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Quantum Generative Adversarial Networks for learning

and loading random distributions
Christa Zoufal 1,2*, Aurélien Lucchi2 and Stefan Woerner 1

Quantum algorithms have the potential to outperform their classical counterparts in a variety of tasks. The realization of the

advantage often requires the ability to load classical data efficiently into quantum states. However, the best known methods

require O 2nð Þ gates to load an exact representation of a generic data structure into an n-qubit state. This scaling can easily

predominate the complexity of a quantum algorithm and, thereby, impair potential quantum advantage. Our work presents a

hybrid quantum-classical algorithm for efficient, approximate quantum state loading. More precisely, we use quantum Generative

Adversarial Networks (qGANs) to facilitate efficient learning and loading of generic probability distributions - implicitly given by

data samples - into quantum states. Through the interplay of a quantum channel, such as a variational quantum circuit, and a

classical neural network, the qGAN can learn a representation of the probability distribution underlying the data samples and load it

into a quantum state. The loading requires O poly nð Þð Þ gates and can thus enable the use of potentially advantageous quantum

algorithms, such as Quantum Amplitude Estimation. We implement the qGAN distribution learning and loading method with Qiskit

and test it using a quantum simulation as well as actual quantum processors provided by the IBM Q Experience. Furthermore, we

employ quantum simulation to demonstrate the use of the trained quantum channel in a quantum finance application.
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INTRODUCTION

The realization of many promising quantum algorithms is
impeded by the assumption that data can be efficiently loaded
into a quantum state.1–4 However, this may only be achieved for
particular but not for generic data structures. In fact, data loading
can easily dominate the complexity of an otherwise advantageous
quantum algorithm.5 In general, data loading relies on the
availability of a quantum state preparing channel. But, the exact
preparation of a generic state in n qubits requires O 2nð Þ gates.6–9
In many cases, this complexity diminishes a potential quantum
advantage.
This work discusses the training of an approximate, efficient

data loading channel with Quantum Machine Learning for
particular data structures. More specifically, we present a feasible
learning and loading scheme for generic probability distributions
based on a generative model. The scheme utilizes a hybrid
quantum-classical implementation of a Generative Adversarial
Network (GAN)10,11 to train a quantum channel such that it reflects
a probability distribution implicitly given by data samples.
In classical machine learning, GANs have proven useful for

generative modeling. These algorithms employ two competing
neural networks - a generator and a discriminator - which are
trained alternately. Replacing either the generator, the discrimi-
nator, or both with quantum systems translates the framework to
the quantum computing context.12

The first theoretical discussion of quantum GANs (qGANs) was
followed by demonstrations of qGAN implementations. Some
focused on quantum state estimation,13 i.e., finding a quantum
channel whose output is an estimate to a given quantum state.14–16

Others exploited qGANs to generate classical data samples in
accordance with the training data’s underlying distribution.17–19

In contrast, our qGAN implementation learns and loads
probability distributions into quantum states. More specificially,
the aim of the qGAN is not to produce classical samples in

accordance with given classical training data but to train the
quantum generator to create a quantum state which represents
the data’s underlying probability distribution. The resulting
quantum channel, given by the quantum generator, enables
efficient loading of an approximated probability distribution into a
quantum state. It can be easily prepared and reused as often as
needed. Now, applying this qGAN scheme for data loading can
facilitate quantum advantage in combination with other algo-
rithms such as Quantum Amplitude Estimation (QAE)4 or the HHL-
algorithm.1 Notably, QAE and HHL - given a well-conditioned
matrix and a suitable classical right-hand-side5 - are both
compatible with approximate state preparation as these algo-
rithms are stable to small errors in the input state, i.e., small
deviations in the input only lead to small deviations in the result.
The remainder of this paper is structured as follows. First, we

explain classical GANs. Then, the qGAN-based distribution learning
and loading scheme is introduced and analyzed on different test
cases. Next, we discuss the exploitation of qGANs to facilitate
quantum advantage in financial derivative pricing. More explicitly,
we discuss the training of the qGAN with data samples drawn
from a log-normal distribution and present the results obtained
with a quantum simulator and the IBM Q Boeblingen super-
conducting quantum computer with 20 qubits, both accessible via
the IBM Q Experience.20 Furthermore, the resulting quantum
channel is used in combination with QAE to price a European call
option. Finally, the conclusions and a discussion on open
questions and additional possible applications of the scheme
are presented.

