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Generative adversarial networks represent a powerful tool for classical machine learning: a generator
tries to create statistics for data that mimics those of a true data set, while a discriminator tries to
discriminate between the true and fake data. The learning process for generator and discriminator can be
thought of as an adversarial game, and under reasonable assumptions, the game converges to the point
where the generator generates the same statistics as the true data and the discriminator is unable to
discriminate between the true and the generated data. This Letter introduces the notion of quantum
generative adversarial networks, where the data consist either of quantum states or of classical data, and the
generator and discriminator are equipped with quantum information processors. We show that the unique
fixed point of the quantum adversarial game also occurs when the generator produces the same statistics as
the data. Neither the generator nor the discriminator perform quantum tomography; linear programing
drives them to the optimal. Since quantum systems are intrinsically probabilistic, the proof of the quantum
case is different from—and simpler than—the classical case. We show that, when the data consist of
samples of measurements made on high-dimensional spaces, quantum adversarial networks may exhibit an
exponential advantage over classical adversarial networks.
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Introduction.—In machine learning by generative adver-
sarial networks (GANs) [1], a generator learns to generate
statistics of data by trying to fool a discriminator into
believing that the generated statistics actually come from
the data. The discriminator is presented either with real
data, or with data generated by the generator: her goal is to
maximize the probability of assigning the correct label, real
or fake, to data. The generator is equipped with a random
number generator which he uses to try to produce data that
minimize the probability of the discriminator assigning the
correct label: his goal is to produce data that match the
statistics of the true data. That is, the discriminator and
generator are adversaries in a machine learning game.
The endpoint of such an adversarial game, under

reasonable assumptions [1], results in the generator pro-
ducing data with the true statistics, and the discriminator
having a probability of 1=2 of discriminating correctly. In
practice, adversarial games work well in training the
generator to generate data with the true statistics of the
data. This has lead to practical applications such as
generating photorealistic images [2] and videos [3], image
super resolution [4], and image inpainting [5]. This has
resulted in significant interest in industries such as driv-
erless cars, finance, medicine, and cybersecurity. In this
Letter, we introduce quantum generative adversarial net-
works, or QGANs, where the discriminator, the generator,
and the system generating the actual data can be quantum
mechanical. These protocols can be considered additions to

the field of quantum machine learning [6] and show
significant benefits over their classical counterparts.
Here, we consider three specific QGAN protocols.
First, we look at the situation where the system, data,

discriminator, and generator are all fully quantum mechani-
cal: the data takes the form of an ensemble of quantum
states generated by the system, the generator has access to a
quantum information processor and tries to match that
ensemble; the discriminator can make arbitrary quantum
measurements. In this fully quantum setting, in analog to
the classical result, we will show that the quantum
discriminator and generator perform linear programing,
the simplest form of convex optimization, with the unique
fixed point for the quantum adversarial game. This is the
situation where the generator accurately reproduces the true
ensemble of quantum states, and the discriminator can’t tell
the difference between the true ensemble and the generated
ensemble.
The quantum adversarial game can be formulated in the

language of Nash equilibria for a process in which the
discriminator tries to optimize her strategy over a fixed
number of trials with the generator’s strategy fixed. This is
followed by the generator trying to optimize his strategy
over a number of trials with the discriminator’s strategy
fixed. The endpoint of the game, with the generator finding
the correct statistics and the discriminator unable to tell the
difference between true data and the generated data, is the
unique Nash equilibrium.
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Second, we look at situations where the real data is
generated from the quantum system by a fixed measure-
ment. The key point in this setting is that relatively simple
quantum systems can generate data whose statistics—under
reasonable assumptions of computational complexity—
cannot be generated efficiently by any classical system
equipped with a random number generator. This feature of
quantum systems is sometimes called quantum supremacy
or quantum advantage [7]. Quantum supremacy implies
that a generator that does not have access to quantum
information processing will, in general, be unable to match
the statistics of data generated by another quantum system.
Consequently, a classical generator will fail to generate the
correct data, and a classical discriminator—either classical
or quantum—can in principle make measurements that will
discriminate between the true data and the generated data.
Whether or not the discriminator can make such measure-
ments in practice, either systematically or by adaptation, is
an open question.
Finally, we look at the question of whether a quantum

generator can do better than a classical generator at
generating classical data. The ability of quantum informa-
tion processors to represent vectors in N-dimensional
spaces using logN qubits, and to perform manipulations
of sparse and low-rank matrices in time O(polyðlogNÞ)
implies that QGANs exhibit a potential exponential ad-
vantage over classical GANs when the object of the game is
to reproduce the statistics of measurements made on very
high-dimensional data sets. Note that a more in-depth
practical implementation of QGANs can be found in a
companion paper [8].
Data quantum, discriminator quantum, generator

