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Quantum Fokker-Planck theory in a non-Gaussian-Markovian medium
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We develop a generalized quantum Fokker-Planck theory in a non-Gaussian-Markovian model bath. The
semiclassical bath adopted in this work is charactered by three parameters. One denotes the strength of
system-bath coupling and the other two are chosen to interpolate smoothly the solvation dynamics between the
long- and short-time regimes. The fluctuation-dissipation relation in this model bath is analyzed in detail.
Based on this model bath, we derive two sets of coupled Fokker-Planck equations. These two equation sets are
equivalent in the second order of system-bath coupling but different in the higher orders. The corresponding
reduced Liouville equation in one set of the Fokker-Planck formulation is characterized by a memory relax-
ation kernel, while that in the other is by a local-time relaxation tensor. Each resulting set of Fokker-Planck
equations involves only the reduced density operator and a series of well-characterized Hilbert-space relaxation
operators. The present theory is valid for arbitrary time-dependent Hamiltonians and is applicable to the study
of quantum coherence and relaxation in various dynamic systems.@S1050-2947~98!05210-X#

PACS number~s!: 03.65.Sq, 05.30.2d, 05.40.1j, 82.20.Fd
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I. INTRODUCTION

Molecular dynamics in dissipative media is of the cen
interest in quantum statistical mechanics. Relaxation p
cesses occur in almost all fields of science, including NM
@1–5#, quantum optics@6–8#, optical spectroscopies@9–11#,
quantum transport@12–16#, chemical reactions@16–20#, and
biological electron transfer@21,22#. The concept of relax-
ation is physically related to a reduced description on
open system in contact with its surroundings. In general,
surroundings consist of a practically infinite number of d
grees of freedom and act as a whole identity, referred as
thermal bath, on the open system. Only the system of
mary interest is considered microscopically. The bath is
corporated via its effect on the open system in a statist
manner.

The object of study in quantum statistical dynamics is
reduced density matrix for the system, denoted asr(t)
5trBrT(t), i.e., the trace of the total density matrix over a
bath degrees of freedom. The equation of motion for
reduced density matrixr(t), i.e., the reduced Liouville equa
tion, can be formally derived via the Zwanzig-Mori proje
tion operator approach@12–15,23–26#. There are two pre-
scriptions of the reduced Liouville equation. One
characterized by the memory relaxation kernelg(t2t) and
reads

ṙ~ t !52
i

\
@H,r~ t !#2E

0

t

dtg~ t2t!r~t!. ~1.1!

As concerns the temporal sequence of the involving acti
in g(t2t)r(t), Eq. ~1.1! is also said to be in the chrono
logical ordering prescription~COP!. An alternative prescrip-
tion of the reduced Liouville equation is characterized by
local-time kernelR(t) and reads

ṙ~ t !52
i

\
@H,r~ t !#2R~ t !r~ t !. ~1.2!
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Equation~1.2! is also said to be in a partial ordering pr
scription ~POP! according to the temporal sequence of t
involving actions inR(t)r(t). The relaxation kernelsg and
R are super-operators that act on the reduced density ma
In principle, bothg and R can be formulated exactly in
terms of the system-bath interaction. In this sense, the
duced Liouville equations in the COP@Eq. ~1.1!# and POP
@Eq. ~1.2!# forms are equivalent. However, exact Liouvil
equations can only be numerically implemented in very f
systems, such as a harmonic oscillator linearly coupled
harmonic bath. In most cases, certain approximation sche
should be employed. One of the standard approximation
the weak-coupling limit in which the system-bath interacti
is considered only up to second order. The contribution
higher-order system-bath interactions is only partially
cluded in a certain resummation framework. In this ca
Eqs. ~1.1! and ~1.2! would represent two approximatio
schemes and thus are no longer equivalent.

One of the main obstacles in the direct use of the redu
Liouville equation~1.1! or ~1.2! is the tensor property of the
relaxation kernelg or R. In a finite N basis set representa
tion, the reduced density matrixr5$rmn% is described by its
N2 elements, while the relaxation kernelg5$gmn,m8n8% or
R5Rmn,m8n8 , is described byN23N2 elements. In a con-
tinuum representation, such as a phase-spacepq representa-
tion for a system ofd degrees of freedom,r~pq! is a function
of two-dimensional variables, whileg(pq,p8q8) or
R(pq,p8q8) depends on four-dimensional variables.

There are two major theoretical approaches, namely,
Bloch-Redfield formulation and the Fokker-Planck equatio
to the study of quantum relaxation dynamics. In the Bloc
Redfield approach the reduced Liouville equation is rep
sented explicitly in the basis set of eigenstates of the tim
independent system HamiltonianH. The Redfield theory
establishes the relationship among various relaxation te
elements. The commonly used Redfield theory involves a
the Markovian ~white-noise! approximation in whichg(t
2t)5Rd(t2t) andR(t) is replaced byR~`!. In this case,
the reduced Liouville equations in the COP@Eq. ~1.1!# and
2721 © 1998 The American Physical Society
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2722 PRA 58YIJING YAN
POP @Eq. ~1.2!# forms are identical, leading to a time
independent relaxation kernelR5R(t→`). The general-
ized Redfield theory beyond the Markovian limit will be co
sidered elsewhere for both the COP and POP forms of
reduced Liouville equation.

In this paper we shall adopt the Fokker-Planck~FP!
equations-of-motion approach to the reduced density ma
That is to develop a set of coupled operator equations
motion for the study of quantum relaxation dynamics. T
FP formulation constitutes an important theoretical fram
work for the study of dissipative processes. The FP equa
was originally devised as a classical theory of Brownian m
tion @27,28#. A quantum FP theory was developed about
years ago by Dekker@29–31# via a canonical quantization
procedure with complex variables. Currently, there are t
theoretical approaches to the development of quantum
equations in various systems. One approach is based
Feynman and Vernon’s path integral influence functio
method@32,33#. In this approach one considers explicitly
quantum system that linearly couples to a harmonic b
@33–39#. Using this method, Caldeira and Leggett@34# de-
rived a quantum FP equation in the Markovian limit. Ta
imura and co-workers@35–39# extended Caldeira and Leg
gett’s result to the Gaussian-Markovian bath in which
time correlation function assumes an exponential form.
this case, a set ofN-coupled quantum FP equations, inste
of a single FP equation in the Markovian limit, is obtain
@35–39#. An alternative approach to FP equations is to s
with the stochastic description of a weak system-bath in
action @40–42#. This is the approach used in a recent wo
by Cao@41#, who deduced a set of two coupled FP equatio
for the quantum relaxation in a Gaussian-Markovian ba
Note that for the same system, Tanimura and co-work
found in a set ofN@2 equations of motion@35–39#. The
above plausible discrepancy originated from the different
summation approximation schemes used by these
groups. Tanimura and co-workers’ formulation was based
a kind of second-order POP reduced Liouville equati
while Cao’s pair of equations was based on the second-o
COP scheme. In the Markovian limit, both formulatio
@35,41# recover the result of Caldeira and Leggett@34#.

