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We review the interplay of frustration and strong electronic correlations in quasi-two-dimensional
organic charge transfer salts, such as (BEDT-TTF)2X and EtnMe4−nPn[Pd(dmit)2]2. These
two forces drive a range of exotic phases including spin liquids, valence bond crystals, pseudo-
gapped metals, and unconventional superconductivity. Of particular interest is that in several
materials with increasing pressure there is a first-order transition from a spin liquid Mott in-
sulating state to a superconducting state. Experiments on these materials raise a number of
profound questions about the quantum behaviour of frustrated systems, particularly the intimate
connection between spin liquids and superconductivity. Insights into these questions have come
from a wide range of theoretical techniques including first principles electronic structure, quan-
tum many-body theory and quantum field theory. In this review we introduce some of the basic
ideas of the field by discussing a simple frustrated Heisenberg model with four spins. We then
describe the key experimental results, emphasizing that for two materials, κ-(BEDT-TTF)2Cu2-
(CN)3 and EtMe3Sb[Pd(dmit)2]2, there is strong evidence for a spin liquid ground state, and
for another, EtMe3P[Pd(dmit)2]2, there is evidence of a valence bond crystal ground state. We
review theoretical attempts to explain these phenomena, arguing that they can be captured by a
Hubbard model on the anisotropic triangular lattice at half filling, and that Resonating Valence
Bond (RVB) wavefunctions capture most of the essential physics. We review evidence that this
Hubbard model can have a spin liquid ground state for a range of parameters that are realistic for
the relevant materials. In particular, spatial anisotropy and ring exchange are key to destabilising
magnetic order. We conclude by summarising the progress made thus far and identifying some of
the key questions still to be answered.
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I. INTRODUCTION

In the early 1970’s, Anderson and Fazekas (Anderson,
1973; Fazekas and Anderson, 1974) proposed that the
ground state of the antiferromagnetic Heisenberg spin-
1/2 model on the triangular lattice did not break spin
rotational symmetry, i.e., had no net magnetic moment.
A state of matter characterised by well defined local mo-
ments and the absence of long range order has become
known as a spin liquid (Normand, 2009). Such states, are
known in one-dimensional (1d) systems, but 1d systems
have some very special properties that are not germane
to higher dimensions. Until very recently there has been
a drought of experimental evidence for spins liquids in
higher dimensions (Lee, 2008).
In 1987 Anderson (Anderson, 1987), stimulated by the

discovery of high-Tc superconductivity in layered copper
oxides, made a radical proposal that has given rise to
lively debate ever since. We summarise Anderson’s pro-
posal as:

The fluctuating spin singlet pairs produced
by the exchange interaction in the Mott in-
sulating state become charged superconduct-
ing pairs when the insulating state is de-
stroyed by doping, frustration or reduced cor-
relations.

These fluctuations are enhanced by spin frustration and
low dimensionality. Furthermore, partly inspired by res-
onating valence bond (RVB) ideas from chemical bond-
ing (Anderson, 2008; Shaik and Hiberty, 2008), Anderson
proposed a variational wave function for the Mott insula-
tor: a BCS superconducting state from which all doubly
occupied sites are projected out.
In the decades since, there has been an enormous out-

growth of ideas about spin liquids and frustrated quan-
tum systems, which we will review. We will also consider
the extent to which several families of organic charge
transfer salts can be used as tuneable systems to test
such ideas about the interplay of superconductivity, Mott
insulation, quantum fluctuations, and spin frustration.
A goal of this review is not to be exhaustive but rather

to be pedagogical, critical, and constructive. We will
attempt to follow the goals for such reviews proposed
long ago (Herring, 1968).

A. Motivation: frustration, spin liquids, and spinons

1. Key questions

A major goal for this review will be to address the
following questions:

1. Is there a clear relationship between superconduc-
tivity in organic charge transfer salts and in other
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strongly correlated electron systems?

2. Are there materials for which the ground state of
the Mott insulating phase is a spin liquid?

3. What is the relationship between spin liquids and
superconductivity? In particular, does the same
fermionic pairing occur in both?

4. What are the quantum numbers (charge, spin,
statistics) of the quasiparticles in each phase?

5. Are there deconfined spinons in the insulating
phase of any of these materials?

6. Can spin-charge separation occur in the metallic
phase?

7. In the metallic phase close to the Mott insulating
phase is there an anisotropic pseudogap, as in the
cuprates?

8. What is the simplest low-energy effective quantum
many-body Hamiltonian on a lattice that can de-
scribe all possible ground states of these materials?

9. Can a RVB variational wave function give an ap-
propriate theoretical description of the competition
between the Mott insulating and the superconduct-
ing phase?

10. Is there any significant difference between destroy-
ing the Mott insulator by hole doping and by in-
creasing the bandwidth?

11. For systems close to the isotropic triangular lattice,
does the superconducting state have broken time-
reversal symmetry?

12. How can we quantify the extent of frustration?
Are there differences between classical and quan-
tum frustration? If so what are the differences?

13. What is the relative importance of frustration and
static disorder due to impurities?

14. Is the “chemical pressure” hypothesis valid?

15. Is there quantum critical behaviour associated with
quantum phase transitions in these materials?

16. Do these materials illustrate specific “organising
principles” that are useful for understanding other
frustrated materials?

At the end of the review we consider some possible
answers to these questions.

Schrodinger's	  equation	  &	  Coulomb's	  law	  

Electrons	  in	  atomic	  orbitals	  &	  molecular	  orbitals	  

Lattice	  model	  Hamiltonian	  

Localised	  spins	   Fermions	  

Continuum	  =ield	  theory	  

Quasi-‐particles	   Gauge	  =ields	  

FIG. 1 The hierarchy of objects and descriptions associated
with theories of organic charge transfer salts. The arrows
point in the direction of decreasing length scales, increasing
energy scales, and increasing numbers of degrees of freedom.
At the level of quantum chemistry (Schrödinger’s equation
and Coulomb’s law) one can describe the electronic states
of single (or pairs of) molecules in terms of molecular or-
bitals (which can be approximately viewed as superpositions
of atomic orbitals). Just a few of these molecular orbitals in-
teract significantly with those of neigbouring molecules in the
solid. Low-lying electronic states of the solid can be described
in terms of itinerant fermions on a lattice and an effective
Hamiltonian such as a Hubbard model (see Section VI.B). In
the Mott insulating phase the electrons are localised on single
lattice sites and can described by a Heisenberg spin model
(see Section VI.A). The low-lying excitations of these lattice
Hamiltonians and long-wavelength properties of the system
may have a natural description in terms of quasi-particles
which can be described by a continuum field theory such as a
non-linear sigma model. At this level unexpected objects may
emerge such as gauge fields and quasi-particles with fractional
statistics (see Section VII).

2. A hierarchy of theories: from quantum chemistry to field
theory

The quantum many-body physics of condensed mat-
ter provides many striking examples of emergent phe-
nomena at different energy and length scales (Anderson,
1972; Coleman, 2003; Laughlin and Pines, 2000; McKen-
zie, 2007; Wen, 2004). Figure 1 illustrates how this is
played out in the molecular crystals, which form the fo-
cus of this article, showing the stratification of differ-
ent theoretical treatments and the associated objects.
It needs to be emphasized that when it comes to the-
oretical descriptions going up the hierarchy is extremely
difficult, particularly determining the quantum numbers
of quasi-particles and the effective interactions between
them, starting from a lattice Hamiltonian.

3. Organic charge transfer salts are an important class of
materials

Organic charge transfer salts have a number of fea-
tures that make them a playground for the study of quan-
tum many-body physics. They have of several properties
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that are distinctly different from other strongly corre-
lated electron materials, such as transition metal oxides
and intermetallics. These properties include:

• They are available in ultra-pure single crystals,
which allow observation of quantum magnetic os-
cillations such as the de Haas van Alphen effect.

• The superconducting transition temperature and
upper critical field are low enough that one can de-
stroy the superconductivity and probe the metallic
state in steady magnetic fields less than 20 Tesla.
As a result, one can observe rich physics in exper-
imentally accessible magnetic fields and pressure
ranges

• Chemical substitution provides a means to tune the
ground state.

• Chemical doping (and the associated disorder) is
not necessary to induce transitions between differ-
ent phases.

• These materials are compressible enough that pres-
sures of the order of kbars can induce transitions
between different ground states.

Consequently, over the past decade it has been possi-
ble to observe several unique effects due to strongly cor-
related electrons, sometimes phenomena that have not
been seen in inorganic materials. These significant ob-
servations include:

• Magnetic field induced superconductivity.

• A first-order transition between a Mott insulator
and superconductor induced with deuterium sub-
stitution, anion substitution, pressure, or magnetic
field.

• A valence bond solid in a frustrated antiferromag-
net.

• A spin liquid in a frustrated antiferromagnet.

• Novel critical exponents near the critical point of
Mott metal-insulator transition.

• Collapse of the Drude peak in the optical con-
ductivity (a signature of the destruction of quasi-
particles) above temperatures of order of tens of
Kelvin in the metallic phase.

• Bulk measurement of the Fermi surface using angle-
dependent magnetoresistance.

• Low superfluid density in a weakly correlated
metal.

• Multi-ferroic states.

• Superconductivity near a charge ordering transi-
tion.

FIG. 2 Schematic phase diagram associated with the Mott-
Hubbard metal-insulator transition. [Figure after Reference
(Imada et al., 1998)]. The Mott insulating phase occurs at
half filling and when the on-site Coulomb repulsion U is
much larger than the hopping energy t and the associated
band width. A transition to a metallic phase occurs either
by doping away from half filling [FC-MIT= filling controlled
metal-insulator transition] or by decreasing the ratio U/t [BC-
MIT = bandwidth controlled metal-insulator transition]. In
the cuprates a FC-MIT occurs whereas in the organic charge
transfer salts considered in this review one might argue that
BC-MIT occurs. On the other hand, perhaps one should con-
sider a third co-ordinate, the frustration, in addition to the
filling and band width. This would lead to the notion ofa
frustration controlled transition (FrC-MIT). In the Hubbard
model on the anisotropic lattice at half-filling for fixed U/t
increasing the hopping t′/t can drive an insulator to metal
transition (compare Figure 39). [Copyright (1998) by the
American Physical Society.]

Figure 2 illustrates schematically two possible different
routes to destroying the Mott insulating phase, either by
varying the band filling or by varying the bandwidth.
Another possible route is by varying the amount of frus-
tration of the spin interactions. An important conse-
quence of Anderson RVB’s theory of the filling controlled
metal-insulator transition (FC-MIT) is that the “preex-
isting magnetic singlet pairs of the insulating state be-
come charged superconducting pairs when the insulator
is doped sufficiently strongly” (Anderson, 1987). It is
therefore important to understand whether this extends
to the bandwidth controlled metal-insulator transition
(BC-MIT) were one has equal numbers of “holons” and
“doublons”. More generally, an important question, that
has not yet received adequate attention, is what are the
similarities and differences between the FC-MIT and the
BC-MIT?

4. What are spin liquids?

This question has recently been reviewed in detail (Ba-
lents, 2010; Normand, 2009; Sachdev, 2009a). There are
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several alternative definitions. The definition that we
think is the most illuminating, because it brings out their
truly exotic nature, is the following.

A spin liquid has a ground state in which
there is no long-range magnetic order and
no breaking of spatial symmetries (rotation
or translation) and which is not adiabatically
connected to the band (Bloch) insulator.

One can write down many such quantum states. Indeed,
Wen classified hundreds of them for the square lattice
(Wen, 2002). But the key question is whether such a
state can be the ground state of a physically realistic
Hamiltonian. A concrete example is the ground state of
the one-dimensional antiferromagnetic Heisenberg model
with nearest-neighbour interactions. However, despite an
exhaustive search since Anderson’s 1987 Science paper,
(Anderson, 1987) it seems extremely difficult to find a
physically realistic Hamiltonian in two dimensions which
has such a ground state.
As far as we are aware there is still no definitive

counter-example to the following conjecture:

Consider a family of spin-1/2 Heisenberg
models on a two-dimensional lattice with
short range antiferromagnetic exchange inter-
actions (pairwise, ring exchange and higher
order terms are allowed). The Hamiltonian is
invariant under SU(2)×L, where L is a space
group and there is a non-integer total spin
in the repeat unit of the lattice Hamiltonian.
Let γ be a parameter which can be used to
distinguish different Hamiltonians in the fam-
ily (e.g., it could be the relative magnitude
of different interaction terms in the Hamilto-
nian). Then a non-degenerate ground state is
only possible for discrete values of γ (e.g., at a
quantum critical point). In other words, the
ground state spontaneously breaks at least
one of the two symmetries SU(2) and L over
all continuous ranges of γ.

The requirement of non-integer spin in the repeat unit
ensures that the generalisation of the Lieb-Schultz-Mattis
theorem to dimensions greater than one (Alet et al., 2006;
Hastings, 2004) does not apply. The theorem states that
for spin-1/2 systems with one spin per unit cell on a two-
dimensional lattice, if the ground state is non-degenerate
and there is no symmetry breaking, one cannot have a
non-zero energy gap to the lowest excited state. Note
that, the triangular, kagome, and pyrochlore lattices con-
tain one, three, and four spins per unit cell respectively
(Normand, 2009). Hence, Hasting’s theorem cannot be
used to rule out a spin liquid for the pyrochlore lattice.
One of the best candidate counter examples to the

above conjecture is the Heisenberg model on the triangu-
lar lattice with ring exchange (LiMing et al., 2000) which
will be discussed in more detail in Section VI.A.

Sachdev (Sachdev, 2009b) pointed out that such
Heisenberg models have possible ground states in four
classes: Neel order, spiral order, a valence bond crystal,
or a spin liquid. Examples of the first two occur on the
square and the triangular lattices respectively. For both
cases spin rotational symmetry and lattice symmetry are
broken. For a valence bond crystal, only the spatial sym-
metry is broken. It may be that valence bond crystal
ground state occurs on the anisotropic triangular lattice
(cf. Section VI.A).
Normand (Normand, 2009) considered three different

classes of spin liquids, each being defined by their excita-
tion spectrum. If we denote the energy gap between the
singlet ground state and the lowest-lying triplet state by
∆T and the gap to the first excited singlet state by ∆S .
The three possible cases are:

1. ∆S 6= 0 and ∆T 6= 0.

2. ∆S = 0 and ∆T 6= 0.

3. ∆S = ∆T = 0.

Normand refers to the first two as Type I and Type II
respectively. The third case is referred to as an Algebraic
spin liquid. The case ∆T = 0 and ∆S 6= 0 is not an option
because, by Goldstone’s theorem, it would be associated
with broken spin-rotational symmetry.
An important question is how to distinguish these dif-

ferent states experimentally. It can be shown that for a
singlet ground state at zero temperature singlet excited
states do not contribute to the dynamical spin suscep-
tibility. If the susceptibility is written in the spectral
representation, 1

χ−+(q, ω) =
∑

n

exp(−β(En − E0))
|〈n|S+(−q)|0〉|2
En − E0 − ω

,

(1)
it is clear that the matrix elements of the spin operators
between the singlet ground state and any singlet excited
state must be zero. This means that at low tempera-
tures, only triplet excitations contribute to the uniform
magnetic susceptibility, the NMR relaxation rate, Knight
shift, and inelastic neutron scattering cross section. In
contrast, both singlet and triplet excitations contribute
to the specific heat capacity and the thermal conductivity
at low temperatures. Hence, comparing the temperature
dependence of thermal and magnetic properties should
allow one to distinguish Type I spin liquids from Type II
spin liquids. Furthermore, the singlet spectrum will not
shift in a magnetic field but the triplets will split and the
corresponding spectral weight be redistributed.
One important reason for wanting to understand these

details of the spin liquid states is that the spin excita-
tion spectrum may well be important for understanding

1 Here β = 1/kBT is the inverse temperature and S±(q) are the
spin raising/lowering operators.
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unconventional superconductivity. This has led to a lot
of attention being paid to a magnetic resonance seen by
inelastic neutron scattering the cuprates. It is still an
open question as to whether this triplet excitation is cor-
related with superconductivity (Chubukov et al., 2006;
Cuk et al., 2004; Hao and Chubukov, 2009; Hwang et al.,
2004). Strong coupling RVB-type theories focus on sin-
glet excitations whereas weak-coupling antiferromagnetic
spin fluctuation theories focus on triplet excitations. This
important difference is emphasized and discussed in a re-
view on the cuprates (Norman, 2006).

5. What are spinons?

A key question is what are the quantum numbers and
statistics of the lowest lying excitations. In a Neel or-
dered antiferromagnet these excitations are “magnons”
or “spin waves” which have total spin one and obey Bose-
Einstein statistics (Auerbach, 1994). Magnons can be
viewed as a spin flip propagating through the background
of Neel ordered spins. They can also be viewed as the
Goldstone modes associated with the spontaneously bro-
ken symmetry of the ground state.
In contrast, in a one-dimensional antiferromagnetic

spin chain (which has a spin liquid ground state) the
lowest lying excitations are gapless spinons which have
total spin-1/2 and obey “semion” statistics, which are
intermediate between fermion and boson statistics (i.e.
there is a phase factor of π/2 associated with particle ex-
change) (Haldane, 1991). The spinons are “deconfined”
in the sense that if a pair of them are created (for exam-
ple, in an inelastic neutron scattering experiment) with
different momentum then they will eventually move in-
finitely far apart. Definitive experimental signatures of
this deconfinement are seen in the dynamical structure
factor S(ω, ~q) which shows a continuum of low-lying ex-
citations rather than the sharp features associated with
spin waves. This is clearly seen in the compound KCuF3,
which is composed of linear chains of spin-1/2 copper ions
(Tennant et al., 1995). The most definitive evidence for
such excitations in a real two-dimensional material comes
from Cs2CuCl4 (Coldea et al., 2003; Kohno et al., 2007)
above the Neel ordering temperature. Below the Neel
temperature these excitations become confined into con-
ventional magnons (Fjærestad et al., 2007; Starykh et al.,
2010). It is an open theoretical question as to whether
there is any two-dimensional Heisenberg model with such
excitations at zero temperature, other than at a quantum
critical point (Singh, 2010).
What type of spinon statistics might be possible in

two dimensions? Wen used quantum orders and projec-
tive symmetry groups, to construct hundreds of symmet-
ric spin liquids, having either SU(2), U(1), or Z2 gauge
structures at low energies (Wen, 2002). He divided the
spin liquids into four classes, based on the statistics of
the quasi-particles and whether they were gapless:

Rigid spin liquid: spinons (and all other excitations)

are fully gapped and may have either bosonic,
fermionic, or fractional statistics.

Fermi spin liquid: spinons are gapless and are de-
scribed by a Fermi liquid theory (the spinon-spinon
interactions vanish as the Fermi energy is ap-
proached).

Bose spin liquid: low-lying gapless excitations are de-
scribed by a free-boson theory.

Algebraic spin liquid: spinons are gapless, but they
are not described by free fermionic and free bosonic
quasiparticles.

6. Antiferromagnetic fluctuations

It has been proposed that an instability to a d-wave su-
perconducting state can occur in a metallic phase which
is close to an antiferromagnetic instability (Scalapino
et al., 1986). This has been described theoretically by
an Eliashberg-type theory in which the effective pairing
interaction is proportional to the dynamical spin suscep-
tibility, χ(ω, ~q) (Moriya and Ueda, 2003). If this quan-
tity has a significant peak near some wavevector then
that will significantly enhance the superconducting Tc in
a specific pairing channel. NMR relaxation rates are also
determined by χ(ω, ~q) and so NMR can provide useful
information about the magnetic fluctuations. For exam-
ple, a signature of large antiferromagnetic fluctuations is
the dimensionless Korringa ratio that is much larger than
one.
From a local picture one would like to know the

strength of the antiferromagnetic exchange J between lo-
calised spins in the Mott insulating and the bad metallic
phase. In RVB theory J sets the scale for the supercon-
ducting transition temperature. It is important to realise
that this is very different from picture of a “glue” in the
Eliashberg-type theories where superconductivity arises
due to the formation of Cooper pairs between Fermi liq-
uid quasi-particles (Anderson, 2007; Maier et al., 2008)
(also see section IX.C).

7. Quantum critical points

Figure 3 shows a schematic phase diagram associated
with a quantum critical point (Coleman and Schofield,
2005; Sachdev, 1999). We will discuss the relevance of
such diagrams to the organic charge transfer salts below.
We will see that some of the theoretical models (such as
the Heisenberg model on an anisotropic triangular lat-
tice) do undergo a quantum phase transition from a mag-
netically ordered to a quantum disordered phase with an
energy gap to the lowest lying triplet excitation.
A particularly important question is whether any sig-

natures of quantum critical behavior have been seen in or-
ganic charge transfer sites. Most transitions at zero tem-
perature are first-order. Perhaps, the clearest evidence of
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FIG. 3 Schematic phase diagram associated with a quan-
tum critical point. The vertical axis is temperature and the
horizontal axis represents a coupling constant, g. Quantum
fluctuations increase with increasing g and for a critical value
gc there is a quantum phase transition from an ordered phase
(with broken symmetry) to a disordered phase, usually as-
sociated with an energy gap, ∆ ∼ (g − gc)

zν where z is the
dynamical critical exponent and ν is the critical exponent as-
sociated with the correlation length ξ ∼ |g − gc|

−ν . In the
quantum critical region the only energy scale is the temper-
ature and the correlation length ξ ∼ 1/T 1/z. In this region
there are also no quasi-particles (i.e., any singularities in spec-
tral functions are not isolated poles but rather branch cuts).

quantum critical fluctuations come from the NMR spin
relaxation rate in κ-(BEDT-TTF)2Cu2(CN)3, which will
be discussed in Section VII.D.

B. Key consequences of frustration

We briefly list some key consequences of frustration.
Many of these are discussed in more detail later in the
review.

• Frustration enhances the number of low energy ex-
citations. This increases the entropy at low tem-
peratures (Ramirez, 1994). The temperature de-
pendence of the magnetic susceptibility is flatter
and the peak occurs at a lower temperature (Sec-
tion I.B.3).

• Quantum fluctuations in the ground state are en-
hanced due to the larger density of states at low
energies. These fluctuations can destroy magneti-
cially ordered phases (Section VI.A).

• Singlet excitations are stabilised and singlet pair-
ing correlations are enhanced. Resonating valence
bond states have a larger overlap with the true
ground state of the system (Section VI.A).

• Intersite correlations are reduced which enhances
the accuracy of single site approximations such as

Curie-Weiss theory and dynamical mean-field the-
ory (Section III.D).

• In Heisenberg models frustrated spin interactions
produce incommensurate correlations. These can
also change the symmetry of the superconducting
pairing (Powell and McKenzie, 2007), lead to new
triplet excitations (phasons) (Chandra et al., 1990),
and the emergence of new gauge fields which are
deconfining (Section VII).

• Frustration of kinetic energy (such as in non-
bipartite lattices or by next-nearest-neighbor hop-
ping) reduces nesting of the Fermi surface and sta-
bilises the metallic state (Section VI.B).

1. Reduction of the correlation length

The temperature dependence of the correlation length

ξ(T ) and the static structure factor S( ~Q), associated

with the classical ordering wavevector ~Q has been cal-
culated for both the triangular lattice and square lattice
Heisenberg models using high-temperature series expan-
sions (Elstner et al., 1993, 1994). For the triangular lat-
tice the correlation length has values of about 0.5 and 2
lattice constants, at temperatures T = J and T = 0.2J ,
respectively. In contrast, the model on the square lat-
tice has correlation lengths of about 1 and 200 lattice
constants, at T = J and T = 0.2J , respectively. At
T = 0.2J the static structure factor has values of about
1 and 3000 for the triangular and square lattices, respec-
tively. Hence, frustration leads to a significant reduction
of the spin correlation length. These distinct differences
in temperature dependence can be understood in terms
of frustration producing a ‘roton’ like minimum in the
triplet excitation spectra of the triangular lattice model
(Zheng et al., 2006).
We discuss later how the temperature dependence of

the uniform magnetic susceptibility of several frustrated
charge transfer salts can be fit to that of the Heisen-
berg model on the triangular lattice with J = 250 K
(Shimizu et al., 2003; Tamura and Kato, 2002; Zheng,
Singh, McKenzie and Coldea, 2005). This implies that
ξ ≃ 2a at 50 K. This is consistent with estimates of
the spin-spin correlation length in organic charge transfer
salts from low temperture NMR relaxation rates (Yusuf
et al., 2007).

2. Competing phases

One characteristic feature of strongly correlated elec-
tron systems that, we believe, should be discussed more
is how sensitive they are to small perturbations. This is
particularly true in frustrated systems. A related issue
is that there are often several competing phases which
are very close in energy. This can make variational wave
functions unreliable. Getting a good variational energy
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may not be a good indication that the wave function
captures the key physics. Below we give two concrete
examples to illustrate this point.
Firstly, consider the spin 1/2 Heisenberg model on the

isotropic triangular on a lattice of 36 sites, and with
exchange interaction J . Exact diagonalisation (Sindz-
ingre et al., 1994) gives a ground state energy per site
of −0.5604J and a net magnetic moment (with 120 de-
gree order as in the classical model) of 0.4, compared
to the classical value of 1/2. In contrast, a variational
short-range RVB wavefunction has zero magnetic mo-
ment and a ground state energy of −0.5579J . Yet, it
is qualitatively incorrect because it predicts no magnetic
order (and thus no spontaneous symmetry breaking) in
the thermodynamic limit. Note, however, that the en-
ergy difference is only J/400. [For details and references
see Table III in (Zheng et al., 2006)].
The second example concerns the spin 1/2 Heisenberg

model on the anisotropic triangular lattice, viewed as
chains with exchange J ′ and frustrated interchain cou-
pling J . For J ′ ∼ 3J this describes the compound
Cs2CuCl4. The triplet excitation spectrum of the model
has been calculated both with a small Dzyaloshinski-
Moriya interaction D, and without (D = 0). It is striking
that even when D ∼ J ′/20 it induces energy changes in
the spectrum of energies as large as J ′/3, including new
energy gaps (Fjærestad et al., 2007). For J ′ ≫ J the
ground state turns out to be “exquisitely sensitive” to
other residual interactions as well (Starykh et al., 2010).

3. Alternative measures of frustration

Balents recently considered how to quantify the
amount of frustration in an antiferromagnetic material
(or model) and its tendency to have a spin liquid ground
state (Balents, 2010). He used a measure (Ramirez, 1994)
f = TCW /TN , the ratio of the Curie-Weiss tempera-
ture TCW to the Neel temperature, TN at which three-
dimensional magnetic ordering occurs.
One limitation of this measure is that it does not sep-

arate out the effects of fluctuations (both quantum and
thermal), dimensionality, and frustration. For strictly
one or two dimensional systems, TN is zero. For quasi-
two-dimensional systems the interlayer coupling deter-
mines TN . Thus, f would be larger for a set of weakly
coupled unfrustrated chains than for a layered triangu-
lar lattice in which the layers are moderately coupled
together.
Section II of (Zheng, Singh, McKenzie and Coldea,

2005) contains a detailed discussion of two different mea-
sures of frustration for model Hamiltonians: (1) the num-
ber of degenerate ground states, and (2) the ratio of
the ground state energy to the base energy [the sum of
all bond energies if they are independently fully satis-
fied.] This measure was introduced previously for classi-
cal models (Lacorre, 1987).
Figure 4 shows results that might be the basis of some

FIG. 4 Effect of frustration on the temperature dependence
of the magnetic susceptibility χ(T ) for the Heisenberg model
on an anisotropic triangular lattice (Zheng, Singh, McKenzie
and Coldea, 2005). The variation of key parameters is shown
as a function of the ratio J ′/(J + J ′). Tp is the tempera-
ture at which the susceptibility is a maximum, with a value
χp ≡ χ(Tp). Tcw is the Curie-Weiss temperature which can
be extracted from the high-temperature dependence of the
susceptibility. Bsat is the magnetic saturation field and Ag2

is the Curie-Weiss constant. All quantities were calculated
by a high-temperature series expansion. All of the quantities
plotted have extreme values for the isotropic triangular lat-
tice, suggesting that in some sense it is the most frustrated.
[Modified from (Zheng, Singh, McKenzie and Coldea, 2005).
Copyright (2005) by the American Physical Society.]

alternative measures of frustration. The sensitivity of
the temperature dependence of the susceptibility to the
ratio J ′/J has been used to estimate this ratio for specific
materials (Zheng, Singh, McKenzie and Coldea, 2005).

In some sense then, the temperature Tp at which the
susceptibility has a maximum and the magnitude of that
susceptibility is a measure of the amount of frustration.
This is consistent with some intuition (or is it just preju-
dice?) that for the anistropic triangular lattice the frus-
tration is largest for the isotropic case. These measures
of frustration are not dependent on dimensionality and so
do not have the same problems discussed above that the
ratio f does. On the other hand, these measures reflect
short-range interactions rather than the tendency for the
system to fail to magnetically order.

Another issue that needs to be clarified is how one
might distinguish quantum and classical frustration. In
general the nearest neighbour spin correlation fs ≡
〈Ŝi · Ŝj〉 will be reduced by frustration. Entanglement
measures from quantum information theory can be used
to distinguish truly quantum from classical correlations.
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For a spin rotationally invariant state (i.e. a total spin
singlet state) fs is related to a measure of entanglement
between two spins in a mixed state, known as the con-
currence C by (Cho and McKenzie, 2006)

C = max{0,−2fs − 1/2}. (2)

Hence, there is maximal entanglement (C = 1) when the
two spins are in a singlet state and are not entangled with
the rest of the spins in the system. Once the spin cor-
relations decrease to fs = 1/4 there is no entanglement
between the two spins.

4. Geometric frustration of kinetic energy

In a non-interacting electron model we are aware of
only two proposed quantitative measures of the geomet-
rical frustration of the kinetic energy. Both are based on
the observation that, for frustrated lattices with t > 0,
an electron at the bottom of the band does not gain the
full lattice kinetic energy, while a hole at the top of the
band does. Barford and Kim (Barford and Kim, 1991)
suggested that for tight binding models a measure of the
frustration is then ∆ = |ǫmax

k | − |ǫmin
k |, where ǫmax

k and
ǫmin
k are the energies (relative to the energy of the system
with no electrons) of the top and bottom of the band re-
spectively. This frustration increases the density of states
for positive energies for t > 0 (negative energies for t < 0)
which represents an increased degeneracy and enhances
the many-body effects when the Fermi energy is in this
regime.
Together with Merino, we previously argued (Merino

et al., 2006) that a simpler measure of the kinetic energy
frustration is W/2z|t|, where W is the bandwidth and z
is the coordination number of the lattice. The smaller
this ratio, the stronger the frustration is, while for an
unfrustrated lattice W/2z|t| = 1. But, for example, on
the triangular lattice kinetic energy frustration leads to
a bandwidth, W = 9|t|, instead of 12|t| as one might
näıvely predict from W = 2z|t| since z = 6.

We argued that geometrical frustration of the kinetic
energy is a key concept for understanding the properties
of the Hubbard model on the triangular lattice. In partic-
ular, it leads to particle-hole asymmetry which enhances
many-body effects for electron (hole) doped t > 0 (t < 0)
lattices.
It should be noted that geometrical frustration of the

kinetic energy is a strictly quantum mechanical effect
arising from quantum interference. This interference
arises from hopping around triangular plaquettes which
will have an amplitude proportional to t3, which clearly
changes sign when t changes sign. In contrast on the, un-
frustrated, square lattice the smallest possible plaquette
is the square and the associated amplitude for hopping
around a square is independent of the sign of t as it is pro-
portional to t4. Barford and Kim noted that the phase
collected by hopping around a frustrated cluster may be

exactly cancelled by the Aharonov-Bohm phase associ-
ated with hopping around the cluster for a particular
choice of applied magnetic field (Barford and Kim, 1991).
Thus a magnetic field may be used to lift the effects of
kinetic energy frustration. The quantum mechanical na-
ture of kinetic energy frustration is in distinct contrast
to geometrical frustration in antiferromagnets which can
occur for purely classical spins.

II. TOY MODELS TO ILLUSTRATE THE INTERPLAY
OF FRUSTRATION AND QUANTUM FLUCTUATIONS

We now consider some model Hamiltonians on just four
lattice sites. The same Hamiltonians on an infinite lat-
tice are relevant to the organic charge transfer salts and
will be discussed in Sections VI.A and VI.B. Although
such small systems are far from the thermodynamic limit,
these models can illustrate some of the essential physics
associated with the interplay of strong electronic corre-
lations, frustration, and quantum fluctuations. These
toy models illustrate the quantum numbers of impor-
tant low-lying quantum states, the dominant short-range
correlations, and how frustration changes the competi-
tion between these states. Furthermore, understanding
these small clusters is a pre-requisite for cluster exten-
sions of dynamical mean-field theory (Ferrero et al., 2009)
and rotationally invariant slave boson mean-field theory
(Lechermann et al., 2007) which describes band selective
and momentum space selective Mott transitions. Insight
can also be gained by considering two, three, and four
coupled Anderson impurities (Ferrero et al., 2007). Small
clusters are also the basis of the contractor renormalisa-
tion (CORE) method which has been used to study the
doped Hubbard model (Altman and Auerbach, 2002) and
frustrated spin models (Berg et al., 2003).

A similar approach of just considering four sites has
been taken before when considering the ground state of
a Heisenberg model on a depleted lattice which is a model
for CaV4O9 (Ueda et al., 1996). The authors first consid-
ered a single plaquette with frustration, albeit along both
diagonals (see also Section 3 in (Valkov et al., 2006)). Dai
and Whangbo (Dai and Whangbo, 2004) considered the
Heisenberg model on a triangle and a tetrahedra. Simi-
lar four site Heisenberg Hamiltonians have also been dis-
cussed in the context of mixed valence metallic clusters
of particular interest to chemists (Augustyniak-Jablokow
et al., 2005).

A. Four site Heisenberg model

The four site Heisenberg model illustrates that frustra-
tion can lead to energy level crossings and consequently
to changes in the quantum numbers of the ground state
and lowest lying excited state.
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The Hamiltonian is (see Figure 5(a))

Ĥ = J
(

Ŝ1 · Ŝ2 + Ŝ2 · Ŝ3 + Ŝ3 · Ŝ4 + Ŝ4 · Ŝ1

)

+J ′Ŝ1 · Ŝ3. (3)

It is helpful to introduce the total spin along each of the
diagonals, Ŝ13 = Ŝ1 + Ŝ3 and Ŝ24 = Ŝ2 + Ŝ4, and note
that these operators commute with each other and with
the Hamiltonian. The total spin of all four sites can be
written in terms of these operators: Ŝ = Ŝ13+Ŝ24. Thus,
the total spin S, and the total spin along each of the
two diagonals, S13 and S24 are good quantum numbers.
The term in (3) associated with J can be rewritten as

J/2(Ŝ2 − Ŝ2
13 − Ŝ2

24). Hence, the energy eigenvalues are

E(S, S13, S24) =
1

2
JS(S + 1) +

1

2
(J ′ − J)S13(S13 + 1)

−1

2
JS24(S24 + 1)− 3

4
J ′. (4)

Figure 5 (c) shows a plot of these energy eigenvalues as
a function of J ′/J . We note that the quantum numbers
of the lowest lying excited state change when J ′ = J
and J ′ = 4J , and that the ground state changes when
J ′ = 2J .

The two singlet states can also be written as lin-
ear combinations of two orthogonal valence bond states,
denote |H〉 and |V 〉, which descibe a pair of singlets
along the horizontal and vertical directions, respectively
(see Figure 5 (b)). The state with quantum numbers
(S, S13, S24) = (0, 0, 0) is

|0, 0, 0〉 = 1√
2
(|H〉 − |V 〉) (5)

and the state with (S, S13, S24) = (0, 1, 1) state is

|0, 1, 1〉 = 1√
2
(|H〉+ |V 〉) . (6)

Both of these singlet states are resonating valence bond
states (see Figure 5 (b)).

The Hamiltonian has C2v with the C2 axes along each
diagonal (and out of the plane). The two singlet states
above have A1 and A2 symmetry, respectively. However,
if J ′ = 0 there is C4v symmetry and the (0, 0, 0) and
(0, 1, 1) states have A1 and B1 symmetry, respectively.
The latter, which is the ground state, connects naturally
to the B1 symmetry of a dx2−y2 superconducting order
parameter on the square lattice.

