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Abstract

We consider branes in refined topological strings. We argue that their wave-functions

satisfy a Schrödinger equation depending on multiple times and prove this in the case

where the topological string has a dual matrix model description. Furthermore, in

the limit where one of the equivariant rotations approaches zero, the brane partition

function satisfies a time-independent Schrödinger equation. We use this observation,

as well as the back reaction of the brane on the closed string geometry, to offer an

explanation of the connection between integrable systems and N = 2 gauge systems

in four dimensions observed by Nekrasov and Shatashvili.
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1 Introduction

The study of topological strings on Calabi-Yau threefolds has led to important insights

in various aspects of string theory and supersymmetric gauge theories. For instance,

the properties of topological strings on compact Calabi-Yau geometries has impacted

our understanding of BPS states of four-dimensional charged black holes. On the other

hand, the study of topological strings in the background of non-compact ‘local’ Calabi-

Yau geometries has enriched our understanding of N = 2 and N = 1 supersymmetric

gauge theories in four dimensions.

More recently, inspired by the work of Nekrasov on instanton partition functions

of N = 2 gauge theories in four and five dimensions [1], it became clear that there

should exist a refinement of topological strings for the case of non-compact Calabi-

Yau threefolds. This is because these gauge theories can also be engineered using

non-compact, toric Calabi-Yau threefolds, for which the topological string partition

function is a special limit of the instanton partition function, i.e.,

Ztop(gs) = ZNek(ǫ1, ǫ2)|−ǫ1=ǫ2=gs ,

where ǫα denote the two equivariant rotations of space-time (taken to be C2), and gs is

the coupling constant of topological strings. This connection implies that there should

be a refinement of the topological string partition function, where the string coupling

constant is split into two independent parameters.

Despite of the above hint, a world-sheet description of such a refined topological

string is still lacking. Nevertheless, the above observation does motivate a definition for

the refined A-model topological string in terms of its lift to M-theory and the degen-

eracy of BPS states in five dimensions. In particular, the standard topological string

partition function captures the BPS degeneracy of M2-branes wrapped over 2-cycles.

Furthermore, the topological string coupling constant is related to the chemical poten-

tial for the SU(2)L ⊂ SU(2)L × SU(2)R = SO(4) rotation group in five dimensions.

The refinement of the topological string captures in addition the SU(2)R rotation quan-

tum numbers of the BPS states, and thus the full rotational quantum numbers of the

BPS states.

Independently, in the context of B-model topological strings that are dual to matrix

models, an alternative definition was proposed in [2], where the refinement involves the

so-called ‘β-ensemble’ of matrix models. This is just the ordinary matrix model, but

now with the power of the Vandermonde determinant of the eigenvalues raised to 2β.
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The parameter β is related to the equivariant rotation parameters via β = −ǫ1/ǫ2 and

equals to 1 in the case of the usual topological string.

One natural question is how to actually compute the partition function of the

refined topological string. There are various possibilities. For the A-model, it has been

proposed that the refined topological vertex, which is the one-parameter refinement of

the standard topological vertex, computes the corresponding degeneracies [3]. Another

approach, in the context of B-model, is to use the standard matrix model techniques

but adapted to the β-ensemble [2]. Finally, yet another approach is to use the fact that

the refined topological string partition function is still expected to be a wave-function,

and thus satisfies the holomorphic anomaly equation. In this way the computation of

the partition function reduces to fixing the holomorphic ambiguities [4, 5, 6]. Even

though these different approaches have not been proven to be equivalent, so far they

give results which agree with each other and with the results of Nekrasov in the cases

that have been checked.