In this paper we shall develop a generalized quantum
theory in a non-Gaussian-Markovianmedium. We shall
adopt a model bath that allows a smoothly interpolation
relaxation dynamics between the long- and short-time
gimes. To be flexible for various representations, our the
will be developed thoroughly in the operator level. For t
applicability of theory to time-resolved experiments wi
pulsed external fields, the system HamiltonianH(t) will be
treated as a time-dependent operator. The remainder of
paper will be organized as follows. In Sec. II we summar
the background knowledge of the reduced density mat
This includes the stochastic description of the system-b
interaction, a detailed derivation of the reduced Liouvi
equations in both the COP and POP forms, and the introd
tion of generalized Langevin forces. In Sec. III we propos
non-Gaussian-Markovian bath model that will be employ
in this paper. The main contribution of this work is in Se
IV, in which a generalized FP theory for the non-Gaussi
Markovian bath is developed for the reduced density ma
in both the COP and POP forms. The key step in the der
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tion is to construct for each of the COP and POP schem
hierarchical series of bath induced relaxation operat
$Kn(t), n50,...,N%. In Sec. V we discuss several topics r
lated to the quantum FP theory. We first consider the
equations in the Gaussian-Markovian and Markovian~white-
noise! relaxation media as the limiting cases of the pres
theory. We further discuss the possible physical implicat
of the hierarchical set of relaxation operators$Kn(t), n
50,...,N%, together with the truncation numberN in relation
to the non-Gaussian-Markovian bath. As the form of ba
model is crucial to the generalized FP theory, we also pres
a detailed analysis of the semiclassical fluctuatio
dissipation relation that is implied in the model. Finally, w
summarize our results in Sec. VI.

II. REDUCED LIOUVILLE EQUATIONS
AND GENERALIZED LANGEVIN FORCES

A. Stochastic description of the system-bath interaction

We shall in this section outline some formal results of t
reduced Liouville equation that will serve as the starti
point to the generalized FP theory to be developed in
work. Without losing generality, we adopt in this paper
stochastic description for the system-bath interaction@43–
46#. Formally, it is equivalent to treating the total Hami
tonian that governs the time evolution ofrT(t) as a time-
dependent operator with the partitioning

HT~ t !5H~ t !1H8~ t !. ~2.1!

HereH(t) is the deterministic Hamiltonian that governs th
coherent motion of the reduced system density matrix, wh
H8(t) is a stationary stochastic dynamic variable for t
system-bath interaction that governs the relaxation. We h

^H8~ t !&50, ~2.2a!

^H8~ t !H8~t!&5^H8~ t2t!H8~0!&. ~2.2b!

In Eq. ~2.2! and hereafter, the angular brackets denote
ensemble average over the initially stationary bath den
matrix rB(0). Its formal definition can be expressed for a
arbitrary operatorÔ in the joint system-bath space as

^Ô&[trB@ÔrB~0!#. ~2.3!

Here trB denotes the trace over all bath degrees of freed
Note that^Ô& may remain as an operator in the system d
namic space. The deterministic Hamiltonian contains a
the static mean field of the system-bath interaction so
^H8(t)&50 @Eq. ~2.2a!#. Note that the deterministic Hamil
tonianH(t) may also depend on time via, for example, t
external pulsed fields in the study of nonlinear spe
troscopies in condensed phases. However, the time de
dence of the stochastic HamiltonianH8(t) arises from the
Brownian motion of practically infinite number of bath de
grees of freedom.

B. Reduced Liouville equations in two prescriptions

We shall be interested in the time evolution of the reduc
density matrix of an open system, defined as
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r~ t ![trB@rT~ t !#. ~2.4!

Here rT is the total density matrix for both the system a
the bath. The formally exact Liouville equation for reduc
density matrix r can in principle be obtained via th
Zwanzig-Mori projection operator techniques@12–15,23–
26#. However, in any practical application, two approxim
tions are commonly invoked. The first one is the initial fa
torization ansatz. It assumes that the total density ma
rT(0) at the initial timet50 can be factorized as the produ
of the system and bath contributions, that is,

rT~0!5r~0!rB~0!. ~2.5!

The second approximation is the weak system-bath inte
tion limit in which the second-order perturbation theory
applicable. However, there are a variety of partial resumm
tion schemes to approximately account for the higher-or
system-bath interaction. In the following, we shall pres
two partial resummation schemes that lead to two differ
prescriptions of the reduced Liouville equation.

Let us start with the formally exact Liouville equation fo
the total density matrix

ṙT~ t !52 iL~ t !rT~ t !2 iL8~ t !rT~ t !. ~2.6!

The LiouvilliansL andL8 are the commutators of their co
responding Hamiltonians and are defined via an arbitrary
eratorÔ as

L~ t !Ô[\21@H~ t !,Ô#, ~2.7a!

L8~ t !Ô[\21@H8~ t !,Ô#. ~2.7b!

For further theoretical development, we shall also introdu
the Liouville-space Green’s functionG(t,t) for the determin-
istic Liouvillian L. It satisfies the Liouville equation

]G~ t,t!/]t[2 iL~ t !G~ t,t!. ~2.8!

The Liouville-space Green’s function can also be defined
terms of the Hilbert-space Green’s functionG(t,t) via the
relation for an arbitrary operatorÔ,

G~ t,t!Ô[G~ t,t!ÔG†~ t,t!. ~2.9!

HereG satisfies the Schro¨dinger equation

]G~ t,t!

]t
[2

i

\
H~ t !G~ t,t!. ~2.10!

The formal solution to the total density matrixrT(t) in
Eq. ~2.6! can be obtained via the interaction picture

rT~ t ![G~ t,0!rT
I ~ t !, ~2.11a!

LI8~ t !5G †~ t,0!L8~ t !G~ t,0!. ~2.11b!

Equation~2.6! can thus be recast as

ṙT
I ~ t !52 iLI8~ t !rT

I ~ t !. ~2.12!

The formal solution to the above equation is given by
-
ix

c-

-
r
t
t

p-

e

n

rT
I ~ t !5rT~0!2 i E

0

t

dt LI8~t!rT
I ~t!

5rT~0!2 i E
0

t

dt LI8~t!rT~0!

2E
0

t

dtE
0

t

dt8 LI8~t!LI8~t8!r t
I~t8!

[exp1F2 i E
0

t

dtLI8~t!GrT~0!. ~2.13!

In deriving Eq.~2.13! we have made use of the relation
rT

I (0)5rT(0) as implied in Eq.~2.11a!.
We shall now turn to the reduced density matrix in t

interaction picture,

r I~ t ![G †~ t,0!r~ t !5trB@rT
I ~ t !#. ~2.14!

