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We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent

resources. Specifically, we consider a generalization of the “phaseonium fuel” for the photonic Carnot engine,

which was first introduced as a three-level atom with two lower states in a quantum coherent superposition

by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003)], to the case of

N + 1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well

as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically.

Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find

that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence

boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of

quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel

phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic

coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the

second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current

resonator technologies.
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I. INTRODUCTION

A practical figure of merit to compare fuel and battery

materials is the specific energy or energy-to-mass ratio [1–3].

As a material constant, it measures the energy that will be

harvested by using a unit mass of the material. About a decade

ago, a highly nontraditional fuel, called “phaseonium,” which

is a three-level atom with two lower states in a quantum

coherent superposition, was proposed to be used in a photonic

Carnot engine (PCE) [4]. A phaseonium engine could work

with a single heat bath and a phaseonium reservoir [4–7]. This

proposal stimulated much interest to quantum heat engines

[8–20]. It was later argued that existing resonator systems

cannot implement such an engine, due to high cavity losses

and atomic dephasing [21]. Here we address a fundamental

question of how the specific energy of phaseonium fuel

is scaled with the number of quantum coherent levels. A

favorable scaling law against decoherence and dephasing could

bring the phaseonium engine closer to available practical

systems.

We describe a multilevel generalization of phaseonium fuel

in Fig. 1. The block-diagonal density matrix ρ of an N + 1

level atom is shown in Fig. 1(a). The excited level, denoted by

“a,” and the lower levels, denoted by “b1,b2, . . . ,bN ,” are well

separated from each other by an energy � measured from the

central lower level bN/2 as shown in Fig. 1(b). The lower levels

can be degenerate or nondegenerate. The diagonal elements

ρaa , and ρbb, with b ∈ {b1,b2, . . . ,bN }, determine the level

populations, while the off-diagonal elements ρbb′ , with b′ �=
b, indicate the coherence between the levels. Coherence can

be characterized by the magnitude and phase of the complex

number ρbb′ .
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Though both the amplitude and the phase of coherent

superposition states can be controlled in experiments [22],

the main control variable for the photonic Carnot engine

is the phase of the coherence as the amplitude is required

to be small enough to keep the system only slightly out

of thermal equilibrium. The complete graphs in Fig. 1(a)

have N nodes and N (N − 1)/2 links, representing the atomic

energy levels and the coherences between them, respectively.

The simplest graph has N = 2 nodes, which is the case of

the original phaseonium proposal [4]. The interplay between

quantum coherence and energy discussed in the photon

Carnot engine [4] revealed that the energy content of the

phaseonium with N = 2 can be optimized at a certain phase

of the coherence. We could envision as if we are considering

more complex, larger, phaseonium molecules with the graphs

having N > 2, corresponding to N + 1 level atom phaseonium

(NLAP).

We can imagine different phaseonium molecules can be

possible for a given atom of unit mass and explore how

the specific energy of the atom depends on the size of the

phaseonium molecule characterized by N . Next to the phase of

coherence, N becomes another control parameter which could

favorably contribute to the enhancement of the specific energy

of the single-atom quantum fuel. For N ≫ 1, the number of

coherences would scale quadratically, ∼N2. If the quadratic

coherence scaling could be translated into the energy content

of the atomic fuel, then we could overcome the cavity losses

for implementation and boost the performance of quantum

Carnot engine for applications. From a fundamental point of

view, such a scaling analysis could reveal a profound difference

of quantum fuel from a classical resource, as such a scaling

cannot exist without quantum coherence. Complete graphs of

phaseonium molecules serve as more than a simple counting of

coherences. They emphasize the generality of our question we

address in the present contribution. Can we beat decoherence

with the scaling advantage of quantum coherent resources?
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FIG. 1. N + 1 level atom phaseonium (NLAP) fuel. (a) Density

matrix ρ and complete graph representations of NLAP. ρ is N + 1

dimensional square matrix. Its coherent block can be represented

by a complete graph with N nodes and S = N (N − 1)/2 links.

Graphs were shown up to N = 5 number of nodes. (b) NLAP for

nondegenerate and degenerate atoms. The excited state is denoted

by a and the lower levels are denoted by bi with i = 1, . . . ,N . The

upper level is well separated from the lower levels by an energy ��

measured from the central lower level bN/2.

We have recently proposed a superradiant quantum Otto

engine [20] where clusters of N two-level atoms prepared

in thermal coherent spin states are used as a quantum fuel.

This engine is also capable to exhibit a similar quadratic

scaling law of work with N ; however, the efficiency is

independent of the temperature and N . Superradiant engine has

no analytical master equation and numerical analysis reveals

that the quantum coherence serves as a catalyst, increasing

the energy injection rate into the photonic working medium

from the atomic clusters. In the case of a photonic Carnot

engine with N -level phaseonium fuel, an analytical master

equation reveals that the quantum coherence serves effectively

as a resource. In superradiant Otto engine, two heat baths are

considered; while photonic Carnot engine is used to explore

harvesting work from a single heat bath. Moreover, Carnot

efficiency depends on the temperature and exhibits quadratic

scaling with the number of levels N . Furthermore, even though

the work output scales quadratically with N for both engines,

specific energy of coherent cluster fuel increases linearly

with the number of atoms N ; while it has quadratic scaling

with the number of coherent levels N of the phaseonium fuel.

The linear increase of the mass of the unit atomic cluster

with the number of atoms degrades the quantum coherent

advantage in the specific energy. A quantum advantage in

the charging power of quantum batteries with the number of

qubits has been examined very recently [23]. Linear scaling of

work with the number of qubits is reported, whereas, due to a

quantum speed up of the operation time, the charging power

scales quadratically [23]. The preparation of phaseonium

FIG. 2. Photonic Carnot engine with N + 1-level atom phaseo-

nium (NLAP) fuel. Photon gas in a high-quality cavity of frequency

� is the working substance and the mirrors of the cavity play the

role of the piston. NLAP leaves the hohlraum at temperature Th and

is subsequently prepared in a state with quantum coherence among

its lower levels characterized by N (N − 1)/2 phase parameters φij

with i,j = 1, . . . ,N . Created NLAPs are repeatedly injected into the

cavity at a rate r in the quantum isothermal expansion process, where

heat Qin is transferred to the cavity. The cycle continues with quantum

adiabatic expansion and quantum isothermal compression and is

completed with a quantum adiabatic compression. An amount of heat

Qout is rejected into the entropy sink in the isothermal compression.

fuel and using it in PCE can be compared to charging and

discharging a single qubit quantum battery with multiple

quantum coherences. Phaseonium fuel or battery allows for

quadratic scaling in harvested work, efficiency, and the specific

energy with the number of quantum coherences. We examined

the charging or preparation cost of the phaseonium battery

and compared it with the harvested work by PCE. Our result

verified that the second law is obeyed in our system.

This manuscript is organized as follows: In Sec. II, we

describe the N -level phaseonium model and PCE system

dynamics. We review and discuss the analytical and numerical

verification of the analytical results in Sec. III. We also estimate

the preparation cost of NLAP in this section. We conclude the

results in Sec. IV.

II. NLAP MODEL AND SYSTEM DYNAMICS

The operation of photonic Carnot engine is described in

Fig. 2. The working fluid of the engine is the photon gas in a

high-quality single-mode cavity of frequency �. The radiation

pressure by the cavity photons applies on the cavity mirrors

playing the role of the piston of the engine. The quantum fuel of

the engine is an NLAP. The quantum Carnot cycle consists of

two quantum isothermal and two quantum adiabatic processes.

In the isothermal expansion, NLAPs are generated and

injected into the cavity at a rate r . The interaction time τ

between an NLAP and the cavity field is short, τ < 1/r , so

only one NLAP can be present in the cavity [24]. Coherences in

NLAP are characterized by N (N − 1)/2 phase parameters φij ,
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with i,j = 1,2, . . . ,N . Coherent superposition states in N + 1

level atom system can be generated by stimulated Raman adia-

batic passage (STIRAP) [25,26], Morris-Shore transformation

[27], or quantum Householder reflection techniques [28,29].