RESULTS

Generative Adversarial Networks

The generative models considered in this work, GANs,10,11 employ
two neural networks - a generator and a discriminator - to learn
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random distributions that are implicitly given by training data
samples. Originally, GANs were used in the context of image
generation and modification. In contrast to previously used
generative models, such as Variational Auto Encoders (VAEs),21,22

GANs managed to generate sharp images and consequently
gained popularity in the machine learning community.23 VAEs and
other generative models relying on log-likelihood optimization are
prone to generating blurry images. Particularly for multi-modal
data, log-likelihood optimization tends to spread the mass of a
learned distribution over all modes. GANs, on the other hand, tend
to focus the mass on each mode.10,24

Suppose a classical training data set X ¼ fx0; ¼ ; xs�1g � R
kout

sampled from an unknown probability distribution preal. Let Gθ :

R
kin ! R

kout and Dϕ : R
kout ! f0; 1g denote the generator and

the discriminator networks, respectively. The corresponding net-
work parameters are given by θ 2 R

kg and ϕ 2 R
kd . The

generator Gθ translates samples from a fixed prior distribution
pprior in R

kin into samples which are indistinguishable from
samples of the real distribution preal in R

kout . The discriminator Dϕ,
on the other hand, tries to distinguish between data from the
generator and from the training set. The training process is
illustrated in Fig. 1.
The optimization objective of classical GANs may be defined in

various ways. In this work, we consider the non-saturating loss25

which is also used in the code of the original GAN paper.10 The
generator’s loss function

LG ϕ; θð Þ ¼ �Ez�pprior log Dϕ Gθ zð Þð Þ
� �� �

(1)

aims at maximizing the likelihood that the generator creates
samples that are labeled as real data samples. On the other hand,
the discriminator’s loss function

LD ϕ; θð Þ ¼ Ex�preal log Dϕ xð Þ
� �

þEz�pprior log 1� Dϕ Gθ zð Þð Þ
� �� �

(2)

aims at maximizing the likelihood that the discriminator labels
training data samples as training data samples and generated data
samples as generated data samples. In practice, the expected
values are approximated by batches of size m

LG ϕ; θð Þ ¼ � 1

m

X

m

l¼1

log Dϕ Gθ zl
� �� �� �� �

; and (3)

LD Dϕ;Gθ

� �

¼ 1

m

X

m

l¼1

log Dϕ x
l

� �

þ
�

log 1� Dϕ Gθ z
l

� �� �� ��

; (4)

for x
l 2 X and z

l � pprior. Training the GAN is equivalent to
searching for a Nash-equilibrium of a two-player game:

max
θ

LG ϕ; θð Þ (5)

max
ϕ

LD ϕ; θð Þ: (6)

Typically, the optimization of Eqs. (5) and (6) employs
alternating update steps for the generator and the discriminator.
These alternating steps lead to non-stationary objective functions,
i.e., an update of the generator’s (discriminator’s) network
parameters also changes the discriminator’s (generator’s) loss
function. Common choices to perform the update steps are
ADAM26 and AMSGRAD,27 which are adaptive-learning-rate,
gradient-based optimizers that use an exponentially decaying
average of previous gradients, and are well suited for solving non-
stationary objective functions.26

qGAN distribution learning

Our qGAN implementation uses a quantum generator and a
classical discriminator to capture the probability distribution of
classical training samples. Notably, the aim of this approach is to
train a data loading quantum channel for generic probability
distributions. As discussed before, GAN-based learning is explicitly
suitable for capturing not only uni-modal but also multi-modal
distributions, as we will demonstrate later in this section.
In this setting, a parametrized quantum channel, i.e., the

quantum generator, is trained to transform a given n-qubit input
state ψinj i to an n-qubit output state

