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Quantum geometry of chiral bosons on a circle
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We extend the geometric treatment done for the Majorana-Weyl fermions in two dimensions by
Sanielevici and Semenoff to chiral bosons on a circle. For this case we obtain a generalized
Floreanini-Jackiw Lagrangian density, and the corresponding gravitational (or Virasoro) anomalies
are found as expected.

INTRODUCTION

Studying the Majorana-Weyl fermions in two dimen-
sions Sanielevici and Semenoff, by an explicit construc-
tion, connected the curvature of a fiber bundle construct-
ed on the space of reparametrizations JM, =DiffS'/S'
with the gravitational anomaly of these fermions in a
static background field. This construction was inspired
by the work of Bowick and Rajeev who have
complexified the space JR and introduced in this way a
Kahler connection. They showed that the anomaly of the
Virasoro algebra is just the corresponding curvature of a
vector bundle over complex JK.

In their work Sanielevici and Semenoff give an explicit
construction of the fiber bundle made by the Hilbert
space of the fermion states in a background metric field.
The purpose of our paper is to extend their method to
chiral bosons on a circle and at the same time to make an
elementary discussion of the geometry of the problem.

In Sec. I we introduce chiral bosons on a circle, discuss
the corresponding Dirac constraints, and obtain the gen-
eralization of the Floreanini-Jackiw Lagrangian density
for periodic and antiperiodic boundary conditions.

In Sec. II we introduce in an elementary way the group
of reparametrizations DiffS'/S' and obtain the Hamil-
tonian for each point of this space. We find that the
structure of the phase space (sympletic form) is invariant
under reparametrizations. The system is quantized and
the corresponding Fock spaces are introduced.

In Sec. III the quantum geometry of the chiral bosons
in a static external background field is discussed and a
connection with curvature is introduced as well as the
corresponding adiabatic quantities.

In Sec. IV the Hamiltonian of the chiral bosons in a
static external background is rewritten in terms of the bo-
sonic field. We make a little remark regarding the work
of Bellucci, Cxolterman, and Petcher, and extend to this
case their treatment introduced by Sanielevici and
Semenoff.

In Sec. V we calculate the curvature for chiral bosons
on the circle by extending to this case the methods of
Ref. 3 and discuss its relation with the curvature intro-

duced in Sec. III. Some short details of the relevant cal-
culations are given in the appendixes.

I. CHIRAL BOSONS ON A CIRCLE

subject to the constraint

(a,y —a.y) =o .

The Hamiltonian density corresponding to (1.1) is

%=—,'II (a)+ —,'(h' (a) .

(1.2)

We shall first consider periodic boundary conditions

P(a)=Q(a+2m) .

by introducing the variables

T (a)= [m(a) —P'(a)],1

v'2

(1.4)

T (a ) = —[n(a )+P'(a )],v'2

and the corresponding components

TL, R f ~e(a)TL, R(a)da

where

1q„(a)= exp(ina) .
2

In the above relations the "time" ~ is fixed,
P'(a)=dP(a)/da and n EZ. We can show that II(a),
P(a), and the total Hamiltonian can be rewritten in terms
of T„and T„as

11(a)= g(T„+T„)q„(a),1

2

I.et us consider chiral bosons on a circle of length 2m.

described by the Lagrangian density

&=2(&,P) —2(& P)
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1P(a)=
neo

( T„T„—)y„(a)+ (1.10)
We can now define real canonical variables

q„= —(T„+T „),1

2
(1.26)

y ( TLTL + TRTR )

where Po is a constant of integration in a.
By imposing the Poisson brackets

I II(a),P(a') j
= —5(a —a'),

IP(u), P(a') j
= Ill(a), II(a') j =0

(1.12)

2n

for n&0 with

tqn &pm j 5nm,

So the total Lagrangian is given as usual by

(1.27)

(1.28)

we arrive at the Poisson brackets

ITL, TLj= n5„.,
I TR, TR j

= in5„+—

I
TL TR j

I go T„j=0,
Igo, TR

j =0, n&0,

Ido Toj=1

(1.13)

(1.14)

(1.16)

(1.17)

(1.18)

where To = To = To. The constraint (1.2), in terms of the
components T„,can be rewritten as

TR 0n (1.19)