Thermalization of the single atom can be considered relatively

fast and hence the injection rate would be limited by the time

of coherence preparation. The choice of specific technique

of coherence induction depends on the details of a particular

implementation. If the amplitudes of the coherences are much

smaller than the level populations, then NLAP can be assumed

in an approximate thermal equilibrium with a thermal reservoir

(hohlraum) at a temperature Th. During the interaction, the

mean number of photons, n̄, and the cavity temperature

increases; while the expansion cools down the cavity when

there is no atom inside. Repeated injection of NLAPs into

the cavity maintains the cavity field at a temperature Tφ by

transferring a total amount of heat into the cavity as Qin. Tφ

is an effective temperature defined in terms of the steady-state

photon number n̄φ as Tφ = ��/k ln(1 + 1/n̄φ), with k as the

Boltzman constant. It can be higher than Th in the presence of

coherence [4]. The cavity volume, and hence the frequency,

change negligibly, �� ≪ �.

The cycle continues with an adiabatic expansion where the

entropy remains constant and the temperature drops as the �

changes appreciably. The following step is the isothermal com-

pression in which heat Qout is transferred from cavity to a cold

reservoir at a temperature Tc. The cycle is completed by adia-

batic compression where the temperature is raised back to Tφ .

The net work extracted from the cycle is Wnet = Qin −
Qout, where Qin = Tφ(S2 − S1) and Qout = Tc(S3 − S4). The

mean photon number n̄i and the temperature Ti at the

beginning of the i th stage determine the entropy Si by Si =
k ln(n̄i + 1) + ��n̄i/Ti . Using S1 = S4, S2 = S3, T1 = T2 =
Tφ , and T3 = T4 = Tc, we write Wnet = (Tφ − Tc)(S2 − S1).

The efficiency of the engine is defined as η = Wnet/Qin. It

reduces to η = 1 − Th/Tφ . This coincides with the standard

definition of thermodynamic efficiency in Carnot cycle and

used in the original proposal of the phaseonium fuel [4–7] as

well as in the arguments against its feasibility in the presence

of decoherence channels [21]. In order to present results

comparable to the previous works, we calculate the efficiency

as defined by these studies. To avoid any misleading impres-

sions, however, we emphasize that in practical considerations

round-trip efficiency can be more relevant figure of merit. The

round-trip efficiency of the engine should include the cost of

the preparation of the quantum coherent atom; which would

ensure the validity of the second law [7]. On the other hand, it

was noted that the cost of quantum fuel can be expensive [5],

but it is still appealing as it can be used to harvest work from

a single heat reservoir. Our objective here is not to discuss if

such PCEs can be efficient enough for certain applications but

to examine if such devices, proposed in Ref. [4], can produce

positive work in the presence of decoherence by exploiting a

scaling advantage of multiple coherence resources, in contrast

to the negative conclusions of earlier studies [21].

During the adiabatic process n̄ does not change so n̄1 =
n̄4 = [exp(��/kTc) − 1]−1 and n̄2 = n̄φ . These relations re-

veal that work and efficiency of the photonic Carnot engine

can be calculated by determining the n̄φ at the end of the

isothermal expansion stage.

III. RESULTS AND DISCUSSIONS

In order to find the n̄φ , we solve ˙̄nφ =
∑

n nρ̇nn = 0, where

ρ̇nn = 〈n|ρ̇|n〉. Here |n〉 is the Fock number state for the cavity

photons and ρ is the reduced density matrix of the cavity field.

The equation of motion for ρ can be obtained by tracing the

equation of motion of the complete system over atomic degrees

of freedom

ρ̇nn = −
i

�

∑

k

(Trat[H k,ρk]nn), (1)

where H k = H0 + H k
I is the Hamiltonian of the arbitrary

kth atom in the interaction picture relative to the cav-

ity photons, with H0 = �ωa|a〉〈a| + �
∑N

i=1 ωbi
|bi〉〈bi | and

H k
I = �g

∑N
i=1 |a〉〈bi |âe−i�t + H.c. Here �ωa,�ωbi

are the

energies of atomic states |a〉 and |bi〉, with i = 1 · · · N,g

is the coupling rate between the atom and the field, and â

is the photon annihilation operator. The model Hamiltonian

describes a situation where the N + 1-level atom is coupled to

a single-mode cavity in a fan-shaped transition scheme. A more

realistic model requires consideration of a multimode cavity

coupled to an atom with multiple upper and lower hyperfine

levels [30,31]. Such models can be reduced to an effective

single-mode cavity and multilevel atom interactions [30] or

can be directly described by generalized master equations of

micromasers [32]. Atoms with fan-shaped degenerate level

schemes are also studied from the perspective of generating

large superposition states [25,33]. The central question for us

here is the dependence of work and efficiency on the number

of the superposed quantum states and we will only consider

single upper level and a set of degenerate or nondegenerate

lower levels for simplicity.

Analytically calculating the right-hand side of the Eq. (1),

we find (see Appendix for details)

ρ̇nn = −rg2{Kaρaa[(n + 1)ρnn − nρn−1,n−1]

+

⎛

⎝

N
∑

i=1

Kbi
ρbibi

+
∑

i<j

K
φij

ij |ρbibj
|

⎞

⎠

× [nρnn − (n + 1)ρn+1,n+1]}, (2)

where the coefficients Ka, Kbi
, and K

φij

ij depend on the atomic

relaxation rate γ , atomic dephasing rate γφ , and detuning

parameter �i = ωabi
− �, with ωabi

= ωa − ωbi
and ωbibj

=
ωj − ωi , as well as the coherence parameters φij and |ρ0

bibj
|,

by the relations given in the Appendix. Thus, we obtain the

rate of change of average photon number

˙̄nφ = rg2{Kaρaa(n̄φ + 1) − (Rg0
+ Rgc

)n̄φ}, (3)

where Rg0
=
∑N

i=1 Kbi
ρbibi

and Rgc
=
∑

i<j K
φij

ij |ρbibj
|.

The equation of motion for the evolution of population ele-

ments in the density matrix coincides with the thermalization

dynamics of a resonator coupled to a heat bath. Accordingly,

the coarse-grained dynamics effectively describes sequence of

NLAP injected into the resonator as a mesoscopic ensemble

of N + 1 level atoms acting as a heat bath. The off-diagonal

elements of the density matrix or the coherences can be kept

vanishingly small to describe the steady-state approximately

as a thermal equilibrium state. The corresponding effective
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temperature can be determined by the modified detailed

balance condition to reach such a quasiequilibrium state in

Eq. (2) which gives

Ka

Rg0
+ Rgc

= exp

(

−��

kTφ

)

. (4)

The detailed balance between the thermal reservoir at Th and

the photon gas in the resonator is broken but there is a modified

detailed balance between the coherent atomic ensemble and

the resonator photons. Accordingly, the resonator can reach a

thermal equilibrium at a different temperature Tφ than Th.

The steady state of the Eq. (3) yields the average photon

number as

n̄φ =
n̄

1 + n̄
Rgc

Kaρaa

, (5)

where n̄ = (Rg0
/Kaρaa − 1)−1 is the average photon number

in the absence of coherence. Using n̄φ = [exp(��/kTφ) −
1]−1, we determine the effective cavity temperature as

Tφ =
Th

1 + n̄
Rgc

Kaρaa

, (6)

by using high-temperature approximations n̄φ ≈ kTφ/�� and

n̄ ≈ kTh/�� in Eq. (5).

Therefore, the efficiency of the photonic Carnot engine in

the case of NLAP becomes

ηφ = ηc −
Tc

Th

n̄
Rgc

Kaρaa

, (7)

where ηc = 1 − Tc/Th is the Carnot efficiency. Note that for

Tc = Th and ηc = 0 but ηφ could have a positive value for

particular values of control parameters φ1,φ2, . . . ,φS . In order

to get further analytical results we will make some simplifying

assumptions.