Gθ ψinj i ¼ gθj i ¼
X

2n�1

j¼0

ffiffiffiffiffi

p
j
θ

q

jj i; (7)

where p
j
θ
describe the resulting occurrence probabilities of the

basis states jj i.
For simplicity, we now assume that the domain of X is

f0; :::; 2n � 1g, and thus the existence of a natural mapping
between the sample space of the training data and the states that
can be represented by the generator. This assumption can be
easily relaxed, for instance, by introducing an affine mapping
between f0; :::; 2n � 1g and an equidistant grid suitable for X . In
this case, it might be necessary to map points in X to the closest
grid point to allow for an efficient training. The number of qubits n
determines the distribution loading scheme’s resolution, i.e., the
number of discrete values 2n that can be represented. During the
training, this affine mapping can be applied classically after
measuring the quantum state. However, when the resulting
quantum channel is used within another quantum algorithm the
mapping must be executed as part of the quantum circuit. As was
discussed in ref., 28 such an affine mapping can be implemented
in a gate-based quantum circuit with linearly many gates.
The quantum generator is implemented by a variational form,29

i.e., a parametrized quantum circuit. We consider variational forms
consisting of alternating layers of parametrized single-qubit
rotations, here Pauli-Y-rotations RYð Þ,3 and blocks of two-qubit
gates, here controlled-Z-gates CZð Þ,3 called entanglement blocks
Uent. The circuit consists of a first layer of RY gates, and then k
alternating repetitions of Uent and further layers of RY gates. The
rotation acting on the ith qubit in the jth layer is parametrized by
θi;j . Moreover, the parameter k is called the depth of the
variational circuit. If such a variational circuit acts on n qubits it
uses in total ðk þ 1Þn parametrized single-qubit gates and kn two-
qubit gates, see Fig. 2 for an illustration. Similarly to increasing the
number of layers in deep neural networks,30 increasing the depth
k enables the circuit to represent more complex structures and
increases the number of parameters. Another possibility of
increasing the quantum generator’s ability to represent complex
correlations is adding ancilla qubits, as this facilitates an isometric
instead of a unitary mapping,3 see Supplementary Notes A for
more details.
The rationale behind choosing a variational form with RY and CZ

gates, e.g., in contrast to other Pauli rotations and two-qubit gates,
is that for θi;j ¼ 0 the variational form does not have any effect on
the state amplitudes but only flips the phases. These phase flips

Fig. 1 Generative Adversarial Network. First, the generator creates
data samples which shall be indistinguishable from the training
data. Second, the discriminator tries to differentiate between the
generated samples and the training samples. The generator and
discriminator are trained alternately.
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do not perturb the modeled probability distribution which solely
depends on the state amplitudes. Thus, if a suitable ψinj i can be
loaded efficiently, the variational form allows its exploitation.
To train the qGAN, samples are drawn by measuring the output

state gθj i in the computational basis, where the set of possible
measurement outcomes is jj i; j 2 f0; ¼ ; 2n � 1g. Unlike in the
classical case, the sampling does not require a stochastic input but
is based on the inherent stochasticity of quantum measurements.
Notably, the measurements return classical information, i.e., pj
being defined as the measurement frequency of jj i. The scheme
can be easily extended to d-dimensional distributions by choosing
d qubit registers with ni qubits each, for i ¼ 1; ¼ ; d, and
constructing a multi-dimensional grid, see Supplementary Notes
B for an explicit example of a qGAN trained on multivariate data.
A carefully chosen input state ψinj i can help to reduce the

complexity of the quantum generator and the number of training
epochs as well as avoid local optima in the quantum circuit
training. Since the preparation of ψinj i should not dominate the
overall gate complexity, the input state must be loadable with
O poly nð Þð Þ gates. This is feasible, e.g., for efficiently integrable
probability distributions, such as log-concave distributions.31 In
practice, statistical analysis of the training data can guide the
choice for a suitable ψinj i from the family of efficiently loadable
distributions, e.g., by matching expected value and variance. Later
in this section, we present a broad simulation study that analyzes
the impact of ψinj i as well as the circuit depth k.
The classical discriminator, a standard neural network consisting

of several layers that apply non-linear activation functions,
processes the data samples and labels them either as being real
or generated. Notably, the topology of the networks, i.e., number
of nodes and layers, needs to be carefully chosen to ensure that
the discriminator does not overpower the generator and
vice versa.
Given m data samples g

l from the quantum generator and m
randomly chosen training data samples xl , where l ¼ 1; ¼ ;m, the
loss functions of the qGAN are