Note that from Eq.~2.2a! we have

^LI8~ t !&50. ~2.15!

By using Eqs.~2.5!, ~2.14! and~2.15! we can obtain from the
second and the third identities of Eq.~2.13!, respectively, the
two equivalent equations

r I~ t !5r~ t0!2E
t0

t

dtE
t0

t

dt8trB@LI8~t!LI8~t8!rT
I ~t8!#

~2.16!

and

r I~ t !5K exp1F2 i E
t0

t

dtLI8~t!G L r~ t0!. ~2.17!

To continue, we shall employ two different approximatio
schemes to Eqs.~2.16! and~2.17!, respectively. One schem
is to invoke a factorization approximation to the integrand
Eq. ~2.16!, that is,

trB$LI8~t!LI8~t8!rT
I ~t8!%'^LI8~t!LI8~t8!&r I~t8!.

~2.18!

By substituting Eq.~2.18! into Eq.~2.16! followed by taking
the time derivative we obtain

ṙ I~ t !52E
0

t

dt^LI8~ t !LI8~t!&r I~t!. ~2.19!

The key quantity in this equation isLI8(t)LI8(t)r I(t), in
which the reduced density matrixr~t! and the subsequen
Liouville-space actionsL8(t) andL8(t) with t>t are chro-
nologically ordered. Equation~2.19! is therefore said to be in
the chronological ordering prescription. The final reduc
Liouville equation for the system density matrix can then
obtained by substituting Eqs.~2.11b! and ~2.14! into Eq.
~2.19!. We have

ṙCOP~ t !52 iL~ t !rCOP~ t !20E
t0

t

dtg~ t,t!rCOP~t!,

~2.20a!
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g~ t,t!5^L8~ t !G~ t,t!L8~t!&. ~2.20b!

Here the superscript ‘‘COP’’ denotes the reduced Liouv
equation in the chronological ordering prescription.

An alternative scheme of approximation is to invoke
second-order cummulant expansion of the time-ordered
ponential function in Eq.~2.17!, that is,

K exp1F2 i E
0

t

dtLI8~t!G L 'exp1F2E
0

t

dtRI~t!G ,
~2.21!

with

RI~ t !5E
0

t

dt^LI8~ t !LI8~t!&. ~2.22!

By substituting Eq.~2.21! into Eq.~2.17! followed by taking
the time derivative we have

ṙ I~ t !52RI~ t !r I~ t !. ~2.23!

In contrast to Eq.~2.19! or ~2.20!, the temporal sequence i
RI(t)r I(t) @cf. Eq.~2.22!# is only partially ordered. Equation
~2.23! is therefore said to be in a partial ordering prescr
tion. Equation~2.23! together with Eqs.~2.11b! and ~2.14!
leads to

ṙPOP~ t !52 iL~ t !rPOP~ t !2R~ t !rPOP~ t !, ~2.24a!

R~ t ![E
0

t

dt^L8~ t !G~ t,t!L8~t!G †~ t,t!&. ~2.24b!

Here the superscript ‘‘POP’’ denotes the reduced Liouv
equation in the partial ordering prescription.

The COP Liouville equation@Eq. ~2.20!# and the POP
Liouville equation@Eq. ~2.24!# involve the approximants o
Eqs.~2.18! and~2.21!, respectively. These two approximan
are the same up to second order but different at higher or
in the system-bath interaction. There is noa priori criterion
to which prescription is superior to other.

C. Generalized Langevin forces

In order to derive the generalized FP equations, we s
present the reduced Liouville equation in both the COP@Eq.
~2.20!# and POP@Eq. ~2.24!# forms in terms of the general
ized Langevin force-force correlation functions. To do th
we shall decompose the system-bath interaction in term
the generalized system coordinates and the genera
Langevin force

H8~ t !52(
a

Fa~ t !Qa . ~2.25!

The generalized coordinateQa is a Hermitian operator on th
reduced system space, while the Langevin forceFa(t) is a
stationary stochastic Hermitian operator on the bath sp
Equation~2.2a! implies that^Fa(t)&50. Let us denote the
force-force correlation function as
x-

-

rs

ll

,
of
ed

e.

Cab~ t2t![^Fa~ t !Fb~t!&[trB@Fa~ t !Fb~t!rB~0!#.
~2.26!

The detailed balance or the quantum fluctuation-dissipa
relation in term of the correlation function reads@47#

Cab* ~ t !5Cab~ t2 ib!. ~2.27!

Here the asterisk denotes the complex conjugate anb
5\/kBT, with kB being the Boltzmann constant andT the
temperature. Equation~2.27! is equivalent to the following
relation in the frequency-domain@47#:

Ĉba~2v!5e2bvĈab~v!. ~2.28!

In this equation Ĉab(v) is the spectrum of the cross
correlation function and is defined as

Ĉab~v!52 ReE
0

`

dteivtCab~ t !. ~2.29!

By using Eqs.~2.25! and ~2.26!, we can now recast the
COP Liouville equation@Eq. ~2.20!# as ~cf. the Appendix!

ṙCOP~ t !52~ i /\!@H~ t !,rCOP~ t !#

2\22(
a

$@Qa ,Q̃a
COP~ t !#1H.c.%, ~2.30a!

Q̃a
COP~ t !5(

b
E

0

t

dtCab~ t2t!

3G~ t,t!QbrCOP~t!G†~ t,t!. ~2.30b!

Similarly, we can recast the POP Liouville equation@Eq.
~2.24!# as

ṙPOP~ t !52~ i /\!@H~ t !,rPOP~ t !#

2\22(
a

$@Qa ,Q̃a~ t !rPOP~ t !#1H.c.%,

~2.31a!

Q̃a~ t !5(
b
E

0

t

dtCab~ t2t!G~ t,t!QbG†~ t,t!.

~2.31b!

The key quantities in Eqs.~2.30! and ~2.31! are Q̃a
COP(t)

and Q̃a(t), respectively. These two quantities are no
Hermitian operators in Hilbert space. Like their correspon
ing Liouville-space counterpartsg(t,t) @Eq. ~2.20b!# and
R(t) @Eq. ~2.24b!#, these two Hilbert-space operators gove
the relaxation dynamics in the two approximation schem
We may therefore refer toQ̃a

COP(t) andQ̃a(t) as the Hilbert-

space relaxation operators. Note thatQ̃a
COP(t) at time t de-

pends onrCOP(t) in all t<t, while Q̃a(t) does not couple
with the reduced density matrix at all.

Equations~2.30! and~2.31! will serve as the starting for-
mulations for deriving the generalized FP equations in
above-mentioned two approximation schemes. Note in
FP approach, the relaxation dynamics are investigated v
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set of coupled equations of motion. It is in contrast with t
Bloch-Redfield approach, which focuses on the relat
among various relaxation tensor elements in the tim
independent H-eigenstate representation. The Redfie
theory in terms of the generalized Langevin force@Eq.
~2.25!# has been developed by Friesner and co-workers@48–
50# in the Markovian limit in which the COP and PO
schemes lead to a same expression. The extension of Frie
and co-workers’ approach to the generalized Redfield the
beyond the Markovian limit can be easily formulated bas
on Eqs.~2.30! and ~2.31!.