We focus on degenerate NLAP case to proceed an-

alytically, for which Ea = �,Ebi
= 0,i = 1, . . . ,N,ωabi

=
�,�i = 0,ωbibj

= 0, and Ka = 2N/γ 2. In addition, we

consider phase-locked equal amplitude coherences with

φij = φ and |ρbibj
| = λ. Hence the coefficients in Eq. (2)

become K
φij

ij = 4 cos φ/γ 2,Rg0
= 2NPg/γ

2, and Rgc
=

2N (N − 1) cos φλ/γ γ̄ , and hence Eq. (3) reduces to

˙̄nφ = 2μN [(Pe − Pg + Nξλ)n̄φ + Pe] − κn̄φ, (8)

for N ≫ 1,φ = π , where μ = rg2/γ 2,Pe = ρaa =
exp(−βEa)/Z,Pg = ρbibi

= 1/Z with Z = exp(−βEa) + N .

Here we introduced κ and ξ , with |ξ | < 1, as the decoherence

rate due to the dissipation in the cavity and a phenomenological

decoherence factor due to atomic dephasing, respectively

[21]. While the dephasing factor is phenomenologically

introduced in Ref. [21] we provide its rigorous microscopic

derivation in the Appendix.

Steady-state solution of Eq. (8) yields an effective temper-

ature given by Tφ = Th/[1 + F (Th)] in the high-temperature

limit where

F (Th) =
n̄

Pe

(

−Nξλ +
κ

2Nμ

)

, (9)

with n̄ = Pe/(Pg − Pe). For small coherence and decoherence

terms in F (Th), an approximate expression can be written for

the effective temperature

Tφ = Th

(

1 + N2ξλn̄ −
κ

2μ
n̄

)

. (10)

This result shows that if the reduction of the magnitude

of coherence due to dephasing is slower than the quadratic

increase with N , then the multilevel coherence could be used

to beat the decoherence induced by the cavity dissipation. The

magnitude of coherence λ is limited by the positivity require-

ment of the density matrix as well as the thermal equilibrium

requirement of the cavity field. The former condition requires

|ρbibj
| � (ρbibi

ρbj bj
)1/2 so λ � 1/N for N ≫ 1 as ρbibi

∼ 1/N

for N ≫ 1. Accordingly, one can fix the coherence amplitude

λ as a constant as long as it remains smaller than 1/N for the

range of N values. For a realistic number of levels this is not a

very restrictive condition. More severe limitation on λ is due to

the quasiequilibrium condition of the photon gas. We will take

λ ∼ 10−6 and consider N � 40 in our numerical examinations.

In the classical asymptotical limit of N → ∞ and then λ → 0

as 1/N and hence the quadratic scaling reduces to a linear one

for which the specific energy becomes a constant, as expected

for classical systems. Mesoscopic systems in quantum regime

are therefore necessary to exploit the quadratic scaling in the

specific energy.

We note that the coarse-grained dynamics is designed on

purpose to determine the steady state by rapid convergence

using a numerically efficient dynamical equations. Analytical

solution of the mean photon number dynamics for the

degenerate case and with λ = 0, κ = 0, ξ = 1 gives

n̄φ = n̄ − (n̄ − n̄0)e−t/tth , (11)

where tth = 1/2μN (Pg − Pe) is the thermalization time. We

will first discuss the predicted analytical state states by the

coarse-grained master equation in modern resonator settings

and then examine the exact numerical description of the

dynamics of the system to verify the analytical results in the

subsequent subsections.

A. Analytical results for modern resonator systems

In the high-temperature limit (T ≫ �), the entropy change

in the isothermal expansion stage is �S = k��/� and the

heat input becomes Qin = Th�S. The work output at Th =
Tc is found to be W = Qinη, where η = n̄(N2ξλ − κ/2μ),

respectively. In the superconducting circuit, microwave and

optical resonators, it is estimated that κ/2μξλ ∼ 10 [21].

N2 should be replaced by N (N − 1)/2 for smaller number

of levels. Accordingly, by using five or more level quantum

phaseonium fuel, the working fluid can beat quantum deco-

herence to harvest positive work.

In Fig. 3, we plot the work output and efficiency of

the photonic Carnot engine with degenerate NLAP fuel,

depending on the number of quantum coherent levels. We

consider N -independent as well as N -dependent scaling

models [34] for the decoherence factor and take ξ = exp (−x)

in Figs. 3(a) and 3(b), ξ = exp (−Nx) in Figs. 3(c) and 3(d),

and ξ = exp (−N2x) in Figs. 3(e) and 3(f), where x = γφ/γ

as shown in the Appendix. The plots are given for the circuit

quantum electrodynamics (QED) parameters in Ref. [21]. We

consider larger atomic dephasing rates than the typical values
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FIG. 3. Extracted work (W ) and efficiency (η) of photonic Carnot

engine, with N + 1 level atom phaseonium (NLAP) fuel, depending

on the number of degenerate coherent ground-state levels N , for

different decoherence factor models [(a) and (b)] ξ = exp (−x) and

[(c) and (d)] ξ = exp (−Nx). [(e) and (f)] ξ = exp (−N2x), where

x = γφ/γ . Coherence parameter is λ = 10−6 and the initial thermal

coherent atomic temperature is Th = 4 in units of ��/kB . x values

are 0.15, 0.1, 0.05, and 0.001 for (a) and (b); 0.14, 0.12, 0.1, 0.08

for (c) and (d); and 0.012, 0.01, 0.008, 0.006 for (e) and (f) for

the dashed-dotted, dotted, dashed, and solid lines, respectively. The

plots are given for the circuit QED parameters in Ref. [21]. The

quantities g = 0.01, r = 1 × 10−4, κ = 6.25 × 10−4, and γ = 5 ×
10−6, which are the coupling coefficient to the cavity field, atomic

injection rate, cavity loss term, and atomic decay, respectively, are

dimensionless and scaled with the resonance frequency � ∼ 10 GHz.

η is dimensionless, and W is dimensionless and scaled with �.

to demonstrate its limiting effect on W and η. The plots indicate

that even when there is large dephasing, which can increase

with N linearly or quadratically, W and η can retain their

quadratic power law with N up to a critical N .

Similar results are found for the cases of optical and

microwave cavities. We see in Figs. 4(a) and 4(b) and Figs. 5(a)

and 5(b) that when dephasing is independent of N , the work

output and efficiency increases quadratically with the number

of coherent levels. If the dephasing rate is increasing linearly

with N as in Figs. 4(c) and 4(d) and Figs. 5(c) and 5(d), or if it

is increasing quadratically with N as in Figs. 4(e) and 4(f) and

Figs. 5(e) and 5(f), then the work output and efficiency of the

photonic engine is enhanced quadratically with the number

of coherent levels only up to critical N , beyond which the

work output and efficiency decays exponentially due to the

dominating effect of decoherence.

FIG. 4. Extracted work (W ) and efficiency (η) of microwave

resonator photonic Carnot engine, with N + 1 level atom phaseonium

(NLAP) fuel, depending on the number of degenerate coherent

ground-state levels N for different decoherence factors [(a) and

(b)] ξ = exp(−x), [(c) and (d)] ξ = exp(−Nx), and [(e) and (f)]

ξ = exp (−N 2x), where x = γφ/γ . The coherence parameter is

λ = 10−6 and the initial thermal coherent atomic temperature is

Th = 4 in units of ��/kB . x values are 0.1, 0.15, 0.05, 0.001 for (a)

and (b); 0.12, 0.1, 0.08, 0.06 for (c); 0.14, 0.12, 0.1, 0.08 for (d); and

0.012, 0.01, 0.008, 0.006 for (e) and (f) for the dashed-dotted, dotted,

dashed, and solid lines, respectively. The parameters g = 9.21 ×
10−7, r = 6.47 × 10−5, κ = 1.96 × 10−8, and γ = 9.54 × 10−10 are

the atom-field coupling coefficient, atomic injection rate, cavity loss

term, and atomic decay, respectively. They are dimensionless and

scaled with the typical resonance frequency is � = 51 GHz [35]. η

is dimensionless, and W is dimensionless and scaled with �.

B. Numerical verification of the theory

In order to perform a faithful numerical simulation of a

typical setup described in theory, we investigate the injection

process in detail. We assume a regular atomic injection of

Rydberg atoms into a Fabry-Perot cavity [37] with an atomic

interaction time τ with the cavity field and an empty cavity

time τ0 such that 1/r = τ + τ0, where r is the injection rate.