LG ϕ; θð Þ ¼ � 1

m

X

m

l¼1

logDϕ g
l

� �� �

; (8)

for the generator, and

LD ϕ; θð Þ ¼ 1

m

X

m

l¼1

log Dϕ xl
� �

þ
�

log 1� Dϕ g
l

� �� ��

; (9)

for the discriminator, respectively. As in the classical case, see Eqs.
(5) and (6), the loss functions are optimized alternately with
respect to the generator’s parameters θ and the discriminator’s
parameters ϕ.
Next, we present the results of a broad simulation study on

training qGANs with different settings for different target
distributions. The quantum generator is implemented with
Qiskit32 which enables quantum circuit execution with quantum
simulators as well as quantum hardware provided by the IBM Q
Experience.20 We consider a quantum generator acting on n ¼ 3
qubits, which can represent 23 ¼ 8 values, namely f0; 1; ¼ ; 7g.
The method is applied for 20;000 samples of, first, a log-normal
distribution with μ ¼ 1 and σ ¼ 1, second, a triangular distribution
with lower limit l ¼ 0, upper limit u ¼ 7 and modem ¼ 2, and last,
a bimodal distribution consisting of two superimposed Gaussian
distributions with μ1 ¼ 0:5, σ1 ¼ 1 and μ2 ¼ 3:5, σ2 ¼ 0:5,
respectively. All distributions are truncated to 0; 7½ � and the
samples were rounded to integer values.
The generator’s input state ψinj i is prepared according to a

discrete uniform distribution, a truncated and discretized normal
distribution with μ and σ being empirical estimates of mean and
standard deviation of the training data samples, or a randomly
chosen initial distribution. Preparing a uniform distribution on 3
qubits requires the application of 3 Hadamard gates, i.e., one per
qubit.3 Loading a normal distribution involves more advanced
techniques, see Supplementary Methods A for further details. For
both cases, we sample the generator parameters from a uniform
distribution on ½�δ;þδ�, for δ ¼ 10�1. By construction of the
variational form, the resulting distribution is close to ψinj i but
slightly perturbed. Adding small random perturbations helps to
break symmetries and can, thus, help to improve the training
performance.33–35 To create a randomly chosen distribution, we
set ψinj i ¼ 0j i�3

and initialize the parameters of the variational
form following a uniform distribution on ½�π; π�. From now on, we
refer to these three cases as uniform, normal, and random
initialization. Furthermore, we test quantum generators with
depths k 2 f1; 2; 3g.

Fig. 2 Quantum generator. The variational form, depicted in (a), with depth k acts on n qubits. It is composed of k þ 1 layers of single-qubit
Pauli-Y-rotations and k entangling blocks Uent . As illustrated in (b), each entangling block applies CZ gates from qubit i to qubit
i þ 1ð Þmod n; i 2 f0; ¼ ; n� 1g to create entanglement between the different qubits.
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The discriminator, a classical neural network, is implemented
with PyTorch.36 The neural network consists of a 50-node input
layer, a 20-node hidden layer and a single-node output layer. First,
the input and the hidden layer apply linear transformations
followed by Leaky ReLU functions.10,37,38 Then, the output layer
implements another linear transformation and applies a sigmoid
function. The network should neither be too weak nor too
powerful to ensure that neither the generator nor the discrimi-
nator overpowers the other network during the training. The
choice for the discriminator topology is based on empirical tests.
The qGAN is trained using AMSGRAD27 with the initial learning

rate being 10�4. Due to the utilization of first and second
momentum terms, this is a robust optimization technique for non-
stationary objective functions as well as for noisy gradients,26

which makes it particularly suitable for running the algorithm on
real quantum hardware. Methods for the analytic computation of
the quantum generator loss function’s gradients are discussed in
Supplementary Methods B. The training stability is improved
further by applying a gradient penalty on the discriminator’s loss
function.39,40