quantum.—As in the classical adversarial game [1], the
quantum adversarial game is set up as follows. First, the
discriminator tries to improve her strategy, with the gen-
erator’s strategy fixed. Then the generator tries to improve
his strategy, with the discriminator’s strategy fixed. The
players continue updating in turn until a fixed point is
reached. We will show that, as long as the generator is
producing statistics that are different from those of the true
data, the discriminator can always adjust her measurement
towards the minimum error discriminating measurement so
that she succeeds in discriminating true from fake data with
a probability >1=2. Next, we show that the generator can
always decrease the probability of success of the discrimi-
nator by moving in a direction that decreases the relative
entropy between the true data and the generated data. As
this is a convex optimization (linear programing) problem,
there is a unique endpoint to the process, which is where the
generator correctly matches the statistics of the data, and
the discriminator is unable to distinguish between real and
fake data with a probability different from 1=2.
To see that quantum adversarial networks also result in

the generator correctly matching the data, suppose that the
true data are described by an ensemble of states described

by a density matrix σ, and the generator generates an
ensemble of states with density matrix ρ, cf. Fig. 1. The
discriminator is presented either with a state from the true
ensemble or the generated ensemble and has to try to
discriminate between them. First, we assume that the
generator is fixed, and generates ρ for each trial; then,
we train the discriminator to try to distinguish between σ
and ρ. Next, we fix the measurement strategy of the
discriminator and train the generator into trying to adjust
ρ to fool the discriminator.
When ρ is fixed, the minimum error measurement to

discriminate between σ and ρ is the measurement with
operators Pþ and 1 − Pþ that distinguish between the
positive and negative part of σ − ρ [9]. Of course, the
discriminator doesn’t know the optimal measurement to
begin with. However, she can guess a measurement and,
given feedback for the probabilities of that measurement
discriminating between true and generated data, adjust the
measurement by a process of gradient descent. The
discriminator makes a positive operator valued measure-
ment (POVM) [10] D with outcomes T or F, T þ F ¼ I.
The probability that the measurement yields the result data,
given that the data were, indeed, selected from the true
ensemble described by σ, is pðTjdataÞ ¼ trTσ, and the
probability that the measurement yields the result data,
given that the data were selected from the generated
ensemble, is pðTjGÞ ¼ trTρ; where T; F are positive
operators with kTk1, kFk1 ≤ 1. The set of positive

FIG. 1. Schematic of a general QGAN protocol. The ultimate
goal of this adversarial game is for the discriminator (D) to
determine whether the input data are real (σ) or fake (ρ). Here, G
is the generator which generates fake data hoping to fool the
discriminator. We consider a variety of QGAN situations. First,
where the real data are quantum, the generator is quantum (and
hence, generates fake quantum data), and the discriminator is
quantum. Second, the real data are quantum, the generator is
classical, and the discriminator is either classical or quantum.
Finally, we consider the case where the real data are purely
classical and the generator and discriminator are both quantum.
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operators with 1-norm less than or equal to one is convex.
Accordingly, over many trials, the discriminator can simply
follow the gradient of the function pðTjdataÞ to find the
minimum error measurement.
In classical adversarial learning, the discriminator is

supplied with a deep learning network [11] such as a
perceptron, whose weights she adjusts to try to find an
optimal measurement. In the quantum case, we assume that
the discriminator is supplied with a quantum information
processor such as a quantum circuit that takes, as input, the
quantum state from the data or the generator and performs
the discriminating measurement. Just as in the classical
case, we assume that the discriminator is able to adjust the
weights of her network to follow the gradient of the pðTjσÞ
for at least some distance, which may be all the way to the
optimal minimum error measurement.
Once the discriminator has found a good measurement

T, F to distinguish the true from fake data, it is the
generator’s turn. The generator tries to adjust the state ρ of
the generated data to maximize pðTjρÞ ¼ trTρ. The set of
density matrices ρ is convex, and the generator can follow
the gradient of pðTjρÞ to find the state of the generated data
that maximizes the probability of fooling the discriminator.
Once again, we assume that the generator possesses a
quantum circuit whose weights he can adjust to follow the
gradient for at least some distance.
If the data Hilbert space is high-dimensional, and the

discriminator and generator are allowed only a limited
number of trials, then they will obtain only an approximate
version of their respective gradients. Indeed, they obtain, at
most, one bit of information about the gradient for each trial.
All the players need to do, however, is to identify some
direction in which their probability of success increases. The
linear nature of the problem then guarantees that the dis-
criminator moves strictly closer to the optimal measurement,
while thegeneratormoves strictly closer to generating the true
data. How hard it is to approximate the gradient depends on
how the true data were generated. If the data are selected at
random from the set of all states in an N-dimensional space,
then the discriminator needs timeOð1=NÞ to discriminate the
true data from another random state.
If, by contrast, the data are generated by a physical

system or quantum circuit with W unknown parameters
(e.g., W ¼ polyðlogNÞ, a polynomial in the number of
qubits), then a discriminator or generator equipped with a
quantum information processor need only search through
the W-dimensional space of generating parameters. The
rate of convergence of stochastic gradient descent of such
searches on quantum parameter space is an open question:
investigations on small quantum circuits suggest that they
can converge polynomially in the dimension of the param-
eter space [12].
The adversarial game can be described in the language of