On the other hand, an interesting observation concerning the instanton partition

function was made by Nekrasov and Shatashvili (NS) [7]. They noticed that in the limit

where one of the equivariant parameters is sent to zero while the other is kept fixed,

for instance ǫ1 → 0 with ǫ2 = ~ fixed, a connection with certain quantum integrable

systems emerges in the following way: The integrally stationary equation of the free

energy

exp(∂aIW(~a; ~)) = 1 , (1.1)

where

W(~a; ~) = lim
ǫ1→0

ǫ1F(~a; ǫ1, ǫ2 = ~) , F = logZNek

and ~a denotes the collection of all Coulomb parameters {aI} of the theory, gives the

Bethe ansatz equation for the corresponding integrable system. In particular the energy

eigenvalues of the integrable system are completely characterized by the aI satisfying

these equations. Even though this is a striking statement, and was checked in many

cases, an explanation of it was not offered. One aim of this paper is to shed light on

this relation.

Our approach is to study branes in the context of the refined topological string. It

has been long known that the branes probe geometry in a quantum mechanical way. In

particular, in the context of the standard, unrefined topological string, it was argued
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in [8] that for the B-model on a local Calabi-Yau given by

uv +H(x, p) = 0 ,

the wave-function Ψ(x) of a brane whose position is labeled by a point x on the Riemann

surface H(x, p) = 0 classically, satisfies an operator equation

HΨ(x) = 0 , (1.2)

at quantum level, with H := H(x, gs∂x). In other words, one is studying a quantum

mechanical problem given by the Hamiltonian H . Clearly, this is the right context to

elucidate the connection to the results of NS integrability, since the B-model mirror

to a geometrically engineered gauge theory is indeed a geometry of the above form

and the corresponding integrable model is specified by H defined above. However, as

pointed out in [8], when there are cycles in the Calabi-Yau geometry corresponding to

magnetic charges there are further gs corrections to H itself. Therefore, in general the

above operator relation only holds up to order gs corrections.

In this paper we consider brane partition functions in the context of refined topolog-

ical strings. In this case there are two types of branes, corresponding in the M-theory

language to M5 branes wrapping a Lagrangian cycle in the Calabi-Yau and a two-plane

z1 or z2 in R4 ≃ C2 associated with the ǫ1 and ǫ2 action respectively. In the B-model

context, we show that for a β-deformed matrix model with a polynomial potential,

the equation (1.2) is generalized to an equation which is exact and of the form of a

multi-time dependent version of the Schrödinger equation, i.e.,

HΨ = ǫ1ǫ2
∑

fI(t)
∂Ψ

∂tI
,

where fI(t) are some functions of the ‘time’ variables tI and the momentum operator is

given by either p = ǫ1∂x or p = ǫ2∂x, depending on the type of brane under considera-

tion. In the refined topological B-model dual to this matrix model, the tI are identified

with certain moduli of the corresponding Calabi-Yau geometry. This makes concrete

and elucidates the proposal in [7] regarding the existence of the t-deformation of the

quantum integrable system. In the NS limit we have ǫ1ǫ2 → 0 and the time dependence

vanishes, and we simply obtain the time-independent Schrödinger equation (1.2) for

the ǫ2-type brane.

Note however, even though we have found solutions to the time-independent

Schrödinger equation in the NS limit, there is no guarantee that the wave-function
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has no monodromy. Some extra quantization conditions are required in order for the

wave-functions to be well-behaved under monodromy. On the other hand, it was known

from [8] that taking branes around the cycles of a Calabi-Yau shifts the dual periods in

units of gs in the usual topological string. In the NS limit we have gs = (−ǫ1ǫ2)1/2 → 0,

and the shifts become equivalent to computing derivatives. Thus we obtain the state-

ment that taking the brane around the cycles gives the gradient of the closed string

partition function with respect to the closed string moduli. This gives an effective way

to compute the closed string partition function of the refined topological string theory

in the NS limit.

Furthermore, to have a well-defined wave-function we need the wave-function to

be single-valued, which by the above argument requires that the exponential of the

gradients of the partition function have to be equal to one, leading to the relation (1.1).