—I~ PojITo»j —I~ TojIko»j
it follows that

(1.20)

for all integers n. The algebra of the constraints is de-
scribed by the relations (1.14). Let us note that the con-
straint in time of (1.19) does not give any new secondary
constraints. In particular (1.14) shows that To is a first-
class constraint while T„are second-class constraints (for
n&0). Also (1.18) shows that the constraint To=0 im-

plies that our system does not depend on Po, that is,
P(a)~P(a)+const is a symmetry of our problem.
Therefore, we can choose the "gauge" go=0 and the con-
straint T0 =0 becomes a second-class one. In this way we
remain with only second-class constraints. By following
the Dirac method we define new Poisson brackets and
now the constraints become strong equations and they
disappear from the formalism. With the definition of the
Dirac brackets:

I A, B jD=I AB j
—g I A, T „j—. ITR,B j

1

n&0

L = g p„q„H(q—„,p„),
n@0

(1.29)

which is a generalization for the circle of the forin given
by Floreanini and Jackiw for case of whole real axis.

In our case e(x) has the graphical representation given
in Fig. 1.

In terms of P(a) expression (1.30b), recalling that
II(a) =P'(a), one gets

L = f do —,'[P'(a)P(o ) —P'(a) j, (1.31)

which is again similar to the one given by Floreanini and
Jackiw.

For antiperiodic boundary conditions

P(a) = —P(a+2m ), (1.32)

the treatment is similar with exception that instead of
n HZ we have n KZ+ —,

' in expression (1.8) and all that
which follow. In this case we do not need to discuss zero
modes since they do not appear.

where H(q„,p„) is obtained from (1.11), remembering
that now we have T„"=0strongly. We obtain from (1.9),
(1.10), (1.26), and (1.27) the Lagrangian in terms of the
original field (with TR=O):

L =
—,
' fdada'II(a)e(a —a')II(a') —f do II (a) .

(1.30a)

We can redefine p —+(1/&2)p and II—+(1/v'2)II to get

L = ,' fd—ada'II(a)e(a —a')II(a') ,' f—d—aII (a),
(1.30b)

I II(a), II(a') j
=

—,'8 5(a —a'),
Ip(a), II(a') j =

—,'5(a —a'),
o. , a' = —

—,'e a —a'

(1.21)

(1.22)

(1.23)

& f(x)

where all the brackets are the Dirac ones. We have
defined the functions 5(a —a') and e(a —a') by means of

5(a —a')= g q„(a)y „(a),
n&0

e(a —a')=2 g . y„(a)y „(a) .1

,&0 in

(1.24)

(1.25) FIG. 1. Graphic representation of e(x).
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II. CHIRAL BOSONS IN A CURVED SPACE

Let us now introduce a length parameter L (L =2m in
the circular case) of periodicity:

dagag, g"[ l+q'[ l(x ——" .

Therefore, iff (a+L) =f (a)( —1)' then

(2.11)

P(a+L, r) =P(a, r)( —1)s, (2.1) f (a) —f yn [a](a) (2.12)

where S=O for periodic boundary conditions (PBC's),
S= 1 for antiperiodic boundary conditions (ABC' s). In-
stead of (1.8) we have

where

f[ ]
= jdari(a)f (a)i] „y"[ ](a) . (2.13)

1 2~y„(a)= exp i na
L

n ~z for PBC, n EZ+ —,
' for ABC (2.2)

II(1){a,(a) }= T[. ]„m""(a), (2.14)

Let us consider two reparametrizations cr, (a) and
o 2(a). Then

a~a'=o(a) . (2.3)

and the corresponding constrained system described by
(1.1) and (1.2) follows similarly with the exception that on
the right-hand side for (1.13) and (1.14) we have an addi-
tional factor 2m IL.

It is expected that the classical theory should be invari-
ant under a change of coordinates in the variable a
(reparametrizations):

II' '(o,(a))=T[ j„y '(a) .

By the law of transformation (2.5) it follows

[o.
&
]m

[ P] [ 2] [ I]

where

[~,]i k [o2] &[o )]
e[ 'j„=rj„k dai], (a)q& ' (a)y ' (a) .