It is possible to relate the two singlet states to the
physical states of a Z2 gauge field on a single plaquette
(see Section 3.2 of (Alet et al., 2006)). The gauge flux
operator on the plaquette Fp flips the bonds between
horizontal and vertical. The RVB states (5) and (6) are
eigenstates of Fp with eigenvalues ±1.
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FIG. 5 Eigenstates and eigenvalues of a frustrated Heisen-
berg model on a single plaquette. (a) The exchange inter-
actions in the model. (b) The two resonating valence bond
states which span all the singlet states (compare equations (5)
and (6)). (c) Dependence of the energy eigenvalues as a func-
tion of the diagonal interaction J ′/J . Note that the quantum
numbers of the lowest lying excited state change when J ′ = J
and the ground state changes when J ′ = 2J . Furthermore,
the two resonating valence bond states become degenerate at
J ′ = 2J .

1. Effect of a ring exchange iteraction

Consider adding to Hamiltonian (3) the term

Ĥ� = J�(P̂1234 + P̂4321) (7)

= J�(P̂12P̂34 + P̂14P̂23 − P̂13P̂24 + P̂13 + P̂24 − 1)

where J� describes the ring-exchange interaction around
a single plaquette, the operator P̂12 = 2Ŝ1 · Ŝ2 + 1/2

permutes spins 1 and 2, and P̂1234 is the permutation
operator around the plaquette (Misguich and L’huillier,
2005; Thouless, 1965).
Intuitively,

Ĥ�|H〉 = 2J�|V 〉 Ĥ�|V 〉 = 2J�|H〉 (8)

Hence, the RVB states (5) and (6) are eigenstates of the
ring-exchange Hamiltonian with eigenvalues −2J� and
2J�, respectively. Hence, ring exchange has a similar
effect to the diagonal interaction in that it stabilises the
state |0, 0, 0〉.

B. Four site Hubbard model

A comprehensive study of the t′ = 0 model (which has
C4v symmetry) has been given by Schumann (Schumann,
2002). The analysis is simplified by exploiting this SU(2)
symmetry associated with particle-hole symmetry (Noce
and Cuoco, 1996). In particular, the Hamiltonian matrix
then decomposes into blocks of dimension 3 or less. Schu-
mann has also solved the model on a tetrahedron and a
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triangle (Schumann, 2008). When t′ 6= 0 the SU(2) sym-
metry is broken, but it may be that the SU(2) quantum
numbers are still useful to define a basis set in which to
diagonalize the Hamiltonian and see the effect of t′ 6= 0.
Freericks, Falicov, and Rokshar studied an eight site

Hubbard model with a next-nearest-neigbour hopping t′

and periodic boundary conditions (Freericks et al., 1991).
The model is invariant under a 128-element cluster per-
mutation group. For t′ = t/2 the model is equivalent to
an eight site triangular lattice cluster or a face-centred-
cubic cluster. They found that at half filling the symme-
try of the ground state changed as a function of both t′/t
and U/t [see Figure 3 in (Freericks et al., 1991)].

Falicov and Victora (Falicov and Victora, 1984) showed
that the Hubbard model on a tetrahedron [which has Td
symmetry] with four electrons has a singlet ground state
with E symmetry.2 Later Falicov and Proetta (Falicov
and Proetto, 1993) also showed that an RVB state with
complex pairing amplitude (and which thus breaks time-
reveral symmetry) and which they state has E symmetry3

is within 0.3% of the exact ground state energy for U =
10t.
More work is required to use the above results to ex-

tract insights about the role of frustration. An important
question is whether results on four sites can be related to
a simple picture of how dx2−y2 Cooper pairing emerges
on the square lattice due to antiferromagnetic interac-
tions (Scalapino and Trugman, 1996). If so, does this
pairing symmetry change with frustration, as it does for
the infinite lattice, at the mean-field RVB level (Powell
and McKenzie, 2007)?

III. κ-(BEDT-TTF)2X

An important class of model systems for quantum
frustration is the organic charge transfer salts based on
the molecule bis(ethylenedithio)tetrathiafulvalene (also
known as BEDT-TTF or ET; shown in Fig. 6a). These
salts have been extensively studied and show a wide
range of behaviours including, antiferromagnetism, spin
liquids, (unconventional) superconductivity, Mott transi-
tions, incoherent (or ‘bad’) metals, charge ordering and
Fermi liquid behaviour. In this section we focus on the
aspects most relevant to the quantum frustration in these
materials, a number of other reviews focusing on differ-
ent aspects of these materials are also available elsewhere
(Ishiguro et al., 1998; Lang and Müller, 2003; Powell and
McKenzie, 2006; Seo et al., 2006; Singleton and Mielke,
2002; Wosnitza, 2007) and in the November 2004 issue of
Chemical Reviews. Further, although a number of crys-
tallographic phases are observed in the BEDT-TTF salts,

2 We use Mulliken notation, Falicov and Victora use Bethe nota-
tion and label this representation Γ3, see (Lax, 1974) for details.

3 Or Γ12 in the Bouckaert, Smoluchoski, Wigner notation (Lax,
1974) that Falicov and Proetta use.
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FIG. 6 The molecules BEDT-TTF and Pd(dmit)2, which
form charge transfer salts with frustrated lattices and in which
the electrons are strongly correlated. BEDT-TTF denotes
bis(ethylenedithio)tetrathiafulvalene, an is an electron donor.
Pd(dmit)2 is an electron acceptor where dmit is 1,3-dithiol-2-
thione-4,5-dithiolate.

we will limit ourselves to the κ phase, which is by far the
most widely studied and, in which, the most profound
effects of frustration have been found.
The experimentally observed phase diagrams of two

κ-BEDT-TTF salts (κ-(BEDT-TTF)2Cu[N(CN)2]Cl and
κ-(BEDT-TTF)2Cu2(CN)3) are shown in Figs. 7 and 8.
One should note how similar these two phase diagrams
are (except for the magnetic order, or lack thereof, ob-
served in the Mott insulating phase). Two important
parameters are the strength of the electronic correla-
tions and the degree of frustration. These parameters
are determined by the choice of anion, X, in κ-(BEDT-
TTF)2X and the applied hydrostatic pressure. Below
we will focus on four of the most widely studied mate-
rials: κ-(BEDT-TTF)2Cu(NCS)2 and κ-(BEDT-TTF)2-
Cu[N(CN)2]Br, which superconduct below ∼10 K at am-
bient pressure; κ-(BEDT-TTF)2Cu[N(CN)2]Cl, which is
an antiferromagnetic Mott insulator at ambient pressure;
and κ-(BEDT-TTF)2Cu2(CN)3, which appears to be a
spin liquid at ambient pressure. Both κ-(BEDT-TTF)2-
Cu2(CN)3 and κ-(BEDT-TTF)2Cu[N(CN)2]Cl undergo
Mott transitions to superconducting states under mod-
est pressures (a few 100 bar).

A. Crystal and electronic structure

κ-(BEDT-TTF)2X salts form crystals with alternat-
ing layers of the electron donors BEDT-TTF and elec-
tron acceptors ,X, leading to a quasi-two-dimensional
(q2D) band structure. Charge is transferred from organic
(BEDT-TTF) layer to the anion (X) layer; for mono-
valent anions, which we consider here, one electron is
transferred from each dimer [(BEDT-TTF)2 unit] to each
anion formula unit. Band structure calculations (Kand-
pal et al., 2009; Nakamura et al., 2009) predict that the
anion layer is insulating, but that the dimer layers are
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FIG. 7 Pressure-temperature phase diagram of κ-(BEDT-
TTF)2Cu[N(CN)2]Cl. At low temperatures it undergoes a
first-order Mott transition from an antiferromagnetic (AF)
insulator (section III.B) to a metal when hydrostatic pres-
sure is applied (section III.C). As the temperature is raised
the line of first order transitions ends in a critical point with
novel critical exponents (section III.C.1). In the insulating
phase raising the temperature destroys the antiferromagnetic
order. At the very lowest temperatures the metallic state be-
comes superconducting (section III.E). As the temperature is
raised superconductivity gives way to a metal with coherent
intralayer charge transport (section III.D.2) and a pseudogap
(section III.D.3). Further, raising the temperature results in a
loss of coherence in the intralayer transport. This incoherent
metallic phase is referred to as a ‘bad-metal’ (section III.D).
From (Limelette, Wzietek, Florens, Georges, Costi, Pasquier,
Jérome, Mézière, and Batail, 2003). [Copyright (2003) by the
American Physical Society.]

half-filled. Hence, these calculations predict that the or-
ganic layers are metallic, in contrast to the rich phase
diagram observed (Figs. 7 and 8).

The κ phase salts of BEDT-TTF are strongly
dimerised, that is the molecules stack in pairs within the
crystal, cf. Fig. 9. The frontier molecular orbitals of the
BEDT-TTF molecule are π orbitals, i.e., they have nodes
in the plane of the molecule, cf. Fig. 11. Thus, these or-
bitals overlap with the equivalent orbitals on the other
molecule in the dimer, cf. Fig. 11, more than they over-
lap with the orbitals of any other BEDT-TTF molecule.
This, combined with the greater physical proximity of
the two molecules within the dimer, means that the am-
plitude for an electron to hop between two molecules
within the same dimer has a much larger magnitude than
the amplitude for hopping between molecules in different
dimers. This suggests that the interdimer hopping might
be integrated out of an effective low energy Hamiltonian
(Kino and Fukuyama, 1996; McKenzie, 1998).
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FIG. 8 Pressure-temperature phase diagram of κ-(BEDT-
TTF)2Cu2(CN)3. This is similar to that of κ-(BEDT-TTF)2-
Cu[N(CN)2]Cl (Fig. 7), but has important differences. Most
importantly the Mott insulating phase does not show any
signs of long range magnetic order down to 20 mK (the
lowest temperature studied; see section III.B and Fig. 12).
Thus, κ-(BEDT-TTF)2Cu2(CN)3 is believed to be a spin liq-
uid at ambient and low pressures. Further, there is no evi-
dence of a pseudogap in κ-(BEDT-TTF)2Cu2(CN)3 (see sec-
tion III.D.4). These differences are believed to result from the
greater geometrical frustration in κ-(BEDT-TTF)2Cu2(CN)3
(cf. Table I, Eq. (9) and Fig. 9). From (Kurosaki et al.,
2005). [Copyright (2005) by the American Physical Society.]

1. Dimer model of the band structure of κ-(BEDT-TTF)2X

The dimer model described above is the simplest, and
most widely studied, model of the electronic structure for
the κ-(BEDT-TTF)2X salts and leads to the Hubbard
model on an anisotropic lattice at half filling (McKenzie,
1998; Powell and McKenzie, 2006). The Hamiltonian of
this model is

Ĥ = −t
∑

〈ij〉σ

ĉ†iσ ĉjσ − t′
∑

[ij]σ

ĉ†iσ ĉjσ + U
∑

i

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓,(9)

where ĉ
(†)
iσ destroys (creates) an electron with spin σ on

site (dimer) i, t and t′ are the hopping amplitudes be-
tween neighbouring dimers in the directions indicated in
Fig. 9, and U is the effective Coulomb repulsion between
two electrons on the same site (dimer). This model is, up
to an overall scale factor, governed by two dimensionless
ratios: t′/t, which sets the strength of the frustration in
system and U/W , which determines the strength of elec-
tronic interactions. Here, W is the bandwidth, which is
determined by the values of t and t′. These two ratios
can be manipulated experimentally by hydrostatic pres-
sure,4 P , or by studying materials with different anions,

4 It has often been emphasised (Kanoda, 1997) that increased
hydrostatic pressures correspond to decreased correlation (de-
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FIG. 9 Tight binding model of the electronic band-structure
of a κ-type BEDT-TTF salt. Panel (a) shows a cross section
of the crystal structure of κ-(BEDT-TTF)2Cu(NCS)2 in the
organic layer. In panel (b) the black circles mark the dimers,
within which the hopping integral is large and which serve as
a ‘site’ in lattice models of the band structure. Lines indi-
cate the inter-dimer hopping integrals in both panels (b) and
(c), which are topologically equivalent. [Taken from (Powell,
2006)].

X. Varying the anions is often referred to as chemical
pressure, as both degrees of freedom lead to changes in
the lattice constants. However, it appears that chemical
pressure causes larger variations in t′/t than hydrostatic
pressure does. We will limit our discussions to monova-

creased U/W ), but it has become increasingly clear (Caulfield
et al., 1994; Kandpal et al., 2009; Pratt, 2010) that pressure may
also induce changes in the frustration, t′/t.

lent anions,5 in which case we have κ-(BEDT-TTF)+2 X
−,

i.e., there is, on average, one hole per dimer and the ap-
propriate dimer Hubbard model is half filled.

The anisotropic triangular lattice model extrapolates
continuously between three widely studied lattice mod-
els. For t′ = 0 it is just the square lattice. For t′ = t we
recover the (isotropic) triangular lattice. And for t → 0
one has quasi-one-dimensional chains with weak zig-zag
interchain hopping. Thus, this model can be used to sys-
tematically explore the effects of frustration in strongly
correlated systems and would be of significant theoretical
interest even without the experimental realisations of the
model in organic charge transfer salts.

In order to make a direct comparison between theory
and experiment one would like to know what parame-
ters of the anisotropic triangular lattice (i.e., what val-
ues of t, t′ and U) represent specific materials. Significant
effort has therefore been expended to estimate these pa-
rameters from electronic structure calculations. The first
studies of the electronic structure of κ-BEDT-TTF salts
where limited, by the computational power available at
the time, to extended Hückel theory (Williams et al.,
1992). This is a semi-empirical, i.e. experimentally pa-
rameterised, tight-binding model and ignores the role of
the anions and electronic correlations. However, modern
computing power means that density functional theory
(DFT) calculations are no longer prohibitively expensive
and several DFT studies have appeared recently.

The large unit cells and complex anions of the κ phase
materials, meant that the first DFT studies of BEDT-
TTF salts focused on other crystallographic phases
(French and Catlow, 2004; Kasowski andWhangbo, 1990;
Kino and Miyazaki, 2006; Kubler et al., 1987; Lee et al.,
2003; Miyazaki and Kino, 2003, 2006; Yamaguchi et al.,
2003). However, two groups have recently reported pa-
rameterisations of the tight-binding part of the Hamilto-
nian from DFT6 calculations (Kandpal et al., 2009; Naka-
mura et al., 2009). Both groups find that the frustration
parameter, t′/t, is significantly smaller than was previ-
ously thought on the basis of extended Hückel calcula-
tions (summarised in Table I). Note that the frustration
is least in κ-(BEDT-TTF)2Cu[N(CN)2]Cl, which has an
antiferromagnetically ordered ground state and greatest
in κ-(BEDT-TTF)2Cu2(CN)3, which has a spin liquid
ground state. However, even κ-(BEDT-TTF)2Cu2(CN)3
is quite far from the isotropic triangular lattice (t′ = t),
which has been taken as the basis of a number of theo-
ries of κ-(BEDT-TTF)2Cu2(CN)3 (discussed in Section
VI.A.4) on the basis of Hückel calculations (Komatsu
et al., 1996).

The anisotropic triangular lattice has one site per unit
cell. However, the κ-phase organics have two dimers per

5 See (Mori, 2004) for a discussion of anions with valencies other
than one.

6 Both GGA and LDA functionals give similar results.
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TABLE I Values of t′/t of selected κ-BEDT-TTF salts, calculated from Density Functional Theory (DFT). Hückel theory gives
systematically smaller values of 0.75, 0.84, and 1.06, for these salts, respectively. Estimates of this parameter in the metallic
phase can also be made from quantum oscillation experiments for κ-(BEDT-TTF)2Cu(NCS)2 (Pratt, 2010), giving t′/t = 0.6
in agreement with the DFT calculated value.

Material t′/t Reference

κ-(BEDT-TTF)2Cu[N(CN)2]Cl 0.4 (Kandpal et al., 2009)

κ-(BEDT-TTF)2Cu(NCS)2 0.6 (Kandpal et al., 2009; Nakamura et al., 2009)

κ-(BEDT-TTF)2Cu2(CN)3 0.8 (Kandpal et al., 2009; Nakamura et al., 2009)

unit cell. This halves the Brillouin zone and causes the
Fermi surface to be split into two sheets (Merino and
McKenzie, 2000a; Powell and McKenzie, 2006). Thus,
two orbits are observed in quantum oscillations experi-
ments. The lower frequency orbit, known as the α pocket
corresponds to a hole like orbit. A higher frequency os-
cillation, known as the β orbit, is only observed at higher
fields and corresponds to the magnetic breakdown orbit
around the Fermi surface of the dimer per unit cell model.
The ratio of the areas of these orbits is strongly depen-
dent on t′/t (Pratt, 2010). Thus, estimates of t′/t can be
made from quantum oscillation or angle-dependent mag-
netoresistance (AMRO) experiments, which allow one to
map out the Fermi surface (Kartsovnik, 2004). In κ-
(BEDT-TTF)2Cu(NCS)2 at ambient pressure this yields
t′/t = 0.7 (Caulfield et al., 1994), in reasonable agree-
ment with the calculated value. In κ-(BEDT-TTF)2-
Cu2(CN)3 at 7.6 kbar one finds that t′/t = 1.1 (Ohmichi
et al., 2009; Pratt, 2010), which is rather larger than the
ambient pressure value calculated from DFT. At 0.75
GPa the DFT calculations give t′/t = 0.75 (Kandpal
et al., 2009), which is significantly smaller than the ex-
perimental estimate. AMRO experiments give a picture
of the Fermi surface that is qualitatively consistent with
the calculated Fermi surface (Ohmichi et al., 1997) (see
Figure 10). However, the value of t′/t has not been esti-
mated from these measurements.

The area of the Fermi surface can be also determined
by quantum oscillations. For a wide range of organic
charge transfer salts the area is found to be consistent
with Luttinger’s theorem and the hypothesis that these
materials are always at half filling (Powell and McKenzie,
2004a). This may put significant constraints on theories
that the metal-insulator transition involves “self-doping”
(Baskaran, 2003).

The hopping between layers is much weaker than that
within the layers. This can be measured in two sepa-
rate ways: from AMROs (Moses and McKenzie, 1999;
Singleton et al., 2002; Wosnitza et al., 1996, 2002) or
from a comparision of how disorder affects the super-
conducting critical temperature and the residual resis-
tivity (Powell and McKenzie, 2004b). Both methods find
that the interlayer hopping integral, t⊥ is a few tens of
µeV in the κ-(BEDT-TTF)2X, but that t⊥ is an order
of magnitude larger in the β phase ET salts. DFT cal-
culations (Lee et al., 2003) find that interlayer dispersion

FIG. 10 The Fermi surface of κ-(BEDT-TTF)2Cu2(CN)3 in
the metallic phase at pressures of 2.1 kbar (open squares) and
7.0 kbar (closed circles), as determined by Angle-Dependent
Magneto-Resistance Oscillations (AMRO) (Ohmichi et al.,
1997). The dashed elliptical curves are the results of Hückel
calculations.

in β-(BEDT-TTF)2I3 is ∼ 9 meV. However, experimen-
tal estimates for the closely related material, β-(BEDT-
TTF)2IBr2, yield t⊥ ∼ 0.3 meV (Powell and McKenzie,
2004b; Wosnitza et al., 1996). However, one should note
that the value of t⊥ represents a very sensitive test of
theory due its small absolute value and the small overlap
of the atomic orbitals at the large distances involved in
interlayer hopping.

2. The Hubbard U

There is a considerable literature that discusses the
calculation of the Hubbard U in a molecular crys-
tals. Notable systems for which this problem has been
tackled include the alkali doped fullerides (Gunnars-
son, 2004), oligo-acene and thiopenes (Brocks et al.,
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2004), and the organic conductor tetrathiafulvalene-
tetracyanoquinodimethane (TTF-TCNQ) (Cano-Cortés
et al., 2007). These authors have proceeded by identify-
ing two separate contributions to the Hubbard U :

U = U (v) − δU (p), (10)

where U (v) is the contribution from the molecule (or clus-
ter) in vacuum, and δU (p) is the reduction in the effective
U when the molecule is placed in the polarisable environ-
ment of the crystal.
One might think that U (v) is straightforward to calcu-

late once one has a set of suitably localised orbitals as
it is just the Coulomb repulsion between two holes (or
electrons) in the same orbital:

F0 =

∫

d3r1

∫

d3r2
ρ↑(r1)ρ↓(r2)

|r1 − r2|
, (11)

where ρσ(r) the density of spin σ electrons at the po-
sition r in the relevant orbital. However, this is incor-
rect. When one moves from a full band structure to the
relevant one (or few) band model this interaction is sig-
nificantly renormalised (Freed, 1983; Gunnarsson, 2004;
Iwata and Freed, 1992; Powell, 2011; Scriven and Powell,
2009a). Indeed, DFT calculations for a single BEDT-
TTF molecule find that the renormalised U (v) is about
50% smaller than F0 (Scriven and Powell, 2009a).
The first attempts to calculate U (v) from electronic

structure calculations were also based on the extended
Hückel method. It was noted (Kino and Fukuyama, 1996)
that if one models the dimer as a two site Hubbard model
where each site represents a monomer then in the limit

U
(v)
m → ∞, where U

(v)
m is the effective Coulomb repul-

sion between two holes on the same monomer, one finds
that U (v) → 2|tb1 |, where tb1 is the intra-dimer hopping
integral. Whence, calculations of tb1 from the extended
Hückel approximation yield estimates of U (v) ranging be-
tween 0.14 eV (Rahal et al., 1997) and 2.1 eV (Simonov
et al., 2005). Note that this range of Hubbard Us is
not caused just by changes in anions, but also the differ-
ence between different groups, who often find differences
of more than a factor of two for the same material [for
an extended discussion see (Scriven and Powell, 2009b)].
More recently DFT has also been used to calculate tb1
and hence U (v) (Kandpal et al., 2009; Nakamura et al.,
2009) - again there is a factor of two difference between
the two different groups.
A better method of calculating U (v) is to note that

U = E0(+2) + E0(0)− 2E0(+1), (12)

where E0(q) is the ground state energy of the molecule or
cluster with charge q. This can be understood as U is the
energy required to activate the charge disproportionation
reaction 2(BEDT-TTF)+2 → (BEDT-TTF)02 + (BEDT-
TTF)2+2 . Equivalently, U is the difference in the chem-
ical potentials for electrons and holes on the molecule
or cluster. Calculations of this type for isolated BEDT-

TTF monomers show that U
(v)
m is essentially the same

for all monomers in the geometries in which they are
found experimentally regardless of the anion in the salt,
the crystal polymorph, or the temperature or pressure at
which the crystal structure was measured (Scriven and
Powell, 2009a). Remarkably, the same result holds for
isolated dimers, consistent with the experimental finding
that the dimer is a conserved structural motif in both the
κ and β polymorphs (Scriven and Powell, 2009b).

Further, comparison of DFT calculations for monomers
with those for dimers reveals that the approximation
U (v) → 2|tb1 | is incorrect (Scriven and Powell, 2009b).
This is because the effective Coulomb interaction be-
tween two holes on different monomers within the same
dimer, V

(v)
m , is also large. Indeed, Scriven et al. found

that U
(v)
m ∼ V

(v)
m ≫ tb1 , in which case U (v) ≃ 1

2 (U
(v)
m +

V
(v)
m ), which is in reasonable agreement with their di-

rectly calculated value of U (v).

To date there are no calculations of δU (p) for BEDT-
TTF salts. This problem is greatly complicated for
BEDT-TTF relative to the other molecular crystals pre-
viously studied (Brocks et al., 2004; Cano-Cortés et al.,
2007; Gunnarsson, 2004; Tsiper and Soos, 2003) because
of the (often) polymeric anions and the fact that the in-
termolecular spacing is small compared to the size of
the molecule. Therefore, Nakamura et al. (Nakamura
et al., 2009) have calculated U directly from DFT band
structure calculations by explicitly integrating out high
energy interband excitations to leave an effective one
band model. Interestingly, in order for the value of U
to converge Nakamura et al. had to include over 350
bands - corresponding to including excitations up to 16
eV above the Fermi level! Nakamura et al. find that
the value of U in the Mott insulator κ-(BEDT-TTF)2-
Cu2(CN)3 (0.83 eV) is remarkably similar to that in
the ambient pressure superconductor κ-(BEDT-TTF)2-
Cu(NCS)2 (0.85 eV). However, they find that t = 55
meV for κ-(BEDT-TTF)2Cu2(CN)3 and t = 65−70 meV
for κ-(BEDT-TTF)2Cu(NCS)2, yielding U/t = 15.5 for
κ-(BEDT-TTF)2Cu2(CN)3 and U/t = 12.0 − 12.8 for
κ-(BEDT-TTF)2Cu(NCS)2, consistent with the experi-
mental finding that former material is a Mott insulator
that undergoes a Mott transition under moderate pres-
sure and the later is an ambient pressure superconductor.

However, these values are much larger than those
found from comparisons of DMFT calculations
to optical conductivity measurements and on κ-
(ET)2Cu[N(CN)2]BrxCl1−x, which suggest that U = 0.3
eV (Merino et al., 2008). These measurements are
discussed in more detail in section III.C.

3. The (BEDT-TTF)2 dimer

Significant insight can be gained from comparing
(BEDT-TTF)2 with the hydrogen molecule. In the
molecular orbital (Hartree-Fock) picture (Fulde, 1995)
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the ground state wavefunction of H2 is

|Ψ〉 = 1

2
(|φ1↑〉+ |φ2↑〉)⊗ (|φ1↓〉+ |φ2↓〉) , (13)

where |φiσ〉 is a basis function for an electron with spin
σ centred on atom i. This provides the simplest model
of the chemical bond, which results from the stabilisa-
tion of the bonding combination of atomic orbitals, and
implies an increased electronic density between the two
atoms. If one includes electronic interactions the picture
is somewhat complicated as the wavefunction becomes
correlated. These correlations can be described in the
two site Hubbard model, which is a good model for the
hydrogen molecule, where each atom is treated as a site
(Powell, 2011). If one compares the electronic density in
the HOMO of a single BEDT-TTF molecule (Fig. 11a)
with that of the HOMO of the (BEDT-TTF)2 dimer (Fig.
11b), it is clear that the (BEDT-TTF)2 dimer wave-
function is close to being an antibonding combination
of molecular wavefunctions, whereas the HOMO-1 (Fig.
11c) is close to being a bonding combination of molecular
wavefunctions. In the charge transfer salt there are, on
average, two electrons in the HOMO-1, but only one in
the HOMO. Therefore, the net effect is bonding.

Electronic correlations also play an important role in
the (BEDT-TTF)2 dimer. But, as in the case of H2,
the two site Hubbard model, where each site is now
an BEDT-TTF molecule, provides a good description of
the electronic correlations in the (BEDT-TTF)2 dimer
(Powell and McKenzie, 2006; Scriven and Powell, 2009b).
This shows that the physics of the (BEDT-TTF)2 dimer
is remarkably similar to that of the hydrogen molecule.
Therefore, we can understand the (BEDT-TTF)2 dimer
as being held together by a ‘covalent bond’ not be-
tween any two atoms, but between the two BEDT-TTF
molecules themselves. As one expects this ‘intermolecu-
lar covalent bond’ to be strong compared to the interac-
tions between dimers, this provides a natural explanation
of the conservation of the dimer motif across different
materials.

B. Insulating phases

Both κ-(BEDT-TTF)2Cu[N(CN)2]Cl and κ-(BEDT-
TTF)2Cu2(CN)3 are insulators at ambient pressure
(Ishiguro et al., 1998), and undergo a metal-insulator
transition under the application of hydrostatic pressure
(which we will discuss in section III.C). This can be
understood straightforwardly, in terms of the half-filled
Hubbard model, introduced in section III.A, as a Mott
insulator phase (Kanoda, 1997; McKenzie, 1998). How-
ever, despite these similarities in the charge sector, the
spin degrees of freedom in the two materials behave very
differently.

FIG. 11 The highest occupied molecular orbital (HOMO)
of (a) an BEDT-TTF molecule in the geometry found in κ-
(BEDT-TTF)2Cu[N(CN)2]Cl, (b) an (BEDT-TTF)2+2 dimer
in the geometry found in κ-(BEDT-TTF)2Cu2(CN)3 and (c)
a neutral (BEDT-TTF)2 dimer in the geometry found in κ-
(BEDT-TTF)2Cu2(CN)3. It is clear from these plots that
the HOMO of the neutral dimer is the antibonding combina-
tion of the two monomer HOMOs, whereas the HOMO of the
(double) cation dimer is the bonding combination of the two
monomer HOMOs. Thus, the (BEDT-TTF)2 dimer is held to-
gether by a ‘covalent bond’ between the two monomers rather
than bonds between any two particular atoms. [Modified from
(Scriven and Powell, 2009a) and (Scriven and Powell, 2009b)].

1. Antiferromagnetic and spin liquid phases

Shimizu et al. (Shimizu et al., 2003) measured and
compared bulk spin susceptibilities of κ-(BEDT-TTF)2-
Cu[N(CN)2]Cl and κ-(BEDT-TTF)2Cu2(CN)3. Both
materials are described by the Hubbard model on the
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anisotropic triangular lattice, cf. Fig. 9. In the Mott in-
sulating phase the spin degrees of freedom are described
by a Heisenberg model (Section VI.A) with exchange con-
stants, J ∼ 250 K. However, κ-(BEDT-TTF)2Cu2(CN)3
is significantly more frustrated than κ-(BEDT-TTF)2Cu-
[N(CN)2]Cl (as expected by electronic structure calcula-
tions, cf. Table I). κ-(BEDT-TTF)2Cu[N(CN)2]Cl shows
a clear magnetic phase transition at ∼27 K. This is an
antiferromagnetic transition (Kanoda, 1997; Miyagawa
et al., 1995) and is only visible in the bulk spin suscep-
tibility because there is a small canting of the magnetic
moment (Miyagawa et al., 2002), which gives rise to a
weak ferromagnetic moment (Welp et al., 1992). In con-
trast, no such phase transition is visible in the suscepti-
bility of κ-(BEDT-TTF)2Cu2(CN)3. Analyses (Shimizu
et al., 2003; Zheng, Singh, McKenzie and Coldea, 2005) of
the high temperature magnetic susceptibility show that
in both materials the effective Heisenberg exchange is
J ∼ 250 K. Therefore, the absence of a phase transition
in κ-(BEDT-TTF)2Cu2(CN)3 down to 32 mK (the low-
est temperature studied and four orders of magnitude
smaller than J) led Shimizu et al. to propose that κ-
(BEDT-TTF)2Cu2(CN)3 is a spin liquid.

The form of the temperature dependence of the suscep-
tibility turns out to be quite sensitive to the amount of
frustration (Zheng, Singh, McKenzie and Coldea, 2005)
(cf. Figure 4). The values of both J and J ′ can be es-
timated by comparing the observed temperature depen-
dence of the uniform magnetic susceptibility with high
temperature series expansions (above about J/4). For κ-
(BEDT-TTF)2Cu2(CN)3 they agree for J ≃ 200 K and
J ′ ≃ J . In Section VI.A.4 we discuss the possible effects
of ring exchange. Consequently, it is desirable to know
how they may modify the temperature dependence of the
susceptibility and the values of the exchange interaction
estimated from the experimental data.

Further, evidence for the absence of magnetic order-
ing in κ-(BEDT-TTF)2Cu2(CN)3 comes from its NMR
spectrum. Fig. 12 compares the 1H NMR absorption
spectrum of κ-(BEDT-TTF)2Cu2(CN)3 with that of κ-
(BEDT-TTF)2Cu[N(CN)2]Cl. Shimizu et al. reported
that “the difference of the spectra between the two salts
at high temperatures is explained by the difference in
the orientation of ET molecules against the applied field
and does not matter.” In κ-(BEDT-TTF)2Cu[N(CN)2]-
Cl (Fig. 12b) they observe clear changes in the NMR
spectrum below TC ∼ 27 K. These multiple peaks are
caused by the distinct crystal environments for the 1H
atoms due to the antiferromagnetic ordering. In contrast,
no quantitative changes are observed in the spectrum of
κ-(BEDT-TTF)2Cu2(CN)3 down to 32 mK, the lowest
temperature studied (Fig. 12a), consistent with an ab-
sence of long-range magnetic ordering.

No evidence of long range magnetic order is observed
in the 13C-NMR spectra of κ-(BEDT-TTF)2Cu2(CN)3
down to 20 mK (the lowest temperature studied) (Fig.
12c). This is important because these experiments were
carried out on samples where the 13C is one of the atoms

involved in the central C=C double bond. The electron
density is much higher for this atom (cf. Fig. 11) than for
the H atoms, which are on the terminal ethylene groups
(cf. Fig. 6). Therefore the 13C spectra demonstrate
that the absence of long range order is genuine and not
an artefact caused by low electronic density on the H
atoms. We stress that 20 mK is four orders of magni-
tude smaller than the exchange coupling, which suggests
that κ-(BEDT-TTF)2Cu2(CN)3 may well be a true spin
liquid.

The observed temperature dependence of the NMR
relaxation rates for κ-(BEDT-TTF)2Cu2(CN)3 are also
inconsistent with this material having a magnetically
ordered ground state. The observed (Shimizu et al.,
2006) decrease of the NMR relaxation rate, 1/T1, and
the spin echo rate, 1/T2, with decreasing temperature
for κ-(BEDT-TTF)2Cu2(CN)3 is distinctly different from
that expected for a material with a magnetically ordered
ground state. For such materials at low temperatures,
both 1/T1 and 1/T2 should increase rapidly with decreas-
ing temperature, rather than decreasing (since 1/T1T ∼
ξ(T )2). The increase is seen in κ-(BEDT-TTF)2Cu[N-
(CN)2]Cl , above the antiferromagnetic ordering temper-
ature. For materials described by the antiferromagnetic
Heisenberg model on a square lattice [La2CuO4] (Sandvik
and Scalapino, 1995) and a chain [Sr2CuO3] (Takigawa
et al., 1997), both relaxation rates do increase monoton-
ically as the temperature decreases.

It is noteworthy that for κ-(BEDT-TTF)2Cu2(CN)3
at low temperatures, from 1 K down to 20 mK, it was
found (Shimizu et al., 2006) that 1/T1 ∼ T 3/2 and 1/T2 ∼
constant (see Figure 13). As discussed in Section VII.E
this is similar to that expected in the quantum critical
regime, (53), with the critical exponent η ∼ 1, expected
for a non-linear sigma model with deconfined spinons.
However, the observed temperature dependence of T1 and
T2 would lead to two different values for the exponent η.

However, caution is required in interpreting the data
in Fig. 13. The observed relaxation rate is not well de-
scribed by a single exponential. Shimizu et al. extracted
T1 from a fit to a stretched exponential, the exponent, α,
is plotted in the inset to Fig. 13. This could be indica-
tive of multiple relaxation rates or some other complex
phenomena that has not yet been adequately explained.

There is a way to check that the NMR relaxation is
actually due to spin fluctuations and not another phys-
ical mechanism. The magnitude of the relaxation rate
at high temperatures can be used to provide an indepen-
dent estimate of J . Data for κ-(BEDT-TTF)2Cu2(CN)3
at ambient pressure (Kawamoto et al., 2006) gives, for the
outer 13C site, 1/T1 ≃ 10 − 30/sec in the range 100-300
K. From the K − χ plot a value of A = 0.07 T/µB is de-
duced for the outer site (Shimizu et al., 2003). Using the
above values in the expression (37) gives J ≃ 200 − 600
K, consistent with the value J = 250 deduced from the
temperature dependence of the uniform magnetic suscep-
tibility (Shimizu et al., 2003; Zheng, Singh, McKenzie
and Coldea, 2005).
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FIG. 12 The low temperature, ambient pressure 1H-NMR absorption spectra of (a) κ-(BEDT-TTF)2Cu2(CN)3 and (b) κ-
(BEDT-TTF)2Cu[N(CN)2]Cl, and (c) the 13C-NMR absorption spectra of κ-(BEDT-TTF)2Cu2(CN)3. The antiferromagnetic
phase transition at ∼ 27 K is clear seen in κ-(BEDT-TTF)2Cu[N(CN)2]Cl. In contrast, no major changes occur with tempera-
ture in κ-(BEDT-TTF)2Cu2(CN)3, consistent with the absence of long range magnetic order. However, the spectra do broaden
as T is lowered in κ-(BEDT-TTF)2Cu2(CN)3. This broadening is seen even more dramatically in the 13C-NMR spectrum of
κ-(BEDT-TTF)2Cu2(CN)3 (panel c). Again, no signs of long range magnetic order are seen down to 20 mK, a temperature
that is four orders of magnitude smaller than the antiferromagnetic exchange energy, J ≈ 250 K (Shimizu et al., 2003; Zheng,
Singh, McKenzie and Coldea, 2005). [Panels (a) and (b) were taken from (Shimizu et al., 2003) and panel (c) was modified
from (Shimizu et al., 2006).] [Copyright (2003,2006) by the American Physical Society.]