III. NON-GAUSSIAN-MARKOVIAN BATH MODEL

It is obvious that the generalized FP equations can only
developed for certain forms of bath correlation function. W
shall in this section propose a non-Gaussian-Markov
model bath on which the generalized FP equations can
obtained~cf. Sec. IV!. To simplify the notation, we shal
consider explicitly a single generalized Langevin forceF(t)
acting on a generalized system coordinateQ. We can there-
fore omit all the subindices arising from the multitude mod
of system-bath interaction.

The non-Gaussian-Markovian model bath adopted in
work is described by

C~ t ![^F~ t !F~0!&5G2exp@2g~ t !#, ~3.1a!

g~ t !5~Dtc!
2~ t/tc211e2t/tc!1 iltc~12e2t/tc!,

~3.1b!

with

l5bD2/2. ~3.1c!

Here b5\/kBT. Equation ~3.1! implies that g(0)50
and g(`)5`, or C(0)5G2 and C(`)50. Therefore,
exp@2g(t)#5C(t)/C(0) is the normalized correlation function
Equation ~3.1c! is the semiclassical fluctuation-dissipatio
relation. The detailed analysis that will be carried out in S
V D leads to the following condition for the validity o
present model bath@cf. Eq. ~3.2!#:

t@tc or kBT/\@~D2/tc!
1/3. ~3.2!

To simplify the notation for later theoretical developme
we shall also denote

z[D2tc2 il5D2~ tc2 ib/2!. ~3.3!

The bath model of Eq.~3.1! has been widely used in th
electronic spectroscopies in condensed phases. It dem
strates a smooth interplay between the homogene
~Lorentzian! and the inhomogeneous~Gaussian! spectral line
broadenings@42–46,51#. In this model, the time scale param
eter tc controls the nature of the bath correlation functio
For t@tc , g(t@tc)→(D2tc)t1 iltc and the bath correlation
function assume the exponential form

C~ t@tc!}exp~2Dt !. ~3.4!

This is the Gaussian-Markovian limit with the damping co
stantD5D2tc . For t!tc , we haveg(t!tc)→D2t2/2, which
corresponds to
n
-

ner
ry
d

e

n
be

s

is

.

,

n-
us

.

-

C~ t!tc!}exp~2D2t2/2!. ~3.5!

Equations~3.4! and ~3.5! describe properly the asymptoti
behaviors of the bath correlation function in both the lon
and short-time regimes.

To conclude this section, let us simplify the reduced eq
tions of motion in both the COP@Eq. ~2.30!# and POP@Eq.
~2.31!# forms with the notation of single system-bath co
pling mode@Eq. ~3.1!#. They are given, respectively, by

ṙCOP~ t !52~ i /\!@H~ t !,rCOP~ t !#

2~G/\!2$@Q,KCOP~ t !#1H.c.%, ~3.6a!

KCOP~ t !5E
0

t

dte2g~ t2t!G~ t,t!QrCOP~t!G†~ t,t!

~3.6b!

and

ṙPOP~ t !52~ i /\!@H~ t !,rPOP~ t !#

2~G/\!2$@Q,K~ t !rPOP~ t !#1H.c.%, ~3.7a!

K~ t !5E
0

t

dte2g~ t2t!G~ t,t!QG†~ t,t!. ~3.7b!

Note that the Hilbert-space relaxation operatorKCOP(t) de-
pends on the reduced density matrix, whileK(t) does not. As
shown in Eqs.~3.6a! and ~3.7a!, these two relaxation opera
tors involve in their respective Liouville equations in th
different manners.

In the following section we shall start with Eqs.~3.6! and
~3.7! to derive both the COP and POP generalized FP eq
tions for the model bath proposed in Eq.~3.1!. The theoret-
ical development will involve two steps. The first step is
establish a hierarchy of an infinite number of coupled eq
tions of motion. This is done by introducing a series of au
iliary bath induced operators for each of the COP and
POP forms of relaxation dynamics. The second step is
invoke an approximation that allows us to truncate the infi
ity hierarchy to a finite number. Thus the reduced dens
matrix in either the COP or POP form may be evaluated
a closed set of generalized FP equations.

IV. GENERALIZED FOKKER-PLANCK EQUATIONS
FOR THE NON-GAUSSIAN-MARKOVIAN BATH

A. Equations of motion in the COP form

To obtain coupled equations of motion for solvingrCOP

@Eq. ~3.6a!#, we may introduce the set of auxiliary bath in
duced operators (n50,1,...)

Kn
COP~ t !5E

0

t

dtJn~ t2t!G~ t,t!QrCOP~t!G†~ t,t!,

~4.1!

with K0
COP5KCOP @cf. Eq. ~3.6b!# and

Jn~ t !5e2nt/tce2g~ t !. ~4.2!
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For the non-Gaussian-Markovian bath proposed in Eq.~3.1!
we have

J̇n~ t !52~n/tc1D2tc!Jn~ t !1zJn11~ t !. ~4.3!

Here z is given by Eq.~3.3!. By using Eqs.~4.1!–~4.3! we
can easily obtain the equation of motion forKn

COP(t) @cf. Eq.
~4.7b!#, which is found to depend not only onrCOP(t) and
itself, but also onKn11

COP(t). This hierarchy leads to an infinit
series of coupled equations of motion for the reduced den
matrix rCOP(t) andKn

COP(t), n50,1,... .
To complete the theory, we shall be able to truncate

infinite series to a finite number ofN. The truncation scheme
for an arbitrary finitetcÞ0 is constructed as follows. For a
given finite tcÞ0, there is always a sufficiently largeN11
such that the decaying factorJN11(t2t) @Eq. ~4.2!# can be
considered as a rapidly varying function. It means t
JN11(t2t) behaves like ad(t2t) function in comparison
with the remaining components in the integrand of Eq.~4.1!.
We can therefore terminate the infinity series of equation
motion by the approximants

KN11
COP~ t !'uN11QrCOP~ t !. ~4.4!

HereuN11 is a complex number defined as

un5E
0

`

dtJn~t!. ~4.5!

By using the explicit form of functionJn(t) @Eq. ~4.2! with
Eqs.~3.1! and ~3.3!# we have~for tcÞ0!

11zuN115~N/tc1D2tc!uN . ~4.6!

The final closed set of COP FP equations for$rCOP(t),
Kn

COP(t), n50,1,...,N% for tcÞ0 can now be obtained from
Eqs.~3.6a! and ~4.1!–~4.6! as

ṙCOP~ t !52~ i /\!@H~ t !,rCOP~ t !#2~G/\!2$@Q,K0
COP~ t !#

1H.c.%, ~4.7a!