Therefore, we understand the observation of NS regarding the relation between gauge

theory and quantum integrable system as a consequence of the consistency of open

refined topological string theory. Topological string theory with branes is automatically

the relevant system to study to understand the integrable models in the NS limit, and

the geometric engineering of gauge theory tells us that the same physical quantities can

also be computed using target space physics and in particular the instanton calculus,

hence closing the circle of ideas.

Even though the derivation we found was done in the context of matrix models, we

conjecture that it applies to all cases where refined topological strings are defined. In

particular, we argue that one can recover the refined closed string partition functions

in the NS limit, simply by computing the wave-function solution to the Schrödinger

equation and seeing what monodromies it picks up as we take it around cycles. We

verify this general conjecture in many examples.

The organization of this paper is as follows. In section 2 we review some earlier

results concerning topological strings and its connection with quantum integrable struc-

tures [8], on which this work heavily relies. This is followed by recalling the various

definitions of refined A- and B-model topological strings in section 3. In section 4 we

show that for B-models dual to matrix models, the brane partition functions in the

refined topological string satisfy a time-dependent Schrödinger equation. Taking the

NS limit of the refined topological string, the time-dependent Schrödinger equation

reduces to the usual time-independent Schrödinger equation as we will show in section

5. We then use this result to explain the observation of NS about the relation between
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gauge theory partition functions and the Bethe-ansatz for integrable systems. Sections

6 and 7 are devoted to explicit examples illustrating and testing our results and con-

jectures for the NS limit in the case of genus 0 and genus 1 surfaces. In section 8 we

consider B-model branes in Penner type geometries. In this case our time-dependent

Schrödinger equation is identical to the BPZ equation for the corresponding degen-

erate fields of Liouville, and we show that our methods provide a way to derive the

n-point function by studying the conformal blocks with degenerate insertions. Finally,

in section 9 we present our conclusions.

Recently there has been an increased interest in the NS limit and several papers on

related topics have appeared during the course of this work [9, 10, 11, 12].

2 Review of Quantum Geometry in Topological Strings

In this section we review some elementary features of topological strings on local Calabi-

Yau threefolds of relevance to this work. Since topological strings on such backgrounds

have been extensively studied, we will be brief.

We will be mainly interested in the B-model topological string and we focus our

attention on local Calabi-Yau threefolds X which are given by a hypersurface of the

form

uv +H(x, p) = 0 , (2.1)

where u, v ∈ C and x, p ∈ C or C∗. The classical (i.e., tree level) amplitude of the

B-model is encoded via the special geometry of X in the periods of the holomorphic

3-form

ω =
du

u
∧ dp ∧ dx .

For this class of backgrounds, the periods of ω reduce to residue integrals on u = 0.

In detail, if we view the 3-cycles as a fibration of the circle obtained by the rotation

(u, v) → (ueiθ, ve−iθ) over a disc D, where u = 0 on the boundary of the disc, i.e.,

∂D ⊂ {H(x, p) = 0}, then the period integrals reduce to
∫

D

dp dx =

∫

∂D

p dx ,

where the boundary ∂D is a curve on H(x, p) = 0. Thus the B-model reduces to the

study of the periods of the 1-form

λ = p dx , (2.2)
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along the 1-cycles of the Riemann surface

Σ : H(x, p) = 0 . (2.3)

Hence, we end up with a local version of special geometry which involves a 1-form on

a Riemann surface. The pair (Σ, λ) is often refered to as the spectral curve.

2.1 Quantum Mechanics and Loop Corrections

This is the story at tree level. The natural question is what the quantum corrections

do to this picture, i.e., what is the analog of ‘quantum special geometry’ ? It turns

out that an important role is played by the notion of branes.