In each training epoch, the training data is shuffled and split
into batches of size 2000. The generated data samples are created
by preparing and measuring the quantum generator 2000 times.
Then, the batches are used to update the parameters of the
discriminator and the generator in an alternating fashion. After the
updates are completed for all batches, a new epoch starts.
According to the classical GAN literature, the loss functions do

not neccessarily reflect whether the method converges.41 In the
context of training a quantum representation of some training
data’s underlying random distribution, the Kolmogorov–Smirnov
statistic as well as the relative entropy represent suitable measures
to evaluate the training performance. Given the null-hypothesis
that the probability distribution from gθj i is equivalent to the
probability distribution underlying X , the Kolmogorov–Smirnov
statistic DKS determines whether the null-hypothesis is accepted
or rejected with a certain confidence level, here set to 95%. The
relative entropy quantifies the difference between two probability
distributions. In the following, we analyze the results using these
two statistical measures, which are formally introduced in
Supplementary Methods C.
For each setting, we repeat the training 10 times to get a better

understanding of the robustness of the results. Table 1 shows
aggregated results over all 10 runs and presents the mean μKS, the
standard deviation σKS and the number of accepted runs n�b

according to the Kolmogorov–Smirnov statistic as well as the
mean μRE and standard deviation σRE of the relative entropy
outcomes between the generator output and the corresponding
target distribution. The data shows that increasing the quantum
generator depth k usually improves the training outcomes.
Furthermore, the table illustrates that a carefully chosen initializa-
tion can have favorable effects, as can be seen especially well for
the bimodal target distribution with normal initialization. Since the
standard deviations are relatively small and the number of
accepted results is usually close to 10, at least for depth k � 2,
we conclude that the presented approach is quite robust and also
applicable to more complicated distributions. Figure 3 illustrates
the results for one example of each target distribution.

Application in quantum finance

Now, we demonstrate that training a data loading unitary with
qGANs can facilitate financial derivative pricing. More precisely,
we employ qGANs to learn and load a model for the spot price of
an asset underlying a European call option. We perform the
training for different initial states with a quantum simulator, and
also execute the learning and loading method for a random
initialization on an actual quantum computer, the IBM Q
Boeblingen 20 qubit chip. Then, the fair price of the option is
estimated by sampling from the resulting distribution, as well as
with a QAE algorithm4,28 that uses the quantum generator trained
with IBM Q Boeblingen for data loading. A detailed description of
the QAE algorithm is given in Supplementary Methods D.
The owner of a European call option is permitted, but not

obliged, to buy an underlying asset for a given strike price K at a
predefined future maturity date T , where the asset’s spot price at
maturity ST is assumed to be uncertain. If ST � K , i.e., the spot
price is below the strike price, it is unreasonable to exercise the
option and there is no payoff. However, if ST , exercising the option
to buy the asset for price K and immediately selling it again for ST
can realize a payoff ST � K . Thus, the payoff of the option is
defined as maxfST � K ; 0g. Now, the goal is to evaluate the
expected payoff E maxfST � K ; 0g½ �, whereby ST is assumed to
follow a particular random distribution. This corresponds to the
fair option price before discounting.42 Here, the discounting is
neglected to simplify the problem.
To demonstrate and verify the applicability of the suggested

training method, we implement a small illustrative example that is
based on the analytically computable standard model for

Table 1. Benchmarking the qGAN training.

