R

r¼1

Sðρ�rÞ − SðρrÞ þ hΔϕi ≥ 0; ðB8Þ

where in the averaged version we again set (uncorrelated)
reversible boundaries, ρ̃SE ¼ Θðρ�

S
⊗ ρ�1 ⊗ … ⊗ ρ�RÞΘ†.

APPENDIX C: CONCATENATIONS

OF CPTP MAPS

In the following, we focus on the derivation of FT’s for
concatenations of CPTP maps reported in Sec. IV E. Here,
we assume the environment is a single reservoir or ancilla.
However, the extension to multiple reservoirs follows in the
same manner as in the one-map case (see Appendix B).
Consider the map concatenation Ω in Eq. (57). For any

map EðlÞ in the sequence, the environmental ancilla starts in
a generic state

ρ
ðlÞ
E ≡

X

α

q
ðlÞ
α Q

ðlÞ
α ; ðC1Þ

and it is measured at the beginning and at the end of the
interaction with the system, generating outcomes labeled as
νl and μl, respectively. The measurements are specified by

the rank-one projective operators fQðlÞ
νk g≡ fjϕðlÞ

νl ihϕ
ðlÞ
νl jg

for the initial measurement and fQðlÞ�
μl ≡ jϕðlÞ�

μl ihϕðlÞ�
μl jg for

the final one. Under these conditions, each map in the
concatenation can be written as

EðlÞð·Þ ¼
X

μl;νl

M
ðlÞ
μl;νlð·ÞM

ðlÞ†
μlνl ; ðC2Þ

with M
ðlÞ
μlνl ≡

ffiffiffiffiffiffiffi

q
ðlÞ
νl

q

hϕðlÞ�
μl jUðlÞ

Λ
jϕðlÞ

νl i, where the unitary evo-

lution U
ðlÞ
Λ

is as in Eq. (2). Here, we always consider the
same total time-dependent Hamiltonian HðtÞ, following an
arbitrary driving protocol Λ ¼ fλtj0 ≤ t ≤ Nτg. For con-
venience, the latter can also be split into N intervals; hence,
the partial protocol Λl ¼ fλtjtl−1 ≤ t ≤ tlg generates the

unitary operator UðlÞ
Λ
.

A quantum trajectory in this context is defined as
follows. At time t ¼ 0, we start with our system in ρS,
which is measured with eigenprojectors fPng, obtaining
outcome n. Then, the sequence of maps Ω defined in
Eq. (57) is applied, obtaining outcomes fμl; νlg from each

of the l ¼ 1;…; N pairs of measurements in the environ-
ment. Finally, at time t ¼ Nτ, the system is measured again
with arbitrary (rank-one) projectors fP�

mg, giving outcome
m. A quantum trajectory is now completely specified by the
set of outcomes, γ ¼ fn; ðν1; μ1Þ;…; ðνN ; μNÞ; mg, and it
occurs with probability

PðγÞ ¼ pnTr½P�
mE

ðNÞ
μNνN∘…∘E

ð1Þ
μ1ν1ðPnÞ�: ðC3Þ

Now, we can apply the same arguments in the previous
sections to construct the three different processes used to
state the FT’s. For the initial state of the backward process,
we consider again an arbitrary initial state of the system
ρ̃S ¼

P

mp̃mΘP
�
mΘ

†, uncorrelated from the environment

initial states ρ̃ðlÞE ¼
P

αq̃αΘQ
�
αΘ

†, and apply the sequence
of maps Ω̃ ¼ Ẽð1Þ

∘…∘ẼðlÞ
∘…∘ẼðNÞ, generating a trajectory

γ̃ ¼ fm; ðμ1; ν1Þ;…; ðμN ; νNÞ; ng with probability

P̃ðγ̃Þ ¼ p̃mTr½ΘSPnΘ
†

SẼ
ð1Þ
ν1μ1∘…∘Ẽ

ðNÞ
νNμN ðΘSP

�
mΘ

†

SÞ�: ðC4Þ

Here, the backward maps ẼðlÞ and their corresponding
operations are defined by each map EðlÞ in the concatena-
tion Ω by applying Eqs. (30) and (31).
Dual and dual-reverse maps and operations also follow

from the definitions in Sec. IV when conditions (38) and
ẼðlÞðπ̃ðlÞÞ ¼ π̃ðlÞ are met for each map in the sequence. The
corresponding probabilities for trajectory γ in the dual
process and trajectory γ̃ in the dual-reverse process are