(2.15)

(2.16)

(2.17)

do)11"'{o,(a) }= II"'(o,(a))
do2

(2.4)

or

The space of all reparametrizations forms a group
called DiQS'. If we impose that the classical theory is in-

variant under this group, we see that the Gelds must
transform in the following way:

m
T[a]n e [o.]n Tm

Analogously
[o]m

Tn e n T[o]r

The Hamiltonian (2.9) can be rewritten as

I mne [~]ae [~ T Tm n [cr]a [o]b

(2.18)

(2.19)

(2.20)

Putting cr2 =I (identity) and o z=o in (2.5), we have

II' '(cr (a))=i],(a)r] '(a)II"'(o, (a)),
where

dcr, (a) do z(a)
il, (a)=, i]2(a) =

de dc'

Also

(2.5)

H 9 T[ ] T[ jb
[~]ab

With the definition

g[o]ab ] mn [o ]a [o]b
n

(2.21)

(2.22)

P'"(cr ~(a)) =P"'(o 2(a) ) . (2.7)

mn —gm + n, O (2.8a)

If we consider the fields expressed in terms of T„(= T~
since T„=O), they can be considered as vectors of the
form (. . . , T 2, T „T„T2,. . . ), by introducing the
metric

[o ja n gnme[~]a =
m ~

e[o]aem ga
m [o]b b

I

we can define an inverse

(2.23a)

(2.23b)

we can see that 9[ ]' is not affected by a rigid transfor-
mation cr(a)=a+k. Therefore, we consider only the
quotient space DiffS '/S '.

As we have

9mn ~m+n, O '

The Hamiltonian (1.11) can be rewritten

mnT

(2.8b)

(2.9)

m n
~[o]ab ]mn e [o]ae [o]b

Let us now calculate the Poisson brackets

(2.24)

An "observer" which would use cr(a) in order to
parametrize the circle instead of a would use the follow-
ing functions for the Fourier expansion:

I k
t T[o]„,T[o]m I

= —e [o]„e[ ] I TI, Tk I

2K
i X ie[a]ne[a]m (2.25)

](a)=y"(cr(a)) = —exp i ncr(a), (2.10)V'L L

which satisfy

which by (2.17) gives

2'
[o]nr [o]m I ~n+m 0 ' (2.26)
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We see, therefore, that the Poisson brackets (2.26) do
not depend on the parameter o which is used. This is
nothing more than the covariance of the Poisson brackets
(1.21), (1.22), and (1.23) under the action of DiffS'/S'
(reparametrizations). But the Hamiltonian (2.21) is not
covariant (invariant in form) by a reparametrization. For
each o. EDiffS'/S' the form of H, that is, the metric, is
different. The metric 0 ]' is not diagonal in general,
but using (2.23) we can diagonalize it.

For every cr&DiffS'/S' we can quantize our system
canonically using the rule

define states of the theory as the constant sections of the
bundle X. In other words, a state a E V (fiber V in the
point o HJN, ) represents the same state as ~E V if c and
~ are parallel. Up to now we have no means of compar-
ing two vectors at different points of the base manifold.
In order to do this we need to define a connection in such
a way that the reparametrization invariance should be
respected if possible. The bundle V has a vectorial sub-
space V (the one-particle states) generated by a base of
operators I T„ I (n HZ). A generic vector of Vis given by
the linear combination

c —U 7 n, U H(t (3.1)

and considering now T[ ]n as an operator. We have the
commutation relations

Let us now introduce a vectorial bundle X with the
same base as Xand fiber V:

2'
[T[ ]arn[a]m ) fi +nom (2.27)

V —+ X

~[cr]n ~[cr]—n '

Defining the operator
1/2

For the bosonic field we have the expressions (2.14) or
(2.15):

~[a]m 2m
n n [aim I (2.28) Il[a](~ ) (e b +[a]n)T (3.2)

from relation (2.27) it follows that

[Q„,Q j=5 +„o, il Pt )0 (2.29)

It is only natural to consider the bosonic field H[ ] as a
section of X. Let us try to find a connection in X in such
a way that H should be a constant section. This condi-
tion is given by

and the other being zero. The operators a„are creation
operators while the an are destruction operators. The
normal-ordered Hamiltonian is

:H:=g co„a„at (2.30)

2~n
~n (2.31)

By successive application of the operator a„on the
vacuum we obtain the states for 1,2,3,. . . particles gen-
erating the Fock space. For each o EDiffS'/S' we con-
struct a Fock space and all these are isomorphic between
them since the commutation relations do not depend on
O.

III. QUANTUM GEOMETRY OF THE CHIRAI.
BOSON S

For each point o. &DiffS'/S' we have defined a Fock
space X If we call Af =DiffS'/S' the base space we shall
have the following bundle X:

The Fock space is constructed from the vacuum state
(assuming not degenerate) defined by

(2.32)

(3.3)

where X belongs to tangent bundle T (A, ). Equation (3.3)
means that the bosonic field is reparametrization in-
dependent.

