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We analyze the production of entropy along nonequilibrium processes in quantum systems coupled to
generic environments. First, we show that the entropy production due to final measurements and the loss
of correlations obeys a fluctuation theorem in detailed and integral forms. Second, we discuss the
decomposition of the entropy production into two positive contributions, adiabatic and nonadiabatic, based
on the existence of invariant states of the local dynamics. Fluctuation theorems for both contributions hold
only for evolutions verifying a specific condition of quantum origin. We illustrate our results with three
relevant examples of quantum thermodynamic processes far from equilibrium.

DOI: 10.1103/PhysRevX.8.031037

I. INTRODUCTION

Classical thermodynamics and statistical mechanics
provide a systematic approach to the phenomenology of
a system immersed in a large environment. Within these
frameworks, two complementary strategies are employed.
The first is to explicitly model the environment—often
an equilibrium thermal reservoir—to obtain an effective
reduced dynamics for the system alone, which then can be
analyzed. The second is to derive fundamental constraints
in the form of inequalities using the second law of
thermodynamics and magnitudes like entropy, entropy
production, and free energy. The recent introduction of
an entropy for stochastic trajectories [1] allows one to refine
these inequalities with exact equalities for arbitrary non-
equilibrium processes, results generically known as fluc-
tuation theorems (FT’s) [2,3].

These two strategies have also been successfully applied
to quantum systems. Open quantum system dynamics—
the determination and analysis of the system’s reduced
dynamics—is a well-developed and active field [4,5].
Complementing this approach, a variety of quantum
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FT’s have been derived [6-11] to assess the statistics of
the relevant quantities. Different proposals to obtain these
statistics in the laboratory have been reported, using tech-
niques related to quantum tomography [12—-17], and some of
them have already been used to carry out experimental
verifications of FT’s [18,19]. However, most of the research
on quantum FT’s is only valid for equilibrium reservoirs with
a focus on the energy exchange between the system and the
environment in the form of heat and work. By contrast,
classical FI’s have been formulated more generally for
generic Markov systems [20-24] using the entropy produc-
tion instead of heat and work, which are only meaningful in
physical situations where a system exchanges energy with
equilibrium reservoirs.

In light of the success of classical FT’s, it is desirable to
obtain complementary FT’s for generic quantum dynamics
[25-35]. They could be of particular relevance since
quantum mechanics allows for a richer phenomenology
in finite baths [36-38], as well as novel and interesting
nonthermal environments such as coherent [39,40], corre-
lated [41], or squeezed [42-45] reservoirs. Such environ-
ments induce an interesting phenomenology that goes
beyond the thermodynamics of thermal equilibrium reser-
voirs, such as heat engines that outperform Carnot effi-
ciency [46] and may exhibit new regimes of operation
[45,47] or tighter bounds on Landauer’s principle [48,49].

The task of deriving FT’s for generic quantum dynam-
ics also implies a more detailed characterization of
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FIG. 1.

Schematic picture of the forward process presented in the main text. The system and environment start from an uncorrelated

state pg ® pg. A local measurement of observables with projectors {P,,, Q,} is carried out, which does not alter the density matrix in the
average evolution but selects a pure state |w,) ® |¢,) at the trajectory level. The system and environment then interact with each other
according to the unitary evolution U, ending in an entangled state p’. Finally, we measure again, now using projectors {P;,, Qy.}. In
the last measurement, quantum correlations in state p’, are erased, while the final state p§, may still have, in general, nonzero classical
correlations. The reduced evolution of the system conditioned to the measurement in the environment is described through the quantum

operation &, (shaded area).

entropy production in nonequilibrium quantum contexts, a
problem that has attracted a growing interest in recent
years [8,30,31,33,50-57]. In Ref. [33], we derived a FT
for a class of completely positive trace-preserving (CPTP)
quantum maps, which model a variety of quantum
processes. Through this analysis, we identified a quantity
that coincides with the entropy production for thermal-
ization processes and resembles the nonadiabatic entropy
production introduced in the classical context [21-23].
The purpose of this paper is to clarify and extend those
results, considering together the system and its surround-
ings. By tracing over the environment, we can then
recover the quantum map for the reduced system dynam-
ics. This setup allows us to unveil the origin of entropy
production in arbitrary processes from coarse graining and
derive corresponding FT’s. We also split the entropy
production into an adiabatic and a nonadiabatic contri-
bution, exactly as in classical stochastic thermodynamics.
However, contrary to what happens in classical systems,
the split is not always possible. A condition, derived in
Ref. [33], is necessary. We explore the similarities and
differences between classical and quantum FT’s in con-
crete examples.

The paper is organized as follows. In Sec. II, we
introduce a thermodynamic process for a generic bipartite
system that models a system and its environment. In this
section, we define the entropy production along the process
and the concomitant reduced system dynamics. We develop
a FT for this entropy production in Sec. III using a time-
reversed or backward thermodynamic process. In Sec. IV,
FT’s for the adiabatic and nonadiabatic entropy production
are derived. Our results are also extended both to the case
of concatenations of CPTP maps and multipartite environ-
ments. This is applied to the specific case of quantum
trajectories unraveled from Lindblad master equations in
Sec. V. Finally, relevant examples to illustrate our results
are given in Sec. VI, and we conclude in Sec. VII with some
final remarks.

II. QUANTUM OPERATIONS AND
ENTROPY PRODUCTION

Throughout the paper, we consider an isolated quantum
system composed of two parts, system and environment (or
ancilla), with Hilbert space H = Hg ® Hp, where Hg and
‘Hg are the local Hilbert spaces of the system and the
environment, respectively. We focus our attention on the
entropy production along the generic process depicted in
Fig. 1, consisting of initial and final local projective
measurements that bracket a unitary evolution. The out-
comes of the measurements constitute a quantum trajectory,
which plays a crucial role in the formulation of FT’s.

A. The (forward) process

The process begins with the global system in an
uncorrelated product state pgp = ps ® pg. The spectral
decomposition of the local states reads

Ps = anpn’ PE = ZQDQD’ (1)

where p, and g, are the eigenvalues, and {P,} and {Q,}
are orthogonal projectors onto their respective eigensubpaces
(for simplicity, we assume they are rank-1 projectors).

At t = 0, an initial projective measurement on the system
and environment is performed using the eigenprojectors in
Eq. (1), and outcomes n and v are obtained. This meas-
urement projects the system and environment onto pure
states |y,) (w,|s = P, and |¢,) (@, |z = Q,, without modi-
fying the average or unconditional state of the global
system ([Pn Qw pSE] = O)

Subsequently, we evolve the compound system during
the time interval [0,7]. The corresponding unitary
operator U, is generated by the Hamiltonian H(r) =
H(4,), which depends on time through an external param-
eter 4, that we vary according to a prescribed protocol
A={4:0<r<7}:
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Uy=T, exp< h/ dt H ,)) 2)

where 7 | denotes the time-ordering operator. As a result,
the compound system at time ¢ = 7 is described by the new
density matrix

Pse = Uplps ® pp)UL. (3)

which, in general, contains classical and quantum
correlations. The reduced (or local) states of the system
and the environment can be obtained by partial tracing:
Pl = Trlple] and pl; = Tr[pl .

To complete the process, a second local projective
measurement is performed at time =7 on both the
system and the environment. The measurement operators
are arbitrary (rank-1) orthogonal projectors, denoted as
{P;,} and {Q;}. Unlike in the first measurement, in this
case, the average global state is disturbed, transforming into

Pie = (Ph ® Q)psp(Prn ® Q5)

m

= (P ® Q). 4)

Notice also that this is not a product state: The final local
measurement does not eliminate the classical correlations
contained in p§; [58]. However, the measurement collapses
the local states of the system and environment into pure
states /) (yils = iy and |} (il = Q. Thus, the
spectral decomposition of the reduced states after the final
measurement is

mepiz’ (5)

Zqﬂ (6)

where p;, = > 0, and g, = ), 0}, are the correspond-
ing classical marginal distributions.

Py = Tre(pse)

pr = Trs(psp)

B. Reduced dynamics: Maps and operations

The global manipulation described above induces a
reduced dynamics on the system alone. The shaded area in
Fig. 1 can be considered as an effective transformation of the
state of the system, pg — p§, described by the action of a
quantum CPTP map £ that admits a Kraus representation [59]

pS — S pS ZM;WPSMI“/’ (7)
2%
with a set of Kraus operators M,, satisfying

Zy,DMEVM;w =1

There exist many Kraus representations {M,,} that
reproduce the reduced dynamics on the system. We choose

M/w = \/E(¢;|EUA|¢D>E (8)

This specific representation retains all the details of the
evolution of the environment, unequivocally relating each
Kraus operator M, with a transition |¢,); — [¢}), in the
environment. This is a key point in order to characterize
the thermodynamics of the process at the trajectory level,
as we will see shortly. Let us finally define the quantum
operation:

gﬂl/(ﬂS) = M/u/pSMIw’ (9)
which describes the conditioned evolution of the system

when the environment starts in the pure state |¢, ) and ends
in the state |¢;), after measurement [60].

C. Average entropy production

We now discuss the entropy change along the
process. We analyze here the von Neumann entropy,
S(p) = =Tr[pInp]|, of the global system. Recall that the
von Neumann entropy coincides with the thermodynamic
entropy for equilibrium states (setting the Boltzmann
constant kK = 1). For nonequilibrium states, there are some
situations where the von Neumann entropy can still be
interpreted as a thermodynamic entropy [61]. However,
in this paper, we refrain from identifying S(p) with a
thermodynamic entropy and refer to it simply as the
entropy or the quantum entropy of state p.

Along the process described above, the quantum entropy
of the global system changes as

AiSine = S(pse) — S(pse)- (10)
This quantity is the quantum entropy production along
the process. We refer to A;S;,. as the inclusive entropy
production to distinguish it from the entropy production
when the system and the environment are separated at the
end of the process and the final classical correlations are
lost (see below). The inclusive entropy production is
always non-negative; this is because von Neumann entropy
cannot decrease in a projective measurement, and it stays
constant along any unitary evolution, i.e., S(psg) =
S(psg) < S(pse). Notice also that S(p) equals the classical
Shannon entropy of the probability distribution of pure
states in the eigenbasis of p. In particular, we have

S(pse) ==Y _Pud, n(paq,), (11)
pSE ngﬂ In Qm,u (12)
m
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To express the entropy of the global state in terms of
local entropies and correlations, one can use the mutual
information. For an arbitrary state ogz with reduced states
o and o, the mutual information is defined as

Z(ose) = S(os) + S(og) — S(oske)
= S(osgllos ® o). (13)

Here, we have introduced the quantum relative entropy,
S(p||le) = Tr[p(Inp — In5)], a nonsymmetric and non-neg-
ative measure of the distinguishability between states p and
o, which vanishes if and only if p = ¢ [62]. This property
implies that mutual information becomes zero only for
product (uncorrelated) states ogr = 05 ® 0. Using mutual
information, the inclusive entropy production can be
rewritten as

AiSine = S(p5) = S(ps) + S(px) — S(pe) — Z(pse)
= S(ps) = S(ps) + S(px) — S(Pk)
+Z(psg) = Z(pse) 20, (14)

where we have taken into account that the initial state is
uncorrelated and, therefore, Z (pgsz) = 0. The second equal-
ity shows that there are two sources of entropy production.
The first one is the measurement disturbance of the final
local states ply — p§ and pj — pj, which can be avoided
only by measuring in the eigenbasis of the reduced states
p and pi. The second source, captured by the term
Z(pse) —Z(p%g) =0, is the erasure of quantum correla-
tions in the state p’.. This is due to the local character of the
measurements, which is zero only if the global interaction
U, does not generate quantum correlations [63,64].