PDðγÞ ¼ pnTr½P�
mD

ðNÞ
μNνN∘…∘D

ð1Þ
μ1ν1ðPnÞ�; ðC5Þ

P̃Dðγ̃Þ ¼ p̃mTr½ΘPnΘ
†D̃

ð1Þ
ν1;μ1∘…∘D̃

ðNÞ
νNμN ðΘP�

mΘ
†Þ�; ðC6Þ

where in the dual-reverse trajectories we again took the
sequence of maps in inverted order; that is, we applied
D̃ð1Þ

∘…∘D̃ðNÞ over the initial state ρ̃S.
Again, the Kraus operators for the backward, dual, and

dual-reverse trajectories fulfill the set of operator detailed-
balance relations:

Θ
†M̃

ðlÞ
νμΘ ¼ e−σ

E
μl;νl

=2M
ðlÞ†
μν ; ðC7Þ

Θ
†D̃

ðlÞ
νμΘ ¼ eΔϕ

ðlÞ
μν=2M

ðlÞ†
μν ; ðC8Þ

D
ðlÞ
μν ¼ e−ðσ

E
μl;vl

þΔϕ
ðlÞ
μν Þ=2MðlÞ

μν ; ðC9Þ

where the nonequilibrium potential changes are defined
with respect to the invariant state πðlÞ of each map EðlÞ as in

the single map case: ΔϕðlÞ
μν ¼ − ln πðlÞμ þ ln πðlÞν .

The set of Eqs. (C7)–(C9) immediately implies the
detailed FT’s for concatenations in Eqs. (58)–(60). Its
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corresponding integral versions and second-law-like
inequalities follow immediately as a corollary.
Finally, it is interesting to consider the expression of the

average nonequilibrium potential change during the whole
sequence. By denoting ρSðtlÞ the reduced state of the
system at time tl, we have

ΔΦ ¼
X

N

l¼1

Tr½EðlÞ
μlνl(ρSðtl−1Þ)�Δϕ

ðlÞ
μlνl

¼
X

N

l¼1

Tr½(ρSðtlÞ − ρSðtl−1Þ)Φl�; ðC10Þ

where Φl ¼ − ln πðlÞ. The above expression can be decom-
posed into the following boundary and path contributions:

ΔΦb ¼ Tr½ρ0SΦN � − Tr½ρSΦ1�; ðC11Þ

ΔΦp ¼ −
X

N−1

l¼1

Tr½ρSðtlÞðΦlþ1 −ΦlÞ�: ðC12Þ

When all the maps in the concatenation have the same
invariant state, Φlþ1 ¼ Φl ≡Φ∀l, we obtain ΔΦp ¼ 0,
while ΔΦb ¼ Tr½ðρ0S − ρSÞΦ� and we recover the expres-
sion for the single map case, cf. Eq. (53). On the other hand,
the boundary term only vanishes for cyclic processes,
such that ρ0S ¼ ρS, implemented by cyclic concatenations
with ΦN ¼ Φ1. In this case, ΔΦb ¼ 0, while ΔΦp gives, in
general, a nonzero contribution.
The dynamical versions of these boundary and path

terms read

_Φb ¼
d

dt
ðTr½ρtΦðλtÞ�Þ; _Φp ¼ −Tr½ρt _ΦðλtÞ�; ðC13Þ

which are also analogous to their classical counterparts
[21–23].

APPENDIX D: AUTONOMOUS QUANTUM

THERMAL MACHINE DETAILS

The setup presented in Sec. VI constitutes the simplest
model of an ideal quantum absorption heat pump and
refrigerator, usually considered to operate at steady-state
conditions [44,81,82]. We now focus on the heat pump
configuration, but similar conclusions follow as well in the
heat pump mode of operation. The cooling mechanism
exploits the average heat flow entering from the reservoir
at the hottest temperature, _Q2 > 0, to continuously extract
heat from the reservoir at the lowest temperature, _Q1 > 0,
while draining _Q3 < 0 to the reservoir at the intermediate
(inverse) temperature, β3 (see Fig. 4).