During the time interval τ , the Hamiltonian is

H = ωa|a〉〈a| + �â†â + g

( N
∑

i=1

|a〉〈bi |â + H.c.

)

, (12)

while for the time interval τ0, H = �â†â (� = 1 and ωbi
= 0

for degenerate ground-state levels).

We choose injection time 1/r = 1/(Nexκ), where κ is the

cavity decay rate and Nex is the number of atoms kicking the
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FIG. 5. Extracted work (W ) and efficiency (η) of optical resonator

photonic Carnot engine, with N + 1 level atom phaseonium (NLAP)

fuel, depending on the number of degenerate coherent ground-state

levels N for different decoherence factors [(a) and (b)] ξ = exp(−x),

[(c) and (d)] ξ = exp(−Nx), and [(e) and (f)] ξ = exp(−N2x), where

x = γφ/γ . Coherence parameter is λ = 10−6 and the initial thermal

coherent atomic temperature is Th = 4 in units of ��/kB . The x

values are 0.15, 0.1, 0.05, 0.001 for (a) and (b); 0.14, 0.12, 0.1,

0.08 for (c) and (d); and 0.01, 0.008, 0.006, 0.004 for (e) and (f)

for the dashed-dotted, dotted, dashed, and solid lines, respectively.

The parameters g = 6.28 × 10−7, r = 8 × 10−5, κ = 2.86 × 10−7,

and γ = 4.68 × 10−8 are the coupling frequency to the cavity

field, atomic injection rate, cavity loss term, and atomic decay,

respectively. They are dimensionless and scaled with the typical

resonance frequency is � = 350 THz [36]. η is dimensionless, and

W is dimensionless and scaled with �.

cavity field in the photon lifetime. The time elapsed when

cavity is empty τ0 can be related to the interaction time such

that τ0 = Nemτ . Thus, we can write 1/r = τ (1 + Nem). Here,

Nem is a factor introduced to measure τ0 in terms of τ so

Nem = 1/(Nexκτ ) − 1.

We solve the master equation by numerical methods and

compare the results with the developed theory. We use the

QuTip package [38] in PYTHON software to solve the master

equation. We perform single atomic injection in two steps.

First step is the atom-cavity field interaction (during τ ) and

the second one is the free cavity field evolution (during τ0).

The master equation for the first step is written under Markov

and Born-Markov approximations as [39]

ρ̇ = −i[H,ρ] + γ

N+1
∑

m

L[Lγ
m] +

γφ

2

N
∑

n

L[Lφ
n ], (13)

where last two terms stand for pure spontaneous emission and

pure dephasing [40–43], respectively. Here L[x] = (2xρx† −
xx†ρ − ρx†x)/2 is a Liouvillian superoperator in Lindblad

form and L
γ
m = |r〉〈αm|,Lφ

n = |bn〉〈bn|. We include an auxil-

iary state |r〉 to the atomic state space to model the decay of the

excited and the lower levels. Presence of |r〉 is not altering the

initial phaseonium state. The auxiliary state is unpopulated

and at the lower level energy. Its use allows for faithful

simulation of the excited state and the degenerate ground-

state (αm = a,b1, . . . ,bN ) decay equations in Eq. (A19). This

decay model is already used in the original master equation

developed for the two-level phaseonium engine [6]. Different

decay models, for example, decay of excited level to the

lower levels are employed for other systems such as many

atom superradiant Otto engine [20] and similar effect of

beating decoherence with scaling up coherence is found.

The present contribution discusses the original photo-Carnot

engine [4] as well as the objection to its feasibility due to

dephasing, phenomenologically described by factor ξ [21].

Our introduction of γ is an additional decoherence channel

not included in Ref. [21]. We have found that γφ can be

analytically expressed in terms of ξ (see Appendix for details).

The microscopical master equation approach describes the

original photo-Carnot engine coarse-grained master equations

both with [21] and without [6] dephasing and generalizes them

to the multilevel case, as our mesoscopic master equation,

Eq. (2), does analytically.

In the second step, cavity decay (κ) is present during the

time interval τ0 in accordance with the key assumptions of

micromaser theory [24] and the corresponding master equation

is

ρ̇ = −i[H,ρf ] + κL[â]. (14)

In Fig. 6, we present the thermalization process of the cavity

field depending on different Nex values by depicting the photon

number versus scaled time. Physical parameters [21] are given

in the figure caption consistent with the Rydberg atoms in

a superconducting Febry-Perot cavity [37]. For low values

of Nex which correspond to large Nem, we have zigzag-like

curves and for high values of Nex we have smoother lines.

The average photon number n̄φ converges to the theoretical

value for Nem = 12 × 103. Thermalization time is much longer

than the convergence rate of coarse-grained master equation

and the microscopic exact method is much more costly

numerically.

In Figs. 7(a) and 7(b), we express the effect of the number

of degenerate atomic ground-state levels N of the coherent

atoms against the dephasing and the cavity loss mechanisms.

Horizontal dotted and dotted-dashed lines are the analytical

values of average photon numbers(n̄φ,n̄) of the no loss case

for each N . In Fig. 7(a) when decoherence channels are

open, average photon number saturates below the analytical

values for N = 2 in accordance with the argument that 2LAP

phaseonium cannot beat decoherence [21]. The average photon

number exceeds n̄ for N = 4 in Fig. 7(b) by keeping all the

other parameters the same. Thus, we show that the decoherence

can be beaten by using higher N . To make the effect more

visible in the figures, we take larger coherence magnitude,

λ = 10−3.

012145-6



QUANTUM FUEL WITH MULTILEVEL ATOMIC COHERENCE . . . PHYSICAL REVIEW E 93, 012145 (2016)

FIG. 6. Time evolution of average photon number during ther-

malization process of PCE field while regular injection of 2LAP

depending on different Nex parameters. Nex values are 4500, 1500,

150, 100, and 50 in decreasing order for the upper to lower curves,

respectively. The coherence parameter is λ = 10−3, the initial field

temperature Tf = 1, and the temperature of the thermal coherent

atoms is Th = 2 in units of ��/kB . The resonant field frequency is

� = 51 GHz, cavity quality factor is Q = 2 × 1010, atom cavity field

interaction time is τ = 10 μs, atom decay rate is γ = 33.3 Hz, atom

dephasing rate is γφ = 3.3 Hz, and the atom cavity field coupling is

g = 50 kHz. Time is dimensionless and scaled with �.

We also compare the consistency of effective field

temperature Teff, harvested work (W ), and efficiency (η) versus

N in Fig. 8 between developed analytical and numerical

results when dissipation channels open. We observe a good

consistency between numerical and theoretical results in

steady state.

C. Preparation of the NLAP and its energy cost

Typical methods to generate quantum superposition states,

such as pulse area, adiabatic passage, or STIRAP techniques

[25,26], utilize optical pulses interacting with the atomic

system to transfer an initial atomic state to a target one. The

initial and target quantum states are known and hence one can

easily determine the required unitary transformation between

them. Physical implementation of the required propagator

is, however, a much more challenging problem than the

calculation of the transformation matrix. An efficient strategy

to synthesize the transformation matrix is to decompose it into

a product of matrices, representing interacting steps that can

be implemented by using optical pulses coupled to the atom.

Let us briefly describe a few more details of the physical

implementation of the transformation matrix that we shall

consider (see Refs. [28,29] and the references therein). The

atom consists of N degenerate ground states coherently

coupled to a common excited ancilla state by resonant or nearly

resonant pulsed external laser fields in a fan shaped N -pod

transition scheme. The temporal profiles and the detunings

from the atomic resonance of the pulses are the same; but their

amplitudes and the phases can differ. Nonzero detuning allows

for a more general transformation matrix. Using femtosecond

pulses is advantageous to eliminate population losses and to

reduce decoherence effects on such short interaction times;

FIG. 7. Comparison of time evolution of average photon number

in presence of thermal and coherent atom injection with N = 2 (top

figure) and N = 4 (bottom figure). The horizontal dashed and dashed-

dotted lines stands for the analytical n̄φ and n̄ values in absence of loss

mechanisms. Solid and dotted lines stands for time evolution of n̄φ

and n̄, respectively, in presence of dissipation channels. Nex = 4000

for both subplots corresponding to τ0 = 90 μs. Insets magnifies the

lines between �t = 600 and �t = 800. All the remaining parameters

are the same with that of Fig. 6. Time is dimensionless and scaled

with �.

besides, pulse shapes and areas can be controlled to a high

degree of accuracy. It is sufficient to use a few tunable

lasers and split their fields using beam splitters to further

ensure identical pulse profiles, which are typically hyperbolic

secant or Gaussian. Polarizers can be used to selectively

couple atomic states to the laser fields. An interaction step

is achieved by simultaneously coupling N coincidence pulses

in fan-shaped transition scheme to the N + 1-level atom. This

is repeated sequentially by the train of set of laser pulses. The

process ends when the initial state is navigated into the target

state by the product of the propagators of interaction steps.