Consider a B-brane given by the v-plane at u = 0, concentrated on a point x of

Σ, where p = p(x) is fixed in terms of x by the condition H(x, p) = 0. The classical

partition function Ψ(x) of this brane, which is a function of its moduli x, was studied

in [13] and was found to be

Ψclass.(x) = exp

(

1

gs

∫ x

p(y) dy

)

, (2.4)

where gs is the coupling constant of the topological string. This structure is very

reminiscent of theWKB approximation to the ground state wave-function, if we identify

H(x, p) as the Hamiltonian of the quantum system. In fact, it was argued in [8] that

on the B-brane phase space the variables p and x do not commute and we have the

relation

[p, x] = gs , (2.5)

exactly as one has in the usual set-up of quantum mechanics. Moreover this strongly

suggests that the quantum corrections to the partition function should make Ψ(x) an

exact wave-function for the quantum Hamiltonian H , i.e., we expect a relation of the

form

H(x, p) Ψ(x) = 0 , (2.6)

as the operator realization of the geometric condition H(x, p) = 0. This was proposed

in [8] and checked in various examples. It was found that for simple cases this is exactly

right and gives the full answer for the quantum corrections to the wave-function. For

example, in the case of the (deformed) conifold

H(x, p) = −p2 + x2 − µ ,
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the full partition function of the brane is indeed given by the corresponding energy

eigenstate of the harmonic oscillator.

A motivation for the above commutation relation is the following. The brane wrap-

ping the v-plane has fields x, p living on it that capture the normal deformations of the

brane as a function of v. The kinetic term for this brane is given by

SB-brane =
1

gs

∫

v-plane

x∂p+ ... ,

which leads to the fact that p and x are conjugate variables.

A perhaps more familiar setup to motivate (2.5) is via mirror symmetry. When X

is a mirror to a toric Calabi-Yau manifold X∗, the B-brane on the v-plane gets mapped

to an A-brane on X∗ wrapping a non-compact Lagrangian three manifold, L = R2×S1.

The theory on a Lagrangian B-brane is a U(1) Chern-Simons theory, with the classical

action

SCS =
1

gs

∫

L

AdA . (2.7)

In the absence of world-sheet instantons, the action (2.7) is exact. The Chern-Simons

path integral on L computes the A-model partition function with the brane inserted

[14]. Since L is a manifold with a T2 boundary, the Chern-Simons path integral on L

determines a state in the Hilbert space of the theory on T2 ×Rt in a familiar way. As

is evident from (2.7), when quantizing Chern-Simons theory on T2 ×R with R viewed

as time, the holonomies of the gauge field around the (1, 0) and (0, 1) cycles of T2

become canonically conjugate to each other. In fact, mirror symmetry directly relates

the B-model variables x and p to the complexified holonomies
∮

S1
(1,0)

A = x ,

∮

S1
(0,1)

A = p .

In general, the world-sheet instantons will correct the classical action, but not in a way

that affects this observation. (Namely, they shift SCS to SCS + Sinst, but the instanton

generated terms are independent of time.)

An example of this is given by the mirror of the A-model on the (trivial) background

X∗ = C2 ×C∗, with the S1 in L mapped to the circle in C∗. In this case, the mirror is

H(x, p) = ep − 1 ,

where the holonomy around the S1 maps to x by mirror symmetry. In this case, there

are no world-sheet instantons, and (2.6) leads to the trivial result

Ψ(x) = 1,
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which is the correct answer for the Chern-Simons partition function on L.

A less trivial example corresponds to the A-model on X∗ = C3. This maps to the

local threefold geometry where the spectral curve is given by [15] 1

H(x, p) = ep + ex − 1 = 0 .

The equation (2.6) now leads to the wave-function given by the quantum dilogarithm

Ψ(x) =

∞
∏

n=0

(1− exqn) ,

where we defined q := egs, as the solution capturing higher loop corrections for the

open topological string. This is mirror to the A-model partition function, when one

includes instanton corrections along with the Chern-Simons functional [16, 13].