We shall &reat Af, and T(W) in a simplified way follow-
ing the analogy with the finite-dimensional case. Al-
though this is not rigorous it furnishes satisfactory re-
sults.

Let (q ', . . . , q") be a local coordinate system of a man-
ifold M and consider a bundle A =M X V locally, ~here
Vis a vector space; co; being its base. A section of 3 is

S(q)=S'(q)~; .

A local base for T(M) is (B/Bq'), i =1, . . . , n The co-.
variant derivative in the direction 0/Bq; is

[V;S(q)p=, +I 'IJ.S'(q) .BSi(q)

In our case the index i is continuous and condition (3.3)
is written as

6 1 I [0]n

or

6 em +eI I m =~
)
e[a]n+e[a]nial (3 4)

9' is the fiber of the bundle X. In geometric language we
This expression is the condition for zero torsion. By

looking on the definition (2.22) for the metric Q[ ] "we
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sec that et- l„are the vielbein. In conclusion we have ar-
rived at a Riemannian geometry on JR where I"

/
is the

spin connection.
Multiplying expression (3.4) by e ", we obtain

Introducing in (3.12), we obtain

1 2'I
( )(a)= exp (1+k)a T/T/, +f( l(a) .

2' a L L

I m etaln 5 m
ak k 5 ( )

[cr]n

Recalling that

(3.5)
Using

II(a)= T„ci/"

(3.14)

5 in 2m. . 2~
e( )„=—— exp i [ma n—o(a)]

5o a

it follows that

ik 2m. 1 . 2m.
I k

= — — exp i (k m)a
'g a (3.7)

1I
( )(a)—:II(a):+f( )(a) .

2'g a
Calculating the curvature of D

[D,D ]=—i I (a')+i, 1(a)6, . 5
5o (a) 5cr(a')

+[I (a), I (a')]

(3.15)

and taking the normal ordering in 1
( l(a), we obtain

Calculating now the curvature R (X, Y) defined by

R (X, Y), =[(VX,Vr) —V(~ ri]

', r., — ' r...5o (a') " 5o (a)
(3.8)

5D = i —+r( l(a),
5cr a (3.10)

where I (a) is a Hermitian operator connection. If we
expand in (3.9) up to first order in e we have

where X=5/5o(a') and Y=5/5o(a) belong to T(W)
and using (3.7) it follows that the right-hand side of (3.8)
is zero (the detailed calculation is given in Appendix A).

The covariant derivative V given by I, which defines
a parallel transport on X induces a covariant derivative
D on X through the equation

(e~e (e "T/, )e ~e) =(%~T/, ~c/) (3.9)

with X =5/5cr(a) and D =D
The parallel transport of operators Tk defines the

parallel transport of the states in such a way that the ma-
trix elements should not change. The general form of D
is given by

=F(a,a') i —A (a')+i, A (a)5, . 5
5o (a) 5o (a')

+ [ A (a), A (a')],
where 5, . 5F(a,a')= i —f( l(a')+i, f( )(a)

(3.16)

(3.17)

A (a)=:II(a):,1

2q(a)
we have

(3.18)

5 1

5o.(a) g(a')

.T (a) T (a').
2

' 2

:T'(a): + ..T'(a'):
2 2

= —a.,5(a —a) 1

'g a
(3.19)

i — A (a') =ic) 5(a —a')5, , A (a')
5o a ri a'

The algebra of:H: is the conformal algebra giving the
result (see Appendix B)

(I i eD )(I + e—V~ ) Tk (I +i eD ) = Tk .

That is

T/ ]=VxTk

[I (a), Tk]= iI'„T, . —

The general form for I (a) which satisfies (3.12) is

I
( )(a)=B(")(a)T T„+f( )(a) .

(3.11)

(3.12)

(3.13)

l

24m

2

5"'(a —a')+ 5 5'(a —a')
L

(3.20)

where 6= 1 for PBC's and 6= —
—,
' for ABC' s.

In Appendix C we give a discussion of the perturbative
calculation of central term of the Virasoro algebra for the
chira1 bosons on the circle.