However, Shimizu et al. did observe a slight broaden-
ing of the 1H NMR spectrum of κ-(BEDT-TTF)2Cu2-
(CN)3 as the temperature is lowered. They observed an
even more dramatic broadening in the 13C NMR (Fig.
12c) (Shimizu et al., 2006). This is somewhat counter-
intuitive and has provoked some theoretical interest, dis-
cussed below. Spin echo 13C experiments show that the
broadening is inhomogenous (T ∗

2 ) rather than an increase
in the homogeneous T2. Similar broadenings are also
seen in EtMe3Sb[Pd(dmit)2]2 and EtMe3P[Pd(dmit)2]2,
cf. Section IV.C and Fig. 27, which could hint that this
is a rather general phenomenon. It was also observed
that a magnetic field induces spatially non-uniform local
moments (Shimizu et al., 2006). Motrunich has given an
interpretation of this observation in terms of spin liquid
physics (Motrunich, 2006): the fluctuating gauge field
associated with the spinons leads to the nuclear spins
”seeing” a distribution in local magnetic fields.

Several model calculations have been performed to at-
tempt to explain the large broadening by taking into
account the role of disorder (Gregor and Motrunich,
2009). They found that they could only explain the ex-
perimental data for temperatures above about 5 K, if
there is much larger disorder than expected and that it
is strongly temperature dependent. This is in contrast

to previous work where comparable calculations for a
kagome antiferromagnet could explain experimental data
for ZnCu3(OH)6Cl2 (Gregor and Motrunich, 2008). Gre-
gor and Motrunich mention that it is hard to estimate
the strength of the disorder and the role of temperature
dependent screening. It is desirable to connect this work
to recent estimates of the strength of disorder in the κ-
(BEDT-TTF)2X materials (Scriven and Powell, 2009b).

2. Is the spin liquid in κ-(BEDT-TTF)2Cu2(CN)3 gapped?

Key questions about a spin liquid are: is it gapped
and what are the nature of the low lying excitations?
In particular, are there deconfined spinons? Two experi-
ments have recently tried to address these questions in κ-
(BEDT-TTF)2Cu2(CN)3, one by measuring the specific
heat (Yamashita et al., 2008), the other by measuring the
thermal conductivity (Yamashita et al., 2009). However,
as will now discuss, the two groups reached contradictory
conclusions on the basis of these different measurements.
S. Yamashita et al. (Yamashita et al., 2008) concluded

that there are gapless fermionic excitations, i.e., decon-
fined spinons, in κ-(BEDT-TTF)2Cu2(CN)3 on the basis
of their specific heat, Cp, measurements. A plot of Cp/T
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FIG. 13 Temperature dependence of the the 13C-NMR relax-
ation rate 1/T1 for the spin liquid material κ-(BEDT-TTF)2-
Cu2(CN)3 at ambient pressure (Shimizu et al., 2006). Be-

tween 20 mK and 1 K 1/T1 ∼ T 3/2, which suggests that
the spin triplet excitation spectrum is gapless. Such a power
law dependence is consistent with quantum critical behaviour.
The inset shows the temperature dependence of the exponent
α associated with the stretched exponential time dynamics
of the spin relaxation. [Copyright (2006) by the American
Physical Society.]

against T 2 is linear in the range ∼0.75-2.5 K, implying
that Cp = γT + βT 3, with γ = 20 ± 5 mJ K−2 mol−1.
Moving to lower temperatures complicates heat capacity
measurements as there is a significant Schottky anomaly.
Nevertheless, the data in the temperature range 0.075
- 3 K fits well to the form Cp = α/T 2 + γT + βT 3

with γ = 12 mJ K−2 mol−1. One expects a large linear
term in the heat capacity if there are gapless fermionic
excitations. Indeed, the values of γ estimated by S.
Yamashita et al. are the same order of magnitude as
those found in the metallic phases of κ-(BEDT-TTF)2X
salts. Further, comparing this value with the previ-
ous measurements of the bulk magnetic susceptibility
(Shimizu et al., 2003) gives a Sommerfeld-Wilson ra-
tio, RW = (π2k2B/µ

2)(χ0/γ), of order unity (Yamashita
et al., 2008), which is what one would expect if the same
fermions were responsible for both the linear term in the
specific heat and the susceptibility (Lee et al., 2007b).
In contrast, other organic charge transfer salts which un-
dergo magnetic ordering were found to have no such lin-
ear term but to have a specific heat capacity that was
quadratic in temperature.
In a discussion of these results Ramirez (Ramirez,

2008) pointed out that S. Yamashita et al.’s data is fit
equally well by Cp = α/T 2+γ2/3T

2/3+βT 3. This is con-
sistent with the predictions for spinons coupled to a U(1)
gauge field (Montrunich, 2005) (as discussed in Section
VII. Ramirez was also concerned that the entropy asso-
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FIG. 14 The thermal conductivity, κ, of κ-(BEDT-TTF)2-
Cu2(CN)3 measured in two samples (A and B) and in differ-
ent magnetic fields. As with the heat capacity, simple argu-
ments suggest that, at low temperatures κ/T = α+βT 2+. . . .
Clearly this is not what is observed. These data suggest
that α ≃ 0 (a simple extrapolation gives α < 0, which is
unphysical). This suggests that the spin liquid state of κ-
(BEDT-TTF)2Cu2(CN)3 is gapped. However, finite temper-
atures do not lead to a quadratic increase in κ/T , suggesting
that the low-lying excitations may be more complex that sim-
ply magnons and phonons. [Modified from (Yamashita et al.,
2009).]

ciated with the γ term estimated by S. Yamashita et al.
is only about R ln 2

40 , which is only a small fraction of the
total spin entropy. However, it is not clear to us that this
should be a point of concern since for at temperatures of
order J/5 the entropy of a Heisenberg antiferromagnet is
already much less than the high temperature value due
to short-range spin correlations (Elstner et al., 1994).

In contrast to the specific heat results described above
M. Yamashita et al. (Yamashita et al., 2009) concluded,
on the basis of thermal conductivity measurements, that
the spin liquid state in κ-(BEDT-TTF)2Cu2(CN)3 is
fully gapped. As with the heat capacity, one expects that
for a simple metal the thermal conductivity is given by
κ = αT+βT 3+. . . (Ziman, 1960), with the fermions giv-
ing rise to the linear term and bosons, typically phonons,
giving rise to the cubic term. Note particularly that, as
κ is only sensitive to itinerant excitations, one does not
need to subtract a Schottky term. Fig. 14 shows M. Ya-
mashita et al.’s data in the temperature range 0.08-0.3 K
plotted as κ/T against T 2. One immediately notices that
the data does not lie on a straight line, which suggests
that it is not dominated by phonons and therefore that
M. Yamashita et al. did resolve the contribution from
magnetic excitations. Further support for this assertion
comes from the field dependence of the data, which one
would not expect if the heat transport was dominated by
phonons. However, more importantly, one should notice
that an extrapolation of the data to T = 0 will not give a
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significant κ/T (indeed the simplest extrapolation, indi-
cated by the arrows in the figure, gives κ/T < 0, which is
unphysical). Therefore, M. Yamashita et al. concluded
that κ/T vanishes at T = 0 K. If correct this would imply
that the spin liquid state of κ-(BEDT-TTF)2Cu2(CN)3
is gapped.
M. Yamashita et al. also attempted to quantitatively

analyse the very lowest temperature part of their data.
One complication in this exercise was that they were un-
able to directly determine what fraction of the measured
thermal conductivity is due to magnetic excitations and
what fraction, κph = βT 3, is due to phonons. M. Ya-
mashita et al. found that κ(T ) cannot be well described
by a power law even if κph is large enough to represent
three quarters of the measured κ at T = 100 mK, which
seems a rather generous upper bound given their argu-
ments (described above) that the phonons do not dom-
inate the thermal conductivity. This suggests that the
gap does not have nodes, which would give a small but
non-zero intercept.

M. Yamashita et al. also made an Arrhenius-plot of
their data. A reasonable fit was found for a value of
β that implies that about one quarter of the thermal
conductivity at 100 mK is due to phonons. This fit yields
a gap of 0.46 (0.38) K in zero field (10 T). However,
as M. Yamashita et al. stress, one should be cautious
about taking this precise value too seriously as that fit
was limited to less than a decade of temperature (0.08-
0.5 K) due to the low energy scales involved and current
limitations in cryogenic technology. Nevertheless, this
analysis does show that, if there is a gap, it is 2-3 orders
of magnitude smaller than the exchange energy J ∼ 250
K.

Clearly, an important question is why these two ex-
periments (specific heat and thermal conductivity) lead
to such different conclusions. M. Yamashita et al. (Ya-
mashita et al., 2009) argued that this disagreement re-
sults from an incorrect subtraction of the Schottky term
in the heat capacity. However, this is unlikely to be the
full story because the Schottky term only dominates the
heat capacity below ∼ 0.2 K. One point of interest is that
the value of γ extracted from the heat capacity measured
between ∼0.75-2.5 K (in which no Schottky anomaly is
evident) is almost twice that found from the fit of the
data taken between 0.075 and 3 K. The gap estimated
by M. Yamashita et al. is small compared to 0.75 K, so
one would expect there to be high densities of thermally
excited fermions in the higher temperature range. In-
deed, significant densities of thermally excited fermions
would remain over most of the lower temperature range.

3. The 6 K anomaly

One thing both groups (Yamashita et al., 2009, 2008)
do agree on is that something interesting happens at tem-
peratures around 6 K. S. Yamashita et al. found a broad
‘hump’ when they replot their data as CpT

−3 against T

(in this plot the phonon term should just appear as a con-
stant offset, while the Schottky term is not relevant at
these relatively high temperatures). They also present
a provocative plot of ∆Cp/T against T , where ∆Cp is
the difference between the heat capacities of κ-(BEDT-
TTF)2Cu2(CN)3 and κ-(BEDT-TTF)2Cu(NCS)2. How-
ever, κ-(BEDT-TTF)2Cu(NCS)2 becomes superconduct-
ing at ∼ 10 K, so its heat capacity is changing rapidly in
the relevant temperature range. This makes it difficult
to distinguish which of the changes in ∆Cp are due to κ-
(BEDT-TTF)2Cu2(CN)3. Note that the estimation of γ,
discussed above, is from lower temperature data. How-
ever, the ‘hump’ appears as a change in slope of Cp/T
versus T 2 around 6 K, so it is not clear that whatever
causes this effect can be neglected in the estimation of
γ. S. Yamashita et al. also found that the heat capacity
is remarkably insensitive to magnetic fields (they studied
fields up to 8 T).
The anomaly in the thermal conductivity is, however,

very clear cut. A hump is immediately obvious in the plot
of κ against T , Fig. 1 of (Yamashita et al., 2009), which
begins at ∼ 6 K and reachs a broad maximum at ∼ 4
K. Clear anomalies have also been reported in the NMR
spin-lattice relaxation rate, 1/T1, (Shimizu et al., 2003)
and the uniaxial expansion coefficients (Manna et al.,
2010) in this temperature range.
A number of theoretical explanations have been pro-

posed for the 6 K anomaly including: pairing of spinons
(Lee et al., 2007a), the formation of visons (vortices in
a Z2 spin liquid) (Qi et al., 2009), spin-chirality order-
ing (Baskaran, 1989) and exciton condensation (Qi and
Sachdev, 2008). These theories will be discussed in sec-
tion VII.H.

C. Mott metal-insulator transition

In the cuprates7 the metal-insulator transition is
driven by chemically doping charge carriers into the
copper-oxygen plane of the insulating parent compound
(Lee et al., 2006). This is sometimes referred to as the
‘band-filling controlled Mott transition’. However, in the
organics the ‘parent’ insulating compound can be driven
metallic by decreasing U/W the ratio of the Hubbard
U to the bandwidth, W . This is often referred to as
the ‘bandwidth controlled Mott transition’ (cf. Figure 2)
There are several ways to drive the bandwidth controlled
Mott transition in the κ-(BEDT-TTF)2X salts:

1. Hydrostatic pressure. This is a beautiful realisa-
tion of Mott’s original proposal (Mott, 1949) of
how to drive a Mott insulator metallic. Because

7 As we only refer to the cuprates here for pedagogical reasons we
will neglect subtleties relating to the role of the oxygen p-levels
and the distinction between charge transfer and Mott insulators
(Zaanen et al., 1985).
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they form rather soft crystals, only moderate pres-
sure (sometimes as small as a few hundred bars) are
required to drive very significant changes, includ-
ing the Mott transition, in organic charge transfer
salts.

2. Uniaxial stress. This seems a particularly promis-
ing approach as it holds out the prospect of also
tuning the frustration, i.e., t′/t. However, this
method has not yet been widely applied to the
κ-(BEDT-TTF)2X salts. For a recent review see
(Kagoshima and Kondo, 2004).

3. ‘Chemical pressure’. Changes in the anion have
a significant effect on the unit cell parameters
- particularly in systems with polymeric anions.
Thus, tuning the chemistry of the anion is remark-
ably similar to applying a pressure. For exam-
ple, κ-(BEDT-TTF)2Cu[N(CN)2]Cl is an antifer-
romagnetic Mott insulator, but the isostructural
κ-(BEDT-TTF)2Cu[N(CN)2]Br is a metal, which
superconducts at low temperatures. A particularly
elegant form of chemical pressure is to alloy the
anions Cu[N(CN)2]Br and Cu[N(CN)2]Cl to form
crystals of κ-(BEDT-TTF)2Cu[N(CN)2]Cl1−xBrx.
We stress that as both anions are monovalent this
does not dope the organic layer away from half fill-
ing.

4. Deuteration of the cation. Each BEDT-TTF
molecule contains eight hydrogen atoms, cf. Fig. 6.
κ-(BEDT-TTF)2Cu[N(CN)2]Br is extremely close
to Mott transition and crystals containing the fully
deuterated molecule are antiferromagnetic insula-
tors (Taniguchi et al., 2003). Crystals of partially
deuterated BEDT-TTF molecules, which can be
made uniformly deuterated throughout the entire
crystal, sit at different positions spanning the first
order Mott transition (Taniguchi et al., 2003) and
the macroscopic coexistence of the metallic and in-
sulating phases can be seen in these crystals (Sasaki
et al., 2005). No detailed explanation of how this
deuteration effect operates has been presented to
date. Presumably, deuteration weakens the hydro-
gen bonding interaction between the cation and an-
ions because of the different quantum zero point
motion (cf. (Hayashi et al., 2006)).

Although the Mott transition in organics is commonly
called ‘bandwidth controlled’ we stress that really the
important quantity is the ratio U/W , and as U is signifi-
cantly renormalised by interdimer (as well as intramolec-
ular and intradimer) processes. It has been suggested
that both hydrostatic and chemical pressure may also re-
sult in variations in U (Nakamura et al., 2009; Scriven
and Powell, 2009b). Further, the ratio t′/t also has an
important impact on wether the ground state is metallic
or insulating (Powell and McKenzie, 2007).

1. Critical exponents of the Mott transition

Much attention has focused on the Mott transition
from the antiferromagnetic state to a correlated metal
and superconductor. Indeed, the phase diagram of this
transition in κ-(BEDT-TTF)2Cu[N(CN)2]Cl has been
mapped out in considerable detail (Faltermeier et al.,
2007; Kagawa et al., 2005, 2009; Limelette, Wzietek,
Florens, Georges, Costi, Pasquier, Jérome, Mézière, and
Batail, 2003; Powell and McKenzie, 2006).

Theoretical arguments predict that the Mott transition
belongs to the Ising universality class (Castellani et al.,
1979; Kotliar et al., 2000). These can be understood on
the basis of an analogy between the Mott transition and
the lattice gas (Castellani et al., 1979). Here one views
the metallic phase as a liquid of doubly occupied and va-
cant sites [corresponding to (BEDT-TTF)02 and (BEDT-
TTF)2+2 ] moving on a background of singly occupied
[(BEDT-TTF)+2 ] sites. The Mott insulating phase is then
simply the gaseous phase of this model. Indeed, a formal
basis for this analogy can be given within the dynamical
mean-field approximation (Kotliar et al., 2000). In this
theory the Mott critical point is described by a scalar
(Ising) order parameter, which couples to the singular
part of the double occupancy. Experimental support for
this theory have come from measurements of the criti-
cal exponents associated with the metal-insulator transi-
tion in (V0.989Cr0.011)2O3 that suggest that this transi-
tion belongs to the 3D Ising universality class (Limelette,
Georges, Jérome, Wzietek, Metcalf and Honig, 2003).

It was therefore surprising when a novel set of criti-
cal exponents (β ≈ 1, γ ≈ 1, δ ≈ 2) were reported for
the metal-insulator transition in κ-(BEDT-TTF)2Cu[N-
(CN)2]Cl (Kagawa et al., 2005, 2009). Indeed, the critical
exponents found by Kagawa et al. from measurements of
the conductivity (Kagawa et al., 2005) are far from those
of the Ising model in either two- or three-dimensions.
Nevertheless, the Widom scaling relation, γ = β(δ − 1),
is obeyed and, when appropriately scaled, the data col-
lapses onto two curves (one for data above the critical
temperature, the other for data below the critical tem-
perature). Kagawa et al. (Kagawa et al., 2009) have also
reported the same order parameter exponent, β, from
NMR measurements. This is interesting as NMR probes
the magnetic degrees of freedom, whereas the conductiv-
ity probes the charge degrees of freedom.

A number of theories have been proposed to try and ex-
plain these results. Imada et al. (Imada, 2005a,b; Misawa
et al., 2006) predicted exponents close to those observed
by Kagawa et al. in a theory based on the proximity
of the first order Mott transiton to a quantum critical
point as the critical end point is moved to T = 0. Alter-
natively, Papanikolaou et al. (Papanikolaou et al., 2008)
have argued that the experiments are indicative of an
Ising universality class. Papanikolaou et al. showed that
the conductivity is not only sensative to the order pa-
rameter, but can also depend on other singular variables,
particularly the energy density. In the regime where the
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energy density dominates they found that β = 1, γ = 7/8
and δ = 15/8, consistent with the Widom scaling rela-
tion and in reasonable agrement with the experimental
results. However, this theory does not explain finding
that β = 1 from an NMR experiment (Kagawa et al.,
2009).
Bartosch et al. have recently shown that a scaling the-

ory based on the Ising universality class can describe the
observed temperature dependence of the thermal expan-
sion near the critical point for the fully deuterated κ-
(BEDT-TTF)2Cu[N(CN)2]Br material (Bartosch et al.,
2010). It would therefore be interesting to know what
Imada et al.’s theory predicts for these experiments.

2. Optical conductivity

Faltermeier et al. (Faltermeier et al., 2007) have stud-
ied the evolution of the reflectivity and optical conduc-
tivity spectra as κ-(BEDT-TTF)2Cu[N(CN)2]Cl1−xBrx
as it is driven through the metal-insulator transition by
increasing the Br density, x. At low temperatures, three
important features can be identified in these spectra: a
Drude peak and two broad peaks that are fit well by
Lorentzians at around 2200 cm−1 and 3200 cm−1.
The Drude peak is absent in the pure Cl and low

Br density compounds: as expected for the Drude peak
arises from Fermi liquid quasiparticle excitations, which
are absent in the Mott insulating phase (Kotliar and Voll-
hardt, 2004). As the Br density is increased the system is
driven metallic by chemical pressure and the Drude peak
appears - it can be seen rather weakly for x = 0.73. In-
creasing x further increases the width of and the spectral
weight under the Drude peak.
The optical spectrum of the Hubbard model at half

filling and near the Mott transition is only expected to
show two main features: the Drude peak in the metal-
lic phase and a single broad peak centred on ∼ U and
of width ∼W (Kotliar and Vollhardt, 2004; Merino and
McKenzie, 2000a). This broad peak corresponds to exci-
tations that change the number of doubly occupied sites
(and therefore change the number of vacant sites so as
to ensure charge conservation). Therefore, Faltermeier et
al.’s observation of two broad Lorentzians requires expla-
nation.
Faltermeier et al. (Faltermeier et al., 2007) argued

that the lower frequency Lorentzian is the peak pre-
dicted by the dimer Hubbard model of κ-(BEDT-TTF)2-
Cu[N(CN)2]Cl1−xBrx. If correct, this assignment would
yield a estimate of U = 0.27 eV, which is significantly
smaller than that found from downfolding DFT calcula-
tions (Nakamura et al., 2009) (cf. section III.A). Further,
Faltermeier et al. argued that the higher frequency fea-
ture is due to intra-dimer transitions.
However, Werner and Millis (Werner and Millis, 2010)

have recently made significant advances in dealing with
dynamical screening near the Mott transition via DMFT.
Their calculations of the spectral function differ signif-

FIG. 15 Comparison of the frequency dependent conduc-
tivity in two Mott insulators, κ-(BEDT-TTF)2Cu[N(CN)2]Cl
and κ-(BEDT-TTF)2Cu2(CN)3 (Kézsmárki et al., 2006). The
former has a ground state with Neel antiferromagnetic order
and clearly has an energy gap of about 0.1 eV. In contrast,
the latter compound may have a spin liquid ground state and
has a much smaller energy gap. The sharp peaks are due to
intramolecular vibrational modes and not the electronic de-
grees of freedom. [Copyright (2006) by the American Physical
Society].

icantly from those with only a static U . For simple
models of the frequency dependence of the effective on-
site Coulomb repulsion they find two broad peaks in the
spectral function at finite frequencies for a broad range
of parameters. At high screening frequencies these two
peaks appear to correspond to a screened-U band and
a bare-U band. However, it is important to stress that
Werner and Millis conclude that “peak positions in the
spectral functions do not provide quantitative estimates
of either the screened or unscreened U values.” This may
explain why Faltermeier et al.’s U value is significantly
smaller than theoretical estimates. While Werner and
Millis did not carry out explicit calculations of the optical
conductivity, one can anticipate that dynamical screen-
ing will change the optical conductivity significantly from
what is expected for a static U . Indeed, on the basis
of Werner and Millis’s calculations one would expect to
find an additional broad peak at finite frequency in the
optical conductivity, precisely as is seen experimentally.
This suggests a possible reinterpretation of Faltermeier
et al.’s data. An interesting question is whether this the-
ory is capable of accounting for the observed changes in
vibrational frequencies that are naturally explained by
Faltermeier et al.’s theory.

The frequency dependence of the conductivity, shown
in Figure 15, suggests that the charge gap in κ-(BEDT-
TTF)2Cu2(CN)3 is smaller than κ-(BEDT-TTF)2Cu[N-
(CN)2]Cl (Kézsmárki et al., 2006). Indeed, it has been
suggested that in the former compound there is a charge
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gap, but that the optical conductivity has a power law
dependence at low frequencies (Ng and Lee, 2007). Note,
that the charge gap (the energy cost of adding an elec-
tron or hole; a signature of a Mott insulator) is a differ-
ent physical quantity from the optical gap (the energy
required to produce a charge neutral, spin singlet exci-
tation, with a non-zero transition dipole moment) and
so it is possible, at least in principle, that the former is
non-zero and the latter is zero. However, the relative size
of the energy gaps also presents a puzzle because one can
also argue that κ-(BEDT-TTF)2Cu[N(CN)2]Cl is closer
to the metallic phase than the other compound. Since κ-
(BEDT-TTF)2Cu[N(CN)2]Cl requires a smaller pressure
to destroy the Mott insulating phase (300 bar versus 4
kbar).
Motivated by these experimental results, Ng and Lee

calculated the frequency dependence of the optical con-
ductivity in a Mott insulating state which is a spin liquid
with a spinon Fermi surface and coupled to a fluctuating
U(1) gauge theory (Ng and Lee, 2007). (This theory is
discussed further in Section VII.) They find that there
is a power-law frequency dependence at low frequencies
due to the conductivity of the spinons. The spinons are
charge neutral and so do not couple directly to an elec-
tromagnetic field. However, they couple indirectly be-
cause the external field induces an internal gauge field
in order to maintain the constraints associated with the
slave-rotor representation of the electrons.
Deducing whether the experimental data shown in Fig-

ure 15 does imply zero optical gap for κ-(BEDT-TTF)2-
Cu2(CN)3 could be made more rigorous by subtracting
the vibrational contributions. A robust procedure now
exists for this and has been applied in the analysis of
the optical conductivity of alloys of κ-(BEDT-TTF)2Cu-
[N(CN)2]Cl and κ-(BEDT-TTF)2Cu[N(CN)2]Br (Dumm
et al., 2009; Faltermeier et al., 2007; Merino et al., 2008).

3. The spin liquid to metal transition

κ-(BEDT-TTF)2Cu2(CN)3 also undergoes a Mott
transition under hydrostatic pressures ∼ 0.35 GPa
(Kurosaki et al., 2005). What little is known experi-
mentally about how the spin liquid insulator to metal
transition differs from the antiferromagnetic-insulator–
metal transition comes mainly from the pioneering work
of Kurosaki et al. (Kurosaki et al., 2005). They reported
measurements of the resistivity and NMR, but did not
examine the critical end-point closely. Kurosaki et al.
observed two NMR spin-lattice relaxation rates, 1/T1 at
0.35 GPa, i.e., close to the of metal-insulator transition.
This suggests that the metal-insulator transition in κ-
(BEDT-TTF)2Cu2(CN)3 is first order and that the two
rates are caused by the coexistence of the insulating and
metallic phase. Note that the metal-insulator transitions
in κ-(BEDT-TTF)2Cu[N(CN)2]Cl and (as a function of
deuteration in) κ-(BEDT-TTF)2Cu[N(CN)2]Br are also
first order. Kurosaki et al. also found that pressure (up

to 0.8 GPa) does not induce any significant changes in
the 1H NMR spectrum at 1.4 K. This shows that, at
least at this temperature, pressure does not induce long
range magnetic ordering and hence, one presumes, the
spin liquid state remains right up until the first order
Mott transition.

4. Reentrance of the Mott transition - explanation from
undergraduate thermodynamics

One interesting difference between the Mott transi-
tions in κ-(BEDT-TTF)2Cu[N(CN)2]Cl and κ-(BEDT-
TTF)2Cu2(CN)3 is the shape of the first order line in
the (P -T ) phase diagram (Kagawa et al., 2004; Kurosaki
et al., 2005). For the pressure driven metal-insulator
transition the Clausius-Clapeyron relation is

dT

dP
=

∆V

∆S
, (14)

where ∆V = Vins − Vmet and ∆S = Sins − Smet. As
the metal is the high pressure phase one presumes8 that
∆V > 0. Therefore, the sign of dT/dP is determined by
the sign of ∆S. In κ-(BEDT-TTF)2Cu2(CN)3 dT/dP >
0 along the entire phase transition, cf. Fig. 8, (Kurosaki
et al., 2005). In contrast, the phase transition in κ-
(BEDT-TTF)2Cu[N(CN)2]Cl is reentrant, cf. Fig. 7,
(Kagawa et al., 2004), i.e., dT/dP changes sign along the
phase boundary. Therefore, at certain pressures (∼ 25
MPa) isobaric cooling results in first a insulator-to-metal
transition (at T ∼ 35 K) followed by a metal-to-insulator
transition (at T ∼ 20 K). The change in sign of dT/dP
occurs in the region of the phase diagram where antifer-
romagnetism is observed.

Fermi statistics imply that the entropy of the electrons
in a metal varies linearly with temperature.9 In the anti-
ferromagnetic Mott insulator phase the entropy is dom-
inated by the spin degrees of freedom. One expects the
entropy to be carried by spin waves in the magnetically
ordered phase, thus S(T ) ∼ Tα. For a quasi-two dimen-
sional material, such as κ-(BEDT-TTF)2Cu[N(CN)2]Cl,
one expects that α > 1.10 Therefore, at low temper-
atures the entropy of the antiferromagnetically ordered
state is proportional to Tα. At low enough temperatures
this will always be less than the entropy of a Fermi liquid,
which is proportional to temperature.

In a paramagnetic insulator, the entropy becomes in-

8 However, some care should be exercised with this assumption.
For example, famously for the ice-water transition ∆V < 0.

9 As S(T ) =
∫ T
0

Cv

T
dT and Cv = γT for a gas of fermions.

10 In the antiferromagnetically order states one finds α = 2 in
two dimensions, e.g., on the square lattice antiferromagnet, and
α = 3 in three dimensions. As κ-(BEDT-TTF)2Cu[N(CN)2]Cl
is quasi-two dimensional an intermediate behaviour may also be
possible.
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dependent of temperature at high temperatures.11 The
phase diagrams of κ-(BEDT-TTF)2Cu2(CN)3 (Kurosaki
et al., 2005), κ-(BEDT-TTF)2Cu[N(CN)2]Cl (Kagawa
et al., 2004; Lefebvre et al., 2000) and V2O3 (Limelette,
Georges, Jérome, Wzietek, Metcalf and Honig, 2003;
McWhan et al., 1973) demonstrate that ∆S > 0 for
the paramagnetic insulator-phase transition in all three
of these materials. In principle, this argument could be
quantitatively tested from measurements of the heat ca-
pacity; however, performing such measurements under
pressure is extremely challenging.

For the triangular lattice Heisenberg model the en-
tropy is much larger than that of the square lattice model
(Bernu and Misguich, 2001; Elstner et al., 1994). For ex-
ample, a value of 0.2R is obtained at temperatures of
0.5J and 0.15J respectively. For both models the en-
tropy (and specific heat) are quadratic in temperature
at low temperatures. However, the coefficient of propor-
tionality is twenty times larger for the triangular lattice
than the square lattice (Bernu and Misguich, 2001).

It is interesting to compare the experimental phase
diagrams of κ-(BEDT-TTF)2Cu2(CN)3 and κ-(BEDT-
TTF)2Cu[N(CN)2]Cl with the cluster dynamical mean
field theory (CDMFT) calculations of Liebsch et al.
(Liebsch et al., 2009) for the phase diagram of the Hub-
bard model on an (an)isotropic triangular lattice, Fig.
16. Similar results were obtained independently for
t′ = 0.8t by different group et al. (Ohashi et al., 2008).
They find a first order Mott transition as U/W is de-
creased. However, they found interesting differences in
the phase diagrams as the frustration, t′/t, is varied. For
the isotropic triangular lattice (t′ = t) the line of first
order transitions always has a positive slope. It follows
from the Clausius-Clapeyron equation (14) that the insu-
lating state has a larger entropy than the metallic state,
even at low temperatures. For t′ = 0.8t the slope of the
phase boundary becomes negative at low temperatures,
indicating that the metallic state has greater entropy at
low temperatures. This is in semi-quantitative agreement
with the observed temperature-pressure phase diagram
of a range of organic charge transfer salts if we associate
κ-(BEDT-TTF)2Cu2(CN)3 with t′ = t and κ-(BEDT-
TTF)2Cu[N(CN)2]Cl with t′ = 0.8t. However, the pa-
rameterisation of the tight-binding model from DFT (cf.
section III.A) suggest that t′/t is actually rather smaller
for both materials (cf. Table I).

It is interesting to note that Liebsch et al. did not
allow for long range antiferromagnetic order in their
calculations. Thus, short-range magnetic fluctuations
must be sufficient to account for decreased entropy in
the insulating state. The parameterisations of the tight
binding model for κ-(BEDT-TTF)2Cu2(CN)3 (see sec-
tion III.A.1) would put this material in the regime where

11 For a paramagnetic insulator with T ≫ J the entropy per spin
is S/N = kB ln 2.

Liebsch find a reentrant phase transition. However, even
more sophisticated calculations, going beyond the three
site cluster Liebsch et al. studied, may result in a shift
in the parameter regime in which reentrance is observed.
Therefore, the lack of reentrance in the in the phase dia-
gram of κ-(BEDT-TTF)2Cu2(CN)3 is consistent with a
spin liquid ground state.

D. Magnetic frustration in the normal state

A striking feature of the normal state is that the re-
sistivity (Analytis et al., 2006; Kurosaki et al., 2005;
Limelette, Wzietek, Florens, Georges, Costi, Pasquier,
Jérome, Mézière, and Batail, 2003) Hall coefficient (Mu-
rata et al., 1990; Sushko et al., 1997; Tanatar et al., 1997)
and thermopower (Buravov et al., 1992; Demishev et al.,
1998; Yu et al., 1991) all vary non-monotonically with
temperature (Merino and McKenzie, 2000a). This is in
marked contrast to what is found in weakly correlated
metals (Ashcroft and Mermin, 1976), where these quan-
tities have a monotonic temperature dependence.
Further, at high temperatures the conductivity is

less than the Mott-Ioffe-Regal limit (Analytis et al.,
2006; Kurosaki et al., 2005; Limelette, Wzietek, Florens,
Georges, Costi, Pasquier, Jérome, Mézière, and Batail,
2003), which would mean that, in a Drude picture, elec-
trons are scattering more frequently than they hop from
site to site (Gunnarsson et al., 2003; Merino and McKen-
zie, 2000a). In weakly correlated metals this only found
as one approaches the Anderson transition in extremely
disordered systems (Phillips, 2003). Whereas, the organ-
ics are remarkably clean systems (Analytis et al., 2006;
Kartsovnik, 2004; Singleton, 2000).
A third difference between κ-(BEDT-TTF)2X and

weakly correlated metals is that no Drude peak is ob-
served in the optical conductivity above a relatively low
temperature (T & 40 K) (Dressel et al., 1994; Eldridge
et al., 1991; Faltermeier et al., 2007; Kornelsen et al.,
1989; Merino et al., 2008; Tamura et al., 1991).
However, at low temperatures the mean free path re-

turns below the Mott-Ioffe-Regal limit (Analytis et al.,
2006; Kurosaki et al., 2005; Limelette, Wzietek, Florens,
Georges, Costi, Pasquier, Jérome, Mézière, and Batail,
2003) and a Drude peak is seen in the optical conductiv-
ity (Dressel et al., 1994; Eldridge et al., 1991; Faltermeier
et al., 2007; Kornelsen et al., 1989; Merino et al., 2008;
Tamura et al., 1991). This phenomenology is observed for
both κ-(BEDT-TTF)2Cu2(CN)3 (Kurosaki et al., 2005)
and its more weakly frustrated brethren.

1. Dynamical mean-field theory (DMFT)

DMFT (Georges et al., 1996; Kotliar and Vollhardt,
2004) provides both a fundamental explanation (Merino
and McKenzie, 2000a) and an accurate description
(Limelette, Wzietek, Florens, Georges, Costi, Pasquier,



25

0

20

40

60

2.9 3 3.1 3.2

T
(K

)

1 / U (1/eV) [Pressure]

Fermi
liquid

Mott
insulator

coexist

t‘=0.8t

0

20

40

60

2.5 2.6 2.7 2.8 2.9

T
(K

)

1 / U (1/eV) [Pressure]

Fermi
liquid

Mott
insulator

coexist

t‘=t

(b)(a)

FIG. 16 Phase diagram at finite temperature from cluster dynamical mean-field theory (CDMFT) of the Hubbard model on
the anisotropic triangular lattice at half filling (Liebsch et al., 2009). As U/t increases there is a first order phase transition
from a metallic to a Mott insulating phase. This first order line ends at a critical point. (a) and (b) are for t′/t = 0.8 and
1, respectively. For t′ = 0.8t a reentrant Mott transition is found. This can be understood from the Clausius-Clapeyron
equation (14) as showing that, at low temperatures, the insulating phase has lower entropy than the metallic phase. This
would be expected if the insulating phase were magnetically ordered (see text) and can even be caused by the short range
antiferromagnetic correlations associated in incipient magnetic ordering, as is the case here. At high temperatures the reverse
is true, consistent with a simple paramagnetic metal. For t′ = t the insulating phase has higher entropy at all temperatures,
consistent with a spin liquid ground state. The phase diagrams shown in panels (a) and (b) are consistent with those of
κ-(BEDT-TTF)2Cu[N(CN)2]Cl (Fig. 7) and κ-(BEDT-TTF)2Cu2(CN)3 (Fig. 8) respectively. [From (Liebsch et al., 2009).]
[Copyright (2009) by the American Physical Society].