It was found in [8] that this simple picture is also true for all the B-model geome-

tries where Σ is a genus zero Riemann surface. In terms of the mirror A-model, this

corresponds to geometries with no closed 4-cycles. However, it was also found in [8]

that the picture is more complicated if Σ is a higher genus Riemann surface. Namely, in

general, Ψ(x) is a zero eigenstate of an Hamiltonian H ′(x, p) which is not the classical

Hamiltonian H(x, p) but receives gs corrections. In other words we have a quantum

Hamiltonian ground state

H ′(x, p) Ψ(x) = 0, where H ′(x, p) = H(x, p) +O(gs) .

We do expect such quantum corrections, since in general there are already normal or-

dering ambiguities in replacing the classical variables p, x with the quantum operators.

This shifts the question of the utility of this approach to a better understanding of

how to compute corrections to H , which was not addressed in [8], but will be answered

later in this paper.

2.2 Branes and Period Shifts

Besides the calculation of quantum corrections, there is a further issue to address.

So far we have only discussed the partition function of the topological string in the

1Note that the fact that only terms ∼ enx+mp with n,m being integers appear in the equations for

B-model mirrors is related to the fact that x and p are variables mirror to holonomies on T2, which

are clearly periodic.
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presence of a brane. How can we obtain the partition function of the closed topological

string in the absence of the brane?

These two issues are in fact closely related. It turns out that the insertion of branes

affects the closed string moduli [8]. The meromorphic 1-form (2.2) acquires a first order

pole with residue gs at the position x0 where a brane was inserted, i.e.,

λ ∼ gs
x− x0

dx+ . . . .

This implies that, if we measure the change in the period of λ around the position of

the brane, we find that we pick up a period
∮

x0

λ = gs . (2.8)

The content of this statement is that topological branes source the topological gravity

fields, i.e., they change the background geometry. This interpretation is in particular

supported, in the mirror setup, by the large N duality of the topological A-model on

the (singular) conifold with the resolved conifold T ∗S3 [17]. Namely, putting N branes

on S3 changes the Kähler class surrounding the S3 by Ngs.

In [8] this statement was used to provide a quantum definition of D-branes in the

closed string field theory of the B-model. Namely, fluctuations of the one-form λ

corresponding to quantum fluctuations of complex structures on X are captured by

the so-called Kodaira-Spencer scalar field φ on Σ as

δλ = ∂φ .

Since φ is a closed string field, its two point functions are proportional to g2s , i.e.,

φ(x)φ(x′) ∼ g2s ln(x− x′) + . . . .

Moreover, deformation of the geometry in (2.8) is consistent with the brane insertion

operator ψ(x) being a fermion

ψ(x) = eφ(x)/gs ,

related to φ by bosonization. This is also consistent with the period
∮

x0

∂φ ψ(x0) = gsψ(x0) .

Furthermore, if we define φ(x) so that it includes the classical piece corresponding

to
∫ x

λ =
∫ x

p dx, then naturally (2.4) is the classical piece of the insertion of the
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operator ψ(x) at the point x on the Riemann surface. The fact that the B-brane is a

fermion of the Kodaira-Spencer scalar field φ(x) has been used in [8] to compute the

exact B-model amplitudes on some local Calabi-Yau geometries.

The change of moduli due to the insertion of branes means that if we consider

a brane/anti-brane pair, and take one of the branes around a 1-cycle γ on Σ before

bringing it back to annihilate with the other brane, we have changed in the process the

periods of λ along any other 1-cycle α by the amount

δγ

∫

α

λ = gs〈α, γ〉 ,

where 〈α, γ〉 denotes the intersection product of the two 1-cycles.

In particular, if we denote by aI ’s the periods of the A-cycles in the Riemann surface

Σ and decompose the cycle γ into a combination of symplectically paired B-cycles, i.e.,

γ =
∑

mIB
I , 〈AI , B

J〉 = δJI ,

we find that the closed string partition function is shifted by

Zclosed(~a) → Zclosed(~a+ gs~m) ,

where ~a denotes the collection of the Kähler moduli. This implies that once we know the

partition function of topological strings in the presence of branes, we can in principle

find the closed string partition function by its variation with respect to the closed string

moduli, at least for shifts of aI by integral multiples of gs.