Relative to other pulse area or adiabatic transfer schemes,

which require N2 operations, the coincidence pulse technique

needs fewer, N , operational steps.

An arbitrary N dimensional unitary matrix U(N ) can be

decomposed into so-called N -generalized quantum House-

holder reflection (QHR) matrices or N − 1 standard QHRs

and a phase gate [28,29]. A generalized QHR is defined by

M(ν; φ) = I + (eiφ − 1)|ν〉〈ν|, (15)
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FIG. 8. Comparison of numerical results (black circles) with

developed theory (solid line) of efficiency η (top figure), harvested

work W (inset), and effective field temperature Teff (bottom figure),

respectively, depending on the number of degenerate ground-state

levels N . Nex = 12 × 103 and corresponding τ0 = 2.01 μs. All the

remaining parameters are the same as in Fig. 6. η is dimensionless,

Teff and W are dimensionless and scaled with �.

where I is the identity operator and the |ν〉 is the normalized

column vector with dimension N , the same with the number

of the pulses, and φ is an arbitrary phase factor. The

decomposition of U(N ) in terms of generalized QHRs can

be written as

U = M(ν1; φ1)M(ν2; φ2) . . . M(νN ; φN ). (16)

For φ = π , Eq. (15) reduces to M = I − 2|ν〉〈ν|, which

is the standard QHR. The interaction represented by each

Householder matrix can be described by a propagator which

can be determined by the Morris-Shore transformation [27].

Our N+1 level atom coupled to N optical pulses in a

fan-shaped transition scheme, or so-called N -pod model,

is a generic model that is used to discuss generation of

arbitrary multilevel superposition states. Under the Morris-

Shore transformation, the lower levels of the atom are grouped

into a single bright level coupled to an effective single pulse

and N − 1 dark levels uncoupled from the optical pulses.

The propagator is then easily determined in this Morris-Shore

basis. Back-transformation to the original basis gives the full

propagator or the generalized QHR matrix. Both the number

of QHR steps and the number of pulses used in each step are

in the order of N , and therefore the total number of pulses to

be used to generate the target state would be in the order of

N2. This shows that the energetic cost of preparation of the

target state scales with N2, same with the work and efficiency

scaling in the corresponding photonic Carnot engine.

The preceding discussion is applicable to the case of mixed

states as well, for which the normalized vectors of generalized

QHRs are defined as [28]

|νi〉 =
1

e−iφi − 1

√

2 sin (φ/2)

|1 − uii |
(|ui〉 − |ei〉). (17)

Here ui is the i th column of U(N ),|ei〉 = [0, . . . ,1ith, . . . ,0]T

and φ is an arbitrary phase where φi = 2arg(1 − uii) − π .

It is shown that for an N -pod system any standard QHR

M(ν) can be realized by single pulses with an rms pulse

area A = 2π [29]. The corresponding unitary transformation

can only link the mixed states with the identical dynamical

invariants. In our case we consider initial thermal states out of

a hohlarum transformed to a final state with small coherences.

The initial and final states would then possess different

spectral decompositions so they cannot be unitarily connected.

A resolution to this is suggested to exploit decoherence

channels such as spontaneous emission or pure dephasing in

combination with the unitary transformation [28,29]. We will

not follow this route but use an alternative, which allows for

a fully unitary procedure to generate desired coherences. As

the coherences contribute additively, to exploit their scaling

advantage we do not need an exact state but an approximate one

would be sufficient. Accordingly, we can simply consider an

approximate approach and do not specify an exact value for the

coherences. We only need to keep them small enough to ensure

slightly out of thermal equilibrium final state. We illustrate our

strategy for N = 2 case and suggest that in principle larger

NLAP can be generated by straightforward extension of this

technique. Unitarity of our procedure also makes the details

of generation process immaterial for the cost estimation. The

cost would be the same for other unitary equivalent processes

to generate same states.

The initial state of the atom from the hohlarum at Th is the

thermal density matrix

ρth =
1

Z
e−βH =

N+1
∑

n=1

Pn|�n〉〈�n|, (18)

where β = 1/kBTh is the inverse temperature (kB = 1)

and Z = Tre−βH is the partition function, with H =
∑N+1

i=1 �ωi |i〉〈i| being the atomic Hamiltonian. Taking N = 2

and Th = 2, we find ρth = diag(0.327,0.384,0.384). Target

density matrix ρc is taken to be

ρc =

⎛

⎝

0.327 0 0

0 0.384 0.000001

0 0.000001 0.384

⎞

⎠, (19)

where the off-diagonal elements between degenerate

ground-state levels are taken real and much smaller than

the diagonal elements that are equal to those of the ρth. The

initial and final density matrices have distinct dynamical

invariants in their spectral decompositions and hence they

cannot be linked by a coherent evolution. Let us assume,
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however, an approximate link such that ρc ≈ UρthU†. The

unitary transformation U can be determined from the matrix

that diagonalize ρc and found to be

U =

⎛

⎝

1 0 0

0 −0.707 0.707

0 0.707 0.707

⎞

⎠. (20)

Writing ρ̃c = UρthU†, the fidelity between ρc and ρ̃c is

determined by F(ρc,ρ̃c) = |T r
√√

ρcρ̃c

√
ρc|2 and found be

F(ρc,ρ̃c) ≃ 1. Thus, Ũ can be approximately be used as

the unitary operator linking the initial and the target density

matrices.

Ũ can be synthesized by using two standard QHRs and a

phase gate as

Ũ = M(ν1; φ1)M(ν2; φ2)M(ν3; φ3), (21)

where φ1 = φ2 = φ3 = π and M(ν3; φ3) = �(0,0,�3) is a

one-dimensional phase gate. By using Eq. (17) one finds

the normalized column vectors to be |ν1〉 = [0,0,0]T ,|ν2〉 =
[0,0.924, − 0.383]T . The example for N = 2 here illustrates

the basic principles to generate arbitrary NLAP. One can use

N pulses for each N − 1 standard QHRs and a phase gate

to synthesize a unitary transformation matrix, which is the

diagonalization matrix of a quasiequilibrium thermal state at

Th with small coherences. When the pulses applied to the

actual atom out of hohlarum at Th, the final state will be

approximately the same with the target state used to determine

the properties of the pulses.

We can now estimate the energy cost Uc of generating ρc

using Uc = N2Up, where N2 is the total number of pulses used

in the QHR technique and Up is the energy of a single pulse.

Up can be determined from the pulse area A as in Ref. [20].

For a square pulse of duration τp and amplitude Ep we have

A = dEpτ/�, where d is the magnitude of the dipole moment

d =
√

3πǫ0�c3γ

�3
, (22)

where ǫ is the vacuum permittivity and c is the speed of light.

Taking the pulse area A = 2π we find

Ep =
2π�

τp

√

�3

3πǫ0�c3γ
. (23)

The intensity of the pulse is given by Ip = cǫ0|Ep|2/2. The

pulse energy in a beam of radius rb can be estimated by Up =
πr2

b Ipτp. Using � = 2πc/λ and ζ = λ/2πrb, where λ and

ζ are the wavelength of the optical field and the radial beam

divergence, respectively, we find

Up = ��
π2

6

1

τpγ

1

ζ 2
. (24)

Taking 1/τpγ ∼ 2 and ζ ∼ 0.5 [20], we find Up ∼ 12��.