In most situations, the classical correlations remaining
after the final measurement are irreversibly lost, with an
entropic cost equal to the mutual information Z (p%). This
is the case if we separate the system and environment after
the process and all subsequent manipulations are local and
do not incorporate any feedback based on the outcomes of
the final measurements. The entropy production in those
situations is

AiS = S(ps) — S(ps) + S(pp) = S(pe)- (15)

We refer to A;S as the noninclusive entropy production or
simply entropy production. The positivity of the non-
inclusive entropy production in Eq. (15) has already been
identified with the second law [48] and the existence of a
thermodynamic arrow of time [65,66]. Notice that A;S >
A;Sine > 0 since the mutual information Z (p§,) is always
non-negative.

The differences between inclusive and noninclusive
entropy production will be illustrated in a specific example
in Sec. VIA.

III. BACKWARD PROCESS AND FLUCTUATION
THEOREM FOR THE ENTROPY PRODUCTION

A. Forward and backward trajectories

We now extend the previous analysis to stochastic
entropy changes at the level of individual quantum trajec-
tories. A trajectory y of the process introduced in the
previous section (hereafter, we call it the forward process)
is simply given by the outcome of the four measurements,
ie., y = {n,v,u,m}. This trajectory corresponds to the
following transition between pure states:

Wa)s ® |du)e = Wi)s @ [dy)E- (16)

Notice that, in virtue of our choice of the Kraus represen-
tation for the reduced dynamics [Eq. (8)], a trajectory y is
also a trajectory of the reduced dynamics, where the pair
(v,u) now indicates the Kraus operation affecting the
system instead of the initial and final states of the
environment (which is otherwise hidden in the reduced
dynamics). The probability to observe trajectory y is given
by

P(y) = pag, Tt((Py ® QUA(P, ® Q)UL  (17)

To introduce the backward process, we make use of the
antiunitary time-reversal operator in quantum mechanics,
0, satisfying @07 = '@ =1 and ®i = —i®. This oper-
ator changes the sign of odd variables under time reversal,
like linear and angular momenta or magnetic fields [6,67].
We consider the separate time-reversal operators for the
system, Og, and environment, ®, as well as the one for the
total bipartite system, ® = O¢ ® Op.

The backward process is defined as follows. We start
with a generic initial state of the form

Pse =Y _0mOsPyO; ® 000} (18)

m.u

As in the forward process, the first step at time ¢t = 0 is a
local measurement of the family of projectors {G)SP;‘,,GE,
®EQ;®TE}. According to Eq. (18), the outcomes m and u
are obtained with probability g,,. We then let the
global system evolve under the Hamiltonian ©H (1,)0"
inverting the time-dependent protocol as A = {1,|0<r<7}
with 1, = A,_,. This evolution is given by the unitary
transformation
i

Ui =T, exp <—h[drc~)H(Z,)®T>. (19)

Finally, at time # = 7, we perform new local measurements
on the system and environment using projectors {@gP,0L,
Of QyG)E}. The outcome induces a quantum jump
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Olyin)s ® |#i)E) = O(lwn)s ® |dhy)e),  (20)

and the corresponding backward trajectory y = {m, u,v, n}
occurs with probability

P(7) = 2, TrO(P, ® Q,)0TUO(P;, ® Q)0 U} ].

(21)

B. Fluctuation theorem

The unitary transformations corresponding to the forward
and the backward process satisfy the so-called microrever-
sibility principle for nonautonomous systems [6,68]:

e'U;0 = Ux' = Ul. (22)

This is the key property that relates the probabilities of
trajectories y and 7 in a quantum FT. By comparing the
probabilities (17) and (21), using microreversibility (22) and
the cyclic property of the trace, we immediately get

P(y) _ . Pnd .
Ais,=In=—*~=In""* =55 +05 —-1,, 23
PG O oA (23)
where we have defined the quantities
63, =Inp,—Inp,, oh,=Ing,—Ing,  (24)
I,,=Ig,,—Inp,q,. (25)

The terms in Eq. (24) are related to entropy changes per
trajectory in the system and the environment, whereas I, ul
Eq. (25) corresponds to the stochastic version of the mutual
information [25,69] in the initial state of the backward
process (18). From the detailed FT in Eq. (23), we
immediately have the integral version

/) Zp Aasy:ZP(;?):l, (26)

and, using Jensen’s inequality (e*) > e, one obtains a
second-law-like expression (A;s,)=(c")+ (c)—(I) >0.
The interpretation of A;s, depends on the choice of pgg,
the initial global state of the backward process. If we
set pgp = ®p§E®*, then 9,,, = ¢5,, and A;s, becomes the
inclusive entropy production per trajectory. Its average,

== onuIngy, + an Inp, + qu Ing,

mpy
= S(PSE)

—A;s

- S(pS) - S(pE) = A;iSine (27)
equals the inclusive entropy production defined in Eq. (10).

If the initial condition for the backward process is the

uncorrelated state psp = ©(p§ ® pj)O7, then 9, = p,q;,
and A;s, is the noninclusive entropy production per
trajectory, whose average yields the entropy production
defined in Eq. (15),

(Ais,) = S(ps) — S(ps) + S(pg) — S(pe) = AiS. (28)
A third choice sets the environment in the (inverted) initial
state of the forward process, psz = ©(pi ® pr)O', which
yields g,,, = pmqﬂ In this case, both initial and final local
measurements in the environment are performed in the
same basis Q; = Q,, and we obtain

(Ais,) = AS + S(pkllpe). (29)
which includes an extra contribution measuring the dis-
turbance on the environment during the process. The term
S(pxllpE), unlike S(py) — S(pE), is negligible when the
environmental state is modified only infinitesimally (see
Appendix A), as is the case, e.g., of a large reservoir.
Moreover, when pg is a Gibbs state, Eq. (29) is the entropy
production proposed in Ref. [50], and S(p}||pg) corre-
sponds to the thermodynamic entropy production due to
irreversibly resetting the ancilla back to pg in contact with
an equilibrium reservoir at the same temperature. Finally,
we stress that for equilibrium canonical initial conditions
both in the forward and in the backward processes, the
trajectory entropy production (23) equals the stochastic
dissipative work, and one recovers the celebrated Crooks
work theorem and the original Jarzynski equality [6,7].

IV. DUAL PROCESSES: ADIABATIC AND
NONADIABATIC ENTROPY PRODUCTION

We now focus on the reduced dynamics. Our aim is to
obtain FT’s involving only the quantum trajectory defined
in Sec. III and the initial and final states of the system.
To do that, we follow our previous work [33], where we
derived a FT for CPTP maps based on the dual dynamics
introduced by Crooks in Ref. [70]. Remarkably, the
resulting FT goes beyond the one that we have obtained
considering the global dynamics, Eq. (23), as it will reveal
an interesting split of the total entropy production into two
terms: the adiabatic entropy production, which accounts for
the irreversibility of the stationary regime, and the non-
adiabatic entropy production, which measures how far the
system is from that stationary state.

We apply the formalism in Ref. [33] to &, the map
governing the reduced dynamics of the process, as well as
to the map corresponding to the backward dynamics.
Therefore, we first need to introduce the reduced dynamics
in the backward process, which will be described by a new
CPTP map &. To do that, it is necessary that the system and
the environment start the backward process in an uncorre-
lated state pgp = ps ® pg; 1.€., we have to impose Tmﬂ =0
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[see Eq. (25)]. Otherwise, the CPTP map of the backward
reduced dynamics would depend on the initial state of the
system. In that case, similarly to our choice (8) for the

forward process, a useful representation of Eis
gm(ﬁS) = MUM,Z)SMZIH (30)
where the backward Kraus operators are given by

M, = /3 (.| O UROL|) . (31)

Notice that here we have swapped subscripts with respect to
the definition of the forward operators given by Eq. (8).
This can be done since the pair (u,v) is just a label of the
Kraus operator. The choice in Eq. (31) means that the
operation E’W is equivalent to obtaining u in the initial
measurement of the backward process and v in the final
one. Now, microreversibility (22) implies an intimate
relationship between the forward and backward Kraus
operators:

OiM,,05 = \/qu (b, UNDL) = e/ * M}, (32)

It is important to notice that the FT for the total entropy
production (23) can be derived directly from the above
equation. In other words, Eq. (32) expresses the funda-
mental symmetry under time reversal, yielding the FT.

A. Dual-reverse process and nonadiabatic
entropy production FT

In order to go beyond the FT for the total entropy
production, we proceed as in Refs. [33,70]. These works,
inspired by classical stochastic thermodynamics, introduce
a quantum dual dynamics that reveals the irreversibility
associated with a map at the steady state. In the following,
we denote # as an invariant state of the forward map,
&(n) = =, which we indeed assume to be positive definite.
The dual dynamics—which we call here dual-reverse
dynamics, following the criterion used for classical systems
[21-23]—is defined as a map D(p) such that 7 = @Szz@g is
an invariant state, i.e., f)(fr) = 7. Furthermore, when the
map is applied several times starting from the stationary
state 7, it generates trajectories 7 distributed as P (7|7) =
P(y|r). Here, the trajectories are y = {n, (v{,p;), ...,
(VN’/’tN)’m} and 77 = {m’ (HN’VN)’ AR (Ml?yl)vn}’ corre-
sponding to N applications of the map.

Summarizing, in the stationary regime, the dual-reverse
dynamics generates the same ensemble of trajectories as the
forward process, but reversed in time. For instance, if the
map describes the dynamics of a system in contact with a
single thermal bath (thermalization), then the forward
process generates reversible trajectories (indistinguishable
from their reversal) and the dual-reverse map coincides
with the forward map. In nonequilibrium situations, the

dual generically inverts flows. For instance, for a system in
contact with two thermal baths at different temperatures,
the dual-reverse dynamics is usually obtained by swapping
the temperatures of the baths, hence inverting the flow
of heat.

In any case, one can prove that a Kraus representation of
the dual-reverse map is given by the operators [33,70]

D,, = O3wM;, 1730}, (33)

Finally, the dual-reverse process is the dual-reverse map
complemented by a specific choice of the initial condition
for the system (the environment does not appear explicitly
in the dual map, which acts only on the system). The
appropriate initial condition for the dual-reverse process is
ps, 1.e., the same as the backward process.

We now have three processes: the forward &, the back-
ward 5‘, and the dual-reverse T), each one inducing an
evolution in the system characterized by trajectories
y ={n,v,u,m}. We can compute the probability of
observing a trajectory y or its reverse y = {m,u,v,n} in
each of those evolutions. With a self-explanatory notation,
these probabilities read

P(y) = p,Tt[P;,M,, P,M},), (34)
P(7) = p,Tr[@OsP,05M,,04P0iM,,],  (35)
Pp(7) = p,Tt[0sP,05D,,04P;0iD},].  (36)

To obtain FT’s from these expressions, we need a condition
of proportionality between operators M;D and D, ,, similar
to the relationship (32) between M,T,,, and MW.

In Ref. [33] inspired by Ref. [71], we found that a
necessary and sufficient condition for that proportionality
is the following. We first define the nonequilibrium
potential ® = —In z from the invariant state z. Its spectral

decomposition reads

o= Z¢i|ﬂi><ﬂi

Vi

, (37)

where ¢; = —Inx;, and #n; and {|z;)} are, respectively,
the eigenvalues and eigenstates of the invariant density
matrix 7. Now, we require that each Kraus operator M,
is unambiguously related to a nonequilibrium potential
change Ag,, (note, however, that the converse statement is
not necessarily true; i.e., we may, have for different values
of y and v, the same value of A¢,,). In the invariant-state
eigenbasis, this condition reads

My, =Y mlj|z;) (i), (38)
ij
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with m}; = 0 whenever ¢; — ¢; # A, As pointed out in
Ref. [33], this condition does not imply single jumps
between pairs of 7z eigenstates, but it could account for
any set of correlated transitions between different pairs with
the same associated Ag,,. An extreme example is a unital
map, where 7z is proportional to the identity matrix In that
case, Ag,, = 0, and any complex coefficients m ? satisfy
Eq. (38). It is not hard to show that condmon (38) is
equivalent to [33]

[@. M) = Apu My, [@.Mpu] = =Ad M. (39)
This alternative formulation of Eq. (38) indicates that, when
A¢,, # 0, M, can be interpreted as ladder operators in the
eigenbasis of the invariant state z.