Jérome, Mézière, and Batail, 2003; Merino et al., 2008)
of these phenomena. Merino and McKenzie (Merino and
McKenzie, 2000a) found that, even without taking ac-
count of the details of the band structure, the basic fea-
tures of the κ phase organics, described above, are cap-
tured by DMFT. Furthermore, these features are seen
in a broad range of other strongly correlated electron
materials such as transition metal oxides. In particular,
DMFT predicts an incoherent or ‘bad’ metal at high tem-
peratures. In this regime there are no quasiparticles (and
hence no Drude peak). Incoherence implies that momen-
tum is not a good quantum number, i.e., that electrons
frequently scatter off one another, and gives rise a mean
free path less than a lattice constant (Gunnarsson et al.,
2003; Merino and McKenzie, 2000a).

Below a characteristic temperature, Tcoh, DMFT pre-
dicts a Fermi liquid. Hence, the resistivity drops below
the Mott-Ioffe-Regal limit and the Drude peak returns.
However, the Fermi liquid is strongly correlated and the
effective mass is almost an order of magnitude larger than
the band mass. The change from the bad metal to the
Fermi liquid is a crossover rather than a phase transition.
In DMFT it is this crossover that is largely responsible
for the nonmonotonicity of many response functions, in-
cluding the resistivity, the thermopower and the Hall co-
efficient.
The success of DMFT in describing this broad range

of experiments is, initially, rather puzzling. DMFT is ex-
act in infinite dimensions or for an infinite co-ordination
number. Hence, one expects DMFT to be a good ap-
proximation in the limit of large dimensions, but the
κ-phase organics are quasi-two-dimensional. However,

it has recently been argued (Merino et al., 2006) that
DMFT is a much better approximation for frustrated sys-
tems than unfrustrated systems as frustration suppresses
long range correlations. The applicability of DMFT to
low-dimensional systems with large frustration is consis-
tent with the fact that a Curie-Weiss law holds down
to a much lower temperature for frustrated magnetic
models than for unfrustrated models (Ramirez, 1994;
Schiffer and Daruka, 1997; Zheng, Singh, McKenzie and
Coldea, 2005). Deviations from Curie-Weiss behavior re-
sult from spatially dependent correlations. Hence, the
DMFT treatment of the Hubbard model on frustrated
lattices is expected to be a good approximation down
to much lower temperatures than it is for unfrustrated
models.
Furthermore, in the “bad metal” region magnetic prop-

erties such as the uniform susceptibility and spin relax-
ation rate, can be described by the Heisenberg model
because the electrons are essentially localized due to the
proximity to the Mott insulating phase. This means that
the susceptibility follows a Curie-Weiss form down to
temperatures much less than the exchange energy J . The
spin correlation length of the antiferromagnetic Heisen-
berg model increases with temperature much more slowly
for the triangular lattice than the square lattice (Elstner
et al., 1993, 1994). Specifically, at T = 0.3J the spin
correlation length is only one lattice constant for the tri-
angular lattice. In contrast, for the square lattice the cor-
relation length is about 50 lattice constants, at T = 0.3J
(Elstner et al., 1993, 1994).
Dynamical cluster approximation (DCA) calculations

provide a means to systematically go beyond DMFT.
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They show that for the isotropic triangular lattice the
solution is remarkably similar to that found from single
site DMFT. In particular, a quasiparticle peak appears at
the Fermi energy. However, if the frustration is released
a pseudogap opens in the one-electron spectra as a result
of short range antiferromagnetic correlations (Imai and
Kawakami, 2002). We will delay more detailed discussion
of these results until section III.D.4.
A further hint that DMFT is a better approximation

on the triangular lattice than it is on the square lattice
comes from the fact that one finds that, at half filling,
the Mott transition occurs at Uc ≈ 15|t| (Merino et al.,
2006). This can be compared with more sophisticated
numerical treatments which find that the Mott transi-
tion takes place at U ≈ 6 − 8|t| (see Section VI.A). On
the square lattice it is known that perfect nesting of the
Fermi surface means that the ground state is insulat-
ing for any finite U . However, DMFT predicts (Georges
et al., 1996) that Uc ≫ |t| unless antiferromagnetism is
included. Thus (without including antiferromagnetism)
DMFT gives a qualitatively incorrect result for the (un-
frustrated) square lattice, but a qualitatively correct re-
sult for the (frustrated) triangular lattice.
Hence, it appears that frustration plays an important

role even in the normal state of the organic charge trans-
fer salts. Counterintuitively, by suppressing long range
spin correlations, frustration makes the normal state of
the κ-phase organics easier to understand than would be
the case without significant frustration. This may be
taken as a major blessing if one compares the compara-
tive simplicity of the normal state of the organics to the
complexities of the ‘normal’ state of the cuprates (Lee
et al., 2006). Thence, an important question is: are the
differences between the normal states of the organics and
the cuprates intrinsic differences between the band-width
controlled Mott transition and the band-filling controlled
Mott transition, or are extrinsic effects responsible for the
non-Fermi liquid effects observed in the cuprates?

2. Fermi liquid regime

At low temperatures (T < Tcoh) DMFT reduces to
a local Fermi liquid theory and hence predicts that the
temperature dependence of the resistivity is given by
ρ(T ) = ρ0 + AT 2, where ρ0 results from impurity scat-
tering and the quadratic term results from electron-
electron scattering. This temperature dependence is in-
deed seen experimentally in a range of organic charge
transfer salts (Kurosaki et al., 2005; Limelette, Wzietek,
Florens, Georges, Costi, Pasquier, Jérome, Mézière, and
Batail, 2003; Strack et al., 2005). DMFT also predicts
an enhancement of the effective mass over the band mass
predicted by electronic structure calculations. This en-
hanced mass can be observed experimentally via the lin-
ear terms in the heat capacity, Cv = γT . These two facts
are not unrelated.
The Kadowaki-Woods ratio is defined as A/γ2. This

ratio is found to take the same value in a range of tran-
sition metals (Rice, 1968). Twenty years later it was
found empirically that in a range of heavy fermions the
Kadowaki-Woods ratio takes the same value (Kadowaki
and Woods, 1986), albeit with several well known out-
liers. However, the ratio in the heavy fermions was found
to be an order of magnitude larger than that in the tran-
sition metals. It was pointed out some time ago that
the Kadowaki-Woods ratio is even larger in the organics
(Dressel et al., 1997; Strack et al., 2005).
This large Kadowaki-Woods ratio has recently been

shown to be the consequence of the details of the band
structure of the organics (Jacko et al., 2009). Indeed,
Jacko et al. found that, quite generally, the Kadowaki-
Woods ratio depends on the band structure of the ma-
terial in question. Jacko et al. proposed a new ratio,
closely related to the Kadowaki-Woods ratio, that takes
these band structure effects into account. They found
that this ratio takes the same, predicted, value in a
wide range of transition metal, heavy fermion materi-
als, transition metal oxides and organic charge transfer
salts. This new understanding of the Kadowaki-Woods
ratio shows that the mass enhancement measured by the
specific heat and the quadratic term in the resistivity
share the same physical origin. This strongly suggests
that electron-electron scattering are responsible for both
effects, which had been questioned in the organics (Strack
et al., 2005). As this suggests that electron-electron in-
teractions are the strongest forces immediately above Tc,
it may also imply that these same interactions are im-
plicated in the mechanism of superconductivity in these
materials.

3. NMR and the pseudogap

Beyond the arguments above that frustration enhances
localisation and thus emphasises the Mott physics cap-
tured by DMFT, the properties discussed above do not
depend crucially on the frustration at play in organic
charge transfer salts. Therefore, to better understand
the role of frustration, it is desirable to experimentally
probe the spin correlations in the metallic state. The
most direct method would be inelastic neutron scatter-
ing. However, this requires large single crystals, which
have never been grown for organic charge transfer salts
(Pintschovius et al., 1997; Taniguchi et al., 2006; Toy-
ota et al., 1997). Therefore, the best remaining probe in
nuclear magnetic resonance (NMR) spectroscopy.
Two key properties measured in an NMR experiment

are the Knight shift, Ks, which is the shift in the reso-
nance frequency due the screening of the applied mag-
netic field by the conduction electrons in a metal, and
the spin-lattice relaxation rate, 1/T1, which is the char-
acteristic time taken for spins flipped by a magnet field
to return to their equilibrium distribution. In a metal,
both of these quantities are related to the dynamic spin
susceptibility, χ(q, ω) = χ′(q, ω) + iχ′′(q, ω), of the elec-
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trons. It may be surprising that the nuclear relaxation
rate is a probe of electrons. However, this is because the
total system (nuclei and their environment) must con-
serve energy and spin. Therefore, the nuclei can only
relax by interacting with their environment. In a metal
the low energy relaxation pathways are dominated by ex-
changing spin with the conduction electrons. Thus, one
finds that (Moriya, 1963)

1

T1
= lim

ω→0

2kBT

γ2e~
4

∑

q

|A(q)|2χ
′′(q, ω)

ω
, (15)

and

Ks =
|A(0)|χ′(0, 0)

γeγN~2
, (16)

where A(q) is the hyperfine coupling between the nuclear
and electron spins, and γN (γe) is the nuclear (electronic)
gyromagnetic ratio. Note that, because of the factor T in
the expression (15), 1/T1T often gives more direct access
the temperature dependence of the spin fluctuations than
T1 itself.
For non-interacting electrons one finds that

Ks ∝ N(ǫF ) (17)

and

1

T1T
∝ N(ǫF )

2, (18)

where N(ǫF ) is the density of states at the Fermi level,
if the hyperfine coupling is constant in reciprocal space,
which is strictly true if there is only one atom per unit
cell, and is an approximation otherwise. Note that both
Ks and 1/T1T are independent of temperature in this
approximation. Further, taking the ratio 1/T1TK

2
s re-

moves the dependence on N(ǫF ), which is generally not
known a priori (Korringa, 1950). One finds that, for
non-interacting electrons, the dimensionless ratio

K ≡ ~

4πkB

(

γe
γN

)2
1

T1TK2
s

= 1. (19)

K is known as the Korringa ratio. These three results:
that 1/T1T and Ks are independent of T and that K = 1
are collectively known as Korringa behaviour. Indeed,
one can show (Yusuf et al., 2009) that these results hold
for interacting systems provided vertex corrections to the
dynamic spin susceptibility are negligible. This holds re-
gardless of the form of the self energy, so long as it is
consistent with Ward identities. However, magnetic fluc-
tuations lead to vertex corrections to χ(q, ω) (Doniach
and Sondheimer, 1998; Yusuf et al., 2009). Therefore
systems with strong magnetic fluctuations do not display
Korringa behaviour. In particular, K < 1 in systems with
ferromagnetic fluctuations and K > 1 in systems with an-
tiferromagnetic fluctuations (Doniach, 1968).

FIG. 17 NMR spectroscopy shows that there are strong spin
fluctuations in κ-(BEDT-TTF)2Cu[N(CN)2]Br and other or-
ganic charge transfer salts. 1/T1T shows a maximum at ∼ 50
K. This temperature corresponds with the temperature, Tcoh,
at which the crossover from the Fermi liquid to the bad metal
is observed in the DC resistivity and the optical conductivity.
Indeed this correspondence between the maximum in 1/T1T
and Tcoh is found in a wide range of BEDT-TTF salts (Powell
et al., 2009). The data above 50 K is well described (Yusuf
et al., 2007) by a phenomenological spin fluctuation theory
(Millis et al., 1990a; Moriya and Ueda, 2000). Below 50 K
there is a sudden drop in both 1/T1T and the Knight shift
Ks, suggesting the a pseudogap opens (Powell et al., 2009).
[Modified from (de Soto et al., 1995).] [Copyright (1995) by
the American Physical Society].

There have been numerous studies of NMR in metal-
lic organic charge transfer salts (for a review see (Miya-
gawa et al., 2004)). We begin by discussing investiga-
tions of the more weakly frustrated materials such as
κ-(BEDT-TTF)2Cu[N(CN)2]Br, κ-(BEDT-TTF)2Cu[N-
(CN)2]Cl and κ-(BEDT-TTF)2Cu(NCS)2 (de Soto et al.,
1995; Itaya et al., 2009; Kawamoto et al., 1995a,b; Mayaf-
fre et al., 1994). These materials all show clear non-
Korringa behaviours, cf. Fig. 17. As the temperature is
lowered from room temperature, both 1/T1T and Ks rise
to a maximum at a temperature we will denote as TNMR.
Below TNMR both 1/T1T and Ks decrease; both drop
more rapidly below the superconducting critical tempera-
ture, Tc. For weakly frustrated compounds TNMR ≃ Tcoh
(Itaya et al., 2009; Powell et al., 2009), the coherence tem-
perature marking the crossover from a Fermi liquid to a
bad metal, for a range of anions and pressures to within
experimental error. Measurements of the Korringa ratio
(de Soto et al., 1995; Itaya et al., 2009; Kawamoto et al.,
1995b) find that K ≫ 1 indicating that there are strong
antiferromagnetic fluctuations.

For T > TNMR the experimental data is naturally
explained (Powell et al., 2009; Yusuf et al., 2007) by
Moriya’s self-consistent renormalised theory (Moriya and
Ueda, 2000) in the phenomenological form used by Millis,
Monien and Pines in the context of the cuprates (Mil-
lis et al., 1990a). In this model there are two contribu-
tions to the dynamic susceptibility, one arising from long
wavelength background from Fermi liquid like excitations
and a second contribution from spin fluctuations that is
strongly peaked at some wavevector Q associated with
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the nascent magnetic order. In the limit of strong mag-
netic fluctuations this model predicts that (Powell et al.,
2009)

T1T

(T1T )NMR
=

TNMR

TNMR + Tx

(

T

TNMR

)

+
Tx

TNMR + Tx
,(20)

where (T1T )NMR is the value of T1T at T = TNMR

and Tx sets the scale for the temperature dependence
of the spin correlation length. Plotting the experimental
data as T1T/(T1T )NMR against T/TNMR indeed yields
the straight line predicted above for T > TNMR (Pow-
ell et al., 2009). A more detailed analysis (Yusuf et al.,
2007) allows one to estimate the spin correlation length,
ξ(T ). For example, ξ(TNMR) ≃ 3a, where a is the lattice
constant, in κ-(BEDT-TTF)2Cu[N(CN)2]Br. It has been
shown (Ding and Makivic, 1990) that, on the square lat-
tice, the antiferromagnetic Heisenberg model has a cor-
relation length of order ξ(T )/a ∼ 1 for T = J and of
order ξ(T )/a ∼ 30 for T = 0.3J . On the other hand, for
the antiferromagnetic Heisenberg model on the isotropic
triangular lattice, the correlation length is only of order a
lattice constant at T = 0.3J (Elstner et al., 1993). There-
fore a correlation length of ∼ 3a is consistent with the in-
termediate value of t′/t calculated for κ-(BEDT-TTF)2-
Cu[N(CN)2]Br (cf. section III.A) placing this compound
somewhere between the square and triangular lattices.
An important question is: what causes the reduction

in 1/T1T , Ks and K for T < TNMR? Given its suc-
cesses in describing many of the phenomena discussed in
this section, one should first ask what DMFT predicts.
It predicts a temperature dependence that can be fit to
the form (20) for all temperatures. In the bad metal
phase DMFT predicts that same behaviour as the spin
fluctuation theory (Pruschke et al., 1995). Therefore, for
T > TNMR, DMFT agrees with experiment qualitatively
- although we are not aware of a specific quantitative
comparison. However, DMFT also predicts that 1/T1 in-
creases monotonically with temperature and in the Fermi
liquid regime it predicts a constant Knight shift and a
constant 1/T1T . None of these are seen experimentally.
Therefore, although DMFT may provide an adequate de-
scription of the spin physics for T > TNMR some addi-
tional ingredient is required for T < TNMR. As DMFT is
a purely local (single site) theory this immediately sug-
gests that some non-local correlations are important for
understanding the spin correlations.
Two pictures have been proposed to try to explain

the NMR below TNMR: (i) the opening of a pseudo-
gap (Mayaffre et al., 1994; Miyagawa et al., 2002; Powell
et al., 2009; Yusuf et al., 2007) and (ii) a loss of spin corre-
lations (de Soto et al., 1995; Itaya et al., 2009; Kawamoto
et al., 1995b; Lefebvre et al., 2000).
In the pseudogap scenario one assumes that non-local

interactions cause a loss of spectral weight at the Fermi
energy. This would lead to the suppression of both 1/T1T
and Ks, cf. Eqs. (17) and (18). In context of this hy-
pothesis it is interesting to note that the fit of the data to
Eq. 20 shows that TNMR ≃ Tx, which suggests that the

spin correlations play an important role in determining
TNMR. The interpretation of this result in this picture
is then that the growing spin correlations cause a pseu-
dogap to open as the temperature is lowered.
If spin correlations were to decrease below TNMR this

would clearly cause a reduction in 1/T1T . However, it
is not clear that such a decay of spin correlations would
also lead to a decrease in the Knight shift as Ks is a
measure of the ferromagnetic (q = 0) fluctuations, cf.
Eq. 16. However, if a peak in the dynamic susceptibility
at q 6= 0 were sufficiently broad, antiferromagnetic spin
correlations could contribute significantly to the Knight
shift and lead to the observed behaviour. This picture
also gives a natural explanation of why the Korringa ratio
decreases below TNMR: because 1/T1T is more sensitive
to antiferromagnetic spin fluctuations than Ks.

4. There is no pseudogap in κ-(BEDT-TTF)2Cu2(CN)3

In contrast to the weakly frustrated materials there
is no evidence for a pseudogap in κ-(BEDT-TTF)2Cu2-
(CN)3 (Shimizu et al., 2010). In the metallic state
Korringa-like behaviour is seen at low temperatures:
both 1/T1T and Ks are constant.
This is consistent with the finding from DCA calcula-

tions (Imai and Kawakami, 2002) that find no pseudogap
on the isotropic triangular lattice. Yet when the frustra-
tion is reduced a pseudogap caused by short range an-
tiferromagnetic correlations is found. Imai et al. find a
pseudogap for t′ . 0.6t from DCA calculations, using the
non-crossing approximation (NCA) to solve the effective
cluster problem. While one may have some concern over
whether the accuracy of the NCA is sufficient for a quan-
titative comparison with experiment, this result seems
to fit nicely with the experimental picture of no pseu-
dogap in κ-(BEDT-TTF)2Cu2(CN)3 and pseudogaps in
κ-(BEDT-TTF)2Cu[N(CN)2]Cl, κ-(BEDT-TTF)2Cu[N-
(CN)2]Br and κ-(BEDT-TTF)2Cu(NCS)2 if one uses the
values of t′/t calculated from DFT (Table I).

5. Other evidence for a pseudogap in the weakly frustrated
materials

Independent evidence for the suppression of density
of states at the Fermi level can come from the tempera-
ture dependence of the of electronic specific heat (Timusk
and Statt, 1999). This probes the density of excitations
within kBT of the Fermi energy. Any gap will suppress
the density of states near the Fermi surface which re-
sults in the depression of the specific heat coefficient γ.
Kanoda (Kanoda, 2006) compared γ for several of the
κ-(BEDT-TTF)2X salts and found that in the region
close to the Mott transition, γ is indeed reduced. One
possible interpretation of this behaviour is a pseudogap
which becomes bigger as one approaches the Mott transi-
tion. However, other interpretations are also possible, in



29

particular one needs to take care to account for the coex-
istence of metallic and insulating phases; this is expected
as the Mott transition is first order in the organic charge
transfer salts (Kagawa et al., 2005; Sasaki et al., 2005).
The existence of a pseudogap has also been suggested
in λ-(BEDT-TSF)2GaCl4 (Suzuki et al., 2006) from mi-
crowave conductivity measurements. The reduction of
the real part of the conductivity σ1 from the Drude con-
ductivity σdc and the steep upturn in the imaginary part
of the conductivity σ2 have been interpreted in terms of
preformed pairs leading to a pseudogap in this material.
Scanning tunnelling microscopy (STM) has given im-

portant insights into the pseudogap phase of the high
temperature superconductors (Fischer et al., 2007).
Therefore, it is natural to ask what can be seen via STM
in the organics. This is complicated by the difficulty in
obtaining high quality surfaces in the organics and these
results should be treated with caution. However, Aria et
al. (Arai et al., 2000) did find evidence that at pseudogap
opens below T ∼ 45 K in κ-(BEDT-TTF)2Cu(NCS)2.
This temperature scale coincides with TNMR. Further
the pseudogap is about five times larger than the super-
conducting gap. This is consistent with the observation
that the pseudogap gap opens at a temperature about
five times larger than the superconducting critical tem-
perature. Further, the superconducting gap appears ‘on
top’ of the pseudogap. This ‘two gap’ picture is similar
to what is observed in the cuprates (Boyer et al., 2007;
Fischer et al., 2007).
Clearly more work is required, from both a theoretical

and experimental perspective, to resolve this issue. The
most obvious theoretical avenues are to study non local
correlations in the κ-(BEDT-TTF)2X salts are the clus-
ter extensions to DMFT such as CDMFT and the DCA.
These include some off-site correlations, either in real
(CDMFT) or reciprocal (DCA) space. However, there
are significant technical challenges to overcome to accu-
rately calculate the properties measured in NMR spec-
troscopies by these methods.

6. Tests of the pseudogap hypothesis

There are a number of key experiments needed to re-
solve whether or not a pseudogap is present in the param-
agnetic metallic phase of κ-(BEDT-TTF)2X. The pres-
sure and magnetic field dependences of the nuclear spin
relaxation rate and Knight shift would be valuable in de-
termining the pseudogap phase boundary, estimating the
order of magnitude of the pseudogap, and addressing the
issue how the pseudogap is related to superconductivity.
In the cuprates, there have been several investigations of
the magnetic field dependence of the pseudogap seen in
NMR experiments. For Bi2Sr1.6La0.4CuO6 the nuclear
spin relaxation rate does not change with field up to 43
T (Zheng, Kuhns, Reyes, Liang and Lin, 2005). However,
since the pseudogap temperature T ∗ ∼ 200 K, one may
require a larger field to reduce the pseudogap. Similar re-

sults were found in YBa2Cu4O8 (Zheng, Kuhns, Reyes,
Liang and Lin, 2005). However, in YBa2Cu3O7−δ [see es-
pecially Fig. 6 of (Mitrović et al., 2002)] a field of order
10 T is enough to start to close the pseudogap. Mitrovic
et al. (Mitrović et al., 2002) interpreted this observation
in terms of the suppression of ‘d-wave’ superconducting
fluctuations.

The interlayer magnetoresistance of the cuprates has
been used as a probe of the pseudogap. (Kawakami et al.,
2005; Krusin-Elbaum et al., 2004; Morozov et al., 2000;
Shibauchi et al., 2001) Moreover, it has been argued that
for the field perpendicular to the layers (which means
that the Zeeman effect will dominate orbital magnetore-
sistance effects due to the Lorentz force) the pseudogap
is closed at a field given by

HPG ≃ kBT
∗

~γe
, (21)

where γe is the gyromagnetic ratio of the electron. For
the hole doped cuprates this field is ∼ 100 T. In contrast,
for the electron-doped cuprates this field is of the order
∼ 30 T (and T ∗ ∼ 30− 40 K), and so this is much more
experimentally accessible (Kawakami et al., 2005). The
field and temperature dependence of the interlayer resis-
tance for several superconducting organic charge transfer
salts (Zuo et al., 1999) is qualitatively similar to that for
the cuprates. In particular, for temperatures less than
the zero-field transition temperature and fields larger
than the upper critical field, negative magnetoresistance
is observed for fields perpendicular to the layers. A possi-
ble explanation is that, as in the cuprates, there is a sup-
pression of the density of states near the Fermi energy,
and the associated pseudogap decreases with increasing
magnetic field.

Angle dependent magnetoresistance has proven to be
a powerful probe of Fermi surface properties in the or-
ganic charge transfer salts (Kartsovnik, 2004) and more
recently in the cuprates (Abdel-Jawad et al., 2006; Ken-
nett and McKenzie, 2007). Recently, it has been shown
that an anisotropic pseudogap should produce distinct
signatures in the interlayer magnetoresistance when the
magnetic field is rotated parallel to the layers (Smith
and McKenzie, 2009). This is a realistic and important
experiment that should be done on κ-(BEDT-TTF)2Cu-
[N(CN)2]Br.

One could also study the pressure dependence of the
linear coefficient of heat capacity γ. Since γ is propor-
tional to the density of states at the Fermi energy, a
detailed mapping of γ(P ) would be an important probe
for the study the pseudogap. Finally, measurements of
the Hall effect have also led to important insights into
the pseudogap of the cuprates (Timusk and Statt, 1999),
therefore, perhaps, the time is ripe to revisit these exper-
iments in the organic charge transfer salts.
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7. The Nernst effect and vortex fluctuations above Tc

A most interesting observation, which may be related
to the pseudogap, is the large normal state Nernst effect
in κ-(BEDT-TTF)2Cu[N(CN)2]Br (Nam et al., 2007),
shown in Fig. 18. In κ-(BEDT-TTF)2Cu(NCS)2 the
Nernst signal is of order the noise in the experiment
for T > Tc. However, a large positive Nernst signal
is observed just below Tc. It is extremely likely that
this arises from the motion of superconducting vortices,
which freeze out at lower temperatures as the vortex lat-
tice forms. Nam et al. point out that “there is noth-
ing unexpected in these observations.” What was unex-
pected however, is that in κ-(BEDT-TTF)2Cu[N(CN)2]-
Br a Nernst signal is seen even for T > Tc. Nam et al.
interpreted this as evidence of superconducting fluctua-
tions that support vortices above Tc.

A large normal state Nernst effect is also seen in the
underdoped cuprates (Wang et al., 2006). This has also
often been interpreted as evidence for vortices above
Tc. In part this was due to a misunderstanding of the
“Sondheimer cancellation”. Sondheimer (Sondheimer,
1948) showed that for the dispersion characteristic of free
fermions, ǫk = ~

2|k|2/2m∗, the normal state Nernst ef-
fect is small. This was often taken to be a general result
and it was therefore assumed that a large Nernst signal
was a definitive signal of vortices in the normal state.
However, the Sondheimer cancellation turns out to be a
special property of the free fermion dispersion relation
(Behnia, 2009).

In the last few years it has become clear that there are
several other effects that could give rise to large Nernst
effects including an electronic nematic or Pomeranchuk
phase (Daou et al., 2010; Fradkin et al., 2010; Hackl and
Vojta, 2009), stripes (Hackl et al., 2010), a d-density wave
(Kotetes and Varelogiannis, 2010) or even just the details
of the band structure (Behnia, 2009). None of these ef-
fects have been yet been considered as possible explana-
tions for Nam et al.’s results. Another interesting ques-
tion, given that Nam et al. only see the normal state
Nernst in κ-(BEDT-TTF)2Cu[N(CN)2]Br, which is very
close to the first-order Mott transition, is: would the co-
existence of small amounts of the insulating phase with
the metallic phase lead to an enhanced Nernst signal.

An important consideration is that vortices can only
give rise to a positive Nernst coefficient12. Yet, in the
normal state of κ-(BEDT-TTF)2Cu[N(CN)2]Br Nam et
al. report a negative Nernst coefficient above ∼ 15 K.
This seems to suggest that while the Nernst signal below
∼ 15 K may indeed be caused by vortices, the large nor-
mal state Nernst signal above ∼ 15 K arises from quasi-
particles, which may give rise to a Nernst coefficient of

12 In the convention employed by Nam et al. Note that two different
sign conventions are used in the literature, which can be rather
confusing. A clear discussion of this is given in (Behnia, 2009).

FIG. 18 Nernst coefficient, ν, in κ-(BEDT-TTF)2Cu(NCS)2
(top) and κ-(BEDT-TTF)2Cu[N(CN)2]Br (bottom). In κ-
(BEDT-TTF)2Cu(NCS)2 a large Nernst coefficient is ob-
served below the superconducting critical temperature, Tc,
(for reference the temperature dependence of the zero field
resistance is shown as a dotted line). Nam et al. (Nam et al.,
2007) attributed this increase to the effect of vortices in the
superconducting state, which are known to give a large pos-
itive contribution to N . In κ-(BEDT-TTF)2Cu[N(CN)2]Br
the Nernst coefficient is large even above Tc, which Nam et
al. interpreted as evidence of fluctuating superconductivity
even above Tc. The contribution to the Nernst coefficient
from quasiparticles can take either sign. Therefore, the neg-
ative Nernst coefficient at the highest temperatures in the
lower panel presumably arises from quasiparticles.

either sign (Behnia, 2009).
An order of magnitude estimate of the quasiparticle

contribution to the Nernst coefficient, ν, can be made
from (Behnia, 2009)

ν

T
= −π

2

3

kB
e

µc

TF
, (22)

where TF = EF /kB is the Fermi temperature, and the
carrier mobility, µc, is given by

µc =
tan θH
B

=
eτ

m∗
=

el

~kF
, (23)

where θH is the Hall angle, τ is the quasiparticle lifetime,
and l is the mean free path. kF ∼ π

2a , where a ∼ 1 nm is
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a lattice constant. As the temperature is raised towards
the bad metal regime the l ∼ a. Thus, µc ∼ 10−3 T−1.
TF ∼ 103 K (Powell and McKenzie, 2004b). Between 50
K and 20 K the resistivity decreases by an order of mag-
nitude (Analytis et al., 2006) and hence the mean free
path increases by an order of magnitude. So, at 20 K,
one expects that ν ∼ 10 nV K−1 T−1. (One can also con-
struct an estimate of this order of magnitude by extrap-
olating from the measured scattering rate (Powell and
McKenzie, 2004b) in the T → 0 limit.) This is indeed
the order of magnitude observed at T ∼ 20 K in both
κ-(BEDT-TTF)2Cu(NCS)2 and κ-(BEDT-TTF)2Cu[N-
(CN)2]Br. Thus these two estimates suggest that the
magnitude of the Nernst coefficient observed in the nor-
mal state of κ-(BEDT-TTF)2Cu(NCS)2 and κ-(BEDT-
TTF)2Cu[N(CN)2]Br may be reasonable although given
the multiband Fermi surface with both electron and hole
sheets a more careful calculation is required to test this
and to establish the sign of the quasiparticle contribution
to the Nernst coefficient.

E. The superconducting state

1. κ-(BEDT-TTF)2Cu2(CN)3

Little is known experimentally about the effects of frus-
tration on the superconducting state of the κ-(BEDT-
TTF)2X salts. In particular, there have only been a very
few studies of the superconducting state of κ-(BEDT-
TTF)2Cu2(CN)3. However, this has not prevented sig-
nificant interest in the effects of frustration on supercon-
ductivity from the theoretical community (Clay et al.,
2008; Galitski and Kim, 2007; Gan et al., 2006; Huang
et al., 2007; Kondo and Moriya, 2004; Kyung and Trem-
blay, 2006; Lee et al., 2007a; Powell and McKenzie, 2005,
2007; Sahebsara and Senechal, 2006; Watanabe et al.,
2006; Wrobel and Suleja, 2007). Recently, Shimizu et
al. (Shimizu et al., 2010) have reported NMR exper-
iments under pressure in the superconducting phase.
They found that 1/T1T ∝ T 2, which is consistent with
line nodes on a three dimensional Fermi surface or point
nodes on a two dimensional Fermi surface. Further,
Shimizu et al. did not observe any signs of a Hebel-
Slichter peak, which suggests that the pairing has a non-
s-wave symmetry.

Another, potentially important result is that Shimizu
et al. only observed a very small reduction in the Knight
shift of κ-(BEDT-TTF)2Cu2(CN)3 below Tc. They sug-
gested two possible explanations for this result. Firstly, it
could be an experimental artefact due to radio frequency
(rf) heating during their spin-echo experiments. Shimizu
et al. were not able to rule this out as free induction
decay experiments are complicated by the short T ∗

2 in κ-
(BEDT-TTF)2Cu2(CN)3 and low power rf experiments
were not sufficiently sensitive in the small crystals that
are currently available. Therefore larger crystals are im-
portant to rule out this trivial explanation. However, the

C6v E C2 2C3 2C6 3σd 3σv states

A1 1 1 1 1 1 1 s, sx2+y2

A2 1 1 1 1 -1 -1

B1 1 -1 1 -1 -1 1

B2 1 -1 1 -1 1 -1

E1 2 -2 -1 1 0 0

E2 2 2 -1 -1 0 0 (dx2−y2 , dxy)

TABLE II The character table of C6v, which represents the
point group symmetry of the isotropic triangular lattice.

second, more interesting, explanation is that there is little
change in 1/T1T below Tc because κ-(BEDT-TTF)2Cu2-
(CN)3 is a triplet superconductor. There is a small drop
in Ks below Tc, which suggests that the pairing state is
not purely equal spin pairing, like the A phase of 3He.
However, many of the plethora of exotic phases that are
available to 3He are ruled out (Powell, 2008) by the low
symmetry of the κ-(BEDT-TTF)2Cu2(CN)3 crystal.
A wide range of theories that invoke a magnetic pair-

ing mechanism give rise to dx2−y2 pairing on the square
lattice (Lee et al., 2006; Monthoux et al., 2007). More
formally one should say that the superconducting order
parameter transforms like the B1 representation of C4v,
which is the point group symmetry of the square lattice.
The isotopic triangular lattice (i.e., t′ = t) has C6v sym-
metry, cf. Table II. A dx2−y2 order parameter would be-
long to the E2 representation of C6v. This is interesting
because E2 is a two-dimensional representation, which
means that one naturally expects a two component or-
der parameter, (η1, η2), for which the Ginsburg-Landau
free energy would be (Annett, 1990; Sigrist and Ueda,
1991)

Fe2 = Fn + α(T − Tc)(|η1|2 + |η2|2) + β1(|η1|2 + |η2|2)2
+β2(η

∗
1η2 − η1η

∗
2)

2, (24)

where Fn is the free energy of the normal state and α,
β1 and β2 are the parameters of the theory, which need
to be determined from experiment or derived from a mi-
croscopic theory.
Eq. (24) has three solutions: (i) ~η = (1, 0) or (ii)

~η = (0, 1) for β2 > 0 (the degeneracy is lifted by sixth
order terms (Annett, 1990; Sigrist and Ueda, 1991)); (iii)
~η = (1, i) for β2 < 0. The two components of the order
parameter can be associated with, say, the dx2−y2 and the
dxy pairing channels, which gives the physical interpre-
tation of the theory. Solution (i) corresponds to dx2−y2

pairing, solution (ii) corresponds to dxy pairing, and so-
lution (iii) corresponds to dx2−y2 + idxy pairing, which
we will refer to as the d + id state. The d + id state is
therefore predicted for a large fraction of the possible pa-
rameter values in the theory, including the weak coupling
solution (Annett, 1990; Powell, 2006; Sigrist and Ueda,
1991). The d+id state is also found in microscopic calcu-
lations for the, strong coupling, resonating valence bond
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FIG. 19 Breaking the symmetry of the isotropic triangular
lattice destroys the d+ id superconducting state in favour of
a pure d-wave state. For weak symmetry breaking a double
superconducting transition will occur. The symmetry break-
ing parameter ǫ ∼ 1− t′/t. From (Powell, 2006).

(RVB) theory on the isotropic triangular lattice (Powell
and McKenzie, 2007). In principle the broken time re-
versal symmetry of the d + id state should be directly
detectable via muon spin relaxation experiments (Sigrist
and Ueda, 1991). However, such experiments are yet to
be performed on the superconducting state of κ-(BEDT-
TTF)2Cu2(CN)3.