The total energy cost to reach steady state per cycle

is Uss = mUc = mN2Up, where m = r�ts . Here m is the

number of atoms needed for thermalization, r is the injection

rate, and �ts is the time elapsed to reach the steady state. In

our results we have found that the harvested work per cycle

is much less than the resonance energy, W ≪ ��, thus the

generation cost of NLAP fuel is several orders of magnitude

larger than the harvested work Uss ≫ W , which confirms that

the second law of thermodynamics obeyed in a photonic Carnot

engine with NLAP. The generation cost is not included in the

thermodynamic efficiency but it can be a significant figure

of merit in the round-trip efficiency. To make such photonic

Carnot engines more appealing for certain applications, it is

necessary to increase their round-trip efficiency as well. For

that aim one could consider the cases of larger compression

ratios (�� ≫ �) and high operation temperatures (kBTh ≫
��). Our focus here is on the discussion if such engines can

operate under decoherence. Despite the negative conclusions

for a two-level phaseonium case [21], we have found that

larger phaseonium fuel allows for operational photonic Carnot

engines. The question of how to increase their round-trip

efficiency requires further analysis which is beyond the scope

of present contribution.

IV. CONCLUSIONS

Summarizing, we examined scaling of work and efficiency

of a quantum heat engine with the number of quantum

resources. Specifically, we considered a photonic Carnot

engine with a multilevel phaseonium quantum fuel. We derived

a generalized master equation for the cavity photons, which

forms the working fluid of the engine, and determined the

steady-state photon number to calculate the work output and

thermodynamic efficiency. We find that they scale quadrati-

cally with the number of quantum coherent levels N .

The role of the quantum coherence in multilevel phaseo-

nium fuel is the same as the original two-level phaseonium

proposal [4]. It breaks the detailed balance between the

heat reservoir and the cavity field. A modified detailed

balance condition can be established between an effective

heat reservoir, at an effective higher temperature than the

physical heat reservoir, and the cavity field. Accordingly,

the resonator field can reach a quasithermal equilibrium at

a higher temperature than the heat reservoir. This allows for

operating a Carnot cycle using a single heat bath, and an

atomic coherence reservoir, which could be seen as an apparent

violation of the Carnot bound. However, the energetic cost

of coherence preparation as well as the modified detailed

balance condition ensure that the thermodynamical laws are

not violated. Our generalization of N level phaseonium fuel

reveals that quantum coherent contribution to the heat reservoir

temperature scales quadratically with N , which is translated

into quadratic scaling of the specific energy of the multilevel

phasenonium fuel with the number of coherent levels.

We examined the case of degenerate levels to get analytical

results and to examine scaling laws against decoherence due to

cavity dissipation and atomic dephasing. We verified our ana-

lytical results with detailed numerical methods and have shown

consistency of coarse-grained analytical results with the micro-

scopical numerical approach. Generation of multilevel phaseo-

nium fuel using a Morris-Shore transformation-determined

quantum Householder reflection technique as well as its cost

are examined. Using typical parameters in modern resonator

systems, such as circuit QED, our calculations reveal that

decoherence due to cavity dissipation could be overcome by

the multilevel quantum coherence even in the presence of a

large dephasing rate. If the dephasing rate increases with N ,
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then work and efficiency can still overcome the decoherence

and retain their N2 scaling up to a critical number of coherent

levels.
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APPENDIX

We generalize the micromaser mesoscopic master equation

treatment [6] applied for a three-level phaseonium engine [4]

to a multilevel case. In the NLAP model, the Hamiltonian

of the whole system is H = H0 + H k
I where label k implies

an injected kth arbitrary atom. We adopt the notation of

Ref. [44] for the Hamiltonian and relevant quantities. Here

H0 = �ωa|ak〉〈ak| + �
∑N

i=1 ωbi
|bk

i 〉〈bk
i | and

H k
I = �g

N
∑

i=1

|ak〉〈bk
i |âe−i�t + H.c. (A1)

in the interaction picture where ω1,ωbi
are atomic energy

levels, g is the atom-field coupling coefficient, and � is

the single-mode cavity frequency. Here we assume all levels

coupled to the excited one with the same coefficient g. The

equation of motion of overall system is

ρ̇ = −
i

�
[H,ρ] + LA[ρ] + Lf [ρ], (A2)

where LA[ρ] and Lf [ρ] are the Liouvillian superoperators

expressed in the main text corresponding to atomic and field

degrees of freedom, respectively.

The equation of motion of the radiation field which is the

working substance of the heat engine can be found by tracing

out the atomic part as

ρ̇nn = −
i

�

∑

k

(Trat[H k,ρk]nn)

+ TratLA[ρ]nn + TratLf [ρ]nn, (A3)

where ρ̇nn = 〈n|ρ̇|n〉. Here [H,ρ]nn = 〈n|(Hρ − ρH )|n〉 =
∑

m〈n|H |m〉〈m|ρ|n〉−
∑

m〈n|ρ|m〉〈m|H |n〉=
∑

m(Hnmρmn−
ρnmHmn). In micromaser theory, due to the short atom-cavity

interaction time, the last term, the cavity decay, is usually

ignored when the atom is inside the cavity. The second term

is treated perturbatively and will be considered for zeroth

order in g. Here we will keep it but assume it can be treated

independently. One may write the partial trace operation over

atomic degrees of freedom for a random single atom as

Trat[H,ρ]nn =
∑

α

〈α,n|[H,ρ]|α,n〉

= 〈an|[H,ρ]|an〉 +
N
∑

i=1

〈bin|[H,ρ]|bin〉, (A4)

where α are the atomic basis as expressed on the right-hand

side. Each term of Eq. (A4) can be calculated by using the

selective rules of the Hamiltonian between certain levels n and

m; for instance, by inserting it for the first term of Eq. (A4) we

have

〈an|[H,ρ]|an〉 = 〈an|(Hρ − ρH )|an〉

=
∑

α′m

{〈an|H |α′m〉〈α′m|ρ|an〉

− 〈an|ρ|α′m〉〈α′m|H |an〉}

=
∑

α′m

{Han,α′mρα′m,an − ρan,α′mHα′m,an}.

(A5)

HI is the Hamiltonian Eq. (A1) to be inserted into Eq. (A5)

which can be written as

HI = �gR̂+âe−i�t + �gR̂−â†ei�t , (A6)

where R̂+ =
∑N

i=1 |a〉〈bi | and R̂− = R̂
†
+. Expressing the terms

of Eq. (A5) conveniently, we write

(R̂+)aα′ = 〈a|(|a〉〈b1| + · · · + |a〉〈bN |)|α′〉
= (δb1α′ + · · · + δbN α′ ) (A7)

and (R̂−)aα′ = 0. Besides, ânm = 〈n|â|m〉 =
√

m〈n||m −
1〉 =

√
mδn,m−1. Substituting these terms into the first

part of Eq. (A5) we have
∑

α′m{Han,α′mρα′m,an} =
�ge−i�t

√
n + 1(ρb1n+1,an + · · · + ρbN n+1,an). The second part

of Eq. (A5) is simply the complex conjugate. Hence the first

term of Eq. (A4) is

〈an|[H,ρ]|an〉 = �ge−i�t
√

n + 1
∑N

i=1 ρbin+1,an − c.c. (A8)

The second term of Eq. (A4) would be calculated by

similar considerations. We can write 〈bin|[H,ρ]|bin〉 =
∑

α′m{Hbin,α′mρα′m,bin}. In this case (R̂+)biα′=0,(R̂−)biα′=
〈a||α′〉 = δaα′ , and â

†
nm = 〈n|â†|m〉 =

√
m + 1〈n||m + 1〉 =√

m + 1δn,m+1. Then 〈bin|[H,ρ]|bin〉 = �gei�t
√

nρan−1,bin

− c.c. and, finally, the second term of Eq. (A4) becomes

N
∑

i=1

〈bin|[H,ρ]|bin〉 = �gei�t
√

n

N
∑

i=1

ρan−1,bin − c.c. (A9)

Inserting these results into Eq. (A3) and after some rearrange-

ments we have the field equation of motion,

ρ̇nn = −g
∑

k

{(i
√

n + 1e−i�t

N
∑

i=1

ρk
bin+1,an

−i
√

ne−i�t

N
∑

i=1

ρk
bin,an−1) + c.c.} + Lf [ρf ]nn. (A10)