From expressions (3.16) and (3.20) it follows

2

[D,D ]=F(a,a')+, 5'"(a—a')+ b 5'(a —a)
24vrr/(a )r/ a'

+c) 5(a —a') A (a)
g a'

2 (a) A (a') 3 (a')
q(a ) g(a ) ri(a')

(3.21)
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Defining the adiabatic transport of the vacuum by

D'—:(O~D ~0) = i — +f( l(a),5
5o a

(3.22)

(3.23)

which evidently does not create particles, the curvature
of this operator is the right-hand side of (3.22):

[D',D d]=F(a, a') . (3.24)

This curvature is exactly the central term of the con-
formal algebra.

In order to understand better why we should use the
adiabatic operator D' we will make the following con-
siderations. We can obtain the vacuum state ~o, a ) from

~
0 ) (the vacuum at the identity) by parallel transport that

does not depend on the path. For instance we can con-
sider a simple path y given by

iO, o &'=e" iO& (3.25)

for some direction a in JR.
The expectation value of the Hamiltonian operator is

~(a, O~HIO, a)'=(a, ole

H/n )(nfe [n )

The last term in the right-hand side of (3.21) is zero.
Since f( l(a) in (3.15) is arbitrary you can choose it for
each o. in such a way that the curvature given by D is
zero. In this way the curl off( l(a) is determined to be

lF(a,a') = 5"'(a —a')
24vrri(a )g(a')

2

+ b, 5'(a —a')2m'

I.

zero and the vacuum ~o, o. ) ~d now depends on the path y.
Therefore, the state O, a ) rd is not well defined.

This proves that the choice of the adiabatic vacuum at
each point of JR(DiffS' jS') introduces a curvature on
the fiber bundle constructed on the basis JR with the spe-
cial section in our case being the vacuum. This is related
to the holonomy of the parallel transport of the vacuum,
that is, the Berry phase. In other words, we are showing
that the theory is not more invariant under the group of
reparametrizations. Actually we have a projective repre-
sentation of this group.

IV. ON THE HAMILTONIAN OF THE CHIRAL
BOSONS IN AN EXTERNAL BACKGROUND

Now we want to express the Hamiltonian given by
(3.21):

(4.1)

in terms of the bosonics fields. To this end recall the
definition (3.22) of the curved metric and the expression
(3.17) for the zweibein. In this way we arrive at

H =
—,
' f do g(a)II (o(a))=—,

' f der n (o )II (o ), (4.2)

where we have defined n (o ) = il(a ).
Bellucci, Gutterman, and Petcher have considered the

action of a chiral boson interacting minimally with an
external gravitational field described by

S=f d x e '[ei+8 Pe"+B„/+X (e" BP)2], (4.3)

where e =det(e,"), e~+ being the components of the
zweibein and A, a Lagrange multiplier. After eliminat-
ing second-class constraints the auxiliary field X gets
fixed, arriving at expression (4.2) with

e —e+

= y E„f(n[e' fn ) [', (3.26)
n(o )=

e +e+ (4.4)

D' =D 1 :II (a).
2i)(a )

with

(3.28)

where
~
n ) is a complete set of eigenstates

Therefore, the parallel transport given by D has a

problem: the vacuum energy depends on the parametri-
zation o.. On the other hand, D~ has a nice property: it

has zero curvature (no dependence on the path). From
(3.10) and (3.15) it follows, to lowest order,

2

r& cr, o(H(o, o' &~= gE„)&n(:II (a):)n & ) . (3.27)
4g (a)

If we now consider ~o, o ),d obtained from lo& by an adia-
batic parallel transport generated by

This expression for the Hamiltonian is Lorentz and
Weyl invariant. It has a residual static symmetry which
comes from the original covariance of the action (4.3) un-
der general coordinate transformations. This symmetry
is given by

5f n (o ) =f (o)B n (o ) n(o )8 f (o. ),— (4.5a)

off(a)=f(o )8 P(cr) . (4.5b)

The transformation of n (o ) (4.5a) can be checked from
(44) by using the static general transformation of a
zweibein.