For thermalization or Gibbs preserving maps, with
7 =ePH-F) g — (KT)~! being the inverse temperature
and F the equilibrium free energy, the potential is
® = f(H — F) and kTA® is the energy transfer between
the system and the environment, i.e., the heat. In this case,
condition (38) implies that the Kraus operators produce
jumps between levels with the same energy spacing or,
equivalently, jumps with a well-defined value of the heat.

Introducing condition (38) in Eq. (33), one easily derives
the following relationship between the forward and the
dual-reverse Kraus operators [33]:

0D, 0 = e*u/2M},, (40)
and, using Eq. (32), one gets

D = e(”

» 5D+Afl)w)/2]\"/[w (41)

Finally, inserting Egs. (40) and (41) into the expressions
for the probability of trajectories, Eqs. (34)—(36), we obtain
the following FT’s:

P(y)
Ash=Tnal — oS _Ag, (42)
! PD(}’) !
Pp(7)
Aist, =In——> =0k +Ap,,. (43)
=) A

We call Ajsj, the adiabatic entropy production and A;s,;
the nonadiabatic entropy production, following the termi-
nology used in classical stochastic thermodynamics
[21-23]. They contribute to the total entropy production
per trajectory, Ajs, = A;sy, + A;sy?, as defined in Eq. (23).
Below, we discuss the averages of the adiabatic and
nonadiabatic entropy production in some cases, clarifying

the origin of the terms.

B. Dual process and adiabatic entropy production FT

Notice that Eq. (43) is not a proper FT for the forward
process. In particular, we cannot derive a Jarzynski-like
equality for exp(4;sj, ) averaged over forward trajectories,
P(y). To achieve this goal, we need a further assumption
that will allow us to apply the results of Ref. [33] to the
backward process. In this way, we obtain the dual reverse of
the backward process, which we simply call the dual map
D. If condition (38) is satisfied, then, by virtue of Eq. (32),
the backward Kraus operators can be written as

i

with m”” = ¢~/ 2( )*. We observe that, setting Aqﬁw

A¢W, condition (38) is recovered for the backward
process. However, a requirement to apply the theoretical
framework developed in Ref. [33] is that |#) = Og|x) is an
invariant state of the backward map &. This is not warranted
by the definition of &, not even when the Kraus operators
are of the form (38). Therefore, we have to add this extra
assumption. In particular, it is satisfied when the driving
protocol associated with the map is time symmetric, the
Hamiltonian of the environment is invariant under time
reversal, and we perform the same measurements at the
beginning and the end of the process on the environment.
This is the case of the infinitesimal maps that govern the
dynamics of a quantum Markov process since, even in the
case of arbitrary driving, each map is generated by a
constant Hamiltonian.

We now obtain the dual operators D

*®S|7[1 ﬂj|®'

s applying trans-
formation (33) to the backward Kraus operators M v (With

the role of ®g and @E swapped [33]). Similarly to Eq. (40),
condition (38) on the backward operators implies

@D, 05 = e*ul2 {1}, = e w25, (45)
and, using Eq. (32),

D =

= AR (46)

The dual process is given by the dual map with initial
condition pg. The trajectories generated by this process are
distributed as

PD (7/) = pnTrS [PjnD/anDZV] (47)

Combining Egs. (34) and (47) and using condition (32),

we get a new FT for the adiabatic entropy production:

P
Asst, = In (v)
PD(7)

=ob, + A, (48)

031037-7



MANZANO, HOROWITZ, and PARRONDO

PHYS. REV. X 8, 031037 (2018)

C. Integral fluctuation theorems

We can now derive integral FT’s for the adiabatic and
nonadiabatic entropy productions:

(e™8™) =1, (e78"y =1, (49)
which follow from the detailed versions by averaging
over trajectories y. Finally, convexity of the exponential
function provides the following two second-law-like
inequalities as a corollary (A;s)*) >0 and (A;sy) > 0.
As for the FT for the total entropy production (23), the
meaning of these average entropies becomes clearer if the
initial condition of the backward process is specified.
Setting p = O(p} ® p;)OT, the average of the adiabatic
and nonadiabatic entropy production defined by Eqs. (40)
and (41) reads

AiSna = (Aisy") = S(ps) = Sps) = (Ag) 20, (50)
AiSy = (Bisy) = S(p) — S(pe) + (A¢) 20, (51)

and the sum equals the total noninclusive average entropy
production A;S [see Eq. (15)]. It is interesting to notice that
the average change of the potential,

(Ap) = P(r)Ad, =Y Tr[M,upsMiu]Ad,,,  (52)
Hv Hov

can be alternatively written in terms of averages over the
states of the system, p’ and py, if condition (38) is fulfilled.
That condition implies [®,M,]= M, A¢p,, (see also
Ref. [33]). We introduce the commutator in Eq. (52),

<A¢> = ZTqu)MﬂD - Mﬂvq))pSM;l/]

— Tr{® (0}, — ps)]. (53)

where we have used the cyclic property of the trace and
Eqgs. (7) and (8). Therefore, the average potential change
(A¢) can be expressed as the change in the expected value
of the operator @ due to the map. Recall that the operator ®
acts on the Hilbert space of the system Hg, i.e., is a local
observable on the system.

If the final measurement does not alter the state of the
system, i.e., if p§ = pg, or if the final measurement is
skipped, as is the case when we concatenate maps and the
system is measured only after the whole concatenation (see
Sec. IV E), we can write the average nonadiabatic entropy
production in an appealing form:

AiSy = S(p{?) - S(pS) - <A¢>

= Trps(In ps + ®@)] = Tr[ps(In ps + D)]
= S(psllz) = S(p§llx) = 0. (54)

where we have used the definition @ = —Inz of the
potential operator in terms of the invariant state z. Here,
we see that the nonadiabatic entropy production is related to
the distance between the state of the system and the invariant
state 7. During the evolution, the state of the system can only
approximate the invariant state, and the nonadiabatic entropy
production is a measure of the irreversibility associated with
such convergence. In fact, inequality in Eq. (54) follows
from direct application of Ulhman’s inequality (monotonic-
ity of quantum relative entropy) holding for general CPTP
evolutions [51,62].

D. Multipartite environments

The results obtained so far can also be applied to a
multipartite environment. The corresponding Hilbert
space is decomposed as Hp =®F | ‘H,, corresponding
to R independent ancillas or reservoirs interacting with
the open system. We assume an uncorrelated initial state
of the environment, pp =p; ® ... ® pr, and that the
measurements are performed locally in each environ-
mental ancilla.

In this case, the adiabatic entropy production per
trajectory and its average read (see details in Appendix B)

R
Aist, =Y 0y + Ay (55)
r=1

R

AS, = S(p;) = S(p,) + (Ag) 2 0. (56)

r=1

E. Concatenation of CPTP maps

Up to now, we have considered a single interaction of
duration 7 between the system and the environment [see
Eq. (2)]. The CPTP map & describes the evolution of the
system when the environment is measured before and
after the interaction. This framework can be extended to
concatenations of CPTP maps, where the system inter-
acts sequentially with the environment. Each single
interaction in a time interval [f,7+ 7| is described by
a single CPTP map like £ The map describing the
reduced dynamical evolution for N interactions, from
t=0to t = Nr, is

Q=EWNo...0&0o...00), (57)
where, in particular, each map £ may have a different
(positive-definite) invariant state 7). We assume that
the system interacts from time #,_, = (I — 1)z to time
t; = Iz with a “fresh” (uncorrelated) environment in a
generic state pg) = Zaqg) Qg,l), and, as in the single map
case, the environment is measured before and after
interaction with the system by projective measurements.
On the other hand, the system is only measured at the
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(a)

(b)

8

FIG. 2.

(a) Schematic diagram of a trajectory generated by the map concatenation. Projective measurements on the system are only

performed at the beginning and at the end of the concatenation. (b) Any operation £ ,(,l,),,,, in the concatenation consists in the interaction of

()

(0

the system with an environmental ancilla in the state p;’ via the unitary U A depending on the protocol A;. The ancilla is measured
before and after interaction, generating outcomes v; and y;, respectively.

beginning and end of the whole concatenation (57), as
depicted in Fig. 2.

In this case, trajectories are specified by the set of
outcomes y = {n, (vy,uy), ..., (Un, py), m}, which can be
compared to the backward trajectories ¥y = {m, (vy,uy),-- -
(vy,41),n} generated by the reverse sequence of maps
Q=EWo...0€Wo...0&W) We find that all of our above
results apply as well to the concatenations setup (see
Appendix C), yielding the following three detailed fluc-
tuation theorems:

na _ o () 0
Aisy = 11113 ( - Z Aduy,s (58)
D =1
N
AiS? IZ] vy + A¢MIW> (59>
Ais, = ln% = Ajsyt + Aysy, (60)

where 63, is given by Eq. (24), ¢ mm =In q%) —1In q,(},’ is

the entropy change in the environment due to the /th map,
and Aqﬁ,(,lg =—In 77:/(4[) + In ﬂ,(,l> is the change in nonequili-
brium potential for the /th map.

V. LINDBLAD MASTER EQUATIONS

The results of the last section can be applied to Lindblad
master equations [31,52]. Consider the following master
equation in Lindblad form [4,60,72], depending on an
external parameter A,:

K
k—

btz——Hp +Z<Lkp,

{L Ly. pt}> =L)p;
1

(61)

where H(J,) is the system Hamiltonian in the selected
picture and L;(4,) are positive Lindblad operators, which
generally depend on the control parameter 4, and describe
jumps in some (possibly time-dependent) basis. We assume
that there exists an instantaneous invariant state z;, which is
the steady state of Eq. (61) when the external control
parameter is frozen: L;z; = 0 [5].

The Lindblad equation (61) can be written as a concat-
enation of CPTP maps,

(Is + dtLy )p. = E(py), (62)

Prvdr =

with the Kraus representation
N P
Mola) =T = (B3 SLIGILG) ). ()
k=1

My(A) =VdiLi(2,),  k=1,...K.  (64)

Recall that this Kraus representation is not unique [60]. As
before, the representation in Eqs. (63) and (64) is related to
a specific detection scheme for the jumps; that is, it implies
a specific choice of the initial state and the local observ-
ables to be monitored in the environment (the set of
projectors {Q, } and {Q;}).

The Kraus representation in Egs. (63) and (64) is based
on a family of operations M;, with k=1,...,K, that
induce jumps in the state of the system and occur with
probabilities of order dr, and a single operation M, that
induces a smooth nonunitary evolution and occurs with
probability of order 1. This implies that a trajectory y
consists of a large number of 0’s punctuated by a few jumps
M, with k =1, ..., K. An alternative way of describing the
trajectory is to specify the jumps k; and the times #; where
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they occur, ie., y={n,(ki.t,).....(k;.t;),....(ky.ty),m},
where, as before, n and m denote the outcomes of the initial
and final measurements in the system at times ¢ = 0 and
t = ty. Jump k is given by the operation £;(p) = MkpM}(',
whereas between two consecutive jumps at 7; and 7;, the
evolution is given by the repeated application of the
operation corresponding to the Kraus operator M(4,)
in Eq. (63). This results in a smooth evolution given by
the operator

I iy
Uest(tj11.1;) = T 4 exp (—g/ ds Heff(is)) (65)
1

with an effective non-Hermitian Hamiltonian that reads

Her(A) = H(3,) - ’hZL A, (66)

In this representation, the probability of a trajectory y =
{n, (k17 tl)’ ey (kj’ tj)’ ey (kN’ tN)’ m} is

P(y) = Tr[Pmulf tNgkNu
X Ekl...u,z,,] Eklutl,O(Pnpopn)]’ (67)

IV SRR

with U, . (p) = Ueff(fjﬂvfj)PUfo(?Hl’ ).