Nash equilibria. The discriminator’s strategy is given by the
measurement operator T, and the generator’s strategy is

given by the density matrix ρ. The set of possible positive
measurement operators T made by the discriminator is
convex and compact, as is the set of possible density
matrices ρ generated by the generator. Applying the
Kakutani fixed point theorem [13], we see that the
discriminator-generator strategy space has at least one
fixed point. In fact, there is only one fixed point.
Suppose that the discriminator has found a measurement
T such that pðTjσÞ > pðTjρÞ, so that trTσ − trTρ > 0.
If ρ ≠ σ, such a measurement always exists (e.g., the
minimum error measurement described above). The gen-
erator can, then, always increase pðTjρÞ by taking
ρ → ρþ αðσ − ρÞ, α > 0. Accordingly, the unique Nash
equilibrium occurs when ρ ¼ σ and pðTjσÞ¼pðTjρÞ¼1=2.
Moreover, as shown above, at each move of the game, the
discriminator or generator can move directly towards this
equilibrium by following the gradient of pðTjσÞ or pðTjρÞ
through the convex strategy space.
The generator ends up producing the same statistics as

the discriminator without performing explicit tomography
on the states she receives. The result of the quantum
adversarial game is the same as the result of the classical:
the generator learns to generate the data and the discrimi-
nator does no better than chance. Since quantum systems
are intrinsically probabilistic, however, the proof of the
quantum case is different from—and indeed, simpler
than—the classical case.
Data quantum, discriminator quantum or classical,

generator classical.—Now, we consider the case in which
the real data σ are being generated by a quantum system via
a fixed measurement, yielding statistics ptrueðxÞ for meas-
urement outcomes x. In this case, quantum supremacy [7]
implies that the classical generator cannot efficiently match
the statistics of the quantum data. More precisely, the
generator is unable to match his statistics pgðxÞ with the
true statistics of the data ptrueðxÞ unless he has exponen-
tially scaling resources: pg is bounded away from ptrue in
1-norm. Consequently, there exists a measurement that the
discriminator can make that distinguishes ptrue from pg
with probability strictly bounded away from 1=2. The
minimum error measurement is a projector onto the positive
part of ptrue − pg, that is, a projector on the set Xþ such that
ptrueðxÞ − pgðxÞ ≥ 0. As long as the discriminator can find
this measurement, she can win the game.
The key question here is whether the discriminator can

actually find the minimum error measurement or the
optimal probabilistic strategy. The discriminator’s meas-
urement now corresponds to a POVM with operators T, F
that are diagonal in the measurement basis. Once again, the
set of such operators is convex, so under the same
assumptions as above on the efficacy of deep learning in
exploring the space of such measurements, when the
generator’s probabilities pg are fixed, the discriminator
can adjust her measurement strategy to the optimal one, at
least in principal.
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In the case where the data is generated by a system that
exhibits quantum supremacy, however, under plausible
assumptions of computational complexity, a classical
device can’t reproduce the true probabilities for the
data ptrueðxÞ. In particular, there is no known nonexpo-
nential classical algorithm for determining the optimal
measurement to demonstrate quantum supremacy. If the
discriminator has access to a quantum information proc-
essor to adjust her measurement strategy, then we con-
jecture that she can find the optimal measurement to
discriminate between the quantumly generated data
and the classically generated data. If the discriminator
only has access to classical information processing,
then we conjecture that she can’t determine the optimal
measurement.
When the quantum system generating the data does not

exhibit quantum supremacy, as is the case, for example, for
Gaussian continuous-variable systems [14], then both
discriminator and generator can, at least in principle,
reproduce the statistics of the data using classical methods.
They can search through possible Gaussian states and
measurements using classical computation, and the adver-
sarial quantum learning game will, in general, lead to an
equilibrium where the generator successfully generates the
statistics of the Gaussian quantum data.
Data classical, discriminator and generator quantum.—

Now, suppose that the data is purely classical, for example,
a set of images taken from the internet, or sequences of
prices of stocks on the stock market, but the generator and
discriminator have access to quantum information process-
ing. Are there classical data sets for which the quantum
adversarial game is more efficient than the classical one?
Here, “more efficient" means either that the quantum game
converges faster, or that it uses many fewer resources.
When the data set is classical, no guarantee of quantum
supremacy applies.
The ability of quantum information processors to

represent N-dimensional vectors using logN qubits, and
to perform linear algebra on those vectors in time
O(polyðlogNÞ), implies that quantum information pro-
cessors might, indeed, be able to provide a highly com-
pressed version of generative adversarial learning tasks.
Suppose that the underlying data consist of M normalized
vectors v⃗j in an N-dimensional real or complex space, so
that the (normalized) covariance matrix of the data are
C ¼ ð1=MÞPjv⃗jv⃗