K̇n
COP~ t !5QrCOP~ t !2~n/tc1D2tc!Kn

COP~ t !

2~ i /\!@H~ t !,Kn
COP~ t !#1zKn11

COP~ t !,

~4.7b!

K̇N
COP~ t !5~N/tc1D2tc!@uNQrCOP~ t !2KN

COP~ t !#

2~ i /\!@H~ t !,KN
COP~ t !#. ~4.7c!

HereN is the index of the terminal equation. Equation~4.7!
therefore consists of a closed set of (N12)-coupled FP
equations for the COP reduced density matrix and theN
11 bath induced Hilbert-space relaxation operators. The
tial conditions for solving these equations are given
rCOP(0) andKn

COP(0)50, n50,1,...,N @cf. Eq. ~4.1!#. The
effect of the non-Gaussian-Markovian bath@Eq. ~3.1!# is in-
corporated via the parametersG2, D2, tc , and z5D2@ tc
2 i\/2kBT#. The truncation numberN is chosen according
to the relative bath time scaletcÞ0 with respect to the sys
tem dynamics. We shall demonstrate in Sec. V that in
ity

e

t

of

i-
y

e

limit of tc50, i.e., the Gaussian-Markovian bath, the abo
hierarchy will lead to the truncation at theN50 level.

B. Equations of motion in the POP form

Similarly, we can construct a closed set of FP equation
evaluate the POP reduced density matrix. This is done
introducing the series of auxiliary bath induced operators@cf.
Eq. ~4.1!#

Kn~ t !5E
0

t

dtJn~ t2t!G~ t,t!QG†~ t,t!, ~4.8!

together with theN-truncation approximation@cf. Eq. ~4.4!#

KN11~ t !'uN11Q. ~4.9!

Note thatK(t)5K0(t) @cf. Eqs.~3.7b! and ~4.8!#. By using
Eqs.~4.8! and~4.9! together with Eqs.~3.7!, ~4.3!, and~4.6!
we can obtain fortcÞ0 the closed set of POP FP equatio

ṙPOP~ t !52~ i /\!@H~ t !,rPOP~ t !#

2~G/\!2$@Q,K0~ t !rPOP~ t !#1H.c.%,

~4.10a!

K̇n~ t !5Q2~n/tc1D2tc!Kn~ t !2~ i /\!@H~ t !,Kn~ t !#

1zKn11~ t !, ~4.10b!

K̇N~ t !5~N/tc1D2tc!@uNQ2KN~ t !#

2~ i /\!@H~ t !,KN~ t !#. ~4.10c!

The initial conditions for solving these equations are giv
by rPOP(0) andKn(0)50, n50,1,...,N @cf. Eq.~4.8!#. As in
the COP form, the effect of non-Gaussian-Markovian b
@Eq. ~3.1!# is incorporated in the POP FP equations via t
parametersG2, D2, tc , andz5D2@ tc2 i\/2kBT#.

Note that the bath induced operatorKn(t) does not couple
with the reduced density matrixrPOP(t) and Km(t) with m
,n. As a result, theN12 equations of motion in Eq.~4.10!
are not really coupled. The solutions torPOP(t) and
K0(t),...,KN(t) may thus be carried outone by onesequen-
tially in the reversed order, that is, start with the integrati
of the equation of motion forKN , then for KN21 with the
resultingKN from the previous step, and so on down to t
equation of motion forrPOP. In contrast, the solutions to
rCOP(t) and Kn

COP(t), with n50,...,N, require a simulta-
neous integration of (N12)-coupled equations of motion in
Eq. ~4.7!.

In order to have a close comparison between the POP
formulation@Eq. ~4.10!# and its COP counterpart@Eq. ~4.7!#,
we may define

Kn
POP~ t ![Kn~ t !rPOP~ t !. ~4.11!

Equation~4.10! can now be recast as
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ṙpop~ t !52~ i /\!@H~ t !,rPOP~ t !#

3~G/\!2$@Q,K0
POP~ t !#1H.c.%, ~4.12a!

K̇n
POP~ t !5QrPOP~ t !2~ i /\!@H~ t !,Kn

POP~ t !#2~n/tc

1D2tc!Kn
POP~ t !1zKn11

POP~ t !1jn
POP~ t !.

~4.12b!

Herejn
POP(t), defined as

jn
POP~ t !52~G/\!2Kn~ t !$@Q,K0

POP~ t !#1H.c.%,
~4.13!

is the extra term in the POP formulation@Eq. ~4.12b!# com-
pared to its COP counterpart@Eq. ~4.7b!#. We have not been
able to incorporate thejn

POP(t) operator into a closed set o
coupled equations of motion.

In the following section we shall show that the truncati
scheme@cf. Eq. ~4.4! or ~4.9!# proposed in this section be
comes exact in the limiting cases of the Gaussian-Markov
bath and the Markovian white-noise bath. For the Gauss
Markovian limit in whichtc50, the truncation can be carrie
out at theN50 level. In this case, a pair of FP equations f
$rCOP(t),KCOP(t)5K0

COP(t)% in the COP form or for
$rPOP(t),K(t)5K0(t)% in the POP form will be obtained. In
the Markovian white-noise limit, the COP and POP form
become identical. In this case the truncation can be car
out at ther(t) level, leading to the well established FP equ
tion originally derived by Caldeira and Leggett@34#. In-
cluded in the following section are also the possible phys
origin of the bath induced relaxation operators$Kn

COP, n
50,...,N% or $Kn , n50,...,N% and the detailed analysis o
the fluctuation-dissipation relation in the semiclassi
Gaussian-Markovian model bath@Eq. ~3.1!#.

V. DISCUSSION AND COMMENTS

A. Fokker-Planck equation pairs
in the Gaussian-Markovian limit

1. Truncation at the N50 level

As we mentioned in Sec. III, the Gaussian-Markovi
bath is a limiting case of the present model@Eq. ~3.1!#. In
this limit, tc→0 and

e2t/tc→tcd~ t !, ~5.1!

while @cf. Eq. ~3.1c!#

D2tc5D, ltc5Db/2 ~5.2!

remain finite. Thus the truncations made in Eqs.~4.4! and
~4.9! become exact at theN50 level, leading, respectively to
the two identities

zK1
COP~ t !5 lim

tc→0
~zu1!QrCOP~ t ! ~5.3!

and

zK1~ t !5 lim
tc→0

~zu1!Q. ~5.4!
n
n-

d
-

l

l

Here

lim
tc→0

~zu1![ lim
tc→0

FzE
0

t

dtJ1~t!G
5 lim

tc→0
FzE

0

t

dte2t/tce2g~t!G
5 lim

tc→0
~ztc!52 iDb/2. ~5.5!

In deriving the last identity of Eq.~5.5!, we made use of the
relations of Eqs.~3.3! and ~5.2!.