Interesting as these statements are, they leave a gap in their applicability. This

is because for general cases, we cannot compute the brane wave-function Ψ(x) since

we do not know how to compute the quantum corrections to the quantum Hamil-

tonian H(x, p). It turns out that these problems get remedied when we consider a

one-parameter deformation of topological strings, inspired by the related deformation

of gauge theory partition functions [1].

3 Refined Topological Strings

There is an interesting one-parameter extension of topological strings in the case of

non-compact Calabi-Yau backgrounds. Denoting this parameter by β, the extension

can be combined with the usual string coupling constant gs into two parameters ǫ1, ǫ2

defined by

ǫ1 = −gs
√

β, ǫ2 = gs/
√

β . (3.1)
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The standard topological string corresponds to the special case β = 1, where we have

− ǫ1 = ǫ2 = gs . (3.2)

However, unlike the usual topological string theory, we do not yet have a world-sheet

description of the refined topological string with generic extra parameter β. Neverthe-

less, in various cases we do have a definition in terms of space-time physics. Let us

now review the different definitions.

In the topological A-model we can give a general definition for this one-parameter

deformation in terms of the partition function of target space physics. Assuming mirror

symmetry is general, this would be a working definition for the topological B-model

as well. The extension in the A-model case is accomplished by lifting to M-theory.

The addition of an extra dimension closely parallels the construction of Nekrasov of

Ω-backgrounds in N = 2 gauge theories. In particular, when the Calabi-Yau geometry

engineers a four-dimensional gauge theory, the computation of the target space par-

tition function can be captured by the instanton calculus of [1]. More generally, the

one-parameter extension of the topological string has a space-time analogue which is

a global N = 2 supersymmetric system in four dimensions.

In the next subsection we will first review the definition of A-model topological

strings in terms of M-theory and show how this definition can be extended to the cases

where the Calabi-Yau is non-compact. Then we will relate this to the spectrum of BPS

states in five dimensions. We then connect this picture to Nekrasov’s definition in the

special case where the Calabi-Yau engineers a five-dimensional gauge theory and briefly

comment on this extension for a general global N = 2 system. Finally, we discuss a

direct B-model definition of this extension when the topological string can be realized

in terms of matrix models.

3.1 The A-model, its M-Theory Lift and Deformation

The partition function of the topological A-model on a Calabi-Yau X is equal to the

partition function of M-theory on the space [18]

X × S1 × TN ,

where TN is the Taub-NUT space, viewed in complex coordinates z1, z2 . Furthermore,

the Taub-NUT space is twisted along the S1, in the sense that going around the circle
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rotates the coordinates z1, z2 by

z1 → eiǫ1z1, z2 → eiǫ2z2 .

In order to preserve supersymmetry we need ǫ1+ǫ2 = 0 , and we find (3.2). The refined

topological string is obtained by relaxing this constraint on the ǫα. However, to do so

while preserving supersymmetry, we need an extra U(1)R symmetry acting on X . This

can only be accomplished with X being non-compact, a condition we will assume from

now on.

This partition function is not easy to compute, but can be related to the spectrum

of BPS particles in five dimensions [19, 20]. Namely, the corresponding M-theory

partition function simply computes the BPS indices

N
~d
jL,jR

of BPS states of M2 branes wrapping 2-cycles of X of class ~d ∈ H2(X,Z), and with

SO(4) = SU(2)L × SU(2)R spin quantum numbers jL, jR. Decomposing the corre-

sponding field into modes

Φ(z1, z2) =
∑

n1,n2

an1,n2z
n1
1 z

n2
2 ,

the U(1)L × U(1)R ⊂ SU(2)L × SU(2)R acts on this by

(z1, z2) → (ei(θL+θR)z1, e
i(−θL+θR)z2).