†
j . A quantum information processor can

represent those vectors by quantum states jvji over logN
qubits, and the normalized covariance matrix of the data
are equal to the density matrix ρ ¼ ð1=MÞPjjvjihvjj.
Suppose that the actual observed data consist of the
expectation values and higher moments of a relatively
small number r of sparse or low-rank Hermitian matrices
Rl. The goal of both the classical and quantum generative
adversarial games is to reproduce the statistics of the
observed data.

Clearly, the classical generator can produce the observed
data by performing gradient descent in the convex set of
normalized covariance matrices, a task that takes time
OðN2Þ. If N is large, e.g., N ¼ 1012, then the time to
perform this convex optimization is prohibitively large,
Oð1024Þ steps. By contrast, a quantum generator can
represent candidate covariance matrices using OðlogNÞ
qubits, and evaluate the statistics generated by such a
candidate covariance matrix using O(polyðlogNÞ) quan-
tum logic operations. The gradients the quantum device
must follow to try to reproduce the moments trRk

lρ are
simply ∂trRk

lρ=∂ρ ¼ Rk
l, which are, themselves, sparse or

low-rank Hermitian matrices.
The quantum system can follow these gradients effi-

ciently. Assume, for the moment, that the Rk
l are positive. If

a positive matrix R is low rank, then methods of density
matrix exponentiation [15] allow one to implement
ρ → ρþ αR by the modified swap operations of [15]. If
they are sparse, then, we can use the methods of [16] to
implement R1=2 and to construct the density matrix R=trR.
An infinitesimal swap then yields ρ → ρþ αR. That is, a
quantum generator with OðlogNÞ qubits can follow the
gradients of the moments of the observed operators in
time O(polyðlogNÞ).
By contrast, a classical generator that tries to follow

the gradients of the observables explicitly by gradient
descent on the set of covariance operators takes OðN2Þ
bits and timeOðN2Þ.Of course, itmaybe that amuch smaller
deep classical network such as a perceptron or Boltzmann
machine may be able to perform such optimization implic-
itly. Whether a deep network of sizeO(polyðlogNÞ) can, in
fact, reproduce the statistics of operators sampled from a
very high dimensional space is an open question, which
could be tested by direct numerical experiment. As in the
classical case, the analysis of convergence for QGANs
assumes that quantum networks do, indeed, have enough
flexibility to track the necessary gradients. In a companion
paper [8], the authors analyze the ability of such networks to
track gradients and show, in the case of small networks, that
they can do so effectively. The corresponding result for large
quantum generative networks will have to be verified
directly on quantum information processors.
Discussion and Conclusion.—Future work will entail

running QGAN simulations on quantum software packages
such as STRAWBERRY FIELDS [17]. For example, in the
classically simulable case of Gaussian states [14], we can
simulate both the fully quantum case, where the data,
discriminator, and generator have access to arbitrary
Gaussian processes and, also, in the quantum-classical
case, where the data are generated by a Gaussian process
and the discriminator and generator are trying to reproduce
the statistics of Gaussian measurements. One could sim-
ulate a multimode Gaussian process with injected squeezed
states, a unitary mode-mixing transformation, and homo-
dyne measurements.
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We have shown that in the quantum-quantum case,
the unique Nash equilibrium occurs when the generator
reproduces the statistics of the data correctly. In the
quantum-classical case, this is still the unique Nash
equilibrium, but quantum supremacy prevents a classical
generative network from generating the true data effi-
ciently. Furthermore, investigating and generalizing other
known variants of generative adversarial networks to the
quantum mechanical regime would also be fascinating.
This would include such adversarial networks as convolu-
tional, conditional, bidirectional, and semisupervised.
In conclusion, we have introduced a quantum mechani-

cal generalization of a generative adversarial network,
known as a QGAN. Such a quantum adversarial learning
game consists of a generator and a discriminator where the
generator is working to trick the discriminator into passing
off fake data as real data. In the case of the quantum game
converging, the generator generates the same statistics as
the true data. Because of the inherent probabilistic nature of
quantum mechanics, the proof of the quantum case is
simpler than the classical case.
Finally, we introduced three versions of QGANs in this

work based on whether the real data, fake data, discrimi-
nator, and generator are quantum mechanical or classical.
In the case where the real data are purely classical and high
dimensional, and the generator and discriminator are both
quantum, we find that quantum adversarial networks
potentially exhibit an exponential advantage over classical
adversarial networks.
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