2. Generalized Fokker-Planck equations in the COP

Let us start with the COP FP equations in a Gaussi
Markovian bath. By substituting Eqs.~5.3! and~5.5! into Eq.
~4.7b! with n50, we obtain the pair of coupled equations
motion @i.e., closed at theKCOP5K0

COP level together with
Eq. ~4.7a!#

ṙCOP~ t !52~ i /\!@H~ t !,rCOP~ t !#

2~G/\!2$@Q,KCOP~ t !#1H.c.%, ~5.6a!

K̇COP~ t !5~12 iDb/2!QrCOP~ t !

2~ i /\!@H~ t !,KCOP~ t !#2DKCOP~ t !.

~5.6b!

The above equations can be further simplified by introduc
RCOP(t)52( i /\)@KCOP(t)2H.c.#. We can thus recast Eq
~5.6! as

ṙCOP~ t !52
i

\
@H~ t !,rCOP~ t !#2

i

\
G2@Q,RCOP~ t !#,

~5.7a!

ṘCOP~ t !52
i

\
@Q,rCOP~ t !#2

D

2kBT
@Q,rCOP~ t !#1

2
i

\
@H~ t !,RCOP~ t !#2DRCOP~ t !. ~5.7b!

Here@A,B#15AB1BA. Equation~5.6! or ~5.7! is the same
as that obtained by Cao recently@41#. However, the presen
derivation avoids the singularity problem that appears at
50 in the Gaussian-Markovian limit@41#. Equation ~5.7!
constitutes the final pair of coupled FP equations for eva
ating the COP reduced density matrix in a Gaussi
Markovian bath. The initial conditions are given byrCOP(0)
andRCOP(0)50. The effect of the Gaussian-Markovian ba
is incorporated via the system-bath coupling strengthG, the
decay constantD, and the temperatureT.

3. Generalized Fokker-Planck equations in the POP

We shall now consider the POP FP equations in
Gaussian-Markovian bath. By substituting Eqs.~5.4! and
~5.5! into Eq. ~4.10b! with n50, we obtain the pair of equa
tions of motion@i.e., closed at theK5K0 level together with
Eq. ~4.10a!#
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ṙPOP~ t !52~ i /\!@H~ t !,rPOP~ t !#

2~G/\!2$@Q,K~ t !rPOP~ t !#1H.c.%, ~5.8a!

K̇~ t !5~12 iDb/2!Q2~ i /\!@H~ t !,K~ t !#2DK~ t !.
~5.8b!

The initial conditions are given byrPOP(0) andK(0)50. As
in the COP form@cf. Eq. ~5.7!#, the effect of the Markovian
bath is incorporated in the POP FP equations via the c
pling strengthG, the exponential damping constantD, and
the bath temperatureT. Unlike its COP counterpart@Eq.
~5.6b!#, the equation of motion forK(t) @Eq. ~5.8b!# does not
couple withrPOP(t). As a result, Eq.~5.8! can be integrated
one by one, first forK(t) @Eq. ~5.8b!# and then forrPOP(t)
@Eq. ~5.8a!# with the resultingK(t) from the previous step.

To conclude this subsection, we shall mention that T
imura and Wolynes@36# have proposed a different hierarch
cal approach to construct a set of coupled quantum FP e
tions for a Gaussian-Markovian bath. Instead of a pair
equations obtained in the present work, their hierarch
equation set converges at aboutN;50, for a Gaussian-
Markovian bath (tc50). Obviously, Tanimura and
Wolynes’ FP equations were based on a POP scheme w
different partial resummation for the contribution from th
higher-order system-bath interaction. A comparison of th
result to the present formulation will be carried out els
where.

B. Fokker-Planck equation in the Markovian limit

The Markovian white-noise limit can be achieved fro
the Gaussian-Markovian bath by settingD→` and G2/D
5hkBT. The semiclassical fluctuation-dissipation relati
leads to the following form of the bath correlation functio
in the Markovian limit@41#:

C~ t !→hkBTd~ t !1
i\h

2
ḋ~ t !. ~5.9!

It can be shown that the COP and the POP forms of
reduced density matrix become identical in the Markov
limit. To that end, let us first considerK(t)5K0(t) @cf. Eq.
~4.8!#. In the Markovian limit we have

G2K~ t ![E
0

t

dtC~ t2t!G~ t,t!QG†~ t,t!

→hkBTQ2
h

2
@H,Q# ~5.10!

or

G2KPOP~ t ![G2K~ t !rPOP~ t !

→H hkBTQ2
h

2
@H,Q#J rPOP~ t !. ~5.11!

On the other hand, we have
u-

-

a-
P
al

a

ir
-

e
n

G2KCOP~ t !5E
0

t

dtC~ t2t!G~ t,t!QrCOP~t!G†~ t,t!

→E
0

`

dtFhkBTd~ t2t!1
i\h

2
ḋ~ t2t!G

3G~ t,t!QrCOP~t!G†~ t,t!

5hkBTQrCOP~ t !1
i\h

2 H i

\
@H,QrCOP~ t !#

2QṙCOP~ t !J
'hkBTQrCOP~ t !2

h

2
$@H,QrCOP~ t !#

2Q@H,rCOP~ t !#%

5H hkBTQ2
h

2
@H,Q#J rCOP~ t !. ~5.12!

In deriving the penultimate identity of Eq.~5.12! we used the
approximationi\ṙCOP(t)'@H,rCOP(t)#. Using this approxi-
mation in deriving Eq.~5.12! is appropriate for the Markov-
ian bath that is weakly coupled with the system. Compar
Eq. ~5.12! with Eq. ~5.11!, we conclude that the reduce
density operators in the COP and POP forms are identica
the Markovian limit. This is consistent with the physical pi
ture of Markovian limit in which the effect of the higher
order system-bath interaction is integrated to zero. We
thus eliminate the superscripts and denoterCOP5rPOP5r.

The final FP equation in the Markovian limit reads ther
fore as

ṙ~ t !52
i

\
@H,r~ t !#2

hkBT

\2 †Q,@Q,r~ t !#‡

1
h

2\2 @Q,†@H,Q#,r~ t !‡1#. ~5.13!

In the case of the Cartesian coordinateQ5q, we have
@H,Q#5\p/ iM with p being the conjugate momentum an
M the mass. In this case, Eq.~5.13! recovers the conven
tional FP equation@34–36,52#

ṙ~ t !52
i

\
@H,r~ t !#2

hkBT

\2 †q,@q,r~ t !#‡

2
ih

2\M
†q,@p,r~ t !#1‡. ~5.14!

Equation~5.14! can further be recast explicitly in the quan
tum Wigner phase-space (p,q) representation as@29,34#

]

]t
rw~p,q,t !52

i

\
@H,r~ t !#w1hkBT

]2

]p2 rw~p,q,t !