This symmetry can be realized in operator form with
the generator of the bosonic field transformation given by

Xf= ,' f do f—(—o)11'(a) . . (4.6)

Classically Xf is an element of the diffeomorphism
algebra:

~O, o &i;=e" ~0), (3.29) f' ] ' (fgl ' (4.7)

then it follows that ~d(o, o~H~o, o )rd=o for any a in JR.
In this case the curvature given by D' is different from

Because of the quantization we must normal-order ex-
pression (4.6) obtaining a central term which comes from
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(3.20) if we recall that:II (a):a:T (a):. From (4.6) we
obtain

where e(a —a') is given in (1.24), we can define the one-
particle Hamiltonian

with

Zf(k, m)
m, k = —oo

—
—,'8(co )8( —cok )a a

5—
—,
' 8( —co )8(cok )

hP(a) =i c},Q( a) =[/(a), H] =in (a)c} P(a),
where the normalized eigenfunctions are given by

hP„(a) =in(a)c} P„(a)=co„P„(a),

P„(a)= —exp[ ic—o„g(a)],1

L

where

(5.3)

(5.4)

(5.5)

(5.6)

Ff(k, m) =

X da exp[i(co —cok)g(o )] . (4.9)
Zrr f(g )

n (g)

g(2') =L, (5.7)

(5.&)

Then it follows

[Xf Jg]=iX[fs}+ST,
where the Schwinger term (ST) is given by

Pf(m, k)E (k, m)[8(cok )8( —co )

(4.10)

with n H Z for periodic boundary conditions and
n EZ+ —, for antiperiodic boundary conditions. We want
now to consider the dynamic effects of the external back-
ground field. For this reason we expand the second-
quantized boson field P(a) in such a way that the Hamil-
tonian (5.1) has the usual diagonal form

k, m = —oo

—8(co )8( —cok )],
(4.11)

oo 5g coi ak
k=0 nak

The expression which serves this purpose is

(5.9)

Explicitly we have

ST= I dg [n(g )c} ]
24m 0 n2(g )

„(a) 5 „*(a)
P(a)= g + a„

a„
(5.10)

2 7T

L

'2

n(a)a g(g )

n g

with P„(a) defined in (5.5); the prime in the sum means
that we exclude the singular contribution for n=O in the
periodic case. Using (5.2) it follows

(4.12) 5
pg ~pg, m (5.1 1)

where 5=1 for the periodic boundary condition and
6= —

—,
' for the antiperiodic boundary condition.

V. SEMENOFF-SANIKLEVICI METHOD
FOR CALCULATING THE CURVATURE
FOR CHIRAL BOSONS ON THE CIRCLE

1 5:-(cr ) = —. +Q(cr ),i 5n(cr)
(5.12)

as expected. In a very similar way as done by Sanielevici
and Semenoff' we introduce the operator of parallel
transport =(a) appropriate to the field (5.10):

Rewriting the Hamiltonian (4.2) in the form

H= ,' Jdcr n (—a)[c}P(a)]

with

[P(a),P(a')]= e(a —a'),

(5.1)

(5.2)

which has zero curvature and commutes with (5.10).
Using [:(cr ),P(cr-')]=0 we have

P(a'}=—[Q(cr ),P(cr')]5
i 5n(g)

giving the solution

(5.13)

QO 5 5
Q(g )= g co„ co 8(cok )8(co )ag

5
+

2 8(cok )8( —co )ak a — —1i 5n(g)

5 6—
—,'8( —

col, )8(co )
a —k —i am

From the zero-curvature condition [:"(g), :-(g')]=0, we have

+A(o ) . (5.14)
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Q(a') ——. , Q(a) = —[A(a), fl(a')],1 5, 1 5
i 5n(a) i 5n(a')

which by use of (5.14) gives

Vss(a, a'')= —. A(o') ——. , A(a)1 5, 1

i 5n a i 5n a''

Q)
5

CO CO
1 6

COk 0 COk t9 COm 0 C01, 0 6)m
2 k

" i 5n(o) i 6n(a)

By definition we have

1

i 5n(o )
™

lcm

V'l~k~„l exp[(~k —~ )g(a)]=sgnco„
i Ln (cr) COk CO

for m Wk. Substituting (5.17) in (5.16) it follows

(5.15)

(5.16)

(5.17)

Pss ( cT, cT )— 1
oo

z z g 2-exp I (cok —co )[g(a ) —g(a') ]}2n (o )n (o')L k = „(cok—co„)

X [8(cok )8( —cg ) —8( —
cok )8(co )] . (5.1S)

For the antiperiodic case (5.1S) gives

&ss(a a') =—.. . y —,exp [g(a) —g(a')]1 1 2~ii
Sn (a)n (o')L I= „ l

1&0

and therefore

—l(2l +1)
3m=0

X g (2m + 1)(2m +2l +1)[8(co~+ )8( —co ) —8( —co~+ )8(co )]
n = —oo

—] —1 —1

8(co, , ) g —8( —co, ) g (2m +1)(2m +2l+1)= (5.19)