Data Initialization k μKS σKS n�b μRE σRE

Log-normal Uniform 1 0.0522 0.0214 9 0.0454 0.0856

2 0.0699 0.0204 7 0.0739 0.0510

3 0.0576 0.0206 9 0.0309 0.0206

Normal 1 0.1301 0.1016 5 0.1379 0.1449

2 0.1380 0.0347 1 0.1283 0.0716

3 0.0810 0.0491 7 0.0435 0.0560

Random 1 0.0821 0.0466 7 0.0916 0.0678

2 0.0780 0.0337 6 0.0639 0.0463

3 0.0541 0.0174 10 0.0436 0.0456

Triangular Uniform 1 0.0880 0.0632 6 0.0624 0.0535

2 0.0336 0.0174 10 0.0091 0.0042

3 0.0695 0.1028 9 0.0760 0.1929

Normal 1 0.0288 0.0106 10 0.0038 0.0048

2 0.0484 0.0424 9 0.0210 0.0315

3 0.0251 0.0067 10 0.0033 0.0038

Random 1 0.0843 0.0635 7 0.1050 0.1387

2 0.0538 0.0294 9 0.0387 0.0486

3 0.0438 0.0163 10 0.0201 0.0194

Bimodal Uniform 1 0.1288 0.0259 0 0.3254 0.0146

2 0.0358 0.0206 10 0.0192 0.0252

3 0.0278 0.0172 10 0.0127 0.0040

Normal 1 0.0509 0.0162 9 0.3417 0.0031

2 0.0406 0.0135 10 0.0114 0.0094

3 0.0374 0.0067 10 0.0018 0.0041

Random 1 0.2432 0.0537 0 0.5813 0.2541

2 0.0279 0.0078 10 0.0088 0.0060

3 0.0318 0.0133 10 0.0070 0.0069

The table presents results for training a qGAN for log-normal, triangular
and bimodal target distributions, uniform, normal and random initializa-
tions, and variational circuits with depth 1, 2, and 3. The tests were
repeated 10 times using quantum simulation. The table shows the mean
(μ) and the standard deviation (σ) of the Kolmogorov–Smirnov statistic (KS)
as well as of the relative entropy (RE) between the generator output and
the corresponding target distribution. Furthermore, the table shows the
number of runs accepted according to the Kolmogorov–Smirnov statistic
(n≤b) with confidence level 95%, i.e., with acceptance bound b= 0.0859
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European option pricing, the Black-Scholes model.42 The qGAN
algorithm is used to train a corresponding data loading unitary
which enables the evaluation of characteristics of this model, such
as the expected payoff, with QAE.
It should be noted that the Black-Scholes model often over-

simplifies the real circumstances. In more realistic and complex
cases, where the spot price follows a more generic stochastic
process or where the payoff function has a more complicated
structure, options are usually evaluated with Monte Carlo

simulations.43 A Monte Carlo simulation uses N random samples
drawn from the respective distribution to evaluate an estimate for
a characteristic of the distribution, e.g., the expected payoff. The
estimation error of this technique behaves like ϵ ¼ Oð1=

ffiffiffiffi

N
p

Þ.
When using n evaluation qubits to run a QAE, this induces the
evaluation of N ¼ 2n quantum samples to estimate the respective
distribution charactersitic. Now, this quantum algorithm achieves
a Grover-type error scaling for option pricing, i.e.,
ϵ ¼ Oð1=NÞ.4,28,44 To evaluate an option’s expected payoff with

Fig. 3 Benchmarking results for qGAN training. Log-normal target distribution with normal initialization and a depth 2 generator (a, b),
triangular target distribution with random initialization and a depth 2 generator (c, d), and bimodal target distribution with uniform
initialization and a depth 3 generator (e, f). The presented probability density functions correspond to the trained gθj i (a, c, e) and the loss
function progress is illustrated for the generator as well as for the discriminator (b, d, f).
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QAE, the problem must be encoded into a quantum operator that
loads the respective probability distribution and implements the
payoff function. In this work, we demonstrate that this distribution
can be loaded approximately by training a qGAN algorithm.
In the remainder of this section, we first illustrate the training of

a qGAN using classical quantum simulation. Then, the results from
running a qGAN training on actual quantum hardware are
presented. Finally, we employ the generator trained with a real
quantum computer to conduct QAE-based option pricing.
According to the Black-Scholes model,42 the spot price at

maturity ST for a European call option is log-normally distributed.
Thus, we assume that preal, which is typically unknown, is given by
a log-normal distribution and generates the training data X by
randomly sampling from a log-normal distribution.
As for the simulation study, the training data set X is

constructed by drawing 20;000 samples from a log-normal
distribution with mean μ ¼ 1 and standard deviation σ ¼ 1
truncated to 0; 7½ �, and then by rounding the sampled values to
integers, i.e., to the grid that can be natively represented by the
generator. We discuss a detailed analysis of training a model for
this distribution with a depth k ¼ 1 quantum generator, which is
sufficient for this small example, with different initializations,
namely uniform, normal, and random. The discriminator and
generator network architectures as well as the optimization
method are chosen equivalently to the ones described in the
context of the simulation study.
First, we present results from running the qGAN training with a