A. Backward, dual, and dual-reverse dynamics

Consider now the backward dynamics. The time inver-
sion of the evolution of the global system corresponds to a
time-reversed version of the Lindblad master equation (61).
As in the previous section, the backward process is
generated by inverting the sequence of operations together
with the time inversion of each operation in the sequence.
The map corresponding to an infinitesimal time step in
the time-reversed dynamics, p, 4, = &£(p,), admits a Kraus
representation with Kraus operators M, (4,). To obtain the
backward map, we would need to know details about the
environment that induces the Markovian dynamics given
by the Lindblad equation (61). However, in the previous
sections, we have derived a relationship between the
forward and backward CPTP maps, namely, Eq. (32):

My = e %/*0sM}0}, (68)
My = e *OsM 0. (69)
Imposing the backward maps to be trace preserving, that

is, MgMo + ZkM}[Mk =1, we obtain 65 =0, and the
consistency condition

(LiLy = LyLe ) = 0. (70)

M)~

~
Il

1

Any set of numbers {cF} satisfying Eq. (70) defines,
through Eq. (68), an admissible backward process. The
existence of such a set is warranted since any Lindblad
equation can be derived from the interaction between the
system and an ancilla.

For any trajectory y = {n, (k,t,), ..., (ky,ty), m} gen-
erated in the forward process with probability P(y), there
exists a backward trajectory 7 = {m, (ky,ty),...,(ky,t;),n}
occurring in the backward process with probability P(7).
The backward trajectory can also be identified by the times
of successive jumps. In this representation, the probability
of trajectory 7 can be written as

P(}7) = Tr[@SP @Tﬂ,lqoékla&,,l "'gk,"'

X syt Exy Uiy, (OsPrpy, Pr@Y)]. (71)
where £.(p) = M kpM The smooth evolution between
jumps Ty, (7,) = Uael¢. 05, Tl (F.1) i given by the
operator

. [ P
Ue(f',t) =T, exp <%/ dsG)SHéff(ls)Q'g), (72)
t

where {;1,} again corresponds to the inverse sequence of
values for the control parameter. It can be shown that this
smooth evolution obeys the microreversibility relationship
O Uit (1, 1)O5 = Uee(1', 1)".

Let us discuss now the dual and dual-reverse dynamics.
The condition (39), which is necessary to define the dual-
reverse process, reads [31,52]

(@, L] = Agy Ly, [‘D’LIU = _A¢kLTk' (73)
These commutation relationships indicate that the Lindblad
operators L;(4,) promote jumps between the eigenstates
of z;. Furthermore, as the condition must be fulfilled
for the operator M, in Eq. (63) as well, we need
[H,S,LiL;] = [H,® =0, which in turn implies
A¢y = 0. This means that the instantaneous steady state
of the dynamics must be diagonal in the basis of the
Hamiltonian term appearing in Eq. (61). This condition
is fulfilled by equilibrium Lindblad equations and in
situations in which the operator H becomes the identity
operator in an appropriate interaction picture (see, e.g.,
Refs. [45,73]). However, the condition can be broken in
nonequilibrium situations, a genuine quantum effect. In
Sec. VIC, we present an example of a periodically driven
cavity mode where the adiabatic entropy production can
be negative. Finally, as discussed in Sec. IV B, we recall
that the fluctuation theorem for the adiabatic entropy
production can be stated when the backward maps £

admits 7; = ®Sﬂ,1® as an invariant state.
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If these conditions are fulfilled, the dual process is defined
by the dual operations Dy (-) = Dy(-)D} with Kraus oper-
ators {D,} as defined in Eq. (46), whereas the dual-reverse
process is given by operations D = Dk(-)DZ with Kraus
operators {D,} defined in Eq. (40) [see also Egs. (C7) and
(C8) in Appendix C]. The probability of a trajectory y in the
dual process, Pp(y), can be calculated from Eq. (67) by
using the same map U/, , for the no-jump time evolution
intervals and by replacing the operations &£, by the dual
operations D;. Analogously, for the dual-reverse process, the
probability of trajectory 7, P,(7), can be constructed from
Eq. (71) with I ¢, for the no-jump evolution and dual-reverse
operations D;. We further notice that, in general, D, # M,
and Dy # M,; that is, of # —Ady.

In many applications, the Lindblad operators come in
pairs, and the corresponding pair of terms in the sum (70)
cancel. This occurs if, for a specific pair of operators
{L;.L;}, we have L, = /T;L and L; = \/ITJLT, with
I;(4,) and T';(4,) being positive transition rates, and
L(4,) some arbitrary (possibly time-dependent) system
operator. Then, condition (70) implies (cf. Ref. [74])

o () = In(I/T;).

o7 (4) = In(I;/T;) = =07 (4,), (74)

and the (inverted) Kraus operators of the backward map are
also operators of the forward map:

O 05 = e~ PM[ = Vdie ™ L] =diL; = M;, (75)

where we have used the detailed-balance relation (32).
Moreover, 7, = O, 0" is invariant under the backward map:

g(ﬁ',{) = ZM](GS]Q@;M}Z = Z@SMkﬂ/lM]t@; = ;[}u
k k

(76)

B. Entropy production rates

The above considerations lead us to reproduce the three
different detailed FT’s in Eq. (60) for quantum trajectories
generated by Lindblad master equations. From the integral
fluctuation theorems, we can derive second-law-like
inequalities analogous to Egs. (50) and (51) for the entropy
production rates [31]:

Si = Spa + Sa = S+ (65) > 0, (77)
Su=8-¢20, S,=(E"+¢=0 (78

where § = —Tr[p,Inp,] is the derivative of the von
Neumann entropy of the system, ¢ =Tr[p,®(1,)] =
—Tr[p,Inx; | is the nonequilibrium potential change rate,

and (6% (4,))dt = >~ Tr[E, (p1)|o} (4,) the entropy change
in the monitored environment during dr [52]. The three
above equations guarantee the monotonicity of the average
entropy production, A;S, and the adiabatic and nonadia-
batic contributions, A;S,, and A;S,, during the whole
evolution.

The physical interpretation of the adiabatic and non-
adiabatic entropy production now becomes clear. The
nonadiabatic part can be written as

Sna = Tr[bt(ln ”/1, - lnpt)}v (79)

which is the continuous time version of Eq. (54). If the
control parameter changes quasistatically, we have p, ~ ; ;
therefore, the nonadiabatic entropy production vanishes.
This is analogous to the classical nonadiabatic entropy
production introduced in Refs. [20-23]. On the other hand,

the adiabatic contribution Sa is, in general, different from
zero even if the driving is extremely slow. In a physical
system, this term accounts for the entropy production
required to keep the system out of equilibrium when 4 is
fixed, and the associated dissipated energy is usually
referred to as housekeeping heat [20].

At this point, it is worth remarking an important differ-
ence between classical and quantum systems. In classical
systems, the split of the entropy production in two terms,
adiabatic and nonadiabatic, can always be done at the level
of trajectories, and both terms obey fluctuation theorems
that ensure the positivity of their respective averages. This
is possible for quantum systems only if Eq. (39) [or Eq. (73)
for Lindblad operators] is met. One can still use Eq. (79) as
a definition for the average nonadiabatic entropy produc-
tion S,, and S, = S, — S,,, for the average adiabatic entropy
production rate. However, these definitions cannot be
extended to single trajectories; furthermore, they do not
obey a fluctuation theorem. In the next section, we discuss a
specific example where the condition is not fulfilled and, as
a consequence, the average adiabatic entropy production
rate can be negative.

Finally, it is also important to notice that § and (6%) in
Eq. (77) are exact differentials, i.e., can be written as the
time derivative of the system and the environment entropy,
respectively. On the other hand, the term ¢ = Tr[p,®(4,)],
as well as the adiabatic and nonadiabatic entropy produc-
tion rates in Eq. (78), cannot be expressed, in general,
as a time derivative. One important exception is the case of
a constant invariant state m,=n like, for instance, in a
relaxation in the absence of driving. In that case, all the
quantities in Eqs. (77) and (78) are exact differentials. In
particular, the nonadiabatic entropy production when the
system relaxes from pg to p, is given by

ASna = _S(pTH”) + S(po”]l’) > 07 (80)
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which equals AS,, = S(po||z) for a full relaxation to
p. = z. The latter coincides with the entropy production
introduced by Spohn [75].

VI. EXAMPLES

We illustrate our findings with three paradigmatic
examples. In the first one, we consider a two-qubit CNOT
gate as a simple process with a finite-size environment to
illustrate the differences between the inclusive and non-
inclusive entropy production introduced in Sec. II C. The
second and third examples correspond to two representative
examples of nonequilibrium quantum Markov systems.
The second example is an autonomous system coupled to
several thermal baths. In this case, the nonadiabatic entropy
production is zero except during the transient relaxation to
the steady state. However, it provides an intuitive picture
of how entropy is produced in nonequilibrium setups. The
third example is a driven system that does not fulfill
condition (38) and, consequently, does not admit the
splitting of the entropy into adiabatic and nonadiabatic
contributions with positive averages.

A. Two-qubit cNOT gate

The difference between the inclusive and noninclusive
entropy production introduced in Sec. I C becomes espe-
cially relevant for processes where the system of interest
repeatedly interacts with a finite-size reservoir. As an
extreme case, we consider both the system and environment
to be qubits with the same energy spacing e. Their
Hamiltonians are given by Hg=¢|l)(l|g and Hy =
€|1)(1|z. We assume that the initial state of the system
is partially coherent, pg = (I + ao,)/2, with 0 <a <1,
and the environmental qubit starting in a thermal state
pp = e PHe /7. at inverse temperature = 1/kzT >0,
with Z = 1 + e77¢ being the partition function. The initial
state can be written as

I+ac,)® ([+«ko,), (81)

5=

PsE = Ps @ Pg =

where k = tanh(fe/2), o; with j = x, y, z are the Pauli
matrices, and we take the standard qubit basis {|0), |1)} for
both the system and the environment. The eigenbasis of pgg
determines the projectors of the initial measurements
{P,,Q,}, which are, in this case, P, = |y, )(w.| with
ly.) = (|0) £ [1))/v2 and Q, = |v)(v| with v =0, 1.

The system and environment interact through a CNOT
gate, Ucnot, Where the system acts as the control qubit
[62]. The interaction leads to the following global system-
environment state:

Pse = Ucnor(ps ® pe)U ENOT

1
=1 (I+ac, ® 6, —ako, ® 6, + ko, @ 0;). (82)

Notice that p; has maximally mixed reduced states both
in the system and the environment. As a consequence, for
any choice of the final projectors {P;,,Q;}, we have
P = ps = pr = pr = 1/2. In contrast, the global state p§
depends on the final projectors. The average work done
during the interaction is W =Tr[(Hs+ Hg)(pz—pse)| =
€(1/2—e77¢/Z;)>0, while there is no further energy
contribution from local measurements.