1 2j'2+ 1
Pss(o', o' )= — g exp

Sn (o )n (a')L
1%0

L [g(a ) —g(a')]

where

, a.S(a —a )+, ', , e(a —a ),24~n (a)n (a') 24n (o. )n (o')L (5.20)

e(a —o.') = OO
1

l
—exp

1=—oo

1%0

M(a) —P a')] (5.21)

For the periodic case in (5.1S) we should take k&0, m WO and we obtain

P~~s(a, a') =—.. . g —,exp [g(a) —g'(a')]1
+"

1 2ml
Sn (a)n (o')L ~= „l.

and using

8(~( ))
m = —1+1

X g 2m (2m +2l)[8(co, + )8( —co ) —8( —co, + )8(co )]
m = —oo

m&0

—1 —1—8( —
coI) g 4(m +ml)= ——', l(l —1)

(5.22)

(5.23)
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expression (5.22) can be rewritten as

Vss(a a') =—.. . y exp [g(a) —g(a')]1 2l +1 2ml
8n (o )n (o')L L

c) 5(cr —a') — e(o —cr') .
24~n (o )n (cr') 12n ~(cr )n ~(o')L2

(5.24)

5f5g 5g5f '|i(f g)n (a ) (5.26)

In the theory of conformal quantum fields a continuous
symmetry is given by the exponentiation of an Hermitian
operator. Classically the active transformation on the bo-
sonic fields generated by XI of expression (4.6) is
equivalent to a passive transformation of the "metric"
n (a). Since =(a) introduced in (5.12) commutes with the
field P(a), we realize quantically the symmetry given by
(5.25) by the exponentiation of the following infinitesimal
Hermitian generator:

TI= fda(f, n):-(a) (5.27)

We now want to see the relation between the curva-
tures Vss given in (5.20) and (5.24) and F given in (3.22)
obtained by geometrical considerations. We have men-
tioned in the preceding section that the Hamiltonian (4.2)
is invariant under the static transformations (4.5). The
transformation (4.5),

5&n(a)=f(a)c) n(a) —n(a)c)J'(a)=(f, n)(a), (5.25)

closes a Lie algebra:

[TI,X ]=ST (5.30)

for g(a) independent of n (a) and ST given by expression
(4.12). Instead for g(a)=n (a) we have

[TI,X„]= [T~,H] = iX(f —
)

(5.31)

and therefore Tf is not a symmetry of the Hamiltonian.
Defining the adiabatic operator

TId= TI +XI
using (5.32) and (4.6) we have

[T~d,X„]= [T~,H] =0,

(5.32)

(5.33)

which therefore explains the adiabatic nature of (5.32).
Using (5.27) and (4.6) we have

Tad d ad

0

= f da(f n) —. +A(cr)2~ 1 5
0

' i 5n(cr)
(5.34)

I

shown to be unitary. Using expressions (5.27) and (4.6) it
holds that

with the property

[n(a), TI]=i5In (a) .

The operators Tf satisfy the algebra

[ f, T)„]=iT(f):)

(5.28)

(5.29)

with A(a) introduced in (5.14). The algebra of TI" is
easily calculated as

[T' T' ]=iZ' + f da f da'(f, g)(a)Pss
0

X (a, a')(g, n)(a)

So we have a faithful representation of the algebra
(5.25) and (5.26). The representation of the group can be

I

(f )
ST ~ (5.35)

Now according to (4.12) we can rewrite ST in the form

ST= i f2~de(o) f( )
24m. o n (o. )

2
2'll

ap ) L

2
c) g(o )

c)g(o ) n (cr)

24vr o n (cr )
f (cr)

'3
2 lT

L

T 2

2
c) g(o )

c)u n (cr )

2
g(cr)

c)u n (cr )

' f'du f"du . +Q
2 lT

Bu'
f ( cr '

)g ( cr )

c)u n (cr')n (o )
(5.36)

Now

ii(u) = =n (o )
Bo (5.37)
BQ

and therefore (5.36) reproduces the curvature (3.22).