1
h

M

]

]p
prw~p,q,t !. ~5.15!
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The classical FP equation can further be recovered from
above equation by replacing2( i /\)@H,r(t)#w with the
Poisson bracket$H,r(t)%.

C. Comments on the hierarchical relaxation operators

The key step to the development of generalized FP the
in the non-Gaussian-Markovian bath is the construction
hierarchical series of bath-induced relaxation operators
Hilbert space~Sec. IV!. We shall in this subsection discus
the possible physical implication of these relaxation ope
tors. For simplicity, the hierarchical relaxation operators
the POP reduction scheme$Kn(t), n50,...,N% @cf. Eqs.~4.8!
and ~4.10!# will be discussed explicitly. The resulting argu
ments will also be valid for the COP relaxation operato
$Kn

COP(t), n50,...,N% @cf. Eqs.~4.1! and ~4.7!#.
As seen from Eq.~4.10b!, the time evolution ofKn(t)

depends explicitly only onKn11(t) and itself. As a result,
Kn(t) at time t depends on allKm(t) with n,m<N andt
,t. Physically,K0(t),...,KN(t) may be responsible for th
progressively detailed and short-time information on qu
tum relaxation processes. The relevant time scale in the n
Gaussian-Markovian bath model@Eq. ~3.1!# is characterized
by tc . From Eq.~4.10b! we may argue that the survival tim
of a given Kn(t) is of the order of (n/tc1D2tc)

21. The
dynamics at a later time depends in general on the syste
earlier times to a certain degree of accuracy depending on
nature of the bath. An appropriate truncation atN should
therefore correlate the degree of memory being required
the quantum relaxation dynamics. In the Gaussi
Markovian limit (tc50), the resulting exponential form o
the correlation function provides a single coarse-grained
laxation time. In this case, our hierarchy of bath induc
relaxation operators$Kn , n50,...,N% can be truncated at th
N50 level, resulting in a pair of equations of motion fo
r(t) andK(t)5K0(t) ~cf. Sec. V A!. In the extreme case o
the Markovian~white-noise! limit in which the bath correla-
tion is a d function, no memory is involved and we do n
need any bath-induced operator at all. This is the case fo
single conventional quantum Fokker-Planck equation~Sec.
V B!.

Our bath model@cf. Eq. ~3.1!# allows a smooth interplay
between both the long-@Eq. ~3.4!# and short-time@Eq. ~3.5!#
behaviors of the bath correlation function. This implies th
the bath can be effectively considered as in the Gauss
Markovian limit when t@tc . Moreover, the Markovian
white noise becomes applicable in the hydrodynamic limit
t→`. We may therefore expect the number of operators
$Kn , n50,...,N% that can affectr(t) decreases progres
sively. Note the survival time of a givenKn(t) is of the order
of (n/tc1D2tc)

21 @cf. Eq. ~4.10b!#. As t becomes large with
respect totc , it reaches the Gaussian-Markovian regime a
we may need the pair of equations forr(t) andK0(t) @Eq.
~5.8!#. Furthermore, ast→`, it becomes applicable for th
Markovian ~white-noise! relaxation theory@cf. Eq. ~5.13!#
and we do not need anyKn at all.

The above comments recall the ‘‘inverse snowball’’ p
ture of Onsage in his study of the effect of polar fluid
electrons@53#. In his picture, an excess electron induces i
tially a long-range structural change in the bath; the b
rearrangement follows and propagates inward toward
e
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electron @53#. In this sense, the relaxation operator s
$Kn(t), n50,...,N% describes the inverse snowball structu
in which the survival time of an individualKn that can affect
the dynamics of the open quantum system decreasesn
increases.

D. Detailed balance relation in the bath model

As the form of bath model@Eq. ~3.1!# is crucial to the
development of generalized FP theory, we shall examine
what extent this model satisfies the exact detailed balanc
fluctuation-dissipation relation. Note that the exact quant
fluctuation-dissipation theorem can be recast as@cf. Eqs.
~2.27! and ~3.1a!#

gexact~ t2 ib!2gexact* ~ t !50. ~5.16!

However, our bath model gives@cf. Eq. ~3.1b! with ~3.3!#

g~ t2 ib!2g* ~ t !52 i ~bD222l!tc

1~zeib/tc2z* !tce
2t/tc. ~5.17!

By applying the semiclassical fluctuation-dissipation relat
of Eq. ~3.1c! and further denoting

x[~zeib/tc2z* !tc5~D2tc!@~ tc2 ib/2!eib/tc2~ tc1 ib/2!#,
~5.18!

we have the relation

g~ t2 ib!2g* ~ t !5xe2t/tc. ~5.19!

We are now in the position to analyze the conditions
which Eq.~5.19! approaches the exact fluctuation-dissipati
relation of Eq.~5.16!. Let us start with the exponential facto
in Eq. ~5.19!. It is obvious that fort@tc the right-hand side
of Eq. ~5.19! drops exponentially to zero. In particular, in th
Gaussian-Markovian limit in whichtc→0 while D2tc5D
remains finite, the exponential factor vanishes at all tim
except for the singularity point att50. We now turn to the
pre-exponential parameterx in Eq. ~5.19!. It can be shown
that in the small-b/tc ~high-temperature! regime, x @Eq.
~5.18!# vanishes as

x;
i

12
D2b3/tc . ~5.20!

The above analysis concludes that our model of n
Gaussian-Markovian bath @Eq. ~3.1!# satisfies the
fluctuation-dissipation relation under the condition~3.2!. It is
in this sense that the fluctuation-dissipation relation is inc
porated into our model@Eq. ~3.1!# in a semiclassical manner

VI. SUMMARY AND CONCLUSION

In this paper we have constructed a hierarchical appro
and developed a generalized Fokker-Planck theory~Sec. IV!
in a non-Gaussian-Markovian medium. We have also p
sented a thorough discussion~cf. Sec. V! on several theoret-
ical issues, such as the physical implication of the hierarc
cal bath induced relaxation operators in Hilbert space and
semiclassical fluctuation-dissipation relation in the mo
bath.
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The model bath@Eq. ~3.1!# adopted in this paper is cha
acterized by three parametersG, D, and tc , together with a
semiclassical fluctuation-dissipation relation@Eq. ~3.1c!#.
Here G denotes the system-bath coupling strength, whileD
andtc interpolate smoothly the relaxation dynamics betwe
the long- and short-time regimes. The Gaussian-Markov
bath is a special case of the present model withtc50.