The inclusive entropy production in Eq. (14) is just given
by the erasure of quantum correlations in the final mea-
surements, A;S;,. = Z(psz) — Z(p%g)- This is the so-called
mutual induced disturbance introduced by Luo [63].
Moreover if, following Refs. [76,77], we maximize
I(p§y) over {P;,, Q}, then the inclusive entropy produc-
tion is equal to the (symmetric) quantum discord [64,78] of
the state p’,. On the other hand, the noninclusive entropy
production in Eq. (15) is given by the total correlations in
state p'sp, that is, A;S = A;Sie +Z(psg) = Z(psg), and it
is independent of the choice of the local projectors of the
final measurements {7;,, Q,}.

The entropy production per trajectory A;s, can be
calculated as explained in Sec. III. Recall that we may
obtain both the inclusive and noninclusive entropy pro-
duction depending on our choice for the initial state of the
backward process, and that the two quantities verify the
integral fluctuation theorem (26).

In Fig. 3, we show the probability distribution of
the entropy production P(4;s,) for fe=2.5 and a=0.8.
Blue solid bars correspond to the noninclusive version,
and purple dashed bars correspond to the inclusive one. The
latter depends on the final measurements. Here, we have
taken, as final projectors, the local energy eigenbasis,
{Pyy = |m){mls. Q= ) (ulg} for m, u=0. L The
different types of average entropy production are plotted

10 SN L B B R B B S B B B S S A B S R S R B S R B B
[ 2.0 . . . . o
0.8; st AiS + S(pkller) : ® ]
1 )
i 0.6p 1O : 1
El oost .~ :
0.4 [ et ‘ AiSinc 1
[ 09% 2 4 6 8 :
0.2t 8 | ]
[ |
L , " ]
0_0' a1 ‘?‘T‘ NN B ‘4
-5 -4 -3 -2 -1 0 1 2

Aisv

FIG. 3. Probability distribution P(A;s,) of the entropy pro-
duction per trajectory for noninclusive (blue solid line) and
inclusive (purple dashed line) cases. Initial states of the system
and environment correspond to parameters a = 0.8 and fle = 2.5.
Inset: Plot of the different versions of the average entropy
production as a function of f (¢ = 1 and a = 0.8).
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in the inset figure as functions of f for the same value of
a = 0.8. There, black and blue solid lines correspond to the
average noninclusive entropy production with and without
the term S(pj||pg) due to local disturbance of the envi-
ronment [see Eq. (29)], respectively. Dashed and dotted
lines show the average inclusive entropy production for
different choices of the local projectors in the final
measurement {P;,, Q; }. The purple dashed line is obtained
when the final projectors are given by the local energy
eigenbasis {P;, = |m)(m|s. Q; = |u)(u|z} for m, p =0,
1. The orange dotted line is the symmetric quantum
discord, obtained when maximizing 7 (pj).

As mentioned in Sec. II C, inclusive and noninclusive
entropy production apply to different physical situations
depending on how the system and the environment are
manipulated after the process. If the system and environ-
ment are separated and every further manipulation is local,
then we do not make use of the classical correlations
given by the mutual information Z(p§.); in this case,
the noninclusive entropy production is the magnitude
that adequately describes the increase of entropy. On the
other hand, global operations on the whole system +
environment can make use of those correlations and, for
instance, extract more energy from a thermal bath. We
illustrate this possibility in our simple example by consid-
ering a second CNOT interaction after the final local
measurements. For simplicity, we perform the final mea-
surements in the local energy basis, {P;, = |m)(m|g, Q; =
|u){u|g} for m, u =0, 1. Applying these projectors to
state p’, in Eq. (82), one obtains the final global state

1
P =4 1450, @ 02). (83)
Applying the second CNOT to this state, one gets

Psp = UCNOTngUENOT =5 ® PEs (84)

where pg is the initial thermal state of the environment.
As we can see, in this second process, the system and
environment become completely decorrelated after inter-
action, while a work W, = Tr[(Hs + Hg) (p§p — P5e)] =
€(1/2 — e7P¢/Zy) is extracted when performing the second
gate. Notice that the extracted work equals the work
performed in the first gate. This work extraction is
impossible if we only have local operations at our disposal,
for which the final state pj,, is completely equivalent to the
uncorrelated state p; ® pj.

This simple example highlights the importance of dis-
tinguishing between inclusive and noninclusive entropy
production in a small finite-size environment. Similar
conclusions can be applied for the term S(p%||oE)-

B. Autonomous thermal machine

Consider an autonomous three-level thermal machine
powered by three thermal reservoirs at different temper-
atures, as depicted in Fig. 4 [44,79-82]. Each bath mediates
a different transition between the energy levels, {|g), |e4),
leg)}. The Hamiltonian of the system is

Hg = ho,|ey)(eq| + h(@) + @y)lep)(epl;  (85)

that is, the three possible transitions g <> ey4, ¢4 <> ep, and
g <> ep have frequency gaps w;, @,, and w3 = w; + 0,,
respectively. Each transition is weakly coupled to a bosonic
thermal reservoir in equilibrium at inverse temperature
p. = 1/kT, with r=1, 2, 3, where we assume f3; > 53 > f,
for concreteness.

The dynamics of the three-level thermal machine can be
described by a Lindblad master equation obtained in the
weak coupling limit by standard techniques from open
quantum systems theory [4,5,60]. It reads

po= =1 Hs.p) + Li(p) + Lolp) + L3l (86)

where p, is the density operator of the three-level system
and Lamb-Stark shifts have been neglected. The three
dissipative terms in the above equation describe the
irreversible dynamical contributions induced by each of
the three thermal reservoirs:

B2

o

hey

lea)

FIG. 4. Schematic diagram of a three-level thermal machine
acting as a refrigerator. The three transitions of the machine are
weakly coupled to thermal reservoirs at temperatures 3, f3,, and
f5, inducing jumps between the machine energy levels (double
arrows). In a refrigeration cycle, the machine performs a sequence
of three jumps |g) = |es) — |eg) = |g), where it absorbs a
quantum of energy Aw; from the cold reservoir, together with
a quantum A®, from the hot one, while emitting a quantum #Aaws
into the reservoir at intermediate temperature.

031037-13



MANZANO, HOROWITZ, and PARRONDO

PHYS. REV. X 8, 031037 (2018)

. 1
‘Cr(pt) = Fi)(arptai - E{aIatht})
. 1
+ F<T) (aiptar ) {araI’Pt})s (87)

r=1, 2,3, where a; = |g){e,|, a, = |e,)(ep| and a3 =
|g)(ep| are the ladder operators of the three-level system.
Equation (87) describes the emission and absorption
of excitations of energy Aw, to or from reservoir r, at
rates I“(f) =7,(n"+1) and F(Tr) =y,n'", fulfilling detailed
balance F(f) = eﬂrhw,r(g)_ Here, ' = (ef"@r — 1)1 is the
mean number of excitations of energy Aw, in reservoir r,
andy, < w, Vr,r = 1,2, 3 are the spontaneous emission
decay rates associated with each transition. The heat
fluxes entering from the reservoirs associated with the
imbalance in emission and absorption can be defined as
O, = Tr[HsL,(p,)] for r=1, 2, 3, and the first law of
thermodynamics reads U = Tr[Hgpg] = O, + O, + Os.

Therefore, in our example, we have six Lindblad
operators (r =1, 2, 3),

L =yral,  (88)

Lar 1

that define the infinitesimal CPTP map (62) with the Kraus
representation given by Eqs. (63) and (64). In particular,

M =vaL| = \/ara,. (89)

MY =vaL) = \/ar\a}. (90)

Here, the stochastic jumps during the evolution correspond
to simple transitions between the energy levels {|g), |e4).
leg)}. Therefore, the stochastic dynamics is completely
equivalent to a classical Markov process if the initial state
of the machine is diagonal in the Hamiltonian eigenbasis.
In particular, the stationary state reads

7= 14|g) (gl + 7walea)(ea| + 7plep)(es]. (91)

In Appendix D, we explicitly calculate the occupation
probabilities 7., 7, and zp. Nevertheless, the transient
dynamics could exhibit some quantum effects when the
initial state exhibits coherences in the Hamiltonian eigen-
basis. For instance, it has recently been pointed out that
initial coherence can be used to reach lower temperatures
during the transient dynamics [83,84].

The backward trajectory 7 ={m, (ky,ty),...,(k;,t;),n}
is defined by the inverse sequence of events with respect to
7, occurring in the backward process. We consider the
initial state of the backward process as the inverted final

state of the forward process, G)Sp,f@;, while the thermal

reservoirs have the same state as in the forward process.
We further assume the simplest form for the time-inversion
operator ®g, namely, the complex conjugation, i.e.,
Oqy = yw*, which commutes with any matrix with real

entries, as the Hamiltonian and the jump operators a,., ar.

The Lindblad operators in this case come in pairs L(l” =

ePrheor/ ZL({)T. Hence, the stochastic entropy change in the

environment o£ for each operator L, is given by Eq. (74),
where the label k takes on the six possible values k = (1, r)
and k= (},r) with r =1, 2, 3:

d(f) = B, hw,, G(Tr) = —f,.hw,. (92)

This is as expected since the upward jump r induced by the

(r)

operator L in the forward trajectory y dissipates a heat

hw, to the reservoir at inverse temperature 3,. Equivalently,
in the downward jump r, a heat A, is extracted from the
thermal bath, reducing its entropy by an amount f,fiw,.
The Kraus operators of the backward map are given by

Eq. (75): 1\ =M, i1y = M), and M, = ©5M0)]
for the no-jump evolution. Indeed, by virtue of Eq. (72), we
obtain Uy = Oy szfG)g = U, for the effective evolution
operator describing the dynamics between jumps in the
backward process. From the above equations, we see that
the backward map & is obtained from the forward map &
inverting the jumps. We also notice that, consequently,
the backward map & admits the time-reversed steady state
= ®5ﬂ®§ = 7z as an invariant state.

We next construct the dual and dual-reverse processes for
the model. The condition for the Lindblad operators to be of
the form in Eq. (38) is fulfilled here. Indeed, the non-
equilibrium potential, ® = —In 7, obeys [®, Hg] = 0 and
@. L] = ag 'L, (0.1 = -ag L (93)
where the nonequilibrium potential changes associated
with each jump in the trajectory read

Agy =0, AP, =-pho, Apy =pho,. (94)
Here, we have introduced the quantities f| = In(zo/7;)/
hwy, py=1In(n/7,)/hw,, and 5 =In(x, /7,)/hw;, which
can be seen as the local inverse temperature (or virtual
temperature [85-87]) of each transition in the steady
state 7. As shown in Appendix D, they determine the
direction of the heat flow in the stationary regime; i.e., if
B, > p,, then the temperature of reservoir r is higher than
the local temperature of the machine and the heat Q, is
positive (energy flows from the reservoir to the machine),
and vice versa. Moreover, for f,. ~ f,, the heat flow is
proportional to . — f3,; therefore, the difference S, — f3,
can be considered as a thermodynamic force for the heat
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refrigerator :

heat pump

FIG. 5. Comparison between the inverse effective (or virtual)
temperatures f,. (solid lines) and the real inverse temperatures of
the reservoirs /3, (dashed lines) for r = 1, 2, 3 (blue, red, orange),
as a function of f; when Aw; =1 and Aw, = 1.5. In the
refrigerator regime, the transition g <> e4 is, at an effective
temperature, colder than the coldest reservoir, | > f, inducing
heat extraction from it, while the other transitions induce
dissipation of heat to the reservoir at intermediate temperature,
p> > f,, and absorption of heat in the hotter one, ) > f,. In the
heat pump regime, the three heat flows change directions as the
previous inequalities become inverted.

flow between the reservoir r and the system. In Fig. 5, we
plot the local inverse temperatures S, compared to the
reservoir temperatures 3, for a specific choice of , = 0.5
and f3 = 4 and as a function of 3, the inverse temperature
of the coldest bath [we use units of (%w;)~']. There is a
point, around f; = 9.3, where f, = f3, and all the heat
flows in the stationary regime vanish. Below that point, the
steady heat flow from the coldest reservoir at inverse
temperature f; is positive; i.e., the machine acts as a
refrigerator that extracts energy from the coldest bath 1.
On the other hand, for f; > 9.3, heat flows from the
machine to the hottest bath at inverse temperature f3,, so
the machine acts as a heat pump capable of heating up the
hottest reservoir 2.