We use ρf ≡ ρ hereafter for simplicity. Here

Lf [ρ]nn = 〈n|
κ

2
(2âρâ† − ρâ†â − â†âρ)|n〉

= κ{(n + 1)ρn+1,n+1 − nρnn}. (A11)

In order to proceed with the calculation, any single term

in the summation of Eq. (A10) should be calculated and

inserted therein. The terms can be obtained by the integration

of corresponding equation of motions by using the selecetive

rules of the Hamiltonian as expressed above. We evaluate the
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atomic equation of motion at zeroth order in g first, and we

have

ρ̇A = −
i

�
[HA,ρA] + γα,α′

∑

α,α′

L[Lα,α′ ] +
γφ

2

∑

i

L[Lbi ,bi
],

(A12)

where Lα,α′ = |α〉〈α′| and Lbi ,bi
= |bi〉〈bi |. The final two

terms of Eq. (A12) correspond to LA[ρA] with α′ �= α and

i = 1, . . . ,N . Here α = {a,b1, . . . ,bN } and γα,α′ is taken equal

to γ for simplicity. Note that the atomic part of the master

equation is for the case of pure dephasing and relaxation and

we follow the usual assumption of micromaser theory [24] that

cavity decay and atomic dynamics can be separately treated.

When the atom is inside the cavity, decay is not included.

The equation of motion of the i th term of the first summation

of Eq. (A10) for a single atom is

ρ̇bin+1,an = −ig
√

n + 1ei�t {ρan,an − (ρbin+1,b1n+1 + · · · + ρbin+1,bN n+1)}. (A13)

Here we have neglected the the matrix element 〈bin + 1|Lf [ρ]|an〉 in accordance with the assumptions indicated above. The

equation of motion for ρbin,an−1 which is the i th term of second summation of (A10) could be obtained by simply replacing

n → n − 1 in Eq. (A13), that is,

ρ̇bin,an−1 = −ig
√

nei�t {ρan−1,an−1 − (ρbin,b1n + · · · + ρbin,bN n)}. (A14)

Therefore we obtain the ρbin+1,an and ρbin,an−1 terms by integrating Eqs. (A13) and (A14) formally in the following forms:

ρk
bin+1,an = −ig

√
n + 1

∫ t

tk0

dt ′e(iωabi
−γ )(t−t ′)ei�t ′

{

ρk
an,an −

(

ρk
bin+1,b1n+1 + · · · + ρk

bin+1,bN n+1

)}

, (A15)

ρk
bin,an−1 = −ig

√
n

∫ t

tk0

dt ′e(iωabi
−γ )(t−t ′)ei�t ′

{

ρk
an−1,an−1 −

(

ρk
bin,b1n

+ · · · + ρk
bin,bN n

)}

. (A16)

The terms of Eqs. (A15) and (A16) can be factorized to atomic and field density matrices for the zeroth-order solution in g. For

instance,

ρk0

αn,αn(t ′,tk0
) = ρk0

α,α(t ′,tk0
)ρn,n(t ′), ρ

k0

αn+1,αn+1(t ′,tk0
) = ρk0

α,α(t ′,tk0
)ρn+1,n+1(t ′), (A17)

ρ
k0

bin,bj n
(t ′,tk0

) = ρ
k0

bi ,bj
(t ′,tk0

)ρn,n(t ′), ρ
k0

bin+1,bj n+1(t ′,tk0
) = ρ

k0

bi ,bj
(t ′,tk0

)ρn+1,n+1(t ′). (A18)

Here ρk0
α,α and ρ

k0

bi ,bj
, which are the initial atomic density matrix elements, obey the respective atomic equations of motion,

ρ̇k0

α,α(t ′,tk0
) = −γρk0

α,α(t ′,tk0
), ρ̇

k0

bi ,bj
(t ′,tk0

) = −(iωbibj
+ γ + γφ)ρ

k0

bibj
(t ′,tk0

), (A19)

in which the solutions are

ρk0

α,α = e−γ (t−tk0
)ρk0

α,α(tk0
,tk0

), ρ
k0

bi ,bj
= e

−(iωbi bj
+γ̄ )(t−tk0

)
ρ

k0

bi ,bj
(tk0

,tk0
), (A20)

where γ̄ = γ + γφ . Equations (A19) and (A20) imply that excited- and ground-state levels decay to a lower level. The off-diagonal

elements of the atomic density matrix are equal to ρ
k0

bi ,bj
(tk0

,tk0
) = |ρ0

bi ,bj
|eiφij . The eiφij is assigned with the coherence preparation.

Thus, we can express Equations (A15) and (A16) by using zeroth-order atomic Equations (A18)–(A20) to find first order solutions

in g,

ρk
bin+1,an = −ig

√
n + 1

∫ t

tk0

dt ′e(iωabi
−γ )(t−t ′)ei�t ′{e−γ (t ′−tk0

)ρaaρnn − e−γ (t ′−tk0
)ρbibi

ρn+1n+1

−
∑

i �=j

e
−(iωbi bj

+γ̄ )(t−tk0
)|ρ0

bi ,bj
|eiφij ρn+1n+1}. (A21)

Likewise,

ρk
bin,an−1 = − ig

√
n

∫ t

tk0

dt ′e(iωabi
−γ )(t−t ′)ei�t ′{e−γ (t ′−tk0

)ρ0
aaρn−1n−1 − e−γ (t ′−tk0

)ρ0
bibi

ρnn

−
∑

i �=j

e
−(iωbi bj

+γ̄ )(t−tk0
)|ρ0

bi ,bj
|eiφij ρnn}. (A22)
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Putting all these results into Eq. (A10), we have the field equation of motion,

ρ̇nn = − g2
∑

k

∫ t

tk0

dt ′
{

e−i�(t−t ′)

[

(n + 1)

N
∑

i=1

e(iωabi
−γ )(t−t ′)

(

e−γ (t ′−tk0
)ρ0

aaρnn − e−γ (t ′−tk0
)ρ0

bibi
ρn+1n+1

−
∑

i �=j

e
−(iωbi bj

)+γ )(t ′−tk0
)
∣

∣ρ0
bi ,bj

∣

∣eiφij ρn+1n+1

)

− n

N
∑

i=1

e(iωabi
−γ )(t−t ′)

(

e−γ (t ′−tk0
)ρ0

aaρn−1n−1 − e−γ (t ′−tk0
)ρ0

bibi
ρnn

−
∑

i �=j

e
(iωbi bj

+γ̄ )(t ′−tk0
)
∣

∣ρ0
bi ,bj

∣

∣eiφij ρnn

)]

+ c.c.

}

. (A23)

Before proceeding, we replace the summation over number of injected atoms by integration over injection time as
∑

k →
r
∫ t

−∞ dk0 where r is the injection rate. We also define �i = ωabi
− � where ωabi

= ωa − ωbi
. Then

ρ̇nn = − rg2

∫ t

−∞
dtk0

∫ t

tk0

dt ′

({

N
∑

i=1

e(i�i−γ )(t ′−tk0
)ρ0

aa[(n + 1)ρnn − nρn−1n−1]

−

[

N
∑

i=1

e(i�i−γ )(t−t ′)e−γ (t ′−tk0
)ρ0

bibi

]

[(n + 1)ρn+1n+1 − nρnn]

−

⎛

⎝

∑

i<j

[

e(i�i−γ )(t−t ′)e
−(iωbi bj

+γ̄ )(t ′−tk0
)
∣

∣ρ0
bi ,bj

∣

∣eiφij + e(i�j −γ )(t−t ′)e
−(−iωbi bj

+γ̄ )(t ′−tk0
)
∣

∣ρ0
bi ,bj

∣

∣e−iφij
]

× [(n + 1)ρn+1n+1 − nρnn]

}

+ c.c.