However, κ-(BEDT-TTF)2Cu2(CN)3 crystals actually
have C2h symmetry rather than the C6v symmetry of
the isotropic triangular lattice. Similarly, the anisotropic
triangular lattice (t′ 6= t) has C2v symmetry. It can be
seen from Table III that for both C2h and C2v dx2−y2

and dxy order parameters belong to different one dimen-
sional representations. Thus, one does not expect a two-
component order parameter generically. A simple way
to understand what will happen near the isotropic case
is to introduce a symmetry breaking perturbation into
Eq. (24) (Powell, 2006). This perturbation lifts the de-
generacy and results in a double superconducting tran-
sition, see Fig. 19. Physically such a perturbation cor-
responds to varying t′/t away from unity, but because
of its C2h crystal symmetry one always excepts this per-
turbation to always be present in κ-(BEDT-TTF)2Cu2-
(CN)3. Therefore, if the superconducting transition of
κ-(BEDT-TTF)2Cu2(CN)3 breaks time reversal symme-
try, this will be signified by a double superconducting
transition, which would be visible to any number of ther-
modynamic probes. However, to date, no suitable ex-
periments have been performed, presumably this is due,
at least in part, to the difficulty in performing many of
these measurements under pressure.

2. Weakly frustrated materials

We have given an extended review of the super-
conducting states of the more weakly frustrated ma-
terials, such as κ-(BEDT-TTF)2Cu[N(CN)2]Br and κ-
(BEDT-TTF)2Cu(NCS)2, somewhat recently (Powell
and McKenzie, 2006). We will not repeat that discus-

C2v E C2 σv σ′
v states

A1 1 1 1 1 s, dxy

A2 1 1 -1 -1 dx2−y2

B1 1 -1 1 -1

B2 1 -1 -1 -1

C2h E C2 σh i states

Ag 1 1 1 1 s, dxy

Au 1 1 -1 -1

Bg 1 -1 -1 1 dx2−y2

Bu 1 -1 -1 1

TABLE III The character tables of C2v and C2h. The
anisotropic triangular lattice has C2v symmetry for t′ 6= t (cf.
Fig. 9). However, the point group symmetry of κ-(BEDT-
TTF)2Cu2(CN)3 is C2h. Note that for the C2v point group
we use the coordinate system defined in Fig. 9c, in which the
C2 axis is along the x+ y direction, thus the indicated trans-
formation properties of coordinate system are different from
those found in many textbooks e.g. (Lax, 1974; Tinkham,
1992).

sion here and will limit ourselves to highlighting the main
issues and discuss some of the more recent results.

One key issue, that remains controversial, is the pair-
ing symmetry. There is clear evidence from the suppres-
sion of the Knight shift below Tc that the weakly frus-
trated κ-(BEDT-TTF)2X salts are singlet superconduc-
tors (Powell, 2006). However, no Hebel-Slichter peak is
seen in 1/T1T (de Soto et al., 1995; Kawamoto et al.,
1995b), which suggests that the pairing state is not s-
wave. Further, thermodynamic measurements down to
the lowest temperatures (Taylor et al., 2007) suggest that
there are nodes in the gap. Given the low symmetry of
crystals of organic charge transfers salts, this evidence
suggests that a dx2−y2 -wave state is realised in these ma-
terials (Powell, 2006). This is also natural on theoretical
grounds given the proximity to antiferromagnetic order
in the more weakly frustrated compounds.

In an unconventional superconductor (i.e., any super-
conductor in which the order parameter does not trans-
form like the trivial representation) non-magnetic dis-
order suppresses the superconducting critical tempera-
ture in accordance with the Abrikosov-Gorkov forumla
(Larkin, 1965; Mineev and Samokhin, 1999):

ln

(

Tc0
Tc

)

= ψ

(

1

2
+

~

4πkBTc

1

τ

)

− ψ

(

1

2

)

, (25)

where Tc0 is the critical temperature of the clean system,
1/τ is the rate at which electrons scatter from impurities
and ψ(x) is the digamma function. Combining this result
with the Fermi liquid expression for the interlayer con-
ductivity it can be shown (Powell and McKenzie, 2004b)
that, to leading order in 1/τ , the suppression in Tc is
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FIG. 20 Suppression of superconductivity by non-magnetic
impurities. At low concentrations of impurities the data is
well described by Eq. (26) with a reasonable value of t⊥
(line). But, for higher impurity concentrations strong devia-
tions from the predictions of the Abrikosov-Gorkov formula,
Eq. (25) are observed. From (Analytis et al., 2006); impuri-
ties were introduced by x-ray and proton irradiation. [Copy-
right (2006) by the American Physical Society].

given by

Tc = Tc0 −
e2m∗ct2⊥
4kB~3

ρ0, (26)

where m∗ is the effective mass, t⊥ is the interlayer hop-
ping amplitude and ρ0 is the interlayer residual resis-
tivity. For low impurity concentrations this linear be-
haviour is indeed observed in the κ-BEDT-TTF super-
conductors (Analytis et al., 2006; Powell and McKenzie,
2004b). Furthermore, the value of t⊥ found from a fit
of Eq. (26) to this data yields excellent agreement with
estimates of t⊥ from other experimental techniques, such
as angle-dependent magnetoresistance and quantum os-
cillations (Analytis et al., 2006; Powell and McKenzie,
2004b). However, for higher disorder concentrations the
data does not follow Eq. (25) (Analytis et al., 2006;
Sasaki et al., 2010), cf. Fig 20. Until this deviation from
the prediction of Eq. 25 is understood the question of
the pairing symmetry cannot be considered to have been
resolved.
Another puzzle about the superconducting state is

that, at low temperatures, the in-plane penetration
depth, λ has been found to vary as λ ∼ T 3/2. As
the penetration depth is proportional to the density of
states with ∼ kBT of the Fermi energy, one expects that
λ ∼ exp(−∆/kBT ) for a fully gapped superconductor,
λ ∼ T 2 for a 3D superconductor with point nodes and
λ ∼ T for a 3D superconductor with line nodes or a 2D
superconductor with point nodes (Annett et al., 1990).
The observation of an intermediate power law has not
yet received an adequate explanation.

FIG. 21 Pressure-temperature phase diagram of
EtMe3P[Pd(dmit)2]2 (P-1). This is remarkably similar
to the phase diagrams of κ-(BEDT-TTF)2Cu[N(CN)2]Cl
(Fig. 7) and κ-(BEDT-TTF)2Cu2(CN)3 (Fig. 8). How-
ever, the Mott insulator phase of P-1 shows valence bond
crystalline order unlike the antiferromagnetism observed in
κ-(BEDT-TTF)2Cu[N(CN)2]Cl and the spin liquid seen in
κ-(BEDT-TTF)2Cu2(CN)3. From (Shimizu et al., 2007a).

Another interesting issue is the zero temperature su-
perfluid stiffness, ρs(0) ∝ 1/λ2, where λ is the zero tem-
perature penetration depth. In the underdoped cuprates
it is found that ρs(0) ∝ Tc, which is known as the Ue-
mura relationship. A number of explanations have be
advanced to explain this, but most boil down to the idea
that underdoped cuprates become normal due to a loss
of phase coherence as the temperature is raised (Emery
and Kivelson, 1995). This should be contrasted with the
BCS theory where superconductors become normal at fi-
nite temperatures due to the suppression of pairing by
the entropy associated with quasi-particle excitations.
Pratt et al. (Pratt and Blundell, 2005; Pratt et al.,
2003) have found that in a wide range of BEDT-TTF
salts Tc ∝ 1/λ3 ∝ ρs(0)

3/2. Furthermore, their results
disagree, by orders of magnitude, with the prediction of
both the BCS theory and Emery and Kivelson’s theory of
phase fluctuations (Powell and McKenzie, 2004a), which
gives a good description of the phenomena observed in
the cuprates. No theoretical explanation of Pratt et al.’s
results has been given yet. Doing so remains a major
challenge to theory and a major test for any proposed
microscopic theory of superconductivity in these materi-
als.

IV. β′-Z[Pd(dmit)
2
]
2

Organic charge transfer salts based on the Pd(dmit)2
molecule, shown in Fig. 6b, are less well known, and have
been less widely studied, than the κ-(BEDT-TTF)2X
materials discussed above (section III). However, the
salts of Pd(dmit)2 show a fascinating range of behaviours,
which we review in this section. We will see that
the Pd(dmit)2 salts have much in common with the κ-
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FIG. 22 Pressure-temperature phase diagram of
Et2Me2P[Pd(dmit)2]2 (P-2). This has strong similari-
ties to the phase diagrams of κ-(BEDT-TTF)2Cu[N(CN)2]Cl
(Fig. 7), κ-(BEDT-TTF)2Cu2(CN)3 (Fig. 8) and P-1 (Fig.
21). An important difference is that P-2 shows long range
antiferromagnetism, like κ-(BEDT-TTF)2Cu[N(CN)2]Cl.
The high pressure non-metal phase is associated with a
change in crystal structure (Yamaura et al., 2004). Modified
from (Yamaura et al., 2004).
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FIG. 23 Typical cations in charge transfer salts with
Pd(dmit)2 (shown in Fig. 6b) are shown in panels (b)-(g).
These cations share the PnMe4−nEtn motif, where Pn is a
group V element (pnictogen), panel (a), Me is a methyl group
(CH3) and Et is an ethyl group (C2H5). We use the shorthand
Pn-n for the salt PnMe4−nEtn[Pd(dmit)2]2

(BEDT-TTF)2X salts, as is apparent from their similar
phase diagrams (compare Figs. 21 and 22 with Figs. 7
and 8)

In this section we will discuss many materials with
rather similar chemical formulae. To simplify our
discussion we introduce the following nomenclature:
EtnMe4−nPn[Pd(dmit)2]2 will be written as Pn-n, where
Pn is a pnictogen, Et is the ethyl group, C2H5, and Me
is the methyl group, CH3, cf. Fig. 23.

A. Crystal and electronic structure

The Pd(dmit)2 molecule is shown in Fig 6b. A num-
ber of other M(dmit)2 molecules, where M is a transi-
tion metal, can also form charge transfer salts. An in-
teresting example is Ni(dmit)2, whose salts have quasi-
one-dimensional properties; in contrast to the quasi-
two-dimensional behaviour found in salts of Pd(dmit)2.
These differences arise because of subtle changes in the
molecular orbitals of the dimers of these two molecules
as we will discuss below.
Most of the crystals that we will discuss below take

the so-called β′ phase, shown in Fig. 24. An impor-
tant feature of this structural motif is that the Pd(dmit)2
molecules are arranged in dimers. Electronic structure
calculations show that the amplitude for hopping be-
tween two monomers within a dimer is much larger than
the amplitude for hopping between two monomers in
different dimers (Canadell, 1999; Miyazaki and Ohno,
1999). This arises not only from the greater proxim-
ity of the two monomers in a dimer, but also because
of the shape of the relevant molecular orbitals, which
have a large contribution from the π orbitals. Thus, the
face-to-face stacking within a dimer leads to a large over-
lap. In Section III.A we discussed a simple model for the
electronic structure of a BEDT-TTF dimer. This model
is based on a single molecular orbital (the HOMO) on
each BEDT-TTF molecule. We will now discuss a similar
model for the electronic structure of [M(dmit)2]2. How-
ever, the model forM(dmit)2 differs from that for BEDT-
TTF in several important ways because more than one
molecular orbital on eachM(dmit)2 molecule is involved.
Our discussion is based on extended Hückel calculations
(Canadell, 1999), although we also note that DFT calcu-
lations (Miyazaki and Ohno, 1999) give the same quali-
tative picture.
M(dmit)2 is an electron acceptor molecule and on av-

erage the dimer has a net charge of -1 in the crystal. Thus
näıvely one might expect that the extra electron resides
in the bonding combination of monomer LUMOs. How-
ever, electronic structure calculations find that there is
significant hybridisation between the two monomer HO-
MOs, which complicates this picture. A simple, non-
interacting model for the dimer is

Ĥ[M(dmit)2]2 = ∆
2

∑

i=1

∑

σ

(

L̂†
iσL̂iσ − Ĥ†

iσĤiσ

)

−tH
∑

σ

(

Ĥ†
1σĤ2σ + Ĥ†

2σĤ1σ

)

−tL
∑

σ

(

L̂†
1σL̂2σ + L̂†

2σL̂1σ

)

, (27)

where Ĥiσ creates an electron with spin σ in the HOMO
of the ith monomer and L̂iσ creates an electron with
spin σ in the LUMO of the ith monomer. The solu-
tion of this model is trivial; and sketched in Fig. 25.
It is clear that with five electrons, as is approporate
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FIG. 24 The crystal structure of β′-Et2Me2P[Pd(dmit)2]2 (P-
2). Note that there are two organic layers per unit cell. In
the first layer the molecules stack along the a − b direction,
whereas in the second layer the molecular stacks are orien-
tated along the a+b direction. From (Yamaura et al., 2004).

for [M(dmit)2]
−
2 , one of the energy levels will be par-

tially occupied. However, which state this is is depen-
dent on the ratio (tH + tL)/∆. There are two regimes:
(a) strong dimerisation (tH + tL > 2∆): the antibond-
ing combination of monomer HOMOs contains one elec-
tron, while the bonding combination of monomer LUMOs
contains two electrons (Fig. 25a); and (b) weak dimeri-
sation (tH + tL < 2∆): the antibonding combination
of monomer HOMOs contains two electrons, while the
bonding combination of monomer LUMOs contains one
electron (Fig. 25b). In either, case a one band descrip-
tion will only be justified if |tH + tL − 2∆| is sufficiently
large compared to the other energy scales relevant to the
problem.
Of course, once other orbitals, electron-electron inter-

actions and the weak (almost symmetry forbidden) hy-
bridisation between the HOMO on one monomer and
the LUMOs on the other are included the situation be-
comes significantly more complicated. However, DFT
calculations (Miyazaki and Ohno, 1999) suggest that the
cartoon sketched above does capture many of the im-
portant physical features of both the [Pd(dmit)2]2 and
the [Ni(dmit)2]2 dimers. Furthermore, these calcula-
tions suggest that [Pd(dmit)2]2 corresponds to case (a)
(strong dimerisation) whereas [Ni(dmit)2]2 corresponds
to case (b) (weak dimerisation). Hence the metallic
band in salts of [Pd(dmit)2]2 results primarily from the
antibonding combination of monomer HOMOs whereas
the metallic band in salts of [Pd(dmit)2]2 results pri-
marily from the bonding combination of monomer LU-
MOs. This may sound like a trivial detail but it has
important consequences for the physics of these salts. In
particular, the bands formed (predominately) from the
bonding combination of LUMOs in X[Ni(dmit)2]2 are
quasi-one-dimensional, whereas the bands formed (pre-
dominately) from the antibonding combination of HO-
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FIG. 25 Sketch of the solution of the two site–two orbital
model for a [Pd(dmit)2]2 dimer [Eq. (27)]. In salts formed
with the monovalent cations, which we discuss here, the dimer
has, on average, five electrons. (a) For 2∆ > tH + tL (weak
dimerisation) both the bonding and antibonding combina-
tions of the molecular HOMOs are fully occupied, and the
bonding combination of the molecular LUMOs contains one
electron. Therefore, in the crystal, the half-filled metallic
band will result primarily from the hybridisation of these
LUMO antibonding orbitals. This case is believed to be rele-
vant to the salts of Ni(dmit)2 (Miyazaki and Ohno, 1999).
The shape of the molecular orbitals gives rise to a quasi-
one-dimensional band structure in these compounds. (b) For
2∆ < tH + tL (strong dimerisation) the antibonding combi-
nation of the molecular HOMOs is pushed above the bond-
ing combination of molecular LUMOs. Thus, the half-filled
metallic band in the crystal will be formed from predomi-
nately from these HOMO antibonding orbitals. This is be-
lieved to be the case relevant to the salts of Pd(dmit)2. The
structure of the molecular HOMOs gives rise to a quasi-
two-dimensional band structure with the topology of the
anisotropic triangular lattice, cf. Fig. 24. In order for these
single band descriptions to be relevant to the real materials
|2∆− tH − tL| must be larger than the other energy scales rel-
evant to the problem. If this is not the case multiband effects
may have important consequences.

MOs in X[Pd(dmit)2]2 are quasi-two-dimensional. Thus,
the profound differences in the observed behaviour of
the salts of Ni(dmit)2 and Pd(dmit)2 results from a
rather small structural change (the degree of dimerisa-
tion). The differences between in the band structures of
the Ni and Pd compounds have been nicely illustrated by
comparative DFT calculations for Me4N[Pd(dmit)2] and
Me4N[Ni(dmit)2] (Miyazaki and Ohno, 1999).
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If one takes the dimers as a basic building block
for the electronic structure, then the band structure of
the EtnMe4−nPn[Pd(dmit)2]2 salts is described by an
anisotropic triangular lattice, cf. Fig. 26. To date
the only parameterisations of this anisotropic triangular
lattice come from Hückel calculations (Canadell, 1999).
Miyazaki and Ohno (Miyazaki and Ohno, 1999) reported
that their DFT band structures could be described by a
fit to a tight-binding model for this lattice, but did not re-
port the values of t′/t obtained from these fits. Given the
Hückel methods systematic overestimation of t′/t in the
κ-(BEDT-TTF)2X salts, (cf. Section III.A), one should
exercise care when dealing with the Hückel parameters
for EtnMe4−nPn[Pd(dmit)2]2 salts.

Because of the 2:1 ratio of anions to cations and the
monovalency of EtnMe4−nPn cations the anisotropic tri-
angular lattice model of the EtnMe4−nPn[Pd(dmit)2]2
salts is half filled. Therefore, both Hückel and DFT
calculations predict a metallic state. In contrast, these
materials are found to be insulating at ambient pres-
sure (Kato, 2004), and many undergo a metal-insulator
transition under hydrostatic pressure and/or uniaxial
stress. This suggests Mott physics is at play and hence
that electron-electron interactions are vitally important.
Therefore, the simplest model that may be compatible
with the above considerations is the Hubbard model on
an anisotropic triangular lattice (cf. Section VI.B). Noth-
ing is reliably known about the importance of longer
range electron-electron interactions or electron-phonon
interactions.

B. Frustrated antiferromagnetism

At ambient pressure the β′-Me4−nEtnPn-[Pd(dmit)2]2
salts are Mott insulators (Kato, 2004). A large num-
ber of these materials order antiferromagnetically at low
temperatures. To date relatively little is known about
this antiferromagnetic state, for example, no experiments
have investigated the ordering wavevector. Nevertheless,
it is known that changing the cation does vary the Néel
temperature, TN . Indeed Shimizu et al. (Shimizu et al.,
2007b) have argued that there is a correlation between TN
and the ratio t′/t calculated from extended Hückel the-
ory. However, given the issues with the values of these
parameters obtained from Hückel theory, see Sections
III.A and IV.A, and the small changes in t′/t invoked
in this comparison it is not clear how much confidence
one should invest in this claimed correlation at present.
Certainly the values calculated from Hückel are system-
atically larger than than those found from DFT in the
κ-(BEDT-TTF)2X salts (see Section III.A). Neverthe-
less, one might hope that the trend that increasing t′/t
supresses TN may prove to be robust if higher level band
structure calculations were performed.
The bulk magnetic susceptibility of many of the an-

tiferromagnetic compounds has been studied at length
(Tamura and Kato, 2002). Fits to high temperature se-

ries expansions for the magnetic susceptibility reveal sev-
eral interesting trends (Tamura and Kato, 2002; Zheng,
Singh, McKenzie and Coldea, 2005). Firstly, for all of the
materials for which such fits have been performed, strong
frustration is found (0.85 < J ′/J < 1.15; one should note
however that this method has difficulty in determining
whether J ′/J is greater or less than one). Secondly, for
all of these materials a fit assuming an isotropic triangu-
lar lattice (i.e. J ′ = J) gives J = 250− 260 K. Hence, it
should be noted that in these magnetically ordered ma-
terials kBTN ≪ J , consistent with strong geometrical
frustration.

C. Spin liquid behaviour in β′-Me3EtSb-[Pd(dmit)2]2
(Sb-1)

The bulk magnetic susceptibility, χ, measured at high
temperatures in Sb-1 is remarkably similar to the high
temperature magnetic susceptibility in the frustrated an-
tiferromagnets discussed above. χ(T ) has a broad max-
imum around 50 K (Itou et al., 2008) and fits well to
high temperature series expansions for the isotropic tri-
angular lattice with J ≃ 240 K. However, no magnetic
phase transition has been observed in Sb-1 down to the
lowest temperatures studied [1.37 K (Itou et al., 2008)],
i.e., temperatures two orders of magnitude smaller than
J .
Itou et al. (Itou et al., 2008) also observed an inhomo-

geneous broadening of the NMR spectra at low temper-
atures, see Fig. 27. They argued that this broadening
is due to static local fields, but that, given the measured
value of the hyperfine coupling constant, the broadening
is too narrow to be understood in terms of long range
magnetic order or spin glass behaviour. This is particu-
larly interesting because it is very similar to what is ob-
served in κ-(BEDT-TTF)2Cu2(CN)3, cf. Fig. 12, raising
the possibility of a common origin. At these low temper-
atures the recovery curve for the 13C nuclear magnetic
moment is not described by a single exponential, sug-
gesting that the nuclei see more than one environment.
It is also interesting to compare the findings of NMR

experiments with the measurements of χ. At high tem-
peratures 1/T1T ∝ χ (Itou et al., 2008). However, at low
temperatures 1/T1 saturates to a constant; this is very
different from what would be expected for a system with
a spin gap (where one expects 1/T1T → 0 as T → 0).
However, as noted above, in this low temperature regime
the recovery of the magnetization is not described by a
single exponential, making the estimation of T1 rather
difficult and raising questions about the interpretation of
the estimated value of 1/T1T .

A recent report of measurements of the thermal con-
ductivity of Sb-1 gives several important insights into the
nature of the spin liquid state in Sb-1 (Yamashita et al.,
2010). Figure 28 shows the temperature dependence of
the thermal conductivity κ(T ). The non-zero intercept
of κ(T )/T as the temperature approaches zero is a clear
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FIG. 26 The anisotropic triangular lattice in crystals of EtnMe4−nPn[Pd(dmit)2]2. The left panel shows the a cross section of
the organic layer, with a dimer ringed. The largest intermolecular hopping integrals are marked following the notation common
in the Hückel literature. The central panel shows the structure of the effective dimer model. Here the dimers are represented
by a single orbital, cf. Fig. 25. This can be mapped, without loss of generality, onto the same anisotropic triangular lattice
model as we discussed for the κ-(BEDT-TTF)2X salts in Section III. This model is half filled, so a large Hubbard U must be
associated with the dimers in order to cause the (Mott) insulating phase observed experimentally. [Modified from (Yamaura
et al., 2004) and (Shimizu et al., 2007b).]

FIG. 27 Comparison of the 13C-NMR spectra of (a) Sb-1
which is a spin liquid and (b) P-1 which forms a valence bond
crystal at low temperatures. Both sets of spectra look remark-
ably similar, showing no signs of long range ordering, but an
inhomogeneous broadening that increases as the temperature
is lowered. A similar broadening is observed in the spin liquid
state of κ-(BEDT-TTF)2Cu2(CN)3, cf. Fig. 12. From (Itou
et al., 2008). [Copyright (2008) American Physical Society].

signature of gapless excitations. The magnitude of the
intercept is comparable to its value in the metallic phase
of other organic charge transfer salts, and an order of
magnitude larger than what one gets in the d-wave su-
perconducting state due to nodal quasi-particles (Belin
et al., 1998).

Another important finding reported in this paper is
that a spin gap is observed in the magnetic field de-
pendence of thermal conductivity. At first sight this is
rather puzzling as the temperature dependence of the
thermal conductivity (Fig. 28) clearly shows that there
are gapless excitations. However, one should note that
excitations with any spin state can be excited thermally,
whereas a field does not affect singlet excitations, cf. Sec-
tion I.A.4. Therefore, these two results combined sug-
gest that there are gapless singlet excitations, but a gap

FIG. 28 Temperature dependence of the thermal conductiv-
ity of several different frustrated materials. For κ-(BEDT-
TTF)2Cu2(CN)3 and Sb-2 the κ/T → 0 as T → 0 indicating
that the excitations are gapped. However, for Sb-1 the spec-
trum appears to be gapless at κ/T tends to a finite number
as T → 0. Indeed the residual value of κ/T is comparable
to that observed in the metallic state of other organics (Belin
et al., 1998). The inset shows the same data on a linear scale
From (Yamashita et al., 2010).

to the lowest lying triplet (or higher spin) excitations.
Thus, these results suggest that P-1 is what Normand
has called a ‘Type-II’ spin liquid (Normand, 2009), see
Sections I.A.4 and VI.A for further discussion.

Recently Katsura et al. (Katsura et al., 2010) pre-
dicted that there would be a sizeable thermal Hall effect
in quantum spin liquids with deconfined spinons. This
motivated measurements of the thermal conductance ten-
sor in a magnetic field perpendicular to the layers (Ya-
mashita et al., 2010). Within error the thermal Hall angle
was zero.
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FIG. 29 Opening of a spin gap in P-1. (a) At high tempera-
tures the spin susceptibility is similar to the other Pd(dmit)2
salts and can be fit to high temperature series expansions of
the Heisenberg model on the isotropic triangular lattice with
J ∼ 250 K. But, below ∼ 25 K a sudden drop is seen (b). At
low temperatures the susceptibility appears to be activated
consistent with the opening of a spin gap. From (Tamura,
Tajima and Kato, 2005).

D. Is there a valence bond crystal or spin Peierls state in
β′-Me3EtP-[Pd(dmit)2]2 (P-1)?

P-1 shows an unusual phenomenology at low tempera-
tures. As with the other Pd(dmit)2 salts discussed above
at high temperatures the bulk magnetic susceptibility is
well described by high temperature series expansions for
the Heisenberg model on the anisotropic triangular lat-
tice, in this case with J ≃ 250 K, cf. Figure 29. One
should note here that a Curie term (corresponding to
about one S = 1/2 spin per 300 formula units) and a
constant term (the value of which was not reported) have
been subtracted from the experimental data before this
comparison was made. However, below 25 K an expo-
nential decrease in χ is observed (Tamura, Tajima and
Kato, 2005), cf. Figure 29. The low temperature sus-
ceptibility is consistent with the opening of a spin gap
of ∆ = 40 ± 10 K, although Tamura et al. stress that
this value is quite sensitive to the details of the values
of the Curie and constant terms subtracted from the ex-
perimental data. One should also note that this fit was
carried out over less than one decade in temperature.
X-ray crystallography (Tamura, Tajima and Kato,

2005) reveals structural changes in P-1 at approximately
the same temperature as the spin gap opens. Satellite
peaks indicating a doubling of the periodicity in the crys-
tallographic c direction (which lies in the highly conduct-
ing plane) grow rapidly below 25 K, see Fig. 30. In
the high temperature phase the distance between neigh-
bouring Pd(dmit)2 molecules in different dimers is, uni-

FIG. 30 Lattice distortion at low temperatures in P-1. At
high temperatures all of the dimers in P-1 are uniformly
spaced (3.82 Å apart). However, below ∼ 25 K at lattice
restructuring occurs and the dimers ‘pair-up’ (we will avoid
the word dimerise here13). Below the same temperature sig-
nificant changes in the magnetic susceptibility are observed,
cf. Fig 29, which suggest that a spin gap opens. Both effects
are large suggesting that neither is a secondary effect induced
by the bilinear coupling between the order parameters. This
conclusion would imply that neither the simple valence bond
crystal nor the simple spin-Peierls transition is a sufficient de-
scription. Panel (a) shows the growth of the Bragg peak as-
sociated with this distortion at low temperatures, while panel
(b) shows the distorted crystal lattice. From (Tamura, Tajima
and Kato, 2005).

formly, 3.82 Å. In the low temperature, spin gapped,
phase there are two crystallographically distinct types of
[Pd(dmit)2]2 dimer with the distances between molecules
in the two different dimers now being 3.76 Å and 3.85
Å. Thus the [Pd(dmit)2]2 dimers have paired up.13

The 13C NMR spectrum of P-1, Fig. 27 (Itou et al.,
2008), broadens slightly below 25 K consistent with the
increased number of environments for the nuclei. It is
interesting to note how similar the NMR spectra for P-
1 and Sb-1 are, in marked contrast to the very different
behaviours of the low temperature bulk magnetic suscep-
tibility.

There are two natural explanations for this pairing of
dimers occurring concomitantly with the opening of the
spin gap: a valence bond crystal or a spin Peierls distor-
tion. Although these two possibilities are quite different

13 If we treat the [Pd(dmit)2]2 dimers as ‘sites’ one would conven-
tionally say that the sites have dimerised, but this can get a little
confusing as we are already using the word ‘dimer’ as a synonym
for site.
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FIG. 31 Sketch of a valence bond crystal. Coloured elipses
indicate singlet correlations between pairs of sights. Note
that this state breaks both the rotational and translational
symmetries of the underlying lattice, although a particular
combination of the two remains unbroken. This should be
contrasted with a valence bond liquid, that does not break
these symmetries. On possible configuration of such a valence
bond liquid is shown in Fig. 34.

theoretically, the experimental consequences of these dif-
ferences are rather subtle. It is therefore helpful to ex-
amine each possibility briefly. The key issue is whether
a spin-lattice coupling is necessary for formation of the
spin gap. In other words, does the lattice distortion cause
the gap or does the formation of spin singlets due to frus-
tration cause the lattice distortion? Similar issues have
been discussed for Heisenberg models relevant to CaV4O9

(Starykh et al., 1996) and Li2VOSiO4 (Becca and Mila,
2002).
The valence bond crystal (VBC) is a purely electronic

phenomena. The VBC has been postulated as a possi-
ble ground state for various frustrated Heisenberg models
(or related spin Hamiltonians) (Normand, 2009) includ-
ing the model on the anisotropic triangular lattice that is
relevant here (cf. Section VI.A). In the VBC state pairs
of spins form singlets. These singlets are arranged pe-
riodically so as to break the translational symmetry of
the underlying lattice (cf. Fig. 31). Note that the lat-
tice degrees of freedom do not play any explicit role in
stabilising the VBC state. However, in any real material
the spin-phonon coupling will drive a lattice distortion
that decreases the distance between the the sites within
a singlet.
In contrast to the VBC, the spin Peierls distortion in-

volves the lattice in an essential way. The spin Peierls
distortion is usually conceived as a one-dimensional (1D)
phenomena. The uniform one dimensional Heisenberg
chain has gapless excitations. However, dimerisation of
the lattice opens a gap in the excitation spectrum and
lowers the ground state energy. This decrease in energy
is greater than the cost in elastic energy associated with
the lattice distortion and so if the spin-phonon coupling
is non-zero there is a spontaneous dimerisation of the
lattice (Cross and Fisher, 1979).
An appropriate order parameter for the VBC state is

φ =
∑

i

∑

n.n.〈Ŝi · Ŝi+1 − Ŝi · Ŝi−1〉 where Si is the spin
operator on site i and the sites i+1 and i−1 are nearest

neighbours of site i, but in opposite directions, the sum
over n.n. indicates that this sum runs over all such pairs
of nearest neighbours. An order parameter for the spin-
Peierls transition is λ =

∑

i

∑

n.n.〈r̂ir̂i+1−r̂ir̂i−1〉, where
ri is the position of site i. These order parameters couple
at bilinear order in a Landau theory. Thus, the simplest
Landau theory will be

∆F = αφ2 + βφ4 + aλ2 + bλ4 + sφλ, (28)

where ∆F is the difference between the energies of the
high and low symmetry phases, and α, β, a, b and s are
the parameters of the theory. Thus, if one order param-
eter becomes finite it acts as a ‘field’ for the other imply-
ing that the second will take, at least, a small non-zero
value. Therefore the observation that both λ and the
spin gap become non-zero at ∼ 25 K is not overly sur-
prising. However, both the gap and the lattice distortion
are large ∆/kBTc = 1.6±0.4,14 and λ = 0.1 Å, i.e., 2.4%
of the average interdimer spacing This is comparable to
or larger than the amplitudes of the distortions observed
in many organic spin Peierls systems (Dumoulin et al.,
1996; Foury-Leylekian et al., 2004; Moret et al., 1986;
Visser et al., 1983). This may indicate that neither ef-
fect is simply parasitic on the other, in which case one
would expect the parasitic order parameter to be small,
and hence that the low temperature phase is stabilised
cooperatively by both the lattice and electronic degrees
of freedom and not properly characterised as either a
spin-Peierls or a VBC state.
A key question is why this large spin gap is observed

in P-1, but not in other EtnMe4−nPn[Pd(dmit)2]2 salts.
Tamura et al. proposed that an essential ingredient is the
crystal structure of P-1. Most EtnMe4−nPn[Pd(dmit)2]2
salts form the so-called β′ structure, which displays a
C2/c space group (Kato, 2004). The unit cells of these
materials each contain two organic layers, cf. Fig. 24.
These planes are crystallographically equivalent and re-
lated by an axial glide along the c-axis (interlayer direc-
tion). This glide maps the a+ b direction, in which the
dimers stack, in one plane onto the a − b plane in the
next. This results in what is known as a ‘solid crossing’
crystal structure, cf. Fig 24. However, P-1 forms crystals
with P21/m symmetry (Kato et al., 2006). This unit cell
also contains two crystallographically equivalent organic
layers, but now they are related by b-mirror and b-screw
symmetries (in this structure the b-axis is the interlayer
direction) rather than a glide plane. Thus, both layers
stack in the same (a+ c) direction. Other than the loss
of the glide plane, the crystal structure of P-1 is remark-
ably close to the β′ structure. Thus Tamura et al. argued
that the solid crossing in the β′ phase means that if there
were Peierls distortion along the dimer stacking direction

14 Note that this is close to the size of the gap predicted by weak
coupling theories: the weak-coupling BCS gap in a superconduc-
tor or spin density wave is ∆/kBT = 1.76.
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FIG. 32 The paramagnetic to non-magnetic transition in Sb-
2. A rather similar transition is also seen in Cs-00. The
microscopic nature of this transition is not clear. However,
it is clear that small amounts of non-magnetic impurities in
the cation layer completely suppress the non-magnetic phase.
From (Tamura et al., 2006).

in a β′-EtnMe4−nPn[Pd(dmit)2]2 salt this would lead to
large internal strains within the crystal as the distortion
would alternate along the a + b and a − b directions
in the neighbouring planes. No detailed calculation has
yet investigated whether this could be energetically un-
favourable enough to prevent the opening of the spin gap.
However, if there are many competing ground states it is
possible that a small increase in the ground state energy
of the spin Peierls/VBC phase, such as that caused by
the internal strains invoked by Tamura et al., could be
enough to suppress this phase in favour of some other.
The above proposal requires that the elastic coupling

between layers be sufficiently large that it can change
the ground state. An alternative hypothesis is that the
intralayer anisotropy J ′/J varies enough between the dif-
ferent materials that the ground state is different. In Sec-
tion VI.A (see especially Figure 38) it will be seen that a
significant spin gap only occurs for a narrow parameter
range (J ′/J ≃ 0.7 − 0.9) of the Heisenberg model on a
triangular lattice.

E. Paramagnetic to non-magnetic transition in
Et2Me2Sb[Pd(dmit)2]2 (Sb-2) and Cs[Pd(dmit)2]2 (Cs-00)

Rather similar phase transitions are seen at ∼ 70 K
in Sb-2 and ∼ 65 K in Cs[Pd(dmit)2]2 (henceforth Cs-
00). In Cs-00 the resistance shows a clear metal-insulator
transition at this temperature (Underhill et al., 1991).
This is accompanied by a sudden drop in the bulk mag-
netic susceptibility (Underhill et al., 1991), which is ∼ 3.5
emu/mol, independent of temperature, for T > 65 K and
zero to within experimental error for T < 65 K. In Sb-2 a
non-metal to insulator transition corresponding to “steep
rise of resistivity with decreasing temperature” was re-
ported by Tamura et al. (although they did not show
the data) concomitant with the sudden drop in the bulk
magnetic susceptibility, shown in Fig. 32 (Tamura et al.,
2006).

Nakao and Kato (Nakao and Kato, 2005) have shown
that these phase transitions are both associated with
changes in crystal structure. At room temperature both
Sb-2 and Cs-00 form crystals with the C2/c crystal struc-
ture of the β′ phase, cf. section IV.D and Fig. 24.
At temperatures just above the phase transition criti-
cal temperature, Tc, additional incommensurate satellite
reflections are seen in both materials via x-ray scattering
(Nakao and Kato, 2005). These become fully developed
Bragg peaks below Tc, indicative of a change in the crys-
tal structures. In their low temperature phases both P-2
and Cs-00 have crystals with P21/c symmetry. The most
dramatic change associated with this is a doubling of the
unit cell along the (in plane) b-axis. This leads to there
being two crystallographically distinct dimers, labelled
X and Y in Fig. 33, per unit cell, which are arranged
in alternating rows perpendicular to the stacking direc-
tion. The bond lengths within the X dimers are signifi-
cantly different from those within the Y dimers (Nakao
and Kato, 2005).