The Kraus operators for dual and dual-reverse maps, D
and D, can be obtained from Egs. (46) and (41), respec-
tively, by using Eqgs. (92) and (94). They read

Di’) = /dtePr—pr)ho, L(J)» (95)
D<Tf> — Vdte~BPho, L(Tr)’ (96)
D\ = VaiehorL), (97)
D\ = Vel L) (98)

We see that the dual and dual-reversed dynamics induce
similar jumps in the three-level system but with modified

rates depending on the differences S, — f,. Only when
B, = B, for each r does the dual process become equal to
the forward process, and hence the dual-reverse process
equals the backward process (see Fig. 5).

Notice that Eq. (93), together with the backward map
having 7 = x as an invariant state, gives sufficient con-
ditions to ensure the existence of the three fluctuation
theorems for the adiabatic, nonadiabatic, and total entropy
productions during trajectory y. They explicitly read

3

=SB~ ). (99)

r=1

AiS?,
Aisnd = Gnm Zﬁr%’ ’ (100)

pral, (101)

M 1

where o3, is the stochastic entropy increase in the system,

and ¢ = ha),(n;r) - n(f)) is the stochastic heat entering

the system from reservoir r, with n(Tri) being the total

number of upward or downward jumps in transition r.
The expression for the adiabatic entropy production is
particularly interesting since it is equal to the entropy
generated by the heat transfer between reservoirs at inverse
temperatures S, and f,. In particular, the adiabatic entropy
production is identically zero when 8, = f., even though it
is possible to have transient flows of heat.

We can now calculate the average rates of nonequili-
brium potential and reservoir entropy changes:

=Y L L plel) = -p,0,.  (102)
k=11
Z Tr[L k /)t A¢k ﬁ/rQr’ (103)
k=14

where we split into three parts the nonequilibrium potential
flow ® = @ + ®, + @3 = —Tr[pg In z]. The entropy pro-
duction rates hence read

Sa=>Y (B, =50, 20, (104)
Sna = S - ZﬂlrQr >0, (105)
$;=8- ZﬂrQr > (106)

showing the same structure as the trajectory entropies in
Egs. (99)—(101). Since there is no driving in this example,

031037-15



MANZANO, HOROWITZ, and PARRONDO

PHYS. REV. X 8, 031037 (2018)

the nonadiabatic entropy production reads as in Eq. (80),
and it equals AS,, = S(po||7) for a full relaxation to the
steady state z.

In the steady state, we have Sna =0, and the first law
becomes 3°,0% = 0. This implies that the only contribu-
tion to the entropy production rate is the adiabatic one,
which can be written as

Se=S8=(fs— )05 — (B —B5)0F 20.  (107)

This equation can be used to bound the efficiency of the
machine in the different regimes of operation. For instance,
the efficiency of the machine acting as a refrigerator is
given by

. 5is<ﬂ3—ﬁ2_€
==l < =ec,
$ B =P

(108)

where ¢e- is the so-called Carnot efficiency of a
refrigerator [85].

C. Periodically driven cavity mode

Our third example consists of a single electromagnetic
field mode with frequency @ in a microwave cavity with
slight losses in one of the two mirrors. The losses of the
cavity are produced by the weak coupling of the cavity
mode to a bosonic thermal reservoir in equilibrium at
inverse temperature f = 1/kT. In addition, an external
laser of the same frequency @ and weak intensity drives the
cavity mode producing excitations. The Hamiltonian of the
system can be expressed as Hg(1) = Hy + V(¢) consisting
of two terms: The first one is the Hamiltonian of the
undriven mode H, = Awa’a, and

V(1) = ih(ea’e ™" — e*ae'") (109)

describes the effect of the classical resonant laser field
with complex amplitude e = |e|e’”. Here, the subscript S
stands for the Schrodinger picture, whereas operators and
density matrices without any subscript will correspond to
the interaction picture with respect to H, (H,, is, of course,
the same in the two pictures). Figure 6 shows a schematic
picture of the setup.

The reduced evolution of the cavity mode can be
described by the following Lindblad master equation [60]:

ps(t) = =L [Hs(0).ps(0)] + Los(1)).

; (110)

with the dissipative part

hw

laser
driving

d

FIG. 6. Schematic picture of the setup. The intracavity mode
H, is externally driven by a resonant laser field V(7) while in
weak contact with the environment at inverse temperature /3,
producing the emission and absorption of photons.

L(p) =T, <apaT - % {aTa,p})

+ Iy <ana—%{aa+,p}>. (111)

This term accounts for emission and absorption of photons
by the cavity mode from the equilibrium reservoir at
respective rates I') = yo(n™ + 1) and T’y = yon™. Here,
again, n™ = (e —1)~!, and y, is the spontaneous
emission decay rate in the absence of driving. The
dissipative term L(p) does not depend on the driving:
It induces jumps in the eigenbasis of H, and is also
invariant under the change of picture. Notice that this is
an approximation. For slow driving, for instance, the bath
induces jumps between the instantaneous eigenstates of the
Hamiltonian H¢(t). The dissipator (111) is valid for weak
driving and weak coupling with the thermal bath, that is,
Yo~ €] < w [88].

In the interaction picture with respect to H, the Lindblad
equation (110) reads [60]

i

2 V(D] + L(p(1)), (112)

p(t) =

where V = ifi(ea’ — €*a) is the driving Hamiltonian in the
interaction picture, which turns out to be constant.

Before discussing the FT applied to this example, let us
calculate the energetics of the system from the Lindblad
equation. For this purpose, it is more convenient to express
the internal energy in the Schrodinger picture: U(t) =
Tr[Hg(1)ps(1)]. The first law reads U(r) = W(r) + O(1),
where the average work is given by

W(r) = Tr[H(1)ps(1)]
= hoTr[(ea’e ™ + e*ae™)py(t)]

= hoTr[(ea’" + €*a)p(1)]. (113)

We denote the average energy change not accounted for
by work as
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Q(1) = Te[Hy(1)ps(1)] = Tr[Hs(1)L(ps(1))]

= Tr[(Hy + V) L(p(1))]. (114)
although it is not necessarily equal to the heat, i.e., the
energy reversibly exchanged with a thermal reservoir that
accounts for the reservoir’s entropy change [89]. Below, we
discuss in detail the physical nature of this energy transfer.

The steady state of the dynamics (112) obeys
—(i/n)[V,x] + L(z) = 0. This equation can be solved
by noticing that the term [V, p] in Eq. (112) cancels under
the transformation a — a —a, where a = 2¢/y,. The
resulting steady state is

(115)

where Z, = Tr[exp(—fH,)], and D(a) = exp(aa’ — a*a)
is the unitary displacement operator in optical phase space,
fulfilling D(a)aD'(a) = a —a, D' (a) = D(—a). In con-
trast to the undriven case, here the cavity does not reach
equilibrium with the reservoir: Coherences in the energy
basis do not decay to zero because of the work performed
by the external laser. Notice also that the state z defines a
limit cycle (unitary orbit) in the Schrodinger picture. In the
stationary regime, 7g(t) = e~"Ho//hgeifot/h; e the mode
rotates in optical phase space, according to the free
evolution 7y = (—i/h)[Hy, 7s].

The energetics in this stationary regime is rather simple.
The internal energy is constant, even though the state z5(¢)
depends on time: Ug = Tr[Hgngs] = Tr[(Hy+ V)z| =
Tr[Hyz] = ho(n™ 4 |a|?), which is bigger than the
thermal average energy Awn™. The laser introduces energy
at a rate

Wy = hoTr[(ea’ + e*a)n] = hwylal> >0,  (116)
which is dissipated to the thermal bath st = —WSS.

The FT can be applied both to the Schrodinger and to
the interaction picture. Here, it is is more convenient to
determine the forward and backward processes in the
interaction picture, where there is no driving. The Kraus
operators for the map £ in Eq. (62) read, in this case,

i1 .
My=1- dt(hV+2kZHLkLk),

for the no-jump evolution, and

Ml = \/ELl = ,/thia,
MT = \/ELT = ,/thTaT,

for the downward and upward jumps corresponding to
emission and absorption of photons.

The trajectory y = {n, (k;,t,), ..., (ky,ty),m} is then
constructed as in the previous example by counting the
jumps induced by the reservoir and registering the times at
which they occur.

Since the forward dynamics is governed by a single pair
of Lindblad operators {L| = /T ja,L; = ,/T;a'}, con-
dition (70) allows us to obtain the stochastic entropy
changes in the reservoir:

o5 =0, o} = pho, of = —pho. (117)
In other words, in a downward (upward) jump, the entropy
in the environment increases (decreases) by fhw, corre-
sponding to a transfer of energy Aw. On average, this
transfer of energy equals Tr[HyL(p(#))], whereas the
energy not accounted for by work is given by Eq. (114),

ie., by O(t) = Tr[(Hy + V)L(p(1))]. The origin of this
discrepancy is the choice of a dissipator (111) independent
of the driving. As already mentioned, the dissipator is valid
for weak driving [88], when the term Tr[VL(p(t))] ~
O(yleo]) is negligible.

However, it is worth noticing that our approach does not
depend on the physical nature of the environment and its
interaction with the system. As shown in Sec. V, once a
Lindblad equation like (110), with a given set of Lindblad
operators for its unraveling, has been specified—no matter
how it has been derived—it induces an entropy change in
the environment given by Eq. (117). This is a direct
consequence of the microreversibility that yields condition
(70) on the Lindblad operators. When these operators
come in pairs, as is the case in our example, the condition
determines the entropy change in the environment
[see Eq. (74)].

Therefore, if one could conceive physical situations
where the Lindblad equation (110) is exact, then the
entropy production would be given by Eq. (117) and the
energy transfer Tr[VL(p(7))] would not contribute to
the entropy of the environment. A clue to the nature of
this energy transfer is provided by Ref. [55]. In that paper,
Elouard et al. introduce a driven two-level system in an
engineered thermal bath where excitations occur through a
third level with a very short lifetime and transitions are
monitored by measuring emitted photons. The resulting
Lindblad equation is the analog of Eq. (110) for a two-level
system, and the entropy change in the environment is
precisely Eq. (117). These results show that the energy
transfer Tr[VL(p(t))] is due to the collapse of a coherent
state induced by the photon detection. This energy transfer
does not change the entropy of the universe and has been
categorized either as “measurement work™ [31,74] or as
“quantum heat” [54,55] due to measurement.

The Kraus operators of the backward map are given
by Eq. (75):
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M, = OM,0" = M,, (118)
M, =VdiL = Vd®OL,O®" =M,,  (119)
My =VdiL, = Vd®L ®' =M,  (120)

implying again that the forward and the backward maps are
equivalent; i.e., the jumps up (down) in the forward process
are transformed in jumps down (up) in the backward
process.