The three average heat fluxes entering from the reser-
voirs associated with the imbalance in emission and
absorption processes, _Qr ¼ Tr½HSLrðρtÞ�, read

_Q1 ¼ ℏω1(Γ
ð1Þ
↑ pgðtÞ − Γ

ð1Þ
↓ pAðtÞ); ðD1Þ

_Q2 ¼ ℏω2(Γ
ð2Þ
↑ pAðtÞ − Γ

ð2Þ
↓ pBðtÞ); ðD2Þ

_Q3 ¼ ℏω3(Γ
ð3Þ
↑ pgðtÞ − Γ

ð3Þ
↓ pBðtÞ); ðD3Þ

where piðtÞ are the instantaneous populations of the
machine energy levels jgi, jeAi, jeBi, and

P

ipiðtÞ ¼ 1.
The first law of thermodynamics in the model follows from
the master equation (86):

_U ¼ Tr½HS _ρS� ¼ _Q1 þ _Q2 þ _Q3; ðD4Þ

which, in the steady-state conditions, reads
_Q1 þ _Q2 þ _Q3 ¼ 0. In such a case, the heat fluxes become

_Q1 ¼ ℏω1Γ
ð1Þ
↑ πgð1 − e−ðβ

0
1
−β1Þℏω1Þ; ðD5Þ

_Q2 ¼ ℏω2Γ
ð2Þ
↑ πAð1 − e−ðβ

0
2
−β2Þℏω2Þ; ðD6Þ

_Q3 ¼ ℏω3Γ
ð3Þ
↑ πgð1 − e−ðβ

0
3
−β3Þℏω3Þ; ðD7Þ

where we employ the detailed balance relations Γ
ðrÞ
↑ ¼

eβrℏωrΓ
ðrÞ
↓ and the definitions for the effective temperatures

β0r, for r ¼ 1, 2, 3. Therefore, since the prefactors in all
three above expressions are always positive, the direction
of the heat fluxes is determined by the sign of the respective
thermodynamic force Xr ≡ β0r − βr. Indeed, near equilib-
rium when Xr ≪ 1, we may expand, to first order, the
exponentials in Eqs. (D5)–(D7) and recover the well-
known result of linear irreversible thermodynamics,

_Qr ¼ αrXr; ðD8Þ

where αr is a positive constant; that is, fluxes are propor-
tional to thermodynamic forces. In any case, Eqs. (D5)–(D7)
show that heat flows from the environment to a system
transition, _Qr ≥ 0, if the latter is at an effective temperature
lower than the former, β0r ≥ βr.
The steady state of the dynamics [Eq. (91)], for the

simpler case in which γ1 ¼ γ2 ¼ γ3 ≡ γ, reads

πg ¼
eβ3ℏω3ð2eβ1ℏω1þβ2ℏω2 − 1Þ − eβ1ℏω1þβ2ℏω2

Zπ

; ðD9Þ

πA ¼ eβ2ℏω2ðeβ1ℏω1 − 2Þ þ eβ3ℏω3ð2eβ2ℏω2 − 1Þ
Zπ

; ðD10Þ
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πB ¼ eβ3ℏω3 þ eβ1ℏω1þβ2ℏω2 − 2

Zπ

; ðD11Þ

where we define Zπ ≡ eβ2ℏω2ð−2þ eβ1ℏω1Þ − 2þ
eβ3ℏω3(2eβ2ℏω2ð1þ eβ1ℏω1Þ − 1).
At steady-state conditions, the fridge or heat pump

modes of operation can be obtained by properly tuning
the energy-level spacings. Inserting the steady-state values
in the expressions for the heat fluxes, we obtain

_Qss
1 ¼ γℏω1Δ=Zπ ≥ 0; _Qss

2 ¼ γℏω2Δ=Zπ ≥ 0; ðD12Þ

and _Qss
3 ¼ −ð _Qss

1 þ _Qss
2 Þ ≤ 0, where Zπ ≥ 0 and the quan-

tity Δ≡ðeβ3ℏω3 −eβ1ℏω1þβ2ℏω2Þ≥0. Therefore, for a fridge,
we need Δ ≥ 0. This is guaranteed when the following
design condition is met:

ω2 ≥

�

β1 − β3

β3 − β2

�

ω1: ðD13Þ

Notice also that when the above inequality is inverted, we
obtain Δ ≤ 0, and the three heat flows invert its signs,
hence generating the heat pump mode of operation.