Comparing with the calculation of Ref. 3 with Weyl-
Majorana fermions, we have obtained, as expected, the
double value for the central term, but with the opposite
boundary conditions.
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CONCLUSION Also we have

In conclusion, we have obtained a generalized version
of the Floreanini-Jackiw Lagrangian starting from a
chiral constrained real boson. We quantized and inter-
preted the states as sections of a bundle over DiQS'/S'.
First, we have a natural parallel transport of the bosonic
operator basis by the reparametrization transformation of
the bosonic field. In this way it follows a covariant
derivative with zero curvature. The parallel transport of
the bosonic operator induces a parallel transport of the
states (3.9). Imposing a zero curvature for this new
derivative we observe that the vacuum energy is not
preserved along the transport. But if we do not want this
we have to use the adiabatic transport which does not
have a zero curvature (reparametrization anomaly). In
Appendix C we verified that this anomaly is the same
that is obtained by perturbation calculation. We have
used two approaches to the problem of the anomaly: us-
ing reparametrizations and using a background field. In
the last one it is explicitly the interaction with the back-
ground field, but both are equivalent. It is also verified
that the chiral boson is equivalent (with opposite bound-
ary conditions) to the Weyl fermion obtaining the usual
equivalence between bosonic and fermionic partition
functions.
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1 2m . 2m

Lg:L „:exp i na

where we have introduced
1/2

L
n

(81)

(82)

APPENDIX A: CALCULATION OF THE CURVATURE (3.8) satisfying

Let us check that R (X, Y), given in (3.8) is zero. We
have

[T,T ]=n5 + o (83)

ic 2' . 2'
(b )

5o (a') ri(a )L L

1C 2& . 27' 5 1
exp i (b —c)a

L L L 5o(a') ri(a)

Now
5

d 5'(x) 5
5o(a') 5o (a') 5o.(x)

and therefore

6 = —r) 5(a —a')
5o (a') g(a) ri2(rr)

Therefore,
. 2~

, exp i (b —c)a

(84)

being the usual Virasoro generators satisfying

[L„,L ]=(n —m)L„+ +5„+ o —,', (n bn), —(85. )

where 6=1 for PBC's and 6= —
—,
' for ABC' s. There-

fore,

6 pb
5cr(a')

lC 2&
L

XB 5(a —cr') .

ri'(a )

(A 1)

k+p
FIG. 2. One-loop diagram corresponding to (O~ T j [&(o.,r},

W(a', r }])~0&.



39 QUANTUM GEOMETRY OF CHIRAL BOSONS ON A CIRCLE 3065

:T (a)::T(ct'): 1 2vr

2 2 L I
2

g [L „,L ]exp i (met'+na). 2'
I

g)T(ct)+'T(tx)
2 2

t 2

+ 5"'(a—ct')+ 6 5'(cr —a')
24m L,

(86)

where we have used (85).

APPENDIX C: PRRTURBATIVK CALCULATION
OF THE CENTRAL TERM OF VIRASORO ALGEBRA

FOR THE CHIRAL BOSONS ON A CIRCLE

In this appendix we calculate the two-point function of
the energy-momentum tensor corresponding to the La-
grangian

(Cl)

with the Hamiltonian density W= —,
' P'~.

Let us obtain the algebra [&(o ),&(a')] by using
a trick that is well known in current algebra.

I

k (k„+p, )

I

Consider the time-ordered, two-point function
(Of T( [gf'(g ),(o')]) Io). It is not conserved but obeys
the Ward-type identity

i) (0
I TI [&(o,r),&(o',~')]I lo)

—S(r—~')«IT{[~(~),~(~')]]Io); (C2)
1

v'2

with this expression we calculate only the anomaly of the
commutator. The diagram which corresponds to

(ofT[[w(, ),&(~', ')]] fo)

given the value

(C3)

k +p, —k„—p„+ k +p

corresponding to the diagram of Fig. 2.
We have k =2nm/L; p„=2m'/L with n, m CZ for

the periodic boundary conditions and n, m HZ+ —,
' for the

antiperiodic boundary conditions.
Integrating by residues in k, expression (C3) gives

Introducing expression (C2) and taking the Fourier
transform of (C4) through the rules p+ ~it)+, p ~id
1~5( cr cr

'
)5(r —~' ) w—ith our convention that

p+ =( I/&2)(p, +p„) the usual result follows:

(0IT t [m(~, r),m(~', r)]I lo)

l 1 3 277

24 „+, L,
p, —6

2

p„, (C4)

where 6= 1 for PBC's and 6= —
—,
' for ABC' s.

(C5)

The second term can be absorbed in a rede6nition of
It corresponds to the zero-point energy (Casimir

effect)
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