quantum simulator. The training procedure involves 2000 epochs.
Figure 4 shows the PDFs corresponding to the trained gθj i and the
target PDF. The figures visualize that both uniform and normal
initialization perform better than the random initialization.
Moreover, Fig. 4 shows the progress of the relative entropy and,

thereby, illustrates how the generated distributions converge
toward the training data’s underlying distribution. This also shows

that the generator model which is initialized randomly performs
worst. Notably, the initial relative entropy for the normal
distribution is already small. We conclude that a carefully chosen
initialization clearly improves the training, although all three
approaches eventually lead to reasonable results.
Table 2 presents the Kolmogorov–Smirnov statistics of the

experiments. The results also confirm that initialization impacts
the training performance. The statistics for the normal initialization
are better than for the uniform initialization, which itself outper-
forms random initialization. It should be noted that the null-
hypothesis is accepted for all settings.
Next, we present the results of the qGAN training run on an

actual quantum processor, more precisely, the IBM Q Boeblingen
chip.20 We use the same training data, quantum generator and
discriminator as before. To improve the robustness of the training
against the noise introduced by the quantum hardware, we set
the optimizer’s learning rate to 10�3. The initialization is chosen
according to the random setting because it requires the least
gates. Due to the increased learning rate, it is sufficient to run the
training for 200 optimization epochs. For more details on efficient
implementation of the generator on IBM Q Boeblingen, see
Supplementary Methods E.

Fig. 4 Simulation training. The figure illustrates the PDFs corresponding to gθj i trained on samples from a log-normal distribution using a
uniformly (a), randomly (b), and normally (c) initialized quantum generator. Furthermore, the convergence of the relative entropy for the
various initializations over 2000 training epochs is presented (d).

Table 2. Kolmogorv–Smirnov statistic—simulation.

Initialization DKS Accept/reject

Uniform 0:0369 Accept

Normal 0:0320 Accept

Random 0:0560 Accept

The statistic is computed for randomly chosen samples from |gθ〉 and from
the discretized, truncated log-normal distribution X

C. Zoufal et al.
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Equivalent to the simulation, in each epoch, the training data is
shuffled and split into batches of size 2000. The generated data
samples are created by preparing and measuring the quantum
generator 2000 times. To compute the analytic gradients for the
update of θ, we use 8000 measurements to achieve suitably
accurate gradients.
Figure 5 presents the PDF corresponding to gθj i trained with

IBM Q Boeblingen, respectively, with a classical quantum
simulation that models the quantum chip’s noise. To evaluate
the training performance, we evaluate again the relative entropy
and the Kolmogorov–Smirnov statistic. A comparison of the
progress of the loss functions and the relative entropy for a
training run with the IBM Q Boeblingen chip and with the noisy
quantum simulation is shown in Fig. 5. The plot illustrates that the
relative entropy for both, the simulation and the real quantum
hardware, converge to values close to zero and, thus, that in both
cases gθj i evolves toward the random distribution underlying the
training data samples.
Again, the Kolmogorov–Smirnov statistic DKS determines

whether the null-hypothesis is accepted or rejected with a
confidence level of 95%. The results presented in Table 3 confirm
that we were able to train an appropriate model on the actual
quantum hardware.
Notably, some of the more prominent fluctuations might be

due to the fact that the IBM Q Boeblingen chip is recalibrated on a

daily basis which is, due to the queuing, circuit preparation, and
network communication overhead, shorter than the overall
training time of the qGAN.
In the following, we demonstrate that the qGAN-based data

loading scheme enables the exploitation of the potential quantum
advantage of algorithms such as QAE by using a generator trained

with actual quantum hardware to facilitate European call option
pricing. The resulting quantum generator loads a random
distribution that approximates the spot price at maturity ST . More
specifically, we integrate the distribution loading quantum

channel into a quantum algorithm based on QAE to evaluate
the expected payoff E max ST � K ; 0f g½ � for K ¼ $2, illustrated in
Fig. 6. Given this efficient, approximate data loading, the algorithm

can achieve a quadratic improvement in the error scaling
compared with classical Monte Carlo simulation. We refer to
ref. 28 and to Supplementary Methods D for a detailed discussion
of derivative pricing with QAE.