The final results of the generalized FP theory are
pressed in terms of two sets ofN12 operator equations o
motion, i.e., Eqs.~4.7! and ~4.10!. These two sets of FP
equations stem, respectively, from the reduced Liouv
equations in two distinct~the COP and the POP! prescrip-
tions in the weak system-bath interaction limit. They a
however, not equivalent due to the different approximatio
for the partial resummation of contributions from the high
order system-bath interaction. In the generalized COP
theory @cf. Eq. ~4.7!#, it requires a simultaneous integratio
of the (N12)-coupled equations of motion for$rCOP(t),
K0

COP(t),...,KN
COP(t)%. However, theN12 POP FP equation

@cf. Eq. ~4.10!# can in principle be integrated one by one
inverse order, first forKN(t), then KN21(t),...,K0(t), and
finally for rPOP(t). The hierarchical truncation numberN
depends on the relative bath time scaletc with respect to the
system dynamics. The largertc is, the largerN should be. In
the limit of the Gaussian-Markovian bath in whichtc50, the
truncation number isN50. In this case, we need only a pa
of FP equations for$rCOP(t),KCOP(t)% or $rPOP(t),K(t)% ~cf.
Sec. V A!.

In general, we may expect from Eq.~4.7b! or ~4.10b! that
the survival time ofKn

COP or Kn is at the order of (n/tc

1D2tc)
21. This suggests the possibility of an efficie

scheme of integrating the set of FP equations. As ti
evolves, the required number of FP equations in Eq.~4.7! or
~4.10! is progressively decreasing. It is expected that in
hydrodynamic limit (t→`) the conventional single FP equa
tion ~cf. Sec. V B! becomes adequate.

The key step in the theoretical development is to const
a hierarchical series of bath induced relaxation operators
allows the set ofN12 FP equations to be closed at a rath
small value ofN. The hierarchical approach developed
this paper~cf. Sec. IV! is expected to meet this criterion fo
a small or moderate value ofDtc . However, the requiredN
could become very large as the bath approaches the
modulation limit in whichDtc@1. Thus it might be worth at
least in the short-time region constructing an alternative
erarchical set of FP equations, which are more suitable
the case ofDtc@1. We shall consider this case elsewhere

For simplicity, the present generalized FP theory is
ported explicitly in terms of a single system-bath coupli
mode. It is obvious that the effect of statistically independ
system-bath coupling modes, in which@cf. Eq. ~2.26!#

Cab~ t ![^Fa~ t !Fb~0!&5dabCaa~ t ! ~6.1!

is additive. In this case, Eqs.~4.7a! and ~4.10a! should be
replaced, respectively, by

ṙCOP~ t !52~ i /\!@H~ t !,rCOP~ t !#

2(
a

~Ga /\!2$@Qa ,K0
a,COP~ t !#1H.c.%

~6.2!
n
n

-

e

,
s
-
P

e

e

ct
at
r

w

i-
or

-

t

and

ṙPOP~ t !52~ i /\!@H~ t !,rPOP~ t !#

2(
a

~Ga /\!2$@Qa ,K0
a~ t !rPOP~ t !#1H.c.%.

~6.3!

HereQa is the system coordinate that couples with the b
via the Langevin forceFa . Each non-Gaussian-Markovia
~macroscopic! bath modea is characterized by three param
eters Ga , Da , and tc

a . The hierarchical FP equations fo
Kn

a,COP and Kn
a , with n50,...,Na , will remain as the same

forms as those in Sec. IV. HereNa is the truncation numbe
for the given system-bath coupling modea. The total num-
ber of FP equations in either the COP or POP form is the
fore N511(a(Na11). Note that in the COP form, the
equation of motion for eachKn

a,COP @cf. Eq. ~4.7b!# depends
on rCOP, whose time evolution is given by Eq.~6.2!. As a
result, the time evolution of relaxation operatorKn

a,COP in-
duced by the bath modea depends indirectly on the relax
ation operators induced by all other bath modes. All theN
COP FP equations are therefore coupled and shall be so
simultaneously. On the other hand, theN POP FP equations
can be solved one by one as we mentioned before. The
laxation operatorKn

a contains no feedback information from
the reduced density matrixrPOP and is completely indepen
dent of other statistically independent bath modes.

The operator formulation of the present generalized
theory can be easily recast in various representations. M
over, it constitutes a unified background for a quantum, c
sical, or semiclassical implementation of relaxation dyna
ics. For example, consider an optical process in a molec
system involving the electronic groundg and an excitede
surfaces. We may adopt a mixed representation schem
which the molecular electronic dynamics is described in
state representation, while the nuclear motion is conside
in the Wigner phase space. The reduced density matri
therefore of the form

r~ t !5Frgg~p,q,t ! rge~p,q,t !

reg~p,q,t ! ree~p,q,t !G . ~6.4!

The bath induced relaxation operators can be treated in
same manner. In this case, each of the generalized FP e
tions in Eqs.~4.7! and ~4.10! contains actually four elec
tronic components with the indices ofgg, ge, eg, andee.
We just mentioned that the effect of a stochastically indep
dent bath mode is additive. The present generalized
theory can thus provide a convenient way to study
dephasing and relaxation dynamics in both electronic
nuclear degrees of freedom, such as that which occur
spectroscopic or curve-crossing processes in conde
phases.
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APPENDIX: REDUCED LIOUVILLE EQUATIONS
IN TERMS OF THE FORCE-FORCE

CORRELATION FUNCTION

Let us consider the relaxation termg(t,t)rCOP(t) in the
COP reduced Liouville equation. Making use of Eqs.~2.3!,
~2.7b!, ~2.9!, and~2.20!, we have

g~ t,t!rCOP~t!5trB@L8~ t !G~ t,t!L8~t!rB~0!rCOP~t!#

5\22 trB@H8~ t !G~ t,t!H8~t!rB~0!rCOP~t!

3G†~ t,t!2G~ t,t!H8~t!rB~0!rCOP~t!

3G†~ t,t!H8~ t !#1H.c.

5\22(
a,b

$I 2II 1H.c.%. ~A1!

Here

I[trB@Fa~ t !Fb~t!rB~0!#QaG~ t,t!QbrCOP~t!G†~ t,t!

5Cab~ t2t!QaG~ t,t!QbrCOP~t!G†~ t,t! ~A2!
is
qu
ic

n

-

e

-

nd

em
and

II [trB@Fb~t!rB~0!Fa~ t !#G~ t,t!QbrCOP~t!G†~ t,t!Qa

5Cab~ t2t!G~ t,t!QbrCOP~t!G†~ t,t!Qa . ~A3!

In deriving Eqs.~A2! and~A3! we have used Eq.~2.26! and
the trace cyclic invariance

Cab~ t2t!5trB@Fa~ t !Fb~t!rB~0!#5trB@Fb~t!rB~0!Fa~ t !#.
~A4!

By substituting Eqs.~A2! and ~A3! into Eq. ~A1! followed
by integration, we obtain

E
0

t

dt g~ t,t!rCOP~t!5\22(
a

$@Qa ,Q̃a
COP~ t !#1H.c.%,

~A5!

with Q̃a(t) being defined by Eq.~2.30b!. The COP Liouville
equation~2.30! now can be recovered by substituting Eq
~A4! and~2.7a! for Eq. ~2.20a!. The POP Liouville equation
~2.31! can also be derived using a similar approach.
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