The main feature of this example is that the key condition
(38) is not fulfilled. Recall that this condition is needed to
define the dual and dual-reverse dynamics as well as the
stochastic adiabatic and nonadiabatic entropy production at
the trajectory level. Using the expression for the stationary
state, Eq. (115), we can calculate the nonequilibrium
potential in the interaction picture,

® = —Inz = pD(a)HyD'(a) + In Z,

= pH, — pholal(x, — |a|) + InZ, (121)
where we have introduced the field quadrature
x,=de?’+ae (122)

The nonequilibrium potential @ in Eq. (121) does not
obey Eq. (73) because the Lindblad operators appearing in
the dynamics (112) promote jumps among the eigenstates
of the unperturbed Hamiltonian H,), instead of the eigen-
states of the steady density matrix z. This implies that we
cannot associate a single change in the nonequilibrium
potential with each of the Lindblad jump operators, nor to
M,. As a consequence, the entropy production per trajec-
tory cannot be decomposed in adiabatic and nonadiabatic
contributions, and the corresponding fluctuation theorems

(@) (b)

do not apply. However, the conditions in Eq. (73) can be
recovered in some cases by properly including the effect of
the driving on the Lindblad operators [74].

Even though the adiabatic and nonadiabatic entropy
production cannot be defined at the trajectory level, we can
calculate their averages [75] using, for instance, Eq. (78):

Spa = S = p(U - hwlalX,), (123)

Sy = 8 = Spa = B(W — howlalX,). (124)
Here, we have used §; = § — fQ and U(1) = (Hy) = Q+ W,
and introduced X » = Tr[x,p(t)], the rate at which the cavity
field mode is displaced by the laser (with phase ¢) until the
steady state is reached. Since there are no fluctuation
theorems for these quantities, in principle, they could be
negative. The nonadiabatic entropy production, however,
still obeys Eq. (79) and, since the steady state z is constant in
the interaction picture, it can be written as the change of the
relative entropy between the state p(z) and z, which is
always positive: S,, = —S(p(¢)||z) > 0. This is not the case
of the adiabatic entropy production S‘a, which indeed can
take on negative values. The expression for Sa in Eq. (123)
equals the entropy production in the steady state,
S’a — W, = —p0, > 0. However, it can be negative in
the transient regime, as shown in Fig. 7 (see also
Appendix E). In Fig. 7(a), we depict the evolution of
the three entropy production rates when the cavity mode
starts in a Gibbs thermal state in equilibrium with the
reservoir temperature, p, = exp(—fH,)/Z,. We find that
the entropy of the mode is kept constant during the
evolution, § =0 V7, which implies Si = —ﬁQ >0 and
Spa = p(Aw|alX,, — U) > 0. On the other hand, the adia-

batic entropy production rate S, = (W — ,u)'((p) is negative
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FIG. 7. Time evolution of (a) adiabatic (Sa), nonadiabatic (Sna), and total (Si) entropy production rates represented by solid lines, and
(b) input power (W), rate at which the cavity mode absorbs energy (U), and displacement rate ()'(q,). The cavity mode starts in

equilibrium with the thermal reservoir, py = ePHZ, and the laser driving is switched on at # = 0. The dashed line in (a) corresponds to

p Wss, and we use vertical dotted lines to highlight the instant of time at which the adiabatic entropy production rate changes its sign (¢,,).
We use parameters € = 0.02w, yy = 0.01w, and temperature k7" = 10Aw, for A = 1 units.
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for times ¢ < t, = 21n2/y,. It is worth mentioning that for
this initial condition, the term Tr[V L(p(¢))] in the energetics
vanishes at any time ¢.

To explore the origin of this purely quantum effect, we
plot the energetics of the relaxation process in Fig. 7(b).
The cavity mode absorbs energy at constant entropy from
the external laser until the periodic steady state is reached,
U=We /2 where W=Wy(l—-e7/2)>0 is the
1nput power and, consequently, heat is dissipated at a rate
—Q = W(1 —e7'/2) > 0. When the relaxation is com-
pleted, the 1nput laser power is fully dissipated into the
reservoir, i.e., st = WSS The energy absorbed by the
cavity mode during the evolution is fully employed to
generate the unitary displacement «, that is, AU =
hw|a]AX,, = hw|al*>. However, the transient dynamics
ruling this process is far from trivial. The cavity mode is
always displaced, i.e., gaining coherence, at a higher rate
than energy, U = hw|a|X (1 — e77'/?), in accordance with
the positive nonadiabatic entropy production rate. In
addition, by comparing Figs. 7(a) and 7(b), the energetic
meaning of the adiabatic entropy production rate can be
clarified. In the initial transient where S‘a < 0, the coher-
ence gain surpasses the input power, i.e., hw|a\X¢ > W,
which in turn implies that the rate at which the cavity mode
gains energy speeds up in this period, U > 0. At time Ins
when S, =0, we have W = hw|a|X =W/2, and U
peaks at its maximum. After this time, the adiabatic entropy
production rate is positive S, > 0, implying ha)|a\5(¢ < W,
and U decreases until it becomes zero in the long time run,
when the periodic steady state is reached. In conclusion,
we obtain that the sign of the adiabatic entropy production
rate spotlights the acceleration in the internal energy
changes of the cavity mode.

VII. CONCLUSIONS

In this paper, we have analyzed the production of entropy
in general processes embedded in a two-measurement
protocol, with local measurements performed in both the
system and the environment. Our first main result is the
fluctuation theorem (23), which compares the probability
of forward and backward trajectories. Particularizing this
expression to certain initial conditions of the backward
process, one can obtain FT’s for the change of inclusive
(14) and exclusive (15) entropy production, i.e., for the
entropy production that results from keeping or neglecting
the classical correlations generated between the system
and the environment during the process. These differences
have been illustrated for the case of two qubits interacting
through a CNOT quantum gate.

We have also explored whether it is possible to split the
total entropy production into adiabatic and nonadiabatic
contributions, as it is customary in classical systems far
from equilibrium [22,23]. For that purpose, we have

introduced a dual dynamics for the reduced evolution
of the system, which in turn allowed us to clarify the
interpretation of previous FT’s derived for quantum CPTP
maps [33]. We have shown that the aforementioned
decomposition is possible only if the reduced dynamics
satisfies a certain condition, namely, Eq. (38). In fact, we
give an explicit example where that condition is not
fulfilled and the adiabatic entropy production takes on
negative values. This is a pure quantum feature whose
consequences, we believe, are worth further exploring.

Our results can be applied to a broad range of quantum
processes including multipartite environments and concat-
enations of CPTP maps. In particular, we developed, in
detail, the application to processes described by Lindblad
master equations. We have introduced a general method
to identify the environmental entropy change during the
trajectories induced by quantum jumps [see Eq. (70) and
below], which allows us to recover the FT’s. The meaning
of the adiabatic and nonadiabatic terms becomes clear in
this situation since the nonadiabatic contribution tends to
zero for quasistatic driving.

Finally, we have studied the decomposition of the total
entropy production in two specific situations of interest: an
autonomous three-level thermal machine and a dissipative
cavity mode resonantly driven by a classical field.

Summarizing, our results provide an exhaustive charac-
terization of the entropy production in open quantum
systems undergoing arbitrary processes. This includes
systems in contact with nonthermal or finite-size reservoirs,
configurations with several equilibrium baths with different
temperatures or chemical potentials, driven systems, etc. In
all those cases, one should be able to assess the entropy
production and characterize its fluctuations within the
theoretical framework presented in this paper. Therefore,
our results clarify the origin of entropy production from
coarse graining and its link to thermodynamical notions
when particular choices for the environment are made.
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APPENDIX A: INFINITESIMAL CHANGES IN
THE STATE OF THE RESERVOIR

In this appendix, we show that the term S(p}||pr)
appearing in Eq. (29) is negligible for infinitesimal changes
in the environment density matrix. Let us assume the
change in the environment density operator in the following
general form:
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PE = PE T €Ap, (A1)
where Tr[Apg| = 0 and € > 0 is a small real number. Using
the definition of the quantum relative entropy, we can then
write

S(pllpe) = S(pe) = S(pf) — €Tr[AppInpg].  (A2)
In the following, we show that if e <1, then
S(py) — S(pg) ~ —€Tr[ApgInpg], and  consequently,

S(pxllpe) — 0. This can be done by applying perturbation
theory. Let the eigenvalues and eigenstates of pj, the set
{4, |#,)}, be expanded to second order in e:

% 1 2
4 =~q,+eq) + €4, (A3)

85 = |b,) + el) + 1), (A4)

where the zeroth-order contributions obey pg|,) = q,|¢,),
and we have, for the first-order terms,

) = (| 8ol

By = 3 (9.1 2p]d) 5.

v qu — 49y

(A5)
(A6)

We now calculate the entropy change up to second order
in €

S(py) = Slpg) == qiIng; +> q,Ing,
u v

~ —eZq,(ll) Ing,
"

2
—62<q,(¢)lnqﬂ+z
u

to be compared with

12
4
2q,

) @
—€Tr[AppInpp] = =€) (B,lApl¢,) Ing,
"

1
= —equ, 'In Gu-
"

The above equations (A7) and (A8) are equal up to first
order, differing in O(e?). Therefore, using Eq. (A2), we
conclude that

(A8)

(1)2
" 2 q
S(pillpe) = —¢ (gﬁ g+ 3L (A9)
" H

! > =0,

and when ¢ < 1, we can consider S(pj||pr) — 0 up to first
order, in contrast to the change in entropy [Eq. (A7)].

APPENDIX B: MULTIPARTITE ENVIRONMENTS

Recall that we assume R ancillary systems in an
uncorrelated state, pp = p; ® ... ® pg, and local measure-
ments in each separate environmental ancilla. We denote
the local density operators of the environmental ancilla r at
the beginning and at the end of the (forward) process as

pr= Q" pr=>a"Q (B
v 1

(r)

with eigenvalues g, ("

and g, and orthogonal projectors
onto its eigenstates Q) = [y (y{”|, and QO =
k) G

The generalization of the results is then straightforward
by considering the same steps and assumptions as before.
The reduced system dynamics is again given by Eq. (7), but
the operators M, now use collective indices

(1.0) = {@D, 40), .., (0, 1)},

representing the set of transitions obtained in the projective
measurements of all environmental ancillas:

(B2)

e = e forr=1,..R (B3)

In other words, the Kraus operators of the forward process
are given by

R
r 1)* R)* 1 R
M, = (1_[1 \ ‘1,(,<r)>> <Zi,m)> "')(;(4“*)) |EUA|)(£(I>)"'ZZ(,<'?))>E7
(B4)

and analogously for the Kraus operators of the backward
process (31), we have

R

v ~(r)

M, = <H \/ qﬂ(r>>
r=1

1 R 1)x* R)*
X <)(E,(l))"')(,(,(R>)|E®I€U/~\®EIXL(I)) ---XL<R>> )e- (BS)
The key relation (32) necessary to obtain the fluctuation
theorem for the total entropy production (23) hence follows
as well in this case, with a decomposition of the environ-
ment boundary term

(B6)

being Gp(;')‘m(’) =-—In ZII% +In cI%-

The application of the above formalism introducing the
dual and dual-reverse processes follows immediately in the
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same manner, leading to the fluctuation theorems for the
adiabatic and nonadiabatic entropy production in detailed
and integral versions, Eqgs. (42), (48), and (49). The
adiabatic entropy production per trajectory and its average
then read, in this case,

1 ;w Z o + Ad)/un (B7)
AiSa = S(p;) = S(p,) + (Agp) 20,  (BB)

where in the averaged version we again set (uncorrelated)
reversible boundaries, psr = O(ps ® p; @ ... ® pi)O".

APPENDIX C: CONCATENATIONS
OF CPTP MAPS

In the following, we focus on the derivation of FT’s for
concatenations of CPTP maps reported in Sec. IV E. Here,
we assume the environment is a single reservoir or ancilla.
However, the extension to multiple reservoirs follows in the
same manner as in the one-map case (see Appendix B).