Fig. 5 Quantum hardware training with a randomly initialized qGAN. The shown PDFs correspond to gθj i trained on (a) the IBM Q Boeblingen
and (c) a quantum simulation employing a noise model. Moreover, the progress in the (b) loss functions and the (d) relative entropy during
the training of the qGAN with the IBM Q Boeblingen quantum computer and a noisy quantum simulation are presented.

Table 3. Kolmogorov–Smirnov statistic—quantum hardware.

Initialization Backend DKS Accept/reject

Random Simulation 0:0420 Accept

Random Quantum computer 0:0224 Accept

The statistic is computed for randomly chosen samples of |gθ〉 trained with
a noisy quantum simulation and using the IBM Q Boeblingen device

Fig. 6 Payoff function European Call option. Probability distribution
of the spot price at maturity ST and the corresponding payoff
function for a European Call option. The distribution has been
learned with a randomly initialized qGAN run on the IBM Q
Boeblingen chip.
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The results for estimating E max ST � K; 0f g½ � are given in Table
4, where we compare

● an analytic evaluation with the exact (truncated and
discretized) log-normal distribution preal ,

● a Monte Carlo simulation utilizing gθj i trained and generated
with the quantum hardware (IBM Q Boeblingen), i.e., 1024
random samples of ST are drawn by measuring gθj i and used
to estimate the expected payoff, and

● a classically simulated QAE-based evaluation using m ¼ 8
evaluation qubits, i.e., 28 ¼ 256 quantum samples, where the
probability distribution gθj i is trained with IBM Q
Boeblingen chip.

The resulting confidence intervals (CI) are shown for a
confidence level of 95% for the Monte Carlo simulation as well
as the QAE. The CIs are of comparable size, although, because of
better scaling, QAE requires only a fourth of the samples. Since the
distribution is approximated, both CIs are close to the exact value
but do not actually contain it. Note that the estimates and the CIs
of the MC and the QAE evaluation are not subject to the same
level of noise effects. This is because the QAE evaluation uses the
generator parameters trained with IBM Q Boeblingen but is run
with a quantum simulator, whereas the Monte Carlo simulation is
solely run on actual quantum hardware. To be able to run QAE on
a quantum computer, further improvements are required, e.g.,
longer coherence times and higher gate fidelities.

DISCUSSION

We demonstrated the application of an efficient, approximate
probability distribution learning and loading scheme based on
qGANs that requires O poly nð Þð Þ many gates. In contrast to this,
current state-of-the-art techniques for exact loading of generic
random distributions into an n-qubit state necessitate O 2nð Þ gates
which can easily predominate a quantum algorithm’s complexity.
The respective quantum channel is implemented by a gate-

based quantum algorithm and can, therefore, be directly integrated
into other gate-based quantum algorithms. This is explicitly shown
by the learning and loading of a model for European call option
pricing which is evaluated with a QAE-based algorithm that can
achieve a quadratic improvement compared with classical Monte
Carlo simulation. The model is flexible because it can be fitted to
the complexity of the underlying data and the loading scheme’s
resolution can be traded off against the complexity of the training
data by varying the number of used qubits n and the circuit depth
k. Moreover, qGANs are compatible with online or incremental
learning, i.e., the model can be updated if new training data
samples become available. This can lead to a significant reduction
of the training time in real-world learning scenarios.
Some questions remain open and may be subject to future

research, for example, an analysis of optimal quantum generator
and discriminator structures as well as training strategies. Like in
classical machine learning, it is neither apriori clear what model

structure is the most suitable for a given problem nor what
training strategy may achieve the best results.
Furthermore, although barren plateaus45 were not observed in

our experiments, the possible occurrence of this effect, as well as
counteracting methods, should be investigated. Classical ML
already offers a wide variety of potential solutions, e.g., the
inclusion of noise and momentum terms in the optimization
procedure, the simplification of the function landscape by increase
of the model size46 or the computation of higher order gradients.
Moreover, schemes that were developed in the context of VQE
algorithms, such as adaptive initialization,47 could help to
circumvent this issue.
Another interesting topic worth investigating considers the

representation capabilities of qGANs with other data types.
Encoding data into qubit basis states naturally induces a discrete
and equidistantly distributed set of represented data values.
However, it might be interesting to look into the compatibility of
qGANs with continuous or non-equidistantly distributed values.
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