The optical conductivities of both Sb-2 (Tamura, Tak-
enaka, Takagi, Sugai, Tajima and Kato, 2005) and Cs-00
(Underhill et al., 1991) are also very similar and show
dramatic changes below Tc. Above Tc Cs-00 displays
a Drude peak and a much stronger broad Lorentzian
peak centred around ∼ 1 eV. Below Tc the Drude peak
is absent, consistent with the metal-insulator transition
observed in the dc conductivity. No major qualitative
changes are observed in the high energy feature between
the spectrum recorded at 80 K and that at 50 K. How-
ever, by 20 K this peak has split into two distinct fea-
tures. This is consistent with there being two distinct
dimers in the crystals at these temperatures. Tamura
et al. only reported the optical conductivity of Sb-2 for
frequencies greater than 5 × 103 cm−1, so it is not pos-
sible for us to discuss the Drude peak in this material,
although one presumes it will be absent. However, other-
wise the high frequency conductivity is remarkably simi-
lar to that of Cs-00. At 100 K (and higher temperatures)
there is a single broad feature, which can be fit to a single
Lorentzian. But, at 50 K and 4 K (the only temperatures
below Tc for which the optical conductivity was reported)
two narrower Lorentzian peaks were observed.

Both Underhill et al. and Tamura et al. interpret the
peaks in the high energy optical conductivity in terms
of intradimer transitions (from the HOMO-bonding level
to the HOMO-antibonding level and the LUMO-bonding
level to the LUMO-antibonding level, cf. Fig. 25).
This neglects correlations, which we have seen are im-
portant in these materials. However, one can describe
the transition as an intra-dimer charge transfer transi-
tion, which yields similar results (Merino and McKen-
zie, 2000c). Underhill et al. argued that the transition
involved a charge density wave coupled to a secondary
order parameter. Alternatively, Kato’s group (Nakao
and Kato, 2005; Tamura and Kato, 2004; Tamura, Take-
naka, Takagi, Sugai, Tajima and Kato, 2005) have argued
that the low-energy phase is charge ordered, with com-
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FIG. 33 Lattice reconstruction in the low temperature non-
magnetic phase of Sb-2. At the temperature where the sudden
drop in the bulk susceptibility is observed (Fig. 32) the crys-
tal changes symmetry from C2/c to P21/c. This results in
the low temperature unit cell (left) being double the size of
the high temperature unit cell (right). In the high tempera-
ture unit cell both dimers are crystallographically equivalent.
But in the low temperature unit cell there are two crystallo-
graphically inequivalent dimers (labelled X and Y). The bond
lengths are distinctly different in the X and Y dimers, sug-
gesting significant charge disproportionation. From (Nakao
and Kato, 2005).

plete charge disproportionation between [Pd(dmit)2]
0
2 X

dimers (cf. Fig. 33) and [Pd(dmit)2]
+2
2 Y dimers. One

way to test this hypothesis would be to study how the
phonon frequencies shift at the transition. Nevertheless,
no investigations of the interesting physics in Cs-00 and
Pb-2 using quantum many-body theory have yet been
reported.
It is also interesting to note that there is at least two

differences between the phase transition in Sb-2 and Cs-
00 (Nakao and Kato, 2005). Firstly, in Sb-2 the addi-
tional Bragg peaks grow sharply at the phase transition
and hysteresis is observed, suggesting a first order tran-
sition. In contrast, in Cs-00 no hysteresis is observed
and the additional Bragg peaks grow continuously sug-
gesting a second order phase transition. Secondly, the
paramagnetic to non-magnetic transition in Cs-00 is as-
sociated with a metal to insulator transition (Underhill
et al., 1991), whereas Sb-2 is insulating in both phases
(Tamura et al., 2006). These differences, and the possible
connection between them, have not, yet, been explained.

1. Et3MeSb impurities in Et2Me2Sb[Pd(dmit)2]2 (Sb-2)

The first crystals of Sb-2 to be grown were electrocrys-
tallised out of a solution containing Et3MeSb+ ions as
well as Et2Me2Sb

+ ions (Aonuma et al., 1997). These
materials did not show the phase transition described
above, cf. Fig. 32. Rather, the bulk magnetic suscepti-
bility, χ, in these samples is remarkably similar to that
of the spin liquid Sb-1. In both materials χ has a broad
maximum around 50 K. And the exchange interaction ex-
tracted from fits to χ(T ) is J ≃ 240 K for both Sb-1 (Itou
et al., 2008) and Sb-2 (Tamura and Kato, 2002; Zheng,
Singh, McKenzie and Coldea, 2005). Indeed, no magnetic

phase transition was observed in these Sb-2 salts grown
in the presence of Et3MeSb down to the lowest temper-
atures studied [4.3 K (Nakamura et al., 2001)], which is
temperatures two orders of magnitude smaller than J .
Nakao and Kato (Nakao and Kato, 2005) have grown

crystals of Sb-2 from electrolytes consisting of different
ratios of Et2Me2Sb

+ to Et3MeSb+. For a 10:1 ratio the
Tc of the nonmagnetic phase was supressed by ∼ 5 K rel-
ative to samples grown electrolytes free of Et3MeSb+.
However, a 2:1 ratio completely suppresses the phase
transition.
Note that Et2Me2Sb and Et3MeSb are isoelectronic, so

Et3MeSb should be a non-magnetic impurity. Nakao and
Kato’s results could suggest that the low temperature
phase in Sb-2 is extremely sensitive to disorder. How-
ever, they also found that the inclusion of Et3MeSb leads
to a significant expansion of the unit cell, as one would
reasonably expect given that an ethyl group is approxi-
mately twice as large as a methyl group. Compared to
the Et3MeSb free crystal, the unit cell is 0.11% larger in
crystal grown from the 10:1 electrolyte and 0.25% larger
in the crystal grown from the 2:1 electrolyte (Nakao and
Kato, 2005). They also found that the unit cells of
the earlier crystals were 0.35% larger than those of the
Et3MeSb free crystal suggesting that these first crystals
contained significant concentrations of Et3MeSb. How-
ever, no direct measurements of the concentrations of
Et3MeSb in an Sb-2 crystal have yet been reported.
It has not yet been possible to grow crystals of Sb-3

as Et3MeSb[Pd(dmit)2]3 is preferentially formed (Nakao
and Kato, 2005). Clearly, it would be very interesting to
know how Sb-3 behaved at low temperatures.
Whether impurity physics or the lattice expansion is

the dominant effect of Et3MeSb impurities, it is clear
that there is a rather subtle competition between the
low temperature phase in Sb-2 and spin liquid behaviour.
This is rather surprising as the critical temperature in
Et3MeSb free Sb-2 is quite large, 70 K.
It would be extremeley interesting to understand this

physics. Not only for its intrinsic interest, but also in
relation to the spin liquid state in κ-(BEDT-TTF)2Cu2-
(CN)3 and Sb-1.

F. Mott transition under hydrostatic pressure and uniaxial
stress

Most studies of EtnMe4−nPn[Pd(dmit)2]2 salts under
hydrostatic pressure or uniaxial stress have been limited
to measurements of the resistivity. Thus, there has been
a mapping out of the phase diagram in terms of the in-
sulating, metallic and superconducting states. In this
section we review these phase diagrams and discuss the
few pioneering studies to go beyond resistivity measure-
ments.

P-0 and As-0 do not exhibit a metal-insulator tran-
sition under even the highest pressures studied (∼ 17
kbar) (Kato, 2004). This suggests that they are further
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into the Mott insulating regime than many other salts of
Pd(dmit)2, which are driven metallic under these pres-
sures. This is rather counterintuitive as these materials
have small anions (containing only methyl groups and
no ethyl groups), which one would näıvely associate with
a large ‘chemical pressure’. However, a uniaxial strain
along the b axis of > 7 kbar drives As-0 metallic (Kato
et al., 2002). In contrast uniaxial strains along the a and c
axes do not drive the system metallic (Kato et al., 2002),
indeed moderate strains (∼ 2 kbar) the these directions
drive As-0 deeper into the insulating state. Kato et al.
argued that that applying a stress along the a axis in-
creases the dimerisation and so increases U , while strain
along the b axis moves the dimer stacks closer together
and thereby increases W . This argument make two im-
plicit assumptions: (i) that a single orbital description of
the electronic structure of these materials is appropriate;
(ii) that they are in the limit (Um−Vm) ≫ 2tA and hence
that U ≃ 2tA, where U is the effective Coulomb repulsion
between two electrons on the same [Pd(dmit)2]2 dimer,
Um is the Coulomb repulsion between two electrons on
the same Pd(dmit)2 molecule, Vm is the Coulomb repul-
sion between two electrons on different molecules within
the [Pd(dmit)2]2 dimer, and tA is the hopping integral
between the two molecules in the dimer. It is not clear,
at present, that either of these assumptions is valid.

Kato et al. (Kato et al., 1998) measured the resistiv-
ity of P-2 under pressure in order to map out its phase
diagram (Fig. 22). They found that the ambient pres-
sure insulating phase can be driven into a metallic state
(which superconducts below ∼ 4 K) by pressures above
9 kbar. However above ∼ 12 kbar an insulating state is
observed again. Yamaura et al. (Yamaura et al., 2004)
found that the high pressure insulating phase is driven
by a change in the crystal structure of P-2 from the usual
β′ phase with C2/c symmetry and four crystallograph-
ically equivalent dimers per unit cell, cf. Fig. 24, to a
phase with P1, with two crystallographically inequivalent
dimers per unit cell. As the two inequivalent dimers are
in different layers this means that the layers are inequiv-
alent. However, no detailed theory of why this causes an
insulating state has yet been reported.

It is interesting to note that in the metallic state of P-2
the resistivity (Kato et al., 1998) does not have the non-
monotonic temperature dependence associated with the
‘bad-metal’ regime, so typical of the κ-ET2X salts. Nor
is there any sign of a bad metal in the metallic phases
of Sb-0 [above ∼ 9 kbar (Kato et al., 1996)]. There is a
small peak around 50 K in As-0 under a uniaxial strain
∼ 7 kbar along the b axis (Kato et al., 2002), but it ap-
pears rather less pronounced than one sees in κ-(BEDT-
TTF)2X.

Both Shimizu et al. (Shimizu et al., 2007a) and Itou
et al. (Itou et al., 2009) have investigated the metal-
VBC/spin Peierls insulator transition in P-1, which oc-
curs under ∼ 4 kbar of hydrostatic pressure (Fig. 21).
Shimizu et al. found clear evidence that the transition
is first order from sharp discontinuities and hysteresis in

the resistivity. They also found that a magnetic field
destabilises the insulating phase in favour of the metallic
phase. Whence, they were able to show, from a Clausius-
Clapeyron analysis, that the magnetisation, M = χB,
in the insulating phase is less than that in the metallic
phase, consistent with the proposed non-magnetic VBC
state. This is consistent with the results of Itou et al.
from NMR spectroscopy. They did not observe any signs
of magnetic ordering under pressure and concluded that
the VBC/spin Peierls state persists over the entirety of
the insulating region of the phase diagram. This means
that the VBC/spin Peierls phase directly abuts the su-
perconducting phase, raising interesting questions about
the role of spin correlations in mediating this supercon-
ductivity. In particular this means that P-1, like the
spin liquid compounds Sb-1 and κ-(BEDT-TTF)2Cu2-
(CN)3, provides an interesting contrast to the, more com-
mon, case of superconductivity near an antiferromagnetic
Mott insulator (Itou et al., 2009; Powell and McKen-
zie, 2007). Nevertheless, both of these insulating states
have large singlet fluctuations, and so, may actually have
rather similar relationships to their nearby superconduct-
ing phases. In the low temperature insulating phase Itou
et al. find that the spin lattice relaxation cannot be fit
to a single exponential suggesting that the systems is
rather inhomogeneous. Similar effects are also observed
in the spin-Peierls phase of CuGeO3 (Itoh et al., 1995;
Kikuchi et al., 1994). Itou et al. propose that this is
because unpaired spins strongly influence the relaxation
rate. However, this would appear to be a rather subtle
question, and it would be interesting to know if specific
microscopic theories can account for this effect.

The resistivity in the metallic state of P-1 (Shimizu
et al., 2007a) is remarkably similar to the resistivity in
the metallic states of the κ-(BEDT-TTF)2X compounds
(cf. section III.D), suggesting the same bad metal physics
is likely to be at play. However, 1/T1T is constant at low
temperatures15 (Itou et al., 2009) suggesting that there
is no pseudogap in P-1.

One puzzling result is that in the metallic state of P-
1 the in-plane (a-axis) resistivity is only described by
the usual Fermi liquid form, ρ‖(T ) = ρ‖0 + AT 2, at
the highest pressures studied ∼ 8 kbar (Shimizu et al.,
2007a). At lower pressures and for temperatures in the
range of about 2-20 K the data can be fit to the form
ρ‖(T ) = ρ‖0 + AT ǫ with 2 < ǫ < 3. This may suggest
that near the Mott transition the electrons scatter off
an additional mode as well the direct electron-electron
scattering that gives rise to the quadratic temperature
dependence of the resistivity in Fermi liquid theory. For
example, below their Debye temperature phonons give
rise to an electron-phonon scattering rate 1/τe−ph ∝ T 5

15 For P = 4.8 kbar below ∼ 20 K, for P = 6.0 kbar below ∼ 100
K, for P = 8.0 kbar below ∼ 200 K. Data extends down to 2 K
for all pressures.
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(Ashcroft and Mermin, 1976). If both electron-electron
and electron-phonon scattering gave rise to similar scat-
tering rates this could appear as a intermediate power law
over a limited temperature range, like those discussed
above. On the other hand, it may be that one is fit-
ting at temperatures above that at which simple Fermi
liquid applies. At the lower pressures the resistivity in-
creases rapidly above about 30 K, corresponding to the
destruction of quasi-particles, which suggests that the T 2

behaviour may not last as high as 20 K even at 8 kbar.
Shimizu et al. also note that the value of A they ob-

serve is a factor of about fifty times smaller than that
found in the metallic phase of the κ-(BEDT-TTF)2X
salts. They suggest that this is because the electron-
electron interactions are weaker. However, this seems
unlikely as metallic P-1 is on the border of a Mott tran-
sition. A number of material specific factors are impor-
tant in determining the value of A (Jacko et al., 2009),
therefore these effects are probably responsible for the
smaller value of A in P-1. Also, caution is in order since
accurately measuring the intralayer resistivity in layered
materials can be difficult because of uncertainties about
the actual current path through the sample.
At low temperature P-1 superconducts. Tc is sup-

pressed from its maximum value, ∼ 5 K, near the Mott
transition by the application of greater pressure (Shimizu
et al., 2007a). However, very little is known about the su-
perconducting state in any of the Pd(dmit)2 salts. This
is at least in part due to the fact that the supercon-
ducting state is only observed under pressure, making
many experiments difficult. Most of the reports of super-
conductivity simply consist of resistivity measurements.
However, (Ishii et al., 2007) did observe the Meissner ef-
fect in P-1, from which they were able to show that the
superconductivity is a bulk effect.

V. NUCLEAR MAGNETIC RESONANCE AS A PROBE
OF SPIN FLUCTUATIONS

The experimental data for 1/T1T for most of the ma-
terials of interest show two regimes: T > TNMR in which
1/T1T increases as temperature decreases and T < TNMR

where 1/T1T is rapidly suppressed as the temperature
is further lowered. The spin fluctuation models that we
discuss below predict that 1/T1T is a monotonic decreas-
ing function of temperature and so cannot describe the
data below TNMR. Hence our discussion is confined to
the T > TNMR regime, where the data for a wide range
of materials can be fit to the form (Powell et al., 2009;
Yusuf et al., 2007)

1

T1T
=

(

1

T1

)

∞

1

(T + Tx)
. (29)

This temperature dependence is obtained for three differ-
ent spin fluctuation models described below. This then
raises the question of which model gives the physically
appropriate picture.

1. Long-range antiferromagnetic spin fluctuation model

A phenomenological antiferromagnetic spin fluctuation
model was introduced by Moriya in his self-consistent
renormalization (SCR) theory (Moriya and Ueda, 2003)
and was used by Millis, Monien and Pines (MMP) (Millis
et al., 1990b) to describe NMR in the metallic state of
the cuprates. Together with Yusuf we recently applied
this model to describe NMR relaxation in the metallic
phase of several superconducting organic charge transfer
salts from the family, κ-(BEDT-TTF)2X (Powell et al.,
2009; Yusuf et al., 2007).
The dynamic susceptibility is assumed to have the form

χ(q, ω) =
χQ(T )

1 + ξ(T )2|q−Q|2 − iω/ωSF(T )
(30)

where χQ(T ) is the static spin susceptibility at a non-
zero wavevector q = Q, ωSF(T ) is the characteristic spin
fluctuation energy which represents damping in the sys-
tem near q = Q, and ξ(T ) is the temperature dependent
correlation length. When there are long-range antifer-
romagnetic fluctuations, (i.e., ξ(T ) ≫ a) the spin relax-
ation rate (15) is given by

1

T1T
=

2πkB |A|2
γ2e~

4q2c

χQ(T )

ωSF(T )ξ(T )2
(31)

where qc ∼ π/a is the cut-off wavevector when one in-
tegrates over the Brillouin zone. This expression can
be simplified further by making the scaling assumptions
χQ = α(ξ/a)2−η and ωSF = α′(ξ/a)−z where α and α′

are temperature independent constants and a is the lat-
tice spacing. Following MMP (Millis et al., 1990b), we
assume a relaxational dynamics of the spin fluctuations,
which are described by a dynamic critical exponent z = 2,
and the mean-field value of the anomalous critical expo-
nent η = 0. Within these approximations, the relaxation
rate, can be written as

1

T1T
=
kB |A|2
γ2e~

3

χQ(T )

T0
(32)

where the temperature scale, T0 defined by Moriya and
Ueda (Moriya and Ueda, 2003) is

T0 ≡ ωSF(qcξ(T ))
2

2π
=
α′

2π
(qca)

2. (33)

In passing we note that this temperature scale is of par-
ticular physical significance because Moriya and Ueda
(Moriya and Ueda, 2003) find that for a wide range of
unconventional superconductors their transition temper-
ature increases monotonically with T0.
We further assume that the temperature dependence of

the correlation length ξ(T ) is (Millis et al., 1990b; Moriya
and Ueda, 2003)

ξ(T )

ξ(Tx)
=

√

2Tx
(T + Tx)

. (34)



44

For this form, Tx represents a natural temperature scale
and ξ(T ) is only weakly temperature dependent for T ≪
Tx. The static susceptibility associated with the antifer-
romagnetic fluctuations then has the temperature depen-
dence

χQ(T ) = χQ(Tx)
2Tx

T + Tx
. (35)

Then the relaxation rate has the temperature dependence
(29) with

(

1

T1

)

∞

=
2kB |A|2
γ2e~

3
χQ(Tx)

Tx
T0
. (36)

2. Quantum critical spin fluctuation model

Sachdev has interpreted the observed temperature de-
pendence of 1/T1 in the cuprates La2−xSrxCuO4 in terms
of quantum criticality (see Figure 4 of (Sachdev, 2000)).
He notes that theoretical calculations for non-linear
sigma models associated with the Heisenberg model on
the square lattice that in the quantum critical regime
1/T1 becomes independent of temperature. Making this
identification requires that there is a quantum phase
transition as a function of the doping near x = 0.075. A
connection can be made to the MMP model if we assume
that Tx defines the temperature scale above which the
crossover to quantum critical behavior occurs (cf. Figure
3).

3. Local spin fluctuation model

The local spin fluctuation model presents a physically
different picture for the high temperature relaxation rate
because the spin fluctuations are local, in contrast, to
the long-range fluctuations in the two models above. It
can be shown that, in the high-temperature limit, the
uniform magnetic susceptibility of a spin-1/2 Heisenberg
antiferromagnetic system is given by a Curie-Weiss ex-
pression. For the triangular lattice this form holds down
to much lower temperatures than for the square lattice
because the frustration increases the domain of validity of
the single site approximation associated with the Curie-
Weiss theory (Merino et al., 2006; Zheng, Singh, McKen-
zie and Coldea, 2005) (cf. Figure 4). In the same high
temperature limit the NMR relaxation rate is given by
(Gulley et al., 1970; Moriya, 1956; Singh and Gelfand,
1990)

(

1

T1

)

∞

=

√
π|A|2
z~J

(37)

where A is the hyperfine interaction and z is the co-
ordination number of the lattice. The derivation of this
result involves a short time expansion of the electronic
spin correlation function, which is assumed to decay in a

Gaussian manner. For Sb-1 it was shown that the magni-
tude of 1/T1 is consistent with the above expression with
independent estimates of A (from the scale of the suscep-
tibility and the Knight shift) and J (from the temper-
ature dependence and magnitude of the susceptibility)
(Itou et al., 2008).

VI. QUANTUM MANY-BODY LATTICE
HAMILTONIANS

A. Heisenberg model for the Mott insulating phase

In Section III.A we argued that from a quantum chemi-
cal perspective that the simplest possible effective Hamil-
tonian for the organic charge transfer salts is a Hubbard
model on the anisotropic triangular lattice at half fill-
ing. This means that in the Mott insulating phase the
spin degrees of freedom can be described by a Heisen-
berg model on an anisotropic triangular lattice (McKen-
zie, 1998). This lattice can also be viewed as a square
lattice with interactions along one diagonal. The Hamil-
tonian is

Ĥ = J
∑

〈ij〉

Ŝi · Ŝj + J ′
∑

〈〈ik〉〉

Ŝi · Ŝk (38)

where J describes the exchange interaction in the vertical
and horizontal directions and J ′ is the interaction along
the diagonal (compare equation (3)). This model inter-
polates between the square lattice (J ′ = 0), the isotropic
triangular lattice (J ′ = J), and decoupled chains (J = 0).
We will also consider the above Hamiltonian with an ad-
ditional ring-exchange interaction J� for every square
plaquette and given by (7).
Extensive studies of the above Hamiltonian have been

made of the case J� = 0 and for J ′ = J, J� 6= 0, which
we review below. We are unaware of any studies of the
full two-dimensional model with J ′ 6= J, J� 6= 0. Below
we do briefly discuss some very recent studies of related
two- and four-rung ladder models for these parameters.
Below we discuss studies giving a ground state with

no magnetic order when J ′/J ≃ 0.7 − 0.9, J� = 0, and
J ′ = J, J� > 0.05J . In both cases there is an energy
gap to the lowest lying triplet state. In the former case
the state is a valence bond crystal with dimer order on
horizontal (or vertical) bonds. In the second case there is
believed to be no dimer order. The observed ground state
of P-1 is consistent with the valence bond crystal state.
It is not possible to clearly identify the ground state of
κ-(ET)2Cu2(CN)3 with either of these two non-magnetic
states. We discuss this in Section VI.A.3, below.

1. RVB states

A recent field-theoretic perspective on RVB states and
their excitations has been given (Sachdev, 2009a). Becca
et al. have given a nice review of variational RVB wave
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FIG. 34 One possible dimer covering of the triangular lat-
tice. Each oval represents a singlet pairing of the spins on the
two sites enclosed within the oval. Short range RVB states
consist of superpositions of such states. (Figure provided by
S. Sachdev).

functions for frustrated Heisenberg spin models (Becca
et al., 2009). They show that these wave functions be-
come close to the true ground state wave function as the
frustration increases. Figure 35 shows this for the case
of the frustrated Heisenberg model (the J1 − J2 model)
on the square lattice. The upper panel shows the energy
difference between a projected BCS wave function and
the exact ground state for a lattice of 6 × 6 sites. The
lower panel shows the magnitude of the overlap of these
two states. A number of different numerical techniques
find that there is Neel order for 0 ≤ J2/J1 ≤ 0.5 and that
there is no long-range magnetic order for 0.5 ≤ J2/J1 ≤
0.7 (Becca et al., 2009).
There are two main classes of RVB wave functions

(Becca et al., 2009). States in the first class are some-
times called short-range RVB states. They are similar
to the RVB states introduced by Pauling into quantum
chemistry (Anderson, 2008; Shaik and Hiberty, 2008).
The simplest possible state consists of an equal superpo-
sition of all possible dimer coverings of the lattice, {c},
where each dimer corresponds to a local spin singlet,

|ΨSRV B〉 =
∑

c

|Ψc〉. (39)

Figure 34 shows one possible dimer covering of the tri-
angular lattice. Generalisations of the wavefunction (39)
have unequal coefficients for the different dimer coverings
and also longer range singlet pairings. It is non-trivial
but possible to show that certain parametrisations of this
class become equivalent to the second class below (Becca
et al., 2009).
The second class of RVB wave functions consist of

Gutzwiller projected BCS states similar to that first in-
troduced by Anderson (Anderson, 1987)

|ΨpBCS〉 = Πi(1− αni↑ni↓)|BCS〉 (40)

where |BCS〉 is a BCS state with a variational pairing
function and α is a Gutzwiller variational parameter (0 ≤

FIG. 35 Frustration stabilises RVB and spin liquid states
(Becca et al., 2009). The upper panel shows the energy dif-
ference between a projected BCS wave function and the exact
ground state for a lattice of 6×6 sites for the J1−J2 model on
a square lattice. (J1 and J2 are the nearest and next-nearest
neighbour interactions, respectively). The lower panel shows
the magnitude of the overlap of these two states.

α ≤ 1) which determines the number of doubly occupied
sites. α = 1 when no doubly occupied states are allowed.

2. Isotropic triangular lattice

The clear consensus from a wide range of studies is
that the true ground state for J ′ = J , J� = 0 is not a
spin liquid but a Neel antiferromagnet with 120 degree
order. Table III in (Zheng et al., 2006) gives a summary
of the results and relevant references from studies using
a wide range of numerical methods and approximation
schemes. Thus, the conjecture of Anderson and Fazekas
(Anderson, 1973; Fazekas and Anderson, 1974) that this
model has a spin liquid ground state turns out to be in-
correct. Nevertheless, variational short-range RVB states
have been found to be close to the exact ground state for
small lattices (Sindzingre et al., 1994). Specifically, they
give comparable short-range spin correlations. For exam-
ple, for a 12-site lattice the nearest, next-nearest neigh-
bour, and next-next-nearest neighbour spin correlations

for the exact ground state are 〈~Sr · ~S0〉 = -0.2034, 0.1930,
and -0.0511, respectively. For comparison an equal super-
position RVB state gives values of -0.2032, 0.2065, and
-0.075. Furthermore, we will see below that small per-
turbations of the Hamiltonian, such as spatial anisotropy
or ring exchange terms can lead to a ground state with
no magnetic order.

3. Role of spatial anisotropy (J ′ 6= J)

It turns out that spatial anisotropy can destroy the
magnetic order present when J ′ = J . The model Hamil-
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tonian (38) has been studied by a wide range of tech-
niques: linear spin-wave theory (Merino et al., 1999;
Trumper, 1999), series expansions (Fjærestad et al.,
2007; Zheng et al., 1999), large-N expansion of an sp(N)
Schwinger boson theory (Chung et al., 2001), mean-
field RVB theory (Hayashi and Ogata, 2007), variational
Monte Carlo of Gutzwiller projected BCS states (Hei-
darian et al., 2009; Yunoki and Sorella, 2006), pseudo-
fermion functional renormalistion group (Reuther and
Thomale, 2010) and the density matrix renormalisation
group (Weng et al., 2006). The weakly coupled chain
regime J ′ ≫ J has been studied by perturbing about the
exact ground state single chains (Kohno et al., 2007).
Most studies agree that for 0 ≤ J ′/J . 0.5 the Neel
state with ordering wavevector (π, π) is stable and that
a spiral ordered state is stable for J ′ ∼ J . However,
whether the ground state is a spin liquid in the regimes
J ′ ≫ J and J ′/J ∼ 0.6 − 0.9 is controversial. The
phase diagram of the model deduced from series expan-
sions (Zheng et al., 1999) is shown in Figure 36. Com-
paring the solid and dashed curves in Figure 36 shows
that quantum fluctuations tend to make the excitation
spectrum more commensurate than the order found in
the classical Hamiltonian. In particular, deviations of

the wavevector ~Q = (q, q) from the commensurate values
q = π, 2π/3, π/2, are reduced. The reduction of devia-
tions from commensurability by quantum fluctuations is
also found in renormalisation group analysis of the cor-
responding non-linear sigma models (Apel et al., 1992).
There, it is found that quantum fluctuations drive the
system towards a fixed point with O(4) symmetry, and
at which the spin wave anisotropy is reduced. Hence,
quantum fluctuations will reduce the incommensurabil-
ity. This is an example of “order through disorder” as the
“disorder” due to the quantum fluctuations stabilises the
“order” associated with commensurate spin correlations
(Chandra et al., 1990; Chubukov and Jolicoeur, 1992).

Figure 37 shows the magnitude of the magnetic mo-
ment associated with the magnetic order, calculated from
series expansions. For the range 0.65 < J ′/J < 0.95 the
most stable state has dimer order, a valence bond crystal
with bonds along either the horizontal or vertical direc-
tion (i.e., associated with the J interaction). There is
an energy gap to the lowest triplet excited state, and its
magnitude as a function of J ′/J is shown in Figure 38.

The ground state of the dmit material P-1 is reminis-
cent of this valence bond crystal state. The pattern of
bond ordering is consistent with that deduced from x-
ray scattering (see Figure 30) and the measured energy
gap [40± 10K ≃ (0.15± 0.05)J (see Figure 29)] is com-
parable to that shown in Figure 38. This identification
would require that the hopping integrals in the corre-
sponding Hubbard model have t′/t ≃ 0.8 − 0.95, which
is significantly smaller than the value of 1.1 (Shimizu
et al., 2007b) estimated from Hückel calculations. How-
ever, DFT calculations for the κ-(ET)2X family (Kand-
pal et al., 2009; Nakamura et al., 2009) find that the
Hückel method tends to over-estimate this ratio. This

FIG. 36 Phase diagram and incommensurability of spin cor-
relations for the Heisenberg model on the anisotropic trian-
gular lattice (Zheng et al., 1999). The solid curve shows the
classical ordering wavevector (q, q) as a function of the diag-
onal interaction J ′/(J ′ + J). The circles show the value of
q which defines the location of the minimum energy gap to
a triplet excited state. These are calculated from series ex-
pansions relative to different reference states (Zheng et al.,
1999). Incommensurate (spiral) antiferromagnetic order oc-
curs for J ′ > 0.95J . The antiferromagnetic order is unstable
for the range 0.6 < J ′/J < 0.95. The series cannot determine
the ground state for weakly coupled chains with J ′/J > 4.
Modified from (Zheng et al., 1999). [Copyright (1999) by the
American Physical Society.]

underscores the need for DFT calculations on the dmit
materials.

It is not clear that the possible spin liquid state in κ-
(ET)2Cu2(CN)3 can be identified with this valence bond
crystal (VBC) state. The NMR, specific heat, and ther-
mal conductivity show no evidence of a spin gap at tem-
peratures less than 1 K which is two orders of magnitude
smaller than J . The only possibility consistent with the
existence of the VBC phase would be that this material
lies close to one of the quantum critical points associated
with the transition between the VBC and the magneti-
cally ordered states.

4. Ring exchange

As the band-width controlled Mott metal-insulator
transition is approached from the metallic side the charge
fluctuations increase and the average double occupancy
increases (see, for example, Figure 4 in (Ohashi et al.,
2008)). Hence, for a Mott insulating state close to the
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FIG. 37 Magnitude of the magnetic order parameter (mag-
netic moment) as a function of the diagonal interaction J ′/J .
[In our notation J1/J2 = J ′/J .] This is calculated from a
series expansion (Zheng et al., 1999). For J ′ < 0.6J the frus-
tration associated with J ′ reduces the magnitude of the Neel
ordering. Incommensurate (spiral) antiferromagnetic order
occurs for J ′ > 0.95J . The antiferromagnetic order is unsta-
ble for the range 0.6 < J ′/J < 0.95. This behaviour is also
qualitatively reproduced by linear spin-wave theory (Merino
et al., 1999; Trumper, 1999). This shows just how sensitive
the ground state is to the spatial anisotropy. This is the pa-
rameter regime relevant to many of the compounds discussed
in this review. [Copyright (1999) by the American Physical
Society.]

metallic phase in the Hamiltonian one needs to include
the ring exchange terms which arise from the charge fluc-
tuations. A strong coupling expansion to fourth order in
t/U for the Hubbard model gives J�/J = 5(t/U)2 (De-
lannoy et al., 2005; MacDonald et al., 1990; Yang et al.,
2010).

Even well into the Mott insulating phase the ring ex-
change terms can have both qualitative and quantitative
effects. For example, in La2CuO4 ring exchange interac-
tions modify the dispersion relation of triplet spin exci-
tations near the zone boundary (Coldea et al., 2001).

The Heisenberg model on the isotropic triangular lat-
tice (i.e. J ′ = J) with ring exchange has been stud-
ied using exact diagonalisation (LiMing et al., 2000), a
Gutzwiller projected Fermi sea of spinons (Motrunich,
2005), and variational Monte Carlo for projected BCS
states (Grover et al., 2010). Exact diagonalisation cal-
culations on lattices of up to 36 sites suggest these ring
exchange terms can lead to a spin liquid ground state for
J� > 0.05J (LiMing et al., 2000; Misguich and L’huillier,
2005). Furthermore, in this state there are a large num-
ber of singlet excitations below the lowest energy triplet
excited state (LiMing et al., 2000). The presence of a
spin gap for triplet excitations (estimated to be about

FIG. 38 Dependence of the triplet energy gap on the diagonal
coupling in the valence bond solid phase (with dimers in either
the horizontal or vertical direction relative to the ”square”
lattice, i.e., dimers are associated with the J interaction),
calculated in a dimer series expansion (Zheng et al., 1999).
For 0.65 < J ′/J < 0.75 the gap occurs at the wavevector
(0, π), whereas for larger J ′/J it is at an incommensurate
wavevector. Together with Figure 37 this suggests that the
model undergoes quantum phase transitions at J ′/J ≃ 0.65
and 0.95. Modified from (Zheng et al., 1999). [Copyright
(1999) by the American Physical Society.]

0.07J for J� ≃ 0.1J) implies that the NMR relaxation
rates would approach zero exponentially with decreasing
temperature.

It has also been proposed that the ground state of κ-
(BEDT-TTF)2Cu2(CN)3 is a spin liquid with a spinon
Fermi surface (Lee and Lee, 2005; Motrunich, 2005), with
spinons that are coupled to gauge field fluctations. This
is discussed further in Section VII.C below.

Variational Monte Carlo calculations were recently
performed for Gutzwiller-projected BCS states where dif-
ferent possible types of pairing were considered (Grover
et al., 2010). A mean-field theory on these states for
the Heisenberg model without ring exchange gives a BCS
state with broken time-reversal symmetry (known as the
chiral spin liquid). The form of the fermion pairing func-
tion is dx2−y2 + idxy which belongs to the E representa-
tion of the C6v point group symmetry of the lattice. We
now summarise some of the main results of the variational
Monte Carlo study (Grover et al., 2010). (i) In contrast
to mean-field theory, it is found that for ring exchange
strengths in a small range the pairing function is purely
dx2−y2 . (ii) The authors suggest that under increasing
pressure (increasing t/U) the Mott insulator will be de-
stroyed leading to a superconducting state with the same
dx2−y2 pairing. This is qualitatively different to what one
gets with a mean-field RVB theory of the model without
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the ring exchange (Powell and McKenzie, 2007). (iii)
This ground state cannot explain why the observed low
temperature specific heat of κ-(ET)2Cu2(CN)3 is weakly
dependent on magnetic field. (iv) The “Amperean pair-
ing” theory proposed earlier (Lee et al., 2007b) does not
have this problem, but has difficulty describing the su-
perconducting state which develops under pressure.