APPENDIX E: TRANSIENT NEGATIVITY

OF THE ADIABATIC ENTROPY

PRODUCTION RATE

In this appendix, we provide further details on the
dynamical evolution of thermodynamic quantities used in
the description of the driving cavity model in Sec. VI C. In
particular, we give explicit expressions for key quantities _Xφ,
_W, and _Q, and discuss the adiabatic entropy production rate
_Sa, showing its transient negativity.
The explicit time evolution of the quantities _Xφ, _W,

and _Q can be obtained from the master equation (112). In
order to do that, we first obtain the following equations
for the evolution of the quantities A≡ a − α and A†A ¼
a†a − jαjðxφ − jαjÞ. They read

d

dt
hAit ¼ −

γ0

2
hAit; ðE1Þ

d

dt
hA†Ait ¼ −γ0ðhA†Ait − hA†Ai∞Þ; ðE2Þ

where hA†Ai∞ ¼ Tr½A†Aπ� ¼ Tr½a†aðe−βH0=Z0Þ� ¼ nth.
Consequently, we obtain, as a result,

hAit ¼ hAi0e−γ0t=2; ðE3Þ

hA†Ait ¼ hA†Ai0e−γ0t þ nthð1 − e−γ0tÞ: ðE4Þ

The transient evolution of the field quadrature
hxφit ≡ Tr½xφρt� is then easily obtained from the above
equations,

_Xφ ¼ −
γ0

2
ðhxφit − hxφi∞Þ: ðE5Þ

This means that hxφit exponentially converges to its steady-
state value hxαi∞ ¼ 2jαj. Therefore, _Xφ will be either
positive or negative during the evolution, depending on
the displacement of the initial state. If hxφi0 ≤ hxφi∞, then
_Xφ ≥ 0 ∀t, and the system state increases its coherence
in the energy basis; however, if hxφi0 ≥ hxφi∞, we have
_Xφ ≤ 0 ∀t, and the coherence decreases. From Eq. (E5),
we have

hxφit ¼ hxφi0e−γ0t=2 þ hxφi∞ð1 − e−γ0t=2Þ: ðE6Þ

Furthermore, we can now calculate the transient input
power as

_W ¼ ℏωTr½ðϵa† þ ϵ�aÞρt� ¼ ϵha†it þ ϵ�hait
¼ jϵjhxφi0 þ _Wssð1 − e−γ0t=2Þ; ðE7Þ

where we use hait ¼ hAit þ α together with Eq. (E3), and
we recall that _Wss ¼ ℏωjαj2. Analogously, having Eq. (E4),
the heat flow follows from

_Q¼ Tr½H0LðρtÞ� ¼−γ0ðha†ait −nthÞ
¼−γ0ℏωðjαj2ð1− e−γ0t=2Þ2þjαjhxφi0ð1− e−γ0t=2Þe−γ0t=2

þðha†ai0 −nthÞÞ; ðE8Þ

where, in the last equality, we also use Eq. (E6). Notice that,
for the initial state ρ0 ¼ expð−βH0Þ=Z0, we have hai0 ¼ 0

and ha†ai0 ¼ nth, and then, using Eqs. (E7) and (E8), we
obtain, for this case,

_Q ¼ − _Wð1 − e−γ0t=2Þ; _U ¼ _W þ _Q ¼ _We−γ0t=2: ðE9Þ

Finally, the adiabatic entropy production rate has been
defined in Eq. (123):

_Sa ¼ _Si − _Sna ¼ βð _W − ℏωjαj _XφÞ: ðE10Þ

We can obtain an explicit expression for its evolution by
noticing that the following equality holds:

_W þ ℏωjαj _Xφ ¼ _Wss: ðE11Þ

Introducing this relation into Eq. (E10), we obtain

_Sa ¼ β _Wss þ βℏωjαjγ0ðhxφi − hxφi∞Þ: ðE12Þ
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Notice now that Eq. (E12) is negative for any initial
transient for which ℏωjαj _Xφ < ℏωjαjhxφi∞ þ _Wss=γ0. In
particular, if the dynamics starts in any state diagonal in the
H0 basis, this happens for t < tn ≡ 2 lnð2Þ=γ0 as shown in
Fig. 7 of Sec. VI C.
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[71] F. Fagnola and V. Umanità, Generators of Detailed Balance
Quantum Markov Semigroups, Infin. Dimensional Anal.
Quantum Probab. Relat. Top. 10, 335 (2007).