)

+ Lf [ρ]nn. (A24)

Note that ρbj bi
= e

−(−iωbi bj
+γ̄ )(t−tk0

)|ρ0
bi ,bj

|e−iφij while ρbibj
= e

−(iωbi bj
+γ̄ )(t−tk0

)|ρ0
bi ,bj

|eiφij . Evaluating the integrals in (A24) over

t ′ and tk0
after changing integration order as

∫ t

−∞ dtk0

∫ t

tk0

dt ′ =
∫ t

−∞ dt ′
∫ t ′

−∞ dtk0
we have

ρ̇nn = − rg2

(

1

γ

(

N
∑

i=1

1

−i�i + γ

)

ρ0
aa[(n + 1)ρnn − nρn−1n−1] −

{

1

γ

(

N
∑

i=1

1

−i�i + γ

)

ρ0
bibi

+
∑

i<j

[

1

(−i�i + γ )

1

(iωbibj
+ γ̄ )

eiφij +
1

(−i�j + γ )

1

(−iωbibj
+ γ̄ )

e−iφij

]

∣

∣ρ0
bi ,bj

∣

∣

⎫

⎬

⎭

× [(n + 1)ρn+1n+1 − nρnn] + c.c.

⎞

⎠+ Lf [ρ]nn. (A25)

We proceed by summing each term with their respective complex conjugates, with some rearrangements, and then,

ρ̇nn = −rg2

(

1

γ

(

N
∑

i=1

2γ

�2
i + γ 2

)

ρ0
aa[(n + 1)ρnn − nρn−1n−1] −

[

1

γ

(

N
∑

i=1

2γ

�2
i + γ 2

)

ρ0
bibi

]

+
∑

i<j

{[

2 cos φij (�iωbibj
+γ γ̄ ) + 2 sin φij (ωbibj

−�i γ̄ )
(

�2
i + γ 2

)(

ω2
bibj

+ γ̄ 2
) +

2 cos φij (γ γ̄ − �jωbibj
) + 2 sin φij (ωbibj

+ �j γ̄ )
(

�2
j + γ 2

)(

ω2
bibj

+ γ̄ 2
)

]

∣

∣ρ0
bibj

∣

∣

}

× [(n + 1)ρn+1n+1 − nρnn]

⎞

⎠ (A26)
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and, by using Eq. (A11), finally we have

ρ̇nn = −R{Kaρaa[(n + 1)ρnn − nρn−1n−1] + (Rg0
+ Rgc

) × [nρnn − (n + 1)ρn+1n+1]} + κ[(n + 1)ρn+1,n+1 − nρnn], (A27)

where

Ka =
N
∑

i=1

2

�2
i + γ 2

, Rg0
=

N
∑

i=1

Kbi
ρ0

bibi
,Rgc

=
S
∑

i<j

K
φij

ij

∣

∣ρ0
bibj

∣

∣, Kbi
=

2

�2
i + γ 2

, (A28)

K
φij

ij =
2 cos φij (�iωbibj

+ γ γ̄ ) + 2 sin φij (ωbibj
− �i γ̄ )

(

�2
i + γ 2

)(

ω2
bibj

+ γ̄ 2
) +

2 cos φij (γ γ̄ − �jωbibj
) + 2 sin φij (ωbibj

+ �j γ̄ )
(

�2
j + γ 2

)(

ω2
bibj

+ γ̄ 2
) , (A29)

where �i,j = ωabi,j
− �, ωabi,j

= ωa − ωbi,j
, and R = rg2. Note that Rg0

has N number of terms and Rgc
has S = N (N − 1)/2

number of terms in the summation. Since we seek the solutions in the steady state, we obtain the steady-state photon number n̄φ

by solving ˙̄nφ = 0, where ˙̄n =
∑

n nρ̇nn, and we write ˙̄nφ by using previously obtained ρ̇nn as

˙̄n = − RKaρaa

∑

n

n(n + 1)ρnn + RKaρaa

∑

n

n2ρn−1,n−1 − RRg0

∑

n

n2ρnn + RRg0

∑

n

n(n + 1)ρn+1,n+1

− RRgc

∑

n

n2ρnn + RRgc

∑

n

n(n + 1)ρn+1,n+1 + κ
∑

n

n(n + 1)ρn+1,n+1 − κ
∑

n

n2ρnn. (A30)

Then we insert n → n − 1 for ρn+1n+1 and n → n + 1 for and ρn−1n−1 so we get

˙̄n = RKaρaa

∑

n

(n + 1)ρnn − RRg0

∑

n

nρnn − RRgc

∑

n

ρnn = RKaρaa(n̄φ + 1) − Rn̄φ(Rg0
+ Rgc

) − κn̄φ . (A31)

Solving ˙̄nφ = 0, we have

n̄φ =
Kaρaa

Rg0
+ Rgc

+ κ
R

− Kaρaa

=
1

Rg0

Kaρaa
+ Rgc

Kaρaa
+ κ

RKaρaa
− 1

. (A32)

We write the final form of the steady-state photon number after some rearrangements,

n̄φ =
n̄κ

1 + n̄κ
Rgc

Kaρaa

, (A33)

where

n̄κ =
n̄

1 + n̄ κ
RKaρaa

. (A34)

Here n̄κ is the average photon number in the absence of atomic coherence in terms of the average photon number

n̄ = 1/(Rg0
/Kaρaa − 1), which is the average photon number in the absence of atomic coherence and in the absence of cavity

decay κ .

Finally, we look at the degenerate ground-state case (ωabi,j
= 0,�i,j = 0). In this case, n̄ can be simplified to n̄ = Pe/(Pg −

Pe), where Pe = ρaa,Pg = ρbibi
for any i. The simplified forms of other parameters are

Ka =
2N

γ 2
, Rg0

=
2NPg

γ 2
, Rgc =

2N (N − 1) cos φλ

γ γ̄
(A35)

for θ = π . The analytical decoherence term for a degenerate case can be identified in the Rgc
expression such that

ξ =
(

1 +
γφ

γ

)−1

∼= e−γφ/γ (A36)

for γφ ≪ γ .

[1] S. G. Chalk and J. F. Miller, J. Power Sources 159, 73

(2006).

[2] K. T. Chau, Y. S. Wong, and C. C. Chan, Energy Convers.

Manag. 40, 1021 (1999).

[3] Y. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong,

and Y. Cui, Nano Lett. 10, 1486 (2010).

[4] M. O. Scully, M. S. Zubairy, G. S. Agarwal, and H. Walther,

Science 299, 862 (2003).

[5] M. O. Scully, in AIP Conference Proceedings, Vol. 643 (AIP,

Washington DC, 2002), pp. 83–91.

[6] Y. V. Rostovtsev, Z. E. Sariyianni, and M. O. Scully, Laser Phys.

13, 375 (2003).

012145-13

http://dx.doi.org/10.1016/j.jpowsour.2006.04.058
http://dx.doi.org/10.1016/j.jpowsour.2006.04.058
http://dx.doi.org/10.1016/j.jpowsour.2006.04.058
http://dx.doi.org/10.1016/j.jpowsour.2006.04.058
http://dx.doi.org/10.1016/S0196-8904(99)00021-7
http://dx.doi.org/10.1016/S0196-8904(99)00021-7
http://dx.doi.org/10.1016/S0196-8904(99)00021-7
http://dx.doi.org/10.1016/S0196-8904(99)00021-7
http://dx.doi.org/10.1021/nl100504q
http://dx.doi.org/10.1021/nl100504q
http://dx.doi.org/10.1021/nl100504q
http://dx.doi.org/10.1021/nl100504q
http://dx.doi.org/10.1126/science.1078955
http://dx.doi.org/10.1126/science.1078955
http://dx.doi.org/10.1126/science.1078955
http://dx.doi.org/10.1126/science.1078955
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(2015).

[21] H. T. Quan, P. Zhang, and C. P. Sun, Phys. Rev. E 73, 036122

(2006).

[22] F. Vewinger, M. Heinz, U. Schneider, C. Barthel, and K.

Bergmann, Phys. Rev. A 75, 043407 (2007).

[23] F. C. Binder, S. Vinjanampathy, K. Modi, and J. Goold, New J.

Phys. 17, 075015 (2015).

[24] P. Filipowicz, J. Javanainen, and P. Meystre, Phys. Rev. A 34,

3077 (1986).

[25] M. Amniat-Talab, M. Saadati-Niari, S. Guérin, and R.
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