Consider the map concatenation Q in Eq. (57). For any
map £V in the sequence, the environmental ancilla starts in
a generic state

(C1)

l l I
P = gl ol

and it is measured at the beginning and at the end of the
interaction with the system, generating outcomes labeled as
v, and y;, respectively. The measurements are specified by

the rank-one projective operators {Qﬁi)} = {|¢£€>><¢S)|}
for the initial measurement and { Q" = |\ ) (|} for
the final one. Under these conditions, each map in the
concatenation can be written as

E Mﬂ/ l// H/Vz ’

Hi-vi

(€2)

with M,(fll, =/ q,(,i><¢,(fl)*|U5\l>|¢g)>, where the unitary evo-

lution UE\I) is as in Eq. (2). Here, we always consider the

same total time-dependent Hamiltonian H(¢), following an
arbitrary driving protocol A = {4,|0 <t < Nz}. For con-
venience, the latter can also be split into N intervals; hence,
the partial protocol A; = {4,|t,_; <t <1} generates the

unitary operator Uf\l).

A quantum trajectory in this context is defined as
follows. At time ¢ = 0, we start with our system in pg,
which is measured with eigenprojectors {P,}, obtaining
outcome n. Then, the sequence of maps Q defined in
Eq. (57) is applied, obtaining outcomes {yx;, v;} from each

of the [ =1, ..., N pairs of measurements in the environ-
ment. Finally, at time t = Nz, the system is measured again
with arbitrary (rank-one) projectors {P;, }, giving outcome
m. A quantum trajectory is now completely specified by the
set of outcomes, y = {n, (v, 4y), ..., (Un, py), m}, and it
occurs with probability

OSflllll (Pn)] .

P(y) = p Tr[PyEin 0. .

(C3)

Now, we can apply the same arguments in the previous
sections to construct the three different processes used to
state the FT’s. For the initial state of the backward process,
we consider again an arbitrary initial state of the system
Ps = >, PmOP;O", uncorrelated from the environment

initial states Z)EI =>,G,09:0", and apply the sequence

of maps Q = EWo.. .0&Wo. . 0EWN), generating a trajectory

y={m, (u1,v1), ..., (un,vy), n} with probability
P#) = p,Tr[OsP,0LEN o. &N (@gP:00)].  (C4)
7 Pm r[ ST n~sCvipup = ZCvyuy S m S]'

Here, the backward maps £ and their corresponding
operations are defined by each map £ in the concatena-
tion Q by applying Egs. (30) and (31).
Dual and dual-reverse maps and operations also follow
from the deﬁnitions in Sec. IV when conditions (38) and
ED (D) = #1 are met for each map in the sequence. The
correspondlng probabilities for trajectory y in the dual
process and trajectory 7 in the dual-reverse process are

Pp(y) = pTr[P;Dinbyo...cDiuk, (P)], (C5)
Pp(7) = puTr[OP,0 D)), 0...0DL),, (OP;01)],  (C6)

where in the dual-reverse trajectories we again took the
sequence of maps in inverted order; that is, we applied
DWo.. .oDW) over the initial state jg.

Again, the Kraus operators for the backward, dual, and
dual-reverse trajectories fulfill the set of operator detailed-
balance relations:

o i)e = e~/ m ), (c7)
O D0 = eAui2pml), (C8)
D;(jy) - e—(fff,4,,v,+Af/’f4]2)/2Ml(497 (C9)

where the nonequilibrium potential changes are defined
with respect to the invariant state 7Y of each map £() as in
the single map case: Aqﬁ,(,ly) =—In 71',(41> +In ny).

The set of Egs. (C7)—(C9) immediately implies the
detailed FT’s for concatenations in Egs. (58)—(60). Its
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corresponding integral versions and second-law-like
inequalities follow immediately as a corollary.

Finally, it is interesting to consider the expression of the
average nonequilibrium potential change during the whole
sequence. By denoting pg(7;) the reduced state of the
system at time #;, we have

!
y,u, (ﬂs ] ))]A¢/(412/1

Mz

Z t[(ps(t1) = ps(11-1)) 1] (C10)

where ®, = —In 7). The above expression can be decom-
posed into the following boundary and path contributions:

AD;, = Tr[pi®@y] — Trlps®y], (C11)
N-1

AD, = =) Trlps(i)(®r — )] (C12)
=1

When all the maps in the concatenation have the same
invariant state, ®; | = ®; = ®VI, we obtain AP, =0,
while A®, = Tr[(p — ps)®| and we recover the expres-
sion for the single map case, cf. Eq. (53). On the other hand,
the boundary term only vanishes for cyclic processes,
such that p = pg, implemented by cyclic concatenations
with @y = ®,. In this case, A®;, = 0, while AD,, gives, in
general, a nonzero contribution.

The dynamical versions of these boundary and path
terms read

b, = S (Tp@R)). &, =-Trpd).  (C13)

which are also analogous to their classical counterparts
[21-23].

APPENDIX D: AUTONOMOUS QUANTUM
THERMAL MACHINE DETAILS

The setup presented in Sec. VI constitutes the simplest
model of an ideal quantum absorption heat pump and
refrigerator, usually considered to operate at steady-state
conditions [44,81,82]. We now focus on the heat pump
configuration, but similar conclusions follow as well in the
heat pump mode of operation. The cooling mechanism
exploits the average heat flow entering from the reservoir
at the hottest temperature, Q2 > (), to continuously extract
heat from the reservoir at the lowest temperature, Ql > 0,
while draining Q3 < 0 to the reservoir at the intermediate
(inverse) temperature, 35 (see Fig. 4).

The three average heat fluxes entering from the reser-
voirs associated with the imbalance in emission and

absorption processes, Q, = Tr[HsL,(p,)], read

01 = hoy (T p, (1) T\ pa()).  (D1)
Q, = ha)z(F 'pat) - ¢ Y ps(1)). (D2)
03 = hwy (F(TB)Pg(f) - F?PB(I))» (D3)

where p;(r) are the instantaneous populations of the
machine energy levels |g), |e4), |ep), and > ;p;(7) = 1.
The first law of thermodynamics in the model follows from
the master equation (86):
U =Ti[Hgps] = Q1 + Q> + 0s. (D4)
which, in the steady-state  conditions, reads
Q1 + Qz + Q3 = 0. In such a case, the heat fluxes become

Oy = hon Tz, (1 — e~ Vi=phon), (D5)
0 = hanTPmy (1= Vo) (D6)
03 = oz, (1 = e Vihon) (D7)

where we employ the detailed balance relations F%r) =

eﬂrhwrr(ﬂ and the definitions for the effective temperatures
", for r =1, 2, 3. Therefore, since the prefactors in all
three above expressions are always positive, the direction
of the heat fluxes is determined by the sign of the respective
thermodynamic force X, = f, — f5,. Indeed, near equilib-
rium when X, <« 1, we may expand, to first order, the
exponentials in Egs. (D5)—-(D7) and recover the well-
known result of linear irreversible thermodynamics,
Qr = arx r (DS)

where a, is a positive constant; that is, fluxes are propor-
tional to thermodynamic forces. In any case, Egs. (D5)—~(D7)
show that heat flows from the environment to a system
transition, Q, > 0, if the latter is at an effective temperature

lower than the_former, B> P
The steady state of the dynamics [Eq. (91)], for the

simpler case in which y; = y, = y3 =y, reads

e/)’3hw3 (Zeﬁlhw]Jr/)’Zhwz _ 1) _ ef)’lhwl+/32hu12

g = 7 ’

b

(D9)

T

ePahan (eﬂlhwl — 2) + ePshws (2eﬁ2hw2 - 1)
Z,

. (D10)

Ty =
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ePshws 1 pfrhoithrhoy _ o

g =
Z
b

, (D11)

where we define  Z, = "2 (=2 4 ef1her) — 24
ePshws (2eﬁzhwz(1 + eﬂlhwl> _ 1)

At steady-state conditions, the fridge or heat pump
modes of operation can be obtained by properly tuning
the energy-level spacings. Inserting the steady-state values
in the expressions for the heat fluxes, we obtain

Of =yhoAJZ, >0, Q5 =yha,AJZ, >0, (DI2)
and Q5 = —(05° 4+ 0%) <0, where Z, > 0 and the quan-
tity A = (ef3hos — ePrihor+hhor) > (), Therefore, for a fridge,
we need A > 0. This is guaranteed when the following
design condition is met:

w2><m—ﬁﬁw]
T \h-h
Notice also that when the above inequality is inverted, we

obtain A <0, and the three heat flows invert its signs,
hence generating the heat pump mode of operation.

(D13)

APPENDIX E: TRANSIENT NEGATIVITY
OF THE ADIABATIC ENTROPY
PRODUCTION RATE

In this appendix, we provide further details on the
dynamical evolution of thermodynamic quantities used in
the description of the driving cavity model in Sec. VIC. In
particular, we give explicit expressions for key quantities X e

W, and Q, and discuss the adiabatic entropy production rate
Sa, showing its transient negativity.

The explicit time evolution of the quantities Xq,, W,
and Q can be obtained from the master equation (112). In
order to do that, we first obtain the following equations
for the evolution of the quantities A=a —a and ATA =
a'a —|a|(x, — |a]). They read

d,o _ ¥
<), =2, (B1)
ST, = —((ATA), - (ATA)), ()

where  (ATA),, = Tr[ATAz] = Tr[a"a(e™PHo/Z,)] = n'h.
Consequently, we obtain, as a result,

(A), = (A)ge70/2, (E3)

(ATA), = (ATA)ge 7" + nh(1 — e77").  (E4)

The transient evolution of the field quadrature
(x,), = Trlx,p,] is then easily obtained from the above
equations,

Xy = =22 ({xy) = (xy)e) (ES)

This means that (x,,), exponentially converges to its steady-
state value (x,),, = 2|a|. Therefore, X(/, will be either
positive or negative during the evolution, depending on
the displacement of the initial state. If (x,,)y < (x,,), then
X(/, > 0 V¢, and the system state increases its coherence
in the energy basis; however, if (x,)y > (x,)., We have
X(p < 0 V¢, and the coherence decreases. From Eq. (ES),
we have

()0 = (xp)oe 7% + (x, ) (1 — 770"/2). (E6)

Furthermore, we can now calculate the transient input
power as

W= haTr((ea” + ¢*a)p,] = e(a’), + e*(a),
= le|(xp)o + Wes(1 = e701/2), (E7)

where we use (a), = (A), + a together with Eq. (E3), and

we recall that W, = Aw|a|*. Analogously, having Eq. (E4),
the heat flow follows from

0 =Tr[HoL(p,)] = —ro((a’a), — n™)
= —yohw(la* (1= e72)2 4 a(x,)o (1 — e770"/?)e770/2

+((d'a)g—n™)). (E8)

where, in the last equality, we also use Eq. (E6). Notice that,
for the initial state py = exp(—fH,)/Z,, we have (a), = 0
and (a'a), = n™, and then, using Eqgs. (E7) and (ES8), we
obtain, for this case,
Q=-W(l—en?), [U=W+Q=We'"/2  (E9)

Finally, the adiabatic entropy production rate has been
defined in Eq. (123):

Sy =8 = Spa = (W — howlalX,). (E10)

We can obtain an explicit expression for its evolution by
noticing that the following equality holds:

W + hola|X, = Wy. (E11)
Introducing this relation into Eq. (E10), we obtain
Sa = ﬁWss +ﬁha)|a|7/0(<x(p> - <x(/1>oo>‘ (Elz)

031037-23



MANZANO, HOROWITZ, and PARRONDO

PHYS. REV. X 8, 031037 (2018)

Notice now that Eq. (E12) is negative for any initial
transient for which Aw|a|X,, < hwlal(x,)e + Wy /7. In
particular, if the dynamics starts in any state diagonal in the
H, basis, this happens for 7 < #, = 21n(2)/y, as shown in
Fig. 7 of Sec. VIC.
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