[72] G. Lindblad, On the Generators of Quantum Dynamical

Semigroups, Commun. Math. Phys. 48, 119 (1976).
[73] K. Szczygielski, D. Gelbwaser-Klimovsky, and R. Alicki,

Markovian Master Equation and Thermodynamics of a

Two-Level System in a Strong Laser Field, Phys. Rev. E 87,
012120 (2013).

[74] J. M. Horowitz, Quantum-Trajectory Approach to the Sto-

chastic Thermodynamics of a Forced Harmonic Oscillator,
Phys. Rev. E 85, 031110 (2012).

[75] H. Spohn, Entropy Production for Quantum Dynamical

Semigroups, J. Math. Phys. (N.Y.) 19, 1227 (1978).
[76] S. Wu, U. V. Poulsen, and K. Mølmer, Correlations in Local

Measurements on a Quantum State, and Complementarity

QUANTUM FLUCTUATION THEOREMS FOR ARBITRARY … PHYS. REV. X 8, 031037 (2018)

031037-25

https://doi.org/10.1103/PhysRevApplied.3.014007
https://doi.org/10.1103/PhysRevApplied.3.014007
https://doi.org/10.1103/PhysRevE.93.062106
https://doi.org/10.1126/science.1078955
https://doi.org/10.1038/srep12953
https://doi.org/10.1209/0295-5075/88/50003
https://doi.org/10.1103/PhysRevE.86.051105
https://doi.org/10.1103/PhysRevE.86.051105
https://doi.org/10.1103/PhysRevLett.112.030602
https://doi.org/10.1038/srep03949
https://doi.org/10.1038/srep03949
https://doi.org/10.1103/PhysRevE.93.052120
https://doi.org/10.1103/PhysRevE.93.052120
https://doi.org/10.1103/PhysRevX.7.031044
https://doi.org/10.1103/PhysRevX.7.031044
https://doi.org/10.1088/1367-2630/18/8/083012
https://doi.org/10.1088/1367-2630/18/8/083012
https://doi.org/10.1088/1367-2630/16/10/103011
https://doi.org/10.1088/1367-2630/16/10/103011
https://doi.org/10.1103/PhysRevLett.114.060602
https://doi.org/10.1103/PhysRevLett.114.060602
https://doi.org/10.1088/1367-2630/12/1/013013
https://doi.org/10.1007/s10955-014-0991-1
https://doi.org/10.1007/s10955-014-0991-1
https://doi.org/10.1103/PhysRevA.88.042111
https://doi.org/10.1038/s41534-017-0008-4
https://doi.org/10.1088/1367-2630/aa7fa2
https://doi.org/10.1088/1367-2630/aa7fa2
https://doi.org/10.1103/PhysRevLett.118.220601
http://arXiv.org/abs/1707.01750
https://doi.org/10.1103/PhysRevA.72.032317
https://doi.org/10.1038/nphys3230
https://doi.org/10.1103/PhysRevA.77.022301
https://doi.org/10.1103/PhysRevA.77.022301
https://doi.org/10.1103/RevModPhys.84.1655
https://doi.org/10.1103/RevModPhys.84.1655
https://doi.org/10.1103/PhysRevE.77.021110
https://doi.org/10.1103/PhysRevE.81.061130
https://doi.org/10.1103/PhysRevE.81.061130
https://doi.org/10.1103/PhysRevLett.100.230404
https://doi.org/10.1088/1367-2630/15/12/125012
https://doi.org/10.1088/1367-2630/15/12/125012
https://doi.org/10.1103/PhysRevA.77.034101
https://doi.org/10.1103/PhysRevA.77.034101
https://doi.org/10.1142/S0219025707002762
https://doi.org/10.1142/S0219025707002762
https://doi.org/10.1007/BF01608499
https://doi.org/10.1103/PhysRevE.87.012120
https://doi.org/10.1103/PhysRevE.87.012120
https://doi.org/10.1103/PhysRevE.85.031110
https://doi.org/10.1063/1.523789


as an Explanation of Nonclassicality, Phys. Rev. A 80,
032319 (2009).