Several important issues are not addressed in this pa-
per. First, in the range J�/J ≃ 0.05−0.1 exact diagonal-
isation calculations on small lattices give a different spin
liquid ground state, one with an energy gap to triplet
excitations, and many singlet excitations inside the gap
(Yang et al., 2010). Second, the NMR relaxation rate
1/T1 for κ-(ET)2Cu2(CN)3 is observed to have a power
law temperature dependence consistent with gapless ex-
citations. Third, the estimate of the spinon scattering
rate due to impurities (∼ 1.5 K) can be compared to
estimates of the scattering rate associated with charge
transport in the metallic phase of similar organic charge
transfer salts. Table I in (Powell and McKenzie, 2004b)
gives estimates of this scattering rate which are an order
of magnitude smaller than the proposed spinon scatter-
ing rate (Grover et al., 2010). However, given that the
quasi-particles being scattered are different we should not
necessarily expect them to have the same scattering rate,
but a complete theory should describe this difference.

For a Hubbard model the requirement J�/J > 0.05
needed for a spin liquid ground state corresponds to
U < 10|t|. A crucial question is then how large is the
critical value Uc/|t| at which the metal-insulator tran-
sition occurs? In order for a Heisenberg model to be
relevant the system must still be in the insulating phase
for U < 10|t|. Below, we see that most estimates of
Uc/|t| lie in the range 5-8, depending on the numerical
method used. Spatial anisotropy (i.e., t′ < t) reduces the
critical value. A comparison (Merino et al., 2008) of the
measured optical conductivity for the alloy κ-(BEDT-
TTF)2Cu[N(CN)2]BrxCl1−x with x = 0.73 (which lies
just on the metallic side of the Mott transition) with
that calculated from dynamical mean-field field theory
(DMFT) found good agreement for U/|t| ≃ 10 (see, also,
the discussion in section III.C.2). Hence, this is roughly
consistent with the ring exchange term being sufficiently
large to produce a spin liquid state.

Motrunich found a low variational energy for a pro-
jected spinon Fermi sea state (Motrunich, 2005). He
combined this with a slave particle-gauge theory anal-
ysis, to argue that the spin liquid has spin correlations
that are singular along surfaces in momentum space,
i.e., “Bose surfaces.” A density matrix renormalisation
group (DMRG) study of a frustrated ladder model (cor-
responding to two coupled chains in the anisotropic tri-
angular lattice model) with ring exchange has produced
a rich phase diagram (Sheng et al., 2009). In particu-
lar, when J ∼ J ′ a ring exchange interaction J4 ∼ 0.2J
can lead to a “spin-Bose metal” phase. This is a spin
liquid state with gapless excitations at specific wave vec-
tors. This underscores the need for a study of the full

Heisenberg model with both J ′ 6= J and J� 6= 0. A
recent study was made of the model on a four rung lad-
der with 0 ≤ J ′/J ≤ 1 and 0 ≤ J⊥ ≤ J using DMRG
and variational Monte Carlo of a projected Fermi sea
(Block et al., 2010). The phase diagram contained rung,
VBC, and spin-Bose metal phases. The latter has three
gapless modes and power law spin correlations at incom-
mensurate wavevectors. Spatial anisotropy increased the
stability of the VBC state.
A recent definitive study (Yang et al., 2010) of the

Hubbard model on the isotropic triangular lattice used
a high powered perturbative continuous unitary trans-
formation to derive an effective spin Hamiltonian in the
Mott insulating phase, up to twelth order in t/U . They
find that as U/t decreases, at U/|t| ≃ 10, there is a first-
order phase transition from the 120 degree Neel ordered
phase to a spin liquid phase (no net magnetic moment)
and large numbers of singlet excitations below the lowest
lying triplet excitation. This spin liquid state is identi-
fied with the ”spin Bose metal” proposed by Motrunich
(Motrunich, 2005). The first-order transition from the
magnetically ordered state to the spin liquid is also asso-
ciated with a small jump in the double site occupancy. It
is also found that the transition to the metallic state does
not occur until U/t decreases to about 6−8. Hence, there
is a significant range of U/t for which the Mott insulator
is a spin liquid.

5. Dzyaloshinski-Moriya interaction

In crystals which lack inversion symmetry relativistic
effects lead to an additional interaction between spins
which breaks spin-rotational invariance and is known as
the Dzyaloshinski-Moriya interaction. The DM interac-
tion has been characterised in the insulating phase of
κ-(BEDT-TTF)2Cu[N(CN)2]Cl and has a magnitude of
about D ≃ 5 K (Smith et al., 2004). Even though it
is small compared to the nearest neighbour exchange the
DM interaction can have a significant effect on frustrated
systems. For example, for the kagome lattice it can in-
duce a quantum phase transition from a spin liquid state
to an ordered state forD > 0.1J (Cépas et al., 2008). For
the anisotropic triangular lattice, even when D ∼ J/20
the DM interaction induces energy changes in the spec-
trum of energies as large as J/3, including new energy
gaps (Fjærestad et al., 2007). A detailed analysis of the
effect of the DM interaction in the weakly coupled chain
limit has also been given (Starykh et al., 2010).

6. The effect of disorder

Gregor and Motrunich (Gregor and Motrunich, 2009)
studied the effects of nonmagnetic impurities in the
Heisenberg model on the triangular lattice with the
goal of understanding the large broadening of 13C NMR
lines in κ-(BEDT-TTF)2Cu2(CN)3. They used a high-
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temperature series expansion to calculate the local sus-
ceptibility near a nonmagnetic impurity, for tempera-
tures down to J/3. At low temperatures they assumed
a gapless spin liquid described by a Gutzwiller projected
spinon Fermi sea. In both temperature regimes, they
found that the value of the local susceptibility decays to
the uniform value within a few lattice spacings. Hence a
low density of impurities cannot explain the observed line
broadening. This analysis needs to be combined with in-
dependent estimates of the strength of disorder in these
materials (Scriven and Powell, 2009a).

B. Hubbard model on the anisotropic triangular lattice

The Hamiltonian (9) depends on three parameters: t,
t′, and U . Estimates of values for these parameters from
quantum chemistry and electronic structure calculations
were discussed in Section III.A.1. The key open questions
concerning the model are whether it has superconducting
and spin liquid ground states for physically reasonable
parameter values.

1. Phase diagram

We have already discussed the phase diagram at non-
zero temperature in section III.C.4. The zero tem-
perature phase diagram of the Hubbard model on the
anisotropic triangular lattice has also been studied by
a wide range of techniques including: exact diagonal-
ization (Clay et al., 2008; Koretsune et al., 2007), slave
bosons/RVB mean-field theory (Gan et al., 2005; Powell
and McKenzie, 2005, 2007), large-N expansion of a sp(N)
theory (Chung et al., 2001), weak-coupling renormalisa-
tion group (Tsai and Marston, 2001), variational quan-
tum Monte Carlo on Gutzwiller projected BCS states
(Liu et al., 2005; Tocchio et al., 2009; Watanabe et al.,
2008) cluster and cellular dynamical mean-field theory
(Kyung, 2007; Kyung and Tremblay, 2006; Liebsch et al.,
2009; Ohashi et al., 2008; Parcollet et al., 2004), slave ro-
tor representation (Lee and Lee, 2005; Lee et al., 2007b),
path-integral renormalisation group (Morita et al., 2002),
cluster variational approach (Sahebsara and Sénéchal,
2008), and dual fermions (Lee et al., 2008).
There is little consensus on the phase diagram in the

physically important region near the Mott transition, and
particularly where there are several competing magnetic
phases (i.e., 0.7t < t′ < t). This lack of consensus arises
for two reasons: one mundane and the other profound.
The first is that not all approaches allow for all possible
states. The second is that there are very small differ-
ences in energy between the competing phases. Different
computational methods and approximation schemes will
get different values for these small differences in energy
and so produce different phase diagrams.
The fact that in the organic charge transfer salts there

is a first order phase transition between superconduct-

 

FIG. 39 Phase diagram of the Hubbard model on the
anisotropic triangular lattice at half filling and zero tem-
perature calculated from an RVB variational wave function
(Powell and McKenzie, 2007). Similar results are found for
other strong coupling approaches. The t′/t = 0, t′/t = 1 and
t′/t → ∞ correspond to the square lattice, the isotropic tri-
angular lattice and decoupled chains, respectively. For large
U/(t + t′) the ground state is a Mott insulator. The type of
magnetic ordering varies with J ′/J = (t′/t)2. Near the metal-
insulator phase boundary superconductivity occurs and the
symmetry of the superconducting order parameter is corre-
lated with the dominant spin correlations in the neighbouring
Mott insulating phase. [Copyright (2007) by the American
Physical Society.]

ing and Mott insulating states shows that these two very
different states can have identical energy. This is actu-
ally why these materials are so “tuneable” (i.e. one can
induce transitions between different phases with “small”
changes in the pressure, temperature or magnetic field,
and by chemical substitution).

2. Ladder models

Ladder models provide a means to investigate in a con-
trolled manner (e.g., via DMRG, bosonisation, and weak-
coupling renormalisation group) physics which it is hoped
may be related to what occurs in the two-dimensional
limit.
One can characterise different ground states on lad-

ders by n and m, the number of gapless charge and spin
modes, respectively. This leads to the notation CnSm
and the following identifications. C2S2 is the ladder
analogue of Fermi liquid metal, C1S0 is a superconduc-
tor, C1S2 is a spin Bose metal, C0S0 is a spin gapped
Mott insulator, and C0S2 is a spin liquid Mott insula-
tor. At half filling a two-leg ladder without frustration
has a C0S0 ground state, which upon doping changes
to C1S0 consistent with Anderson’s RVB ideas (Balents
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and Fisher, 1996).
A weak-coupling renormalisation group analysis has

been performed on the zig-zag ladder with longer-range
Coulomb repulsion (Lai and Motrunich, 2010). The
longer-range interaction stabilises the C2S2 phase and
leads to a subtle competition between all the different
phases listed above. Indeed it is interesting to compare
Figure 8 in (Lai and Motrunich, 2010) with our Figure
39.

VII. EMERGENCE OF GAUGE FIELDS AND
FRACTIONALISED QUASI-PARTICLES

For a given phase the key question (or assumption)
is: what are the quantum numbers of the quasi-particles
describing the lowest lying excited states? The answer
determines the nature and symmetries of an effective
field theory for the low-energy physics. Field theories for
magnons (bosonic triplets), spinons (spin-1/2 bosonic or
fermionic excitations), and visons (bosonic singlets) have
all been considered in various different theories of the
organic charge transfer salts.
In a “round table discussion” about the theory of

the cuprate superconductors (Zaanen, 2006) Patrick Lee
stated that the genuinely new idea that has been de-
veloped is “the notion of emergence of gauge fields and
fractionalized particles as low-energy phenomena in sys-
tems that did not contain them in the starting model.”
He suggested that this idea is of comparable importance
in condensed matter theory to that of Goldstone bosons
associated with spontaneously broken symmetry.
Gauge fields emerge when the electron or spin opera-

tors are represented in terms of Schwinger bosons (Auer-
bach, 1994), slave fermions, slave bosons (Lee et al.,
2006), or slave rotors (Florens and Georges, 2004). These
alternative representations introduce an over-complete
description of the problem which requires a constraint so
that the canonical commutation (or anti-commutation)
relations are preserved.
A nice discussion (for the specific case of Schwinger

bosons) is contained in a review (Sachdev, 2008), which
we now follow closely. It shows clearly how the effect
of gauge field fluctuations leads to qualitative differences
in the quantum disordering of commensurate and incom-
mensurate magnetic states. In particular, deconfinement
of bosonic spinons is possible in the latter but not the
former.
We illustrate this now by showing how, if the spin-1/2

operators are represented by Schwinger bosons (Auer-
bach, 1994), there is a redundancy because the phase of
each boson field can be shifted by an arbitrary amount
without affecting the spin degree of freedom. The spin
1/2 field N can be written in terms of a S = 1/2 complex
spinor boson field zα, where α =↑, ↓ by

N = z∗ασαβzβ (41)

where σ are the 2× 2 Pauli matrices. The spin commu-

tation relations are preserved provided that16

∑

α

z∗αzα = 1. (42)

As an aside, we note that there is no problem having
spin-1/2 bosons. The spin statistics theorem in relativis-
tic quantum field theory (which requires bosons to have
integer spin) does not apply here because in this field the-
ory there is no Lorentz invariance. Also, in what follows
we are always considering N to be a slowly varying field
which defines the spin at site j relative to the commen-
surate wave vector for Neel ordering Q = (π, π),

〈Sj〉 = N cos(Q · rj). (43)

where rj is the position of site j.
But, note that the representation (41) of N in terms

of zα has some redundancy. In particular, a change in
the phase of both fields zα by the same space and time
dependent field θ(x, τ)

zα → zαexp(iθ) (44)

leaves N(x, τ) unchanged. All physical properties must
then be invariant under the transformation (44), and so
any effective Lagrangian for the field zα has a U(1) gauge
invariance, similar to that in quantum electrodynamics.
This leads naturally to the introduction of an ‘emergent’
U(1) gauge field Aµ, where the index µ describes the 2+1
space-time components. Under the gauge transformation
(44), Aµ → Aµ − i∂µθ. It should be stressed that this
gauge field is not related to the physical electromagnetic
field but rather is an alternative way of describing the
interactions between the spinor fields due to the antifer-
romagnetic fluctuations. Describing the system in terms

of the field ~N or the two fields zα and Aµ is a matter of
choice.
The low-energy and long-wavelength action of the

quantum field theory for zα and Aµ is determined by
the constraints of spin rotational symmetry and gauge
invariance to be

Sz =

∫

d2rdτ

[

|(∂µ − iAµ)zα|2 + sz|zα|2 + u(|zα|2)2

+
1

2e20
(ǫµνλ∂νAλ)

2

]

(45)

where there is an implicit summation over all indices,
ǫµνλ is the anti-symmetric tensor and e0 is the coupling
constant, which determines the strength of the coupling
between the zα field and the gauge field.
If the coefficient sz < 0 then the mean-field theory of

the action gives a ground state with 〈zα〉 6= 0. Substitut-
ing this into (41) and (43) we see that this corresponds

16 See page 70 of (Auerbach, 1994).
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to a state with commensurate antiferromagnetic order.
This also leads to a gap in the spectrum of the Aµ gauge
field, and reduces its fluctuations. The case sz > 0 gives
〈zα〉 = 0. A rather sophisticated analysis is required to
show that the gauge field fluctuations are associated with
Berry’s phases which lead to VBC order (Sachdev, 2008).
A key point is that U(1) gauge fields in 2+1 dimen-

sions are always confining (Kogut, 1979). This is be-
cause of instantons which describe the quantum tunnel-
ing of the gauge field between alternative classical ground
states. The physical consequence of this for commen-
surate antiferromagnets is that the spinons are always
bound together so that the elementary excitations are
spin-1 bosons.

A. Spinons deconfine when incommensurate phases are
quantum disordered

A ground state with incommensurate magnetic order
can be described by two orthogonal vectors, N1 and N2

so that the magnetic moment at site j (with position rj)
is (Chubukov et al., 1994a)

〈Sj〉 = N1 cos(Q · rj) +N2 sin(Q · rj) (46)

where Q is the incommensurate ordering wavevector.
The analog of the spinor representation in Eq. (41),

is to introduce another spinor wα, which parameterizes
N1,2 by (Chubukov et al., 1994a)

N1 + iN2 = εαγwγσαβwβ , (47)

where εαβ is the antisymmetric tensor. The physical spin
is then invariant under the Z2 gauge transformation

wα → ηwα (48)

where η(r, τ) = ±1. This Z2 gauge invariance is key to
stabilising a spin liquid ground state because it reduces
the magnitude of the U(1) gauge field fluctuations which
confine the spinons in antiferromagnets with commensu-
rate interactions. In contrast to U(1) gauge theories a Z2

gauge theory can have a deconfined phase in 2+1 dimen-
sions (Kogut, 1979). We now introduce a Higgs scalar
field, the condensation of which, 〈Λ〉 6= 0 can break the
U(1) symmetry, in a similar manner to that in which
the BCS superconducting state breaks the U(1) gauge
invariance associated with electromagnetism. In partic-
ular, to break U(1) down to Z2, requires a Higgs scalar,
that carries U(1) charge 2, i.e. Λ → e2iθΛ, under the
transformation (44) (Fradkin and Shenker, 1979).
The physical interpretation of the field Λ becomes

clearer by writing down the effective action for Λ. This
is constrained only by symmetry and gauge invariance,
including its couplings to zα. One adds to the action (45)
the action for the Higgs field,

SΛ =

∫

d2rdτ
[

|(∂µ − 2iAµ)Λa|2 + s̃|Λa|2 + ũ|Λa|4

−iΛaεαβz
∗
α∂az

∗
β + c.c.

]

. (49)

Multiple fields Λa, with spatial indicies a, are necessary
to account for the space group symmetry of the underly-
ing lattice. The crucial term is the last one coupling Λa

and zα.
A mean-field treatment of Sz + SΛ, gives two possible

condensates, and hence four possible phases (i.e. neither,
either, or both fields condensed), depending on the sign
of the two parameters sz and s̃ (compare Figure 40).

i. sz < 0, s̃ > 0: This state has 〈zα〉 6= 0 and 〈Λ〉 =
0. The modes of the Λ field are gapped and so not
relevant. This is a Néel state.

ii. sz > 0, s̃ > 0: This state has 〈zα〉 = 0 and 〈Λ〉 = 0.
Again the Λ modes are gapped and so not relevant.
This is the VBC state.

iii. sz < 0, s̃ < 0: This state has 〈zα〉 6= 0 and 〈Λ〉 6=
0. Because of the zα condensate, this state breaks
spin rotation invariance, and we determine the spin
configuration by finding the lowest energy zα mode in
the background of a non-zero 〈Λ〉 in Eq. (49), which
is

zα =
(

wαe
i〈Λ〉·r + εαβw

∗
βe

−i〈Λ〉·r
)

/
√
2, (50)

with wα a constant spinor. Inserting the above ex-
pression (50) into Eq. (41) gives a local moment that
is space-dependent so that 〈Si〉 is given by Eq. (46)
with N1 and N2 given by Eq. (47) and the wavevec-
tor Q = (π, π) + 2〈Λ〉. Hence, the field Λ measures
the deviation of the spin fluctuations from commen-
surability.

iv. sz > 0, s̃ < 0: This state has 〈zα〉 = 0 and 〈Λ〉 6= 0.
This a Z2 spin liquid. Spin rotation invariance is pre-
served, and there is no VBC order because monopoles
are suppressed by the Λ condensate (Sachdev, 2008).

We also note that the last term in (49) which couples
the incommensurability to the gradient of a field has some
similarity to that which occurs in other field theories of
incommensurate systems (Klee and Muramatsu, 1996).

B. sp(N) theory

A specific realisation of the above considerations was
given (Chung et al., 2001) in a study of the Heisen-
berg model on the anisotropic triangular lattice [com-
pare equation (38)], in the large N limit of an sp(N)
approach (Read and Sachdev, 1991a,b; Sachdev, 1992).
In the N → ∞ limit, mean-field theory is exact and the
bosonic spinons are deconfined. The calculated mean-
field phase diagram as a function of J ′/J and the mag-
nitude of the quantum fluctuations (which can be tuned
by varying the ratio of N to the total spin S), exhibits
four distinct phases as in Figure 40.
Fluctuations at finite N , however, allow for U(1) gauge

field fluctuations, which modify the mean-field results. In
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particular, the Berry’s phase associated with the instan-
tons in the gauge field confine the spinons in the commen-
surate phase with short-range magnetic order. However,
they do not for the incommensurate phase with short-
range order, because their is a non-zero spinon pairing
field in the diagonal (J ′) direction. This field carries a
gauge charge of ±2 making it equivalent to a Higgs field,
which prevents confinement in 2+1 dimensions (Fradkin
and Shenker, 1979).
The dimerization pattern seen in near the decoupled

chain limit (J ′ ≫ J) is similar to that found (White and
Affleck, 1996) for a ladder with zigzag coupling. Fur-
thermore, spinon excitations are confined into pairs by
the U(1) gauge force. This phase is believed to be an
analogue of the RVB state found on the isotropic tri-
angular lattice quantum dimer model (Moessner et al.,
2001). The phase has topological order; i.e., if the lattice
is placed on a torus, the ground state becomes four-fold
degenerate in the thermodynamic limit.

C. Experimental signatures of deconfined spinons

Thermal properties will reflect the presence of decon-
fined spinons and fluctuating gauge fields. These have
been calculated for a spinon Fermi surface coupled to
a U(1) gauge field (Nave and Lee, 2007). The low-
temperature specific heat is dominated by a term ∼ T 2/3

due to gauge field fluctuations (Motrunich, 2005). The
thermal conductivity is dominated by the contribution
due to spinons, which give a term ∼ T 1/3 (Nave and Lee,
2007).
The low temperature specific heat data for κ-

(ET)2Cu2(CN)3 (Yamashita et al., 2008) can be fit to
either the form expected for gauge fluctuations or for
a spinon Fermi surface without the gauge fluctuations
(Ramirez, 2008). Hence, it is not possible from the exper-
imental data to definitely conclude that there are gapless
fermionic spinon excitations.
One question is: is the spin susceptibility simply re-

lated to the spinon susceptibility? This would imply
that gauge fluctuations do not modify the spin suscep-
tibility. If so one might expect that the NMR relax-
ation may exhibit a Korringa-like temperature depen-
dence, i.e., 1/T1 ∼ T , a temperature independent 1/T2
and Knight shift, and a Korringa ratio of unity if there
are deconfined spinons.
It has recently been argued that a definitive signature

of deconfined spinons in a Mott insulator would be a
sizeable thermal Hall effect (Katsura et al., 2010). In
an external magnetic field for the Hubbard model on a
triangular lattice there is an orbital interaction between
the field and the spin chirality (Motrunich, 2005; Sen
and Chitra, 1995). This leads to a thermal Hall effect
(Katsura et al., 2010) which is estimated to be larger
than that due to conventional mechanisms by a factor of
order (Jτ/~)2, where τ is the spinon scattering lifetime.
The latter is estimated to be about 10−12 s from the

magnitude of the low temperature thermal conductivity.
However, as noted in Section IV this thermal Hall effect
is not seen in the candidate spin liquid material Sb-1
(Yamashita et al., 2010).

D. Non-linear sigma models for magnons

The schematic phase diagram shown in Figure 3 pro-
vides a means to understand the different qualitative be-
haviours that can occur in non-linear sigma models, re-
sulting from the presence of a quantum phase transition
between ordered and disordered (i.e., spin liquid) phases.
Antiferromagnets which classically exhibit non-

collinear magnet order, such as the Heisenberg model on
the triangular lattice, may be described by a non-linear
sigma model with SU(N) × O(2) symmetry (Chubukov
et al., 1994a). A large N expansion treatment has been
given of such a non-linear sigma model, including fluc-
tuations to order 1/N . The physical spin-1/2 model has
N = 2. The temperature dependence of the correlation
length ξ(T ) in the renormalised classical regime (Azaria
et al., 1992; Chubukov et al., 1994a), is given by

ξ(T ) = 0.021

(

c

ρs

)(

4πρs
T

)1/2

exp

(

4πρs
T

)

(51)

where c is a spin wave velocity and ρs is a zero-
temperature spin stiffness. The static structure factor
at the ordering wavevector is (Chubukov et al., 1994a)

S(Q) ≃ 0.85

(

T

4πρs

)4

ξ(T )2. (52)

The above equations show that ρs sets the temperature
scale for the development of antiferromagnetic spin cor-
relations. For the isotropic triangular lattice non-linear
spin wave theory (to order 1/S2) (Chubukov et al., 1994b)
gives c = Ja and ρs = 0.06J . The above expressions are
quite similar to those for the O(3) non-linear sigma model
that is relevant to the Heisenberg model on the square
lattice (Auerbach, 1994; Chakravarty et al., 1989), but
with the factor 2πρs replaced by 4πρs.
A monotonic increase in the NMR relaxation rates with

decreasing temperature occurs for a non-linear sigma
model in the renormalised classical regime (Azaria et al.,
1992; Chubukov et al., 1994a), which occurs as a magnet-
ically ordered state is approached at zero temperature. It
is found that 1/T1 ∝ T 7/2ξ(T ) and 1/T2 ∝ T 3ξ(T ), when
the correlation length ξ(T ) ≫ a.

In the quantum critical regime, close to a quantum
critical point, the temperature dependence of the NMR
rates is (Chubukov et al., 1994a)

1/T1 ∼ T η, 1/T2 ∼ T (η−1), (53)

where η is the anomalous critical exponent associated
with the spin-spin correlation function. Generally, for
O(N) non-linear sigma models (e.g., that are appropriate
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for collinear antiferromagnets), this exponent is much less
than one (Chakravarty et al., 1989). For example, for
N = 3, η = 0.04.

E. Field theories with deconfined spinons

Field theories with deconfined spinons can have η > 1
(Alicea et al., 2006; Chubukov et al., 1994a; Isakov et al.,
2005). Then 1/T1T decreases with decreasing tempera-
ture, opposite to what occurs when the spinons are con-
fined, because then η ≪ 1. Hence, this is a signifi-
cant experimental signature. To leading order in 1/N ,
the SU(N) × O(2) model (Chubukov et al., 1994a), has
η = 1 + 32/(3π2N). For N = 2 this gives η ≃ 1.5, com-
parable to the value deduced from NMR experiments on
κ-(BEDT-TTF)2Cu2(CN)3 (Figure 13).

F. Field theories with bosonic spinons and visons

Qi, Xu, and Sachdev (Qi et al., 2009; Xu and
Sachdev, 2009) propose that the ground state of κ-
(BEDT-TTF)2Cu2(CN)3 is a Z2 spin liquid close to a
quantum critical point with quasiparticles that are spin-
1/2 bosons (spinons) and spinless bosons (visons). The
visons correspond to low-energy singlet excitations and
can be viewed as vortices in the Z2 gauge field associated
with a liquid of resonating valence bonds. They showed
that at low temperatures spinons dominate the NMR re-
laxation rate and that visons dominate the thermal con-
ductivity. The visons form a dilute Boltzmann gas with
a bandwidth of about 8 K, which the authors claim cor-
responds to the peak observed in the heat capacity and
thermal conductivity. Note that this bandwidth is only
about 3 per cent of the exchange interaction J , which
sets the energy scale for the spinons. Figure 40 shows
the phase diagram of one of the field theories considered
(Xu and Sachdev, 2009). The “doubled Chern-Simons
theory” used implements the mutual semionic statistics
of the visons and spinons.

G. Field theories with fermionic spinons and gauge fields

An alternative approach (Lee and Lee, 2005) starts
with the slave rotor representation (Florens and Georges,
2004) and derives an effective Lagrangian describing
fermionic spinons and ‘X bosons’ coupled to U(1) gauge
fields. In the Mott insulating phase the X bosons are
gapped and the ground state has a spinon Fermi surface
coupled to a U(1) gauge field. Although it is known that
a compact U(1) pure gauge field is confining, it is con-
troversial as to whether such a field coupled to a matter
field can be deconfining. At low temperatures there is the
possibility of an Amperean instability (Lee et al., 2007b)
which leads to pairing of the spinons.

	  

FIG. 40 Phase diagram of a specific field theory with
spinons (spin-1/2 bosons) and visons (spinless bosons) (Xu
and Sachdev, 2009). The vertical and horizontal axes de-
scribe the “mass” of the visons and spinons, respectively. A
similar mean-field phase diagram is obtained for the field the-
ory described by the action Sz + SΛ given by (45) and (49)
with sv = s̃. M denotes a multi-critical point. One sees com-
petition between phases similar to those found from series
expansion studies of the Heisenberg model on the anisotropic
triangular lattice (Zheng et al., 1999) (cf. Figure 36). [Copy-
right (2009) by the American Physical Society].

H. Effective field theories for quasi-particles in the metallic
phase

There have been many papers written about possible
field theories for the metallic phase of doped Mott insula-
tors (Lee et al., 2006). A common ingredient of many of
these theories is that the quasi-particles interact strongly
via fluctuations in the gauge field associated with repre-
sentions of the electron operators in terms of the slave
bosons. However, in contrast little work has been done
for the metallic state associated with the bandwidth con-
trolled Mott metal-insulator transition.

Qi and Sachdev (Qi and Sachdev, 2008) consider field
theories on the triangular lattice which describe transi-
tions from an insulating Z2 spin liquid state (with bosonic
spinon excitations) to metallic states with Fermi surfaces.
They argue that near this insulator-metal transition an
excitonic condensate can form. This condensate involves
pairing of charge neutral pairs of charge +e and charge e
fermions. This condensate breaks the lattice space group
symmetry. They propose this state as an explanation of
an anomaly in thermodynamic properties seen near tem-
peratures of about 6 K in κ-(BEDT-TTF)2Cu2(CN)3.
They also discuss the superconductivity associated with
the pairing of fermions of the same charge.

An alternative approach (Lee and Lee, 2005; Lee et al.,
2007b) starts with the slave rotor representation (Florens
and Georges, 2004) and derives an effective Lagrangian
describing fermionic spinons and X bosons coupled to
U(1) gauge fields. Compared to traditional (Kotliar-
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Ruckenstein) slave bosons the X boson is relativistic. In
the Mott insulating phase it is gapped and the holon and
doublon are bound.

The corresponding field theory has been used to de-
scribe a continuous transition from a Fermi liquid to
paramagnetic Mott insulator with a spinon Fermi surface
(Senthil, 2008). At the critical point the quasiparticle
weight Z vanishes and the effective mass m∗ diverges.
Nevertheless, there is still a sharply defined Fermi sur-
face. Also, the product Zm∗ tends to zero as the tran-
sition is approached, whereas for dynamical mean-field
theory it tends to a non-zero constant. As the temper-
ature increases on the metallic side there is a crossover
from the Fermi liquid to a marginal Fermi liquid and then
to a quantum critical non-Fermi liquid. A universal jump
in the intralayer resistivity of order h/e2 is predicted.
It is suggested that this theory is particularly relevant
to κ-(BEDT-TTF)2Cu2(CN)3. However, as discussed in
Section III the transition appears to be first order exper-
imentally. A logarithmic correction to the Fermi liquid
quadratic temperature dependence of the resistivity is
found, whereas a power closer to 2.5 is observed experi-
mentally (cf. section IV.F).

VIII. RELATION TO OTHER FRUSTRATED SYSTEMS

In the search for general organising principles we
briefly review other classes for frustrated materials and
models. Some of the systems discussed below have been
more extensively reviewed elsewhere (Balents, 2010; Nor-
mand, 2009).

A. β-(BDA-TTP)2X

A combined experimental and theoretical study was
made of these organic charge transfer salts with the two
anions X=SbF6 and AsF6 (Ito et al., 2008). An ex-
tended Hückel calculation was used to argue that the
relevant effective Hamiltonian was a Hubbard model on
an anisotropic triangular lattice with three unequal hop-
ping integrals, t0, t1, t2. (If two of these three hopping
integrals are equal one obtains the t− t′ model discussed
extensively in this review). These were calculated for the
different crystal structures obtained as a function of uni-
axial stress. All were found to vary within the range,
0.03-0.05 eV. Hence, these materials involve significant
frustration. The superconducting transition temperature
Tc measured as a function of uniaxial stress was compared
to that calculated from from a fluctuation exchange ap-
proximation (Ito et al., 2008). The parameterisation of
the band structure needs to be compared to the actual
Fermi surface determined from angle-dependent magne-
toresistance (Choi et al., 2003).

B. λ-(BETS)2X

This family of materials has attracted considerable
interest due to the discovery of magnetic-field induced
superconductivity in the X=FeCl4 material (Uji et al.,
2001). At ambient pressure and zero magnetic field it has
a Mott insulating ground state, whereas the X=GaCl4
material is a superconductor. Applying a magnetic field
parallel to the layers creates a metal, and for sufficiently
high magnetic fields, superconductivity. This can be
explained in terms of the exchange interaction between
the localised magnetic Fe3+ ions in the anion layer and
the itinerant electrons in the layers of BETS molecules.
When this exchange interaction is cancelled by the ap-
plied field the electron spins effectively see zero mag-
netic field (Balicas et al., 2001; Cépas et al., 2002). One
can also tune between Mott insulating, metallic, and su-
perconducting states by varying the temperature or the
relative concentration of magnetic Fe3+ ions and non-
magnetic Ga3+ ions (which effectively tunes the magni-
tude of the exchange interaction). (For a review see (Uji
and Brooks, 2006)).
The simplest possible lattice model Hamiltonian to de-

scribe this family of materials is a Hubbard-Kondo model
with a Hubbard model on an anisotropic triangular lat-
tice at half filling with an exchange interaction between
the electrons and localised spin-5/2 spins (Cépas et al.,
2002). However, there are questions about the role of
dielectric fluctuations and charge ordering in these ma-
terials (Toyota and Suzuki, 2007). The fact that one can
tune between ground states with perturbations involving
energy scales of the order of 1 meV (e.g. exchange in-
teractions, fields of order 10 Tesla and temperatures of
order 10 Kelvin) underscores how the interplay of frustra-
tion and strong correlations leads to competition between
different ground states with very similar energies. Given
this tuneability more systematic studies of the role of
frustration and possible spin liquid states in this family
is worthy of further study.

C. Sodium cobaltates

The material NaxCoO2 has attracted considerable in-
terest because of its large thermopower and rich phase
diagram which contains metallic, superconducting, in-
sulating, charge ordered, and various magnetic phases
(Ong and Cava, 2004). The x = 0 member of the fam-
ily should be described by a single band Hubbard model
on the isotropic triangular lattice, at half filling (Merino
et al., 2006). Due to the large geometric frustration of
magnetic ordering and the absence of Fermi surface nest-
ing the ground state is metallic below a critical value of
U/t ≃ 8 (Section VI.B). NMR measurements on CoO2

found that the Knight shift is weakly temperature de-
pendent and the spin relaxation rate 1/T1 could be fitted
to a Curie-Weiss form (de Vaulx et al., 2007). There is
also significant particle-hole symmetry and properties of
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the model depend significantly on the sign of t.
It turns out that to describe the x 6= 0 materi-

als, particularly those with x a rational number (e.g.,
x = 1/3, 1/2, 2/3), one needs to take into account the
spatial ordering of the Na+ ions and the associated pe-
riodic potential experienced by electrons in the cobalt
layers (Merino et al., 2009a,b; Powell et al., 2010).

D. Cs2CuCl4

The best evidence for deconfined spinon excitations
in an actual quasi-two-dimensional material is for this
one. Both Cs2CuCl4 and Cs2CuBr4 can be described
by a Heisenberg model on the anisotropic triangular lat-
tice. From a range of experiments it is estimated that
the value of J ′/J is about 3 and 2 for Cs2CuCl4 and
Cs2CuBr4, respectively (Fjærestad et al., 2007; Zheng,
Singh, McKenzie and Coldea, 2005). A very detailed
analysis of the effect of small residual interactions such
as a Dzyaloshinskii-Moriya interaction and an external
magnetic field on the ground state has been performed
(Starykh et al., 2010).

E. Monolayers of solid 3He

A single monolayer of helium atoms can be adsorbed on
graphite plated with HD molecules. At the appropriate
areal density the atoms form a solid with a hexagonal
lattice. The 3He atoms have nuclear spin-1/2 and the
spin degrees of freedom can be described by a Heisen-
berg model on the triangular lattice with multiple ring
exchange. No spin gap was observed down to tempera-
tures as low at 10 µK (Masutomi et al., 2004).
At the density at which the monolayer solidifies into

a
√
7 ×

√
7 commensurate solid, a Mott-Hubbard tran-

sition between a Fermi liquid and a magnetically disor-
dered solid is observed. This is signified by a diverging
linear co-efficient of the specific heat and and a diverging
magnetization (Casey et al., 2003). This transition has
also been investigated in bilayers; it is found that the in-
terband coupling associated with the two layers vanishes
as the insulating phase is approached (Neumann et al.,
2007). The experimental results are well described by a
cluster DMFT treatment of a bilayer Hubbard model on
the triangular lattice (Beach and Assaad, 2009).

F. Pyrochlores

The pyrochlore lattice consists of a three-dimensional
network of corner sharing tetrahedra. In a number of
transition metal oxides the metal ions are located on
a pyrochlore lattice. The ground state of the antifer-
romagnetic Heisenberg model on a pyrochlore lattice is
a gapped spin liquid (Canals and Lacroix, 2000). The
ground state consists of weakly coupled RVB (resonat-
ing valence bond) states on each tetrahedra. However,

Dzyaloshinskii-Moriya interactions have a significant ef-
fect, leading to the formation of long-range magnetic or-
der (Elhajal et al., 2005). The conditions necessary for
deconfined spinons has been explored in Klein type mod-
els (Nussinov et al., 2007). The repeat unit in this lattice
consists of a tetrahedron of four spins (giving an integer
total spin) and so the Lieb-Schultz-Mattis-Hastings the-
orem (Hastings, 2004) which can preclude gapped spin
liquid ground states does not apply.

The material KOs2O6 has a pyrochlore structure and
is found to be superconducting with a transition tem-
perature of about 10 K (Yonezawa et al., 2004). Orig-
inally it was thought that the superconductivity might
be intimately connected to RVB physics (Aoki, 2004).
However, it now seems that the superconductivity is s-
wave and can be explained in terms of strong electron-
phonon interactions which arise because of anharmonic
phonons associated with “rattling” vibrational modes of
the K ions which are located inside relatively large spa-
tial regions within the cage of Os and O ions (Hattori
and Tsunetsugu, 2010).

G. Kagome materials

The material herbertsmithite ZnCu3(OH)6Cl2 has gen-
erated considerable interest as a realisation of the spin-
1/2 Heisenberg model on the Kagome lattice. However, it
turns out that analysis of the experimental results is sig-
nificantly complicated by the presence of a small number
of impurities and by the Dzyaloshinskii-Moriya interac-
tion (Gregor and Motrunich, 2008).

Na4Ir3O8 is a material in which the Ir ions have spin-
1/2 and are located on a three-dimensional “hyperk-
agome” lattice of corner-sharing triangles. It has been
proposed that the ground state of the Heisenberg model
on this lattice may be a quantum spin liquid with spinon
Fermi surface (Lawler et al., 2008).

The antiferromagnetic spin-1/2 Heisenberg model on
the Kagome lattice has at times been thought to be a
prime candidate for a quantum spin model with a spin
liquid ground state. This is partly because the classi-
cal model has an infinite number of degenerate ground
states. However, a few years ago a series expansion study
(Singh and Huse, 2007) found that the ground state was
actually a valence bond crystal with a unit cell of 36
spins. This result was confirmed by a completely differ-
ent numerical method based on entanglement renormal-
isation (Evenbly and Vidal, 2010). However, very recent
numerical results using the density matrix renormalisa-
tion group (DMRG) (Yan et al., 2010) found a spin liquid
ground state, with a gap to both singlet and triplet ex-
citations.
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H. Spin-1 materials

The spin-1 Heisenberg model on the anisotropic tri-
angular lattice has been studied in the weakly coupled
chain limit (J ′ ≫ J) using zero-temperature series ex-
pansions about magnetically ordered spiral states (Par-
dini and Singh, 2008). There is a critical interchain cou-
pling J/J ′ ∼ 0.3 − 0.6 required to overcome the Hal-
dane spin gap (which occurs in the decoupled chain limit,
J = 0). This critical coupling is an order of magnitude
larger than that required for the case of unfrustrated cou-
pling between chains (i.e. an anisotropic square lattice).
Hence, it may be that a Haldane phase can exist in a two-
dimensional system. This raises an interesting question
about whether this model has topological order.
The family of materials LiVX2 (X = O, S, Se) can be

viewed as spin-1 systems on a triangular lattice. The
X = O material has an insulating valence bond solid
(VBS) ground state. Upon cooling the X = S compound
undergoes a first-order phase transition from a param-
agnetic metal (possibly with a pseudogap) to a VBS in-
sulator at 305 K (Katayama et al., 2009). The X = Se
material is a paramagnetic metal down to 2 K.
The material NiGa2S4 can be described by spin-1 an-

tiferromagnet on a triangular lattice. There is no sign of
magnetic order (Nakatsuji et al., 2005) and it has been
proposed that the ground state is a spin nematic phase
which is stabilised by bilinear–biquadratic interactions
(Tsunetsugu and Arikawa, 2007).

I. Cuprates

One might not expect frustration to be important in
these materials, particularly because the parent mate-
rial clearly undergoes antiferromagnetic Neel ordering.
However, a correlation has been found between the mag-
nitude of next-nearest neighbour hopping on the square
lattice, which frustrates the system, and the supercon-
ducting transition temperature, Tc (Pavarini et al., 2001).

J. J1 − J2 model

This a Heisenberg model on a square lattice where
J1 and J2 are the nearest- and next-nearest- neighbour
interactions, respectively. Thus, J2 acts along both di-
agonals of each placquette and is a frustrating interac-
tion. The model has been very widely studied with di-
verse techniques, motivated by the hope that it would
be model case of a two-dimensional model where frus-
trations produce a spin liquid ground state. For small
and for large J2/J1 the model has Neel order with wave
vector (π, π) and (0, π), respectively. For intermediate
0.5 < J2/J1 < 0.7 various studies have found a ground
statewith no magnetic order; some are VBC states (Becca
et al., 2009). Figure 35 shows how the true ground state
is close to an RVB state without magnetic order.

FIG. 41 Particle-hole asymmetry of doped Mott insulators
on the Shastry-Sutherland lattice (Liu et al., 2007). The
ground state of the Mott insulator is a valence bond crystal
with spin singlets along the diagonals shown as heavy lines
on the left part of the figure. Electron doping produces a
metal with these same spin singlet correlations preserved. In
contrast, hole doping produces a d-wave superconductor with
co-existing plaquette bond order. [Copyright (2007) by the
American Physical Society.]

The corresponding Hubbard model exhibits a subtle
competition between dx2−y2 superconductivity, a Mott
insulating phase, different magnetic orders, and a spin
liquid state. See for example (Nevidomskyy et al., 2008).

K. Shastry-Sutherland lattice

It has been argued that SrCu2(BO3)2 is a Mott insu-
lator on this lattice (Shastry and Kumar, 2002). The
corresponding Heisenberg model has an exchange inter-
action J along all vertical and horizontal bonds and
a diagonal interaction J ′ along every other plaquette
(Shastry and Kumar, 2002). It can be shown that for
J ′/J > 1.44±0.02 that the exact ground state is a prod-
uct of singlets along the same diagonals that the J ′ inter-
action occurs (Koga and Kawakami, 2000). A variational
Monte Carlo study (Liu et al., 2007) was made of the
corresponding t− J model (including three site hopping
terms) away from half-filling using a projected BCS wave
function with t′ = ±1.25t and J = 0.3t. The results are
summarised in Figure 41 and in the four points below.

i. There is significant particle-hole asymmetry. The au-
thors point out that one sign of t′ corresponds to
electron doping and the other to hole doping while
t does not change. This is because, for t′ = 0 the
lattice is bipartite. The sign of the hopping inte-
grals only matters when the electrons (or holes) can
traverse closed loops consisting of an odd number of
lattice sites. On the Shastry-Sutherland lattice (and,
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indeed the triangular lattice) all closed loops consist-
ing of an odd number of hops contain an odd number
of hops with amplitude t′ (and hence an even number
of hops with amplitude t; cf. Fig. 41). Hence, only
the sign of t′ matters for determining particle-hole
asymetry.

ii. Hole doping produces d-wave superconductivity.
But, this is not the result of delocalisation of the
pre-existing singlets in the Mott insulator since the
latter were along the diagonals.

iii. Electron doping does not produce superconductivity,
but only a correlated metal with singlet pairing along
the diagonal, as in the parent Mott insulator.

iv. The hole-doped superconducting state co-exists with
plaquette bond order where all the nearest neigh-
bour spins have antiferromagnetic correlations. Thus
the spin correlations are qualitatively different from
those in the parent Mott insulator.

This shows that the competition between supercon-
ductivity and antiferromagnetism and resonating valence
bonds that occurs when doping a frustrated Mott insu-
lator is more subtle (and confusing) than suggested by
Anderson’s original conjecture (Anderson, 1987). On the
other hand, one might argue that the parent Mott in-
sulator is very different from the cuprates and organics
because there are no resonating valence bonds in the par-
ent insulators for those classes of material.

L. Surface of 1T-TaSe2

This can be described by the Hubbard model on the
isotropic triangular lattice (Perfetti et al., 2005). As the
temperature decreases the bandwidth also decreases lead-
ing to a metal-insulator transition. The observed ARPES
spectrum was found to be comparable to that calculated
from the Hubbard model using dynamical mean-field the-
ory (Perfetti et al., 2005).

M. Honeycomb lattice

A recent study presented the results of Quantum
Monte Carlo simulations on the Hubbard model at half-
filling on the honeycomb lattice (Meng et al., 2010). This
is the relevant lattice for graphene and Pb and Sn on
Ge(111). As U/t increases there is a phase transition
from a semi-metal (which has gapless excitations at cor-
ners of the Brillouin zone, Dirac fermions) to a Mott
insulating phase, for U ≃ 3.5t. More importantly, the
authors also find that there is a spin liquid phase with a
spin gap before entering a phase with antiferromagnetic
order. The latter is what one expects from a strong cou-
pling expansion (i.e. U ≫ t) which is described by an
unfrustrated Heisenberg model (Paiva et al., 2005). The
spin liquid state has dimer-dimer correlations similar to

that in a single hexagon which can be described by the
RVB states of benzene.
Although the honeycomb lattice is bi-partite and so

is not frustrated the authors suggest that near the Mott
transition effective frustrating interactions occur. For ex-
ample, the ratio of the next-nearest neighbour exchange
interaction to the nearest-neighbour interaction is (t/U)2

(Delannoy et al., 2005).
In passing we note that the spin gap is very small,

∆s ≃ t/40 ≃ J/40. The single-particle charge gap is also
quite small in the spin liquid state being about t/10 ≃
U/40. This illustrates the emergence of new low-energy
scales due to the presence of large quantum fluctuations.

IX. ALTERNATIVE MODELS OF ORGANIC CHARGE
TRANSFER SALTS

We have presented above the evidence that organic
charge transfer salts are an experimental realisation of
the half-filled anisotropic triangular lattice. We have ar-
gued that all of the important phenomena observed can
be explained in terms of frustration and strong electronic
correlations. This, of course, requires some objective
judgement. For example, in which experimental results
one views as important and which one views are mere
details. Therefore, it is both natural and healthy that
others working in these fields have introduced a num-
ber of alternative hypotheses. In this section we briefly
discuss some of these ideas.

A. Quarter filled models

In order to construct effective low-energy
half-filled models of κ-(BEDT-TTF)2X or
EtnMe4−nPn[Pd(dmit)2]2 one has to integrate out
all of the internal degrees of freedom within the (BEDT-
TTF)2X or [Pd(dmit)2]2 dimer. Several authors have
considered models where one of these internal degrees
of freedom is retained, i.e., models where a lattice site
is a single BEDT-TTF or Pd(dmit)2 molecule and the
lattice is quarter filled with holes. We note that such
models must still integrate out all of the internal degrees
of freedom within the molecule. Thus, it is not clear a
priori that even these models will contain all the physics
relevant to the materials. However, all of the phenomena
that are correctly described by half-filled models should
be contained in the corresponding quarter-filled model.
Therefore, one would not wish to argue that there is no
description of these materials in quarter filled models.
But, it may be that such a description is unnecessarily
complicated. On the other hand, some of the papers
discussed below argue that the correct description of the
relevant physics is not captured by half-filled models,
and that quarter-filled models are essential for the
correct description of the low-energy physics.
Hotta has recently presented a model that interpo-

lates between a range of different polymorphs of (BEDT-
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TTF)2X in terms of the degree of dimerisation and the
splitting of the two bands nearest to the Fermi energy
(Hotta, 2003). This model is, in principle, quarter-filled,
but becomes half-filled in appropriate limits. Hotta stud-
ied this Hamiltonian in the mean-field approximation.
Her calculations found antiferromagnetic, charge ordered
and metallic states, but lacked superconductivity and ex-
otic insulating states such as spin-liquids and valence
bond crystals. This may, of course, be due to the in-
adequacies of the Hartree-Fock approximation.
Very recently Li et al. (Li et al., 2010) have proposed

that a number of the exotic phases (spin-liquids, valence
bond crystals, etc.) observed in the charge transfer salts
can be understood in terms of single phase, which they
call the ‘paired electron crystal’. The paired electron
crystal phase has both charge order and spin order, and
is reminiscent of the spin-Peierls phase observed in 1D
chains and ladders. This proposal is based on the results
of exact diagonalisation calculations for a quarter-filled
model on the anisotropic triangular lattice, which is not
dissimilar from Hotta’s model. This model has a large
number of free parameters, including the hopping inte-
grals, on-site and neighbouring site Coulomb repulsion,
intra- and inter-site electron-phonon couplings and the
spring constants of the relevant phononic modes. Li et
al. only reported numerical results for a limited param-
eter set but state that similar results were obtained for
a “broad range” of parameters. Li et al. have given a
qualitative description of how a number of experimental
results in κ-(BEDT-TTF)2X, EtnMe4−nPn[Pd(dmit)2]2
and other organic charge transfer salts might be ex-
plained in terms of the paired electron crystals. It will
be interesting to see whether this idea can be developed
into a fully quantitative theory of the experiments in the
coming years.

B. The role of phonons

The role of phonons and the interplay between
electron-phonon coupling and electronic correlations
have received less attention. Other than the work of
Li et al. (Li et al., 2010), discussed above, and stud-
ies that conclude that the phonons play only a relatively
minor role (Hassan et al., 2005; Merino and McKenzie,
2000b) most of the discussion of phonons has focused on
the superconducting state (Mazumdar and Clay, 2008;
Varelogiannis, 2002). A proposal to use Raman scatter-
ing to rule out pairing via electron-phonon coupling in
the cuprates (Chubukov et al., 2006) may also be rele-
vant to the organics.

C. Weak-coupling, spin fluctuations, and the Fermi surface

We have taken a strong coupling (i.e. large U) per-
spective where the key physics is that associated with
the RVB spin singlet fluctuations in the Mott insulat-

ing phase. From this perspective, geometric frustration
destabilises magnetic order and enhances RVB correla-
tions. The opposite weak-coupling (i.e. small U) per-
spective starts from a Fermi liquid metallic state which
becomes unstable due to enhanced spin fluctuations asso-
ciated with imperfect nesting of the Fermi surface. The-
oretical work on the organic charge transfer salts, which
has taken such a weak-coupling point of view, has been
reviewed previously (Moriya and Ueda, 2003).
A weak-coupling spin fluctuation treatment (e.g., the

fluctuation-exchange approximation (FLEX)) of the rel-
evant Hubbard model can produce some aspects of the
phenomenology observed in the organic charge transfer
salts. These include a transition from a Fermi liquid
metal, to d-wave superconductivity, to an antiferromag-
netic Mott insulator (Kino and Kontani, 1998; Kondo
and Moriya, 1998; Schmalian, 1998). But it is not clear
that the weak coupling approach can produce the follow-
ing:

1. Large effective masses associated with proximity to
the Mott insulating state;

2. The first-order phase transition from a supercon-
ductor to a non-magnetically ordered Mott insula-
tor;

3. The first-order phase transition between an antifer-
romagnetic insulator with a large magnetic moment
(as opposed to a small moment spin-density wave)
to a d-wave superconductor;

4. A d+ id superconductor near t′ = t;

5. A Mott insulating valence bond crystal insulator;

6. A Mott insulating spin liquid.

In contrast, the strong coupling approach gives a natural
description of these phenomena, cf. Figure 39.
However, a widely held view is that the RVB and spin-

fluctuation theories are just the strong and weak coupling
limits of a more general theory that has yet to be artic-
ulated. This argument certainly has some merits, for
example the weak coupling theory seems to give a rea-
sonable account of the cuprates in the overdoped regime,
where correlations are weaker than in more lightly doped
cuprates.
This issue of a weak versus strong-coupling perspective

is intimately connected with the question of a “glue” for
superconductivity (Anderson, 2007). The issue can be
nicely summarised as follows (Maier et al., 2008):

The question of whether one should speak of
a pairing glue in the Hubbard and t−J mod-
els is basically a question about the dynam-
ics of the pairing interaction. If the dynamics
of the pairing interaction arises from virtual
states, whose energies correspond to the Mott
gap, and give rise to the exchange coupling J ,
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the interaction is instantaneous on the rela-
tive time scales of interest. In this case, while
one might speak of an instantaneous glue, this
interaction differs from the traditional picture
of a retarded pairing interaction. However, if
the energies correspond to the spectrum seen
in the dynamic spin susceptibility, then the
interaction is retarded and one speaks of a
spin-fluctuation glue which mediates the d-
wave pairing.

Norman has reviewed the difficulty of distinguishing be-
tween these points of view in the cuprates, particularly
with regard to the observation of Fermi surface like prop-
erties in the underdoped state (Norman, 2010).

X. CONCLUSIONS

We have reviewed the significant progress that has
been made in understanding frustrated materials in gen-
eral and of organic charge transfer salts in particular.
We are now in a position to partially answer some of the
questions posed in the introduction:

1. Is there a clear relationship between superconduc-
tivity in organic charge transfer salts and in other
strongly correlated electron systems?

Yes. Superconductivity occurs in proximity to a
Mott insulating phase. There is substantial evi-
dence that the superconducting state is unconven-
tional in that there are nodes in the energy gap.
The superfluid stiffness becomes vanishingly small
at high pressures in the organics and at low dopings
in the cuprates.

2. Are there materials for which the ground state of
the Mott insulating phase is a spin liquid?

Yes. The strongest candidate materials are κ-
(BEDT-TTF)2Cu2(CN)3 and Sb-2. Neither of
these materials show any evidence of magnetic or-
dering down to temperatures four orders of mag-
nitude smaller than the antiferromagnetic coupling
between neighbouring spins.

3. What is the relationship between spin liquids and
superconductivity? In particular, does the same
fermionic pairing occur in both?

With increasing pressure there is a first order-
phase transition from the spin liquid state to a
superconducting state. There is no definitive ev-
idence yet that the same fermionic pairing occurs
in both states. A possible hint that this is the case
is the similarity between the temperature depen-
dence and magnitude of the thermal conductivity in
the spin-liquid phase of κ-(BEDT-TTF)2Cu2(CN)3
and the superconducting state of κ-(BEDT-TTF)2-
Cu(NCS)2.

4. What are the quantum numbers (charge, spin,
statistics) of the quasiparticles in each phase?

These appear to be quite conventional in the Neel
ordered Mott insulating states, the superconduct-
ing states, and the metallic state away from the
Mott transition. This question remains open in the
spin liquid phases of κ-(BEDT-TTF)2Cu2(CN)3
and Sb-1.

5. Are there deconfined spinons in the Mott insulating
spin liquid phase?

The strongest evidence comes from the tempera-
ture dependence of the NMR relaxation rate and
the thermal conductivity at low temperatures. This
seems to suggest that there are deconfined spinons
in Sb-1, but that κ-(BEDT-TTF)2Cu2(CN)3 is
fully gapped. However, the statistics of these
spinons is an open question.

6. Can spin-charge separation occur in the metallic
phase?

There is no evidence of spin-charge separation in
the metallic state yet.

7. In the metallic phase close to the Mott insulating
phase is there an anisotropic pseudogap, as in the
cuprates?

NMRmeasurements suggest there is a pseudogap in
the less frustrated materials. The anisotropy of this
pseudogap in momentum space has not yet been
mapped out experimentally. How the formation
of the pseudogap may be related to the crossover
with decreasing temperature from a bad metal to a
Fermi liquid metal is not clear.

8. What is the simplest low-energy effective quantum
many-body Hamiltonian on a lattice that can de-
scribe all possible ground states of these materials?

There is no evidence yet that one needs to go be-
yond the Hubbard model on the anisotropic trian-
gular lattice at half filling.

9. Is a RVB variational wave function an appropriate
theoretical description of the competition between
the Mott insulating and the superconducting phase?

The Gossamer-RVB hypothesis is qualitatively con-
sistent with experimental data reported so far.

10. Is there any significant difference between destroy-
ing the Mott insulator by hole doping and by reduc-
ing correlations?

Perhaps. This question is only beginning to receive
attention. It does seem that in the organics that the
effective mass of the quasi-particles m∗ increases
significantly as the Mott insulator is approached
whereas in the cuprates there is little variation in
m∗ with doping.
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11. For systems close to the isotropic triangular lattice,
does the superconducting state have broken time-
reversal symmetry?

There are no experimental studies of this question
yet. Resolving the question theoretically will re-
quire high level computational studies beyond what
is currently possible. To put this in perspective,
there is still no consensus as to whether the doped
Hubbard model on the square lattice has a super-
conducting ground state (Scalapino, 2006).

12. How can we quantify the extent of frustration?
Are there differences between classical and quantum
frustration? If so what are the differences?

A number of different measures of frustration have
been proposed. A clear example of quantum frus-
tration is kinetic energy frustration in, say, the
tight binding model, which has no classical ana-
logue. For spin models the differences between
quantum and classical frustration are less clear cut
and may be a purely taxonomic question.

13. What is the relative importance of frustration and
static disorder due to impurities?

This question has not yet received significant atten-
tion. The destruction of the non-magnetic state in
Sb-2 by, non-magnetic, Et3MeSb+ impurities pro-
vides a particularly dramatic case to study.

14. Is the “chemical pressure” hypothesis valid?

For the weak frustrated BEDT-TTF salts a num-
ber of experimental features collapse onto a sin-
gle curve, to within experimental error when plot-
ted against the superconducting critical tempera-
ture for a range of materials (Powell et al., 2009).
This is a success for the chemical pressure hy-
pothesis. The more strongly frustrated κ-(BEDT-
TTF)2Cu2(CN)3 behaves differently.

Recent DFT calculations are also consistent with
the hypothesis. A definitive microscopic explana-
tion of the chemical pressure hypothesis will require
further characterisation of the pressure and anion
dependence of the Hubbard model Hamiltonian pa-
rameters t, t′, and U . A powerful approach to this
problem would be to combine state-of-the-art band
structure calculations with experimental character-
isation of the Fermi surfaces using AMRO.

15. Is there quantum critical behaviour associated with
quantum phase transitions in these materials?

This is not clear. The most compelling ev-
idence may be the temperature dependence of
the NMR relaxation rate in κ-(BEDT-TTF)2Cu2-
(CN)3(Figure 13).

16. Do these materials illustrate specific “organising
principles” that are useful for understanding other
frustrated materials?

(a) Frustration suppresses long range fluctua-
tions, which improves the the accuracy of
mean field theories, such as DMFT, in the nor-
mal state.

(b) In frustrated systems small changes in param-
eters can lead to dramatic changes in physi-
cal properties of the system. For example, a
wide range of insulating phases are seen in the
EtnMe4−nPn[Pd(dmit)2]2 salts, despite their
similar chemistry.

A. Some open questions

There remain many questions still to be answered.
Here we outline some of the most important issues still
to be resolved:

1. Does the excitation spectrum change as one moves
between phases? And, if so, how? There is sig-
nificant evidence in the cuprates that the excita-
tion spectrum has essentially the same form “d-
wave” form in the pseudogap and superconducting
phases. This is seen in ARPES (Shi et al., 2009),
STM (Lee et al., 2009), and thermal conductivity
(Doiron-Leyraud et al., 2006).

2. Quite different physical pictures of the spin liquid
state has been proposed for κ-(BEDT-TTF)2Cu2-
(CN)3. In particular, Sachdev and collaborators
argue that the spinons are bosonic, whereas Lee and
collaborators argue that the spinons are fermions
and there is a well-defined Fermi surface. We need
a “smoking gun” experiment to distinguish these
two proposals.

3. The observation of a valence bond crystal in
EtMe3P[Pd(dmit)2]2 (P-1 in our notation) is ex-
citing. On the one hand, this may be a realisation
of a long sought after state of matter. The fact that
this state can be transformed into a superconduct-
ing state with pressure is even more interesting. On
the other hand, there remains an open question as
to whether coupling to the lattice is necessary for
stabilisation of this state. Therefore, understand-
ing the role of the lattice in stabilising the VBC
phase is a clear pirority.

4. Thermal conductivity measurements provide a sen-
sitive probe of the quasi-particle excitation spec-
trum. Measurements in materials such as κ-
(BEDT-TTF)2Cu[N(CN)2]Br which are close to
the Mott transition should be a priority.

5. Observation of deviations from the Weidemann-
Franz law (which gives a universal value for the
ratio of the thermal and charge conductivities in a
Fermi liquid metal) is a potential signature of spin-
charge separation. However, both theoretically and
experimentally finding such deviations has proven
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to have a convoluted and confusing history (Smith
and McKenzie, 2008; Smith et al., 2005). A careful
study of the Weidemann-Franz law in the organic
charge transfer salts could, however, provide signif-
icant new insights into the question of spin-charge
separation in these materials.

6. What is the origin of the very different tem-
perature dependences of the Nernst effects
in κ-(BEDT-TTF)2Cu[N(CN)2]Br and κ-(BEDT-
TTF)2Cu(NCS)2? What are the roles of supercon-
ducting fluctuations, electronic nematic order and
proximity to the Mott transition?

7. Is the superfluid stiffness at high chemical pressures
as small as µSR experiments suggest? Does hydro-
static pressure have the same effect?

8. What is the underlying physical cause of this small
superfluid stiffness? Is it the same as for the over-
doped cuprates, where the decreasing stiffness with
increasing doping has been proposed to be due to
pair breaking from impurities (Tallon et al., 2006)?

9. What is the symmetry of the superconducting state
in the superconducting states derived from the
spin liquid or a valence bond crystal? There are
strong correlations between ferromagnetic fluctu-
ations and p-wave superconductivity and nascent
Neél order and d-wave superconductivity. Presum-
ably the spin fluctuations are rather different in the
spin liquid and VBC phases. Therefore, it is possi-
ble that they would lead to different superconduct-
ing orders.

10. Is time-reversal symmetry broken in the supercon-
ducting state of any of these frustrated materi-
als? The superconducting phases which occur upon
applying pressure to the spin liquids κ-(BEDT-
TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2 and
the valence bond crystal EtMe3P[Pd(dmit)2]2
would seem to be particularly promising systems
to exhibit superconductivity that breaks time re-
versal symmetry.

11. If large enough single crystals could be grown in-
elastic neutron scattering could provide direct mea-
surement of the spin excitation spectrum and the
signatures of deconfined spinons such as a high en-
ergy continuum. Also, observation of an analogue
of the neutron resonance mode seen in the cuprate
and pnictide superconductors (Christianson et al.,
2008) could be important.

12. We have seen that the precise value of the parame-
ter t′/t has a dramatic effect on the ground state of
the system. Hence, it is desirable to have DFT cal-
culations for the Pd(dmit)2 family of charge trans-
fer salts. Experimental measurements that test the
accuracy of such calculations, such as AMRO in the
normal state, would also be of significant value.

13. The deviation of t′/t from unity is a measure of
how far the electronic structure deviates from the
isotropic triangular lattice. Hence, it is worth ask-
ing whether there is some structural parameter (e.g.
deviation of the shape of the first Brillouin zone
from a hexagon) which can be correlated with this
ratio. There have been previous attempts to pro-
vide a unified view of structural trends (cf. (Mori,
1998, 2004; Shao et al., 2009; Yamochi et al., 1993))
but more work is needed to relate these trends in a
definitive manner to electronic properties.

14. In the presence of a constant magnetic field B per-
pendicular to the layers a fluctuating U(1) gauge
field will modify the effect ofB on transport proper-
ties. A significant amount of analysis of the related
problem for the fractional quantum Hall liquid near
filling factor ν = 1/2 (Evers et al., 1999; Wolfle,
2000) has been performed. Recently, corrections
to the Lifshitz-Kosevich form for the temperature
dependence of the magnitude of quantum oscilla-
tions were calculated (Fritz and Sachdev, 2010).
More general results for a non-Fermi liquid associ-
ated with quantum criticality were then derived us-
ing the holographic correspondence (Hartnoll and
Hofman, 2010). A similar analysis of the effect of
gauge fluctuations on AMRO may provide measur-
able signatures of a fluctuating U(1) gauge field in
these materials.

15. It is desirable to obtain a better understanding of
the thermal expansion anomalies associated with
the superconducting, pseudogap, and spin liquid
transitions (Manna et al., 2010). These anoma-
lies may reveal the spatial symmetry breaking as-
sociated with the transitions. With this goal, a
Ginzburg-Landau theory for the acoustic anoma-
lies associated with the superconducting transition
has been developed (Dion et al., 2009).

Finally, we stress that in seeking to explain the rich
physics still to be understood in frustrated materials in
general and organic charge transfer salts in particular an
important task for the community is to generate multiple
hypotheses that may explain the data (Platt, 1964). It is
then important to design and execute experiments that
clearly distinguish between these hypotheses.
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2007 Phys. Rev. B 76, 165113.

Fazekas P and Anderson P 1974 Phil. Mag. 30, 1478.
Ferrero M, Cornaglia P S, Leo L D, Parcollet O, Kotliar G

and Georges A 2009 Phys. Rev. B 80, 064501.
Ferrero M, Leo L D, Lecheminant P and Fabrizio M 2007 J.

Phys.: Cond. Matt. 19, 433201.
Fischer Ø, Kugler M, Maggio-Aprile I, Berthod C and Renner

C 2007 Rev. Mod. Phys. 79, 353.
Fjærestad J O, Zheng W, Singh R R P, McKenzie R H and

Coldea R 2007 Phys. Rev. B 75, 174447.
Florens S and Georges A 2004 Phys. Rev. B 70, 035114.
Foury-Leylekian P, Bolloch D L, Hennion B, Ravy S, Morad-

pour A and Pouget J P 2004 Phys. Rev. B 70, 180405(R).
Fradkin E, Kivelson S A, Lawler M J, Eisenstein J P and

Mackenzie A P 2010 Ann. Rev. Cond. Matt. Phys. 1, 153.
Fradkin E and Shenker S H 1979 Phys. Rev. D 19, 3682.
Freed K F 1983 Acc. Chem. Res. 16, 137.
Freericks J K, Falicov L M and Rokhsar D S 1991 Phys. Rev.

B 44, 1458.
French S A and Catlow C R A 2004 Journal of Physics and

Chemistry of Solids 65, 39.
Fritz L and Sachdev S 2010 Phys. Rev. B 82, 045123.
Fulde P 1995 Electron correlations in molecules and solids

Springer Berlin.
Galitski V and Kim Y B 2007 Phys. Rev. Lett. 99, 266403.

Gan J Y, Chen Y, Su Z B and Zhang F C 2005 Phys. Rev.
Lett. 94, 067005.

Gan J Y, Chen Y and Zhang F C 2006 Phys. Rev. B
74, 094515.

Georges A, Kotliar G, Krauth W and Rozenberg M J 1996
Rev. Mod. Phys. 68, 13.

Gregor K and Motrunich O I 2008 Phys. Rev. B 77, 184423.
Gregor K and Motrunich O I 2009 Phys. Rev. B 79, 024421.
Grover T, Trivedi N, Senthil T and Lee P A 2010 Phys. Rev.

B 81, 245121.
Gulley J, Hone D, Scalapino D and Silbernagel B G 1970

Phys. Rev. B 1, 1020.
Gunnarsson O 2004 Alkali-Doped Fullerides: Narrow-Band

Solids with Unusual Properties World Scientific Singapore.
Gunnarsson O, Calandra M and Han J E 2003 Rev. Mod.

Phys. 75, 1085.
Hackl A and Vojta M 2009 Phys. Rev. B 80, R220514.
Hackl A, Vojta M and Sachdev S 2010 Phys. Rev. B

81, 045102.
Haldane F D M 1991 Phys. Rev. Lett. 67, 937.
Hao Z and Chubukov A V 2009 Phys. Rev. B 79, 224513.
Hartnoll S A and Hofman D M 2010 Phys. Rev. B 81, 155125.
Hassan S, Georges A and Krishnamurthy H R 2005 Phys. Rev.

Lett. 94, 036402.
Hastings M B 2004 Phys. Rev. B 69, 104431.
Hattori K and Tsunetsugu H 2010 Phys. Rev. B 81, 134503.
Hayashi A, Shiga M and Tachikawa M 2006 J. Chem. Phys.

125, 204310.
Hayashi Y and Ogata M 2007 J. Phys. Soc. Japan 76, 053705.
Heidarian D, Sorella S and Becca F 2009 Phys. Rev. B

80, 012404.
Herring C 1968 Physics Today 21(9), 27.
Hotta C 2003 J. Phys. Soc. Japan 72, 840.
Huang H X, Li Y Q, Gan J Y, Chen Y and Zhang F C 2007

Phys. Rev. B 75, 184523.
Hwang J, Timusk T and Gu G 2004 Nature 427, 714.
Imada M 2005a J. Phys. Soc. Japan 74, 859.
Imada M 2005b Phys. Rev. B 72, 075113.
Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys.

70, 1039.
Imai Y and Kawakami N 2002 Phys. Rev. B 65, 233103.
Isakov S V, Senthil T and Kim Y B 2005 Phys. Rev. B

72, 174417.
Ishiguro T, Yamaji K and Saito G 1998 Organic Supercon-

ductors Springer Berlin.
Ishii Y, Tamura M and Kato R 2007 J. Phys. Soc. Japan

76, 033704.
Itaya M, Eto Y, Kawamoto A and Taniguchi H 2009 Phys.

Rev. Lett. 102, 227003.
Ito H, Ishihara T, Tanaka H, Kuroda S i, Suzuki T, Onari S,

Tanaka Y, Yamada J i and Kikuchi K 2008 Phys. Rev. B
78, 172506.

Itoh M, Hirashima S and Motoya K 1995 Phys. Rev. B
52, 3410.

Itou T, Oyamada A, Maegawa S, Kubo K, Tamura M and
Kato R 2009 Phys. Rev. B 79, 174517.

Itou T, Oyamada A, Maegawa S, Tamura M and Kato R 2008
Phys. Rev. B 77, 104413.

Iwata S and Freed K F 1992 J. Chem. Phys. 96, 1304.
Jacko A C, Fjærestad J O and Powell B J 2009 Nature Phys.

5, 422.
Kadowaki K and Woods S B 1986 Solid State Commun.

58, 507.
Kagawa K, Itou T, Miyagawa K and Kanoda K 2004 Phys.



64

Rev. Lett. 93, 127001.
Kagawa K, Miyagawa K and Kanoda K 2005 Nature 436, 534.
Kagawa K, Miyagawa K and Kanoda K 2009 Nature Phys.

5, 880.
Kagoshima S and Kondo R 2004 Chem. Rev. 104, 5593.
Kandpal H C, Opahle I, Zhang Y Z, Jeschke H O and Valent̀ı

R 2009 Phys. Rev. Lett. 103, 067004.
Kanoda K 1997 Physica C 282287, 299.
Kanoda K 2006 J. Phys. Soc. Japan 75, 051007.
Kartsovnik M V 2004 Chem. Rev. 104, 5737.
Kasowski R and Whangbo M H 1990 Inorg. Chem. 29, 360.
Katayama N, Uchida M, Hashizume D, Niitaka S, Matsuno

J, Matsumura D, Nishihata Y, Mizuki J, Takeshita N,
Gauzzi A, Nohara M and Takagi H 2009 Phys. Rev. Lett.
103, 146405.

Kato R 2004 Chem. Rev. 104, 5319.
Kato R, Kashimura Y, Aonuma S, Hanasaki N and Tajima H

1998 Solid State Commun. 105, 561.
Kato R, Liu Y L, Aonuma S and Sawa H 1996 Solid State

Commun. 98, 1021.
Kato R, Tajima A, Nakao A and Tamura M 2006 J. Am.

Chem. Soc. 128, 10016.
Kato R, Tajima N, Tamura M and Yamura J I 2002 Phys.

Rev. B 66, 020508(R).
Katsura H, Nagaosa N and Lee P A 2010 Phys. Rev. Lett.

104, 066403.
Kawakami T, Shibauchi T, Terao Y, Suzuki M and Krusin-

Elbaum L 2005 Phys. Rev. Lett. 95, 017001.
Kawamoto A, Honma Y, Kumagai K I, Matsunaga N and

Nomura K 2006 Phys. Rev. B 74, 212508.
Kawamoto A, Miyagawa K, Nakazawa Y and Kanoda K 1995a

Phys. Rev. Lett. 74, 3455.
Kawamoto A, Miyagawa K, Nakazawa Y and Kanoda K 1995b

Phys. Rev. Lett. 74, 3455.
Kennett M P and McKenzie R H 2007 Phys. Rev. B

76, 054515.
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