[77] D. Girolami, M. Paternostro, and G. Adesso, Faithful

Nonclassicality Indicators and Extremal Quantum Corre-

lations in Two-Qubit States, J. Phys. A 44, 352002 (2011).
[78] H. Ollivier and W. H. Zurek, Quantum Discord: A Measure

of the Quantumness of Correlations, Phys. Rev. Lett. 88,
017901 (2001).

[79] H. E. D. Scovil and E. O. Schulz-DuBois, Three-Level

Masers as Heat Engines, Phys. Rev. Lett. 2, 262 (1959).
[80] J. E. Geusic, E. O. Schulz-DuBois, and H. E. D. Scovil,

Quantum Equivalent of the Carnot Cycle, Phys. Rev. 156,
343 (1967).

[81] J. P. Palao, R. Kosloff, and J. M. Gordon, Quantum Thermo-

dynamic Cooling Cycle, Phys. Rev. E 64, 056130 (2001).
[82] R. Kosloff and A. Levy, Quantum Heat Engines and

Refrigerators: Continuous Devices, Annu. Rev. Phys.
Chem. 65, 365 (2014).

[83] M. T. Mitchison, M. P. Woods, J. Prior, and M. Huber,
Coherence-Assisted Single-Shot Cooling by Quantum Ab-

sorption Refrigerators, New J. Phys. 17, 115013 (2015).

[84] J. B. Brask and N. Brunner, Small Quantum Absorption

Refrigerator in the Transient Regime: Time Scales, En-

hanced Cooling, and Entanglement, Phys. Rev. E 92,
062101 (2015).

[85] N. Brunner, N. Linden, S. Popescu, and P. Skrzypczyk,
Virtual Qubits, Virtual Temperatures, and the Founda-

tions of Thermodynamics, Phys. Rev. E 85, 051117
(2012).

[86] P. Skrzypczyk, R. Silva, and N. Brunner, Passivity, Com-
plete Passivity, and Virtual Temperatures, Phys. Rev. E 91,
052133 (2015).

[87] R. Silva, G. Manzano, P. Skrzypczyk, and N. Brunner,
Performance of Autonomous Quantum Thermal Machines:

Hilbert Space Dimension as a Thermodynamical Resource,
Phys. Rev. E 94, 032120 (2016).

[88] A. Rivas, A. D. K. Plato, S. F. Huelga, and M. B. Plenio,
Markovian Master Equations: A Critical Study, New J.
Phys. 12, 113032 (2010).

[89] J. M. Horowitz and M. Esposito, Work Producing Reser-

voirs: Stochastic Thermodynamics with Generalized Gibbs

Ensembles, Phys. Rev. E 94, 020102(R) (2016).

MANZANO, HOROWITZ, and PARRONDO PHYS. REV. X 8, 031037 (2018)

031037-26

https://doi.org/10.1103/PhysRevA.80.032319
https://doi.org/10.1103/PhysRevA.80.032319
https://doi.org/10.1088/1751-8113/44/35/352002
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1103/PhysRevLett.2.262
https://doi.org/10.1103/PhysRev.156.343
https://doi.org/10.1103/PhysRev.156.343
https://doi.org/10.1103/PhysRevE.64.056130
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1088/1367-2630/17/11/115013
https://doi.org/10.1103/PhysRevE.92.062101
https://doi.org/10.1103/PhysRevE.92.062101
https://doi.org/10.1103/PhysRevE.85.051117
https://doi.org/10.1103/PhysRevE.85.051117
https://doi.org/10.1103/PhysRevE.91.052133
https://doi.org/10.1103/PhysRevE.91.052133
https://doi.org/10.1103/PhysRevE.94.032120
https://doi.org/10.1088/1367-2630/12/11/113032
https://doi.org/10.1088/1367-2630/12/11/113032
https://doi.org/10.1103/PhysRevE.94.020102