The BPS partition function is defined as a trace in the Hilbert space HBPS of a gas of

spinning M2 branes, weighted by their total spin and charges:

ZBPS = TrHBPS
(−1)2(mL+mR)q2mL

L q2mR
R e−~a·~d ,

where we have used (mL, mR) to denote the spin content (j3L, j
3
R) of the highest spin

state in a given BPS multiplet. In this case, the Hilbert space is just the Fock space

of a single M2 brane and hence the partition function takes the form2

ZBPS =
∏

~d, jL, jR

jL
∏

mL=−jL

jR
∏

mR=−jR

∏

n1,n2≥0

(

1− e−ǫ1(mL+mR+ 1
2
+n1)eǫ2(mL−mR+ 1

2
+n2)e−~a·~d

)N
~d
jL,jR

,

2Strictly speaking, this statement is true only with large three-form fluxes turned on [21]. See also

[22].
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where qL = e−
ǫ1−ǫ2

2 , qR = e−
ǫ1+ǫ2

2 and ~a = (a1, a2, . . . ) the set of Kähler parameters.

Note that in addition to the intrinsic angular momenta of the particle in five dimensions,

the orbital angular momenta contribute to jL,R as well.

In the special case of qR = 1 we effectively trace over the SU(2)R quantum numbers.

In this limit, the BPS partition function equals the topological string partition function,

and we have the usual relation between the topological string and M-theory amplitude.

For the refined version of the topological string we define

Ztop(~a; ǫ1, ǫ2) = ZBPS(~a; ǫ1, ǫ2) .

Equivalently, we could have obtained FBPS = logZBPS from a one-loop, Schwinger

type computation which involves integrating out M2 brane particles in a gravi-photon

background parameterized by ǫ1 and ǫ2 that is no longer self-dual [20]. This gives FBPS

as

FBPS(~a; ǫ1, ǫ2) =
∑

~d

∞
∑

jL,jR=0

∞
∑

k=1

N
~d
jL,jR

e−k~a·~d

k

×

(

e−(ǫ1+ǫ2)kjR + . . .+ e(ǫ1+ǫ2)kjR

)(

e−(−ǫ1+ǫ2)kjL + . . .+ e(−ǫ1+ǫ2)kjL

)

(ek
ǫ1
2 − e−k

ǫ1
2 )(ek

ǫ2
2 − e−k

ǫ2
2 )

.

(3.3)

For some, but not all choices of X , this will also have a gauge theory interpretation in

terms of a five-dimensional gauge theory on a circle.

Branes in the Refined A-model Topological String

One can extend the above formulation to include A-branes. The usual A-type brane

lifts in M-theory to a M5 brane wrapping the mirror Lagrangian 3-cycle L in X , and

the C×S1 subspace of TN×S1 [16]. A similar consideration also applies to the refined

version of topological strings. In this case we have two inequivalent types of branes,

depending on which of the cigar subspaces of TN , i.e., the z1- or the z2-plane, the

M5 brane wraps. For general ǫα’s, the symmetry between z1 and z2 is broken and

the two types of branes are no longer on equal footing. At low energies, the theory

on the brane has N = 2 supersymmetry in three dimensions. After introducing A-

branes, in addition to M2 brane particles wrapping closed holomorphic 2-cycles in X ,

there are also M2 branes wrapping holomorphic disks in X and ending on L. The

branes break the local SO(4) rotation symmetry to SO(2)1 × SO(2)2. Combining
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the SO(2)L subgroup of it together with the SO(2) R-symmetry, we still have an

SO(2)L × SO(2)R = U(1)L × U(1)R symmetry available [23]. In the presence of the

branes we consider the BPS partition function of open and closed M2 branes, keeping

track of their spin and the relative homology class in H2(X,L). The latter corresponds

to the fact that the open M2 branes are charged under the world-volume (magnetic)

gauge field on the M5 brane (see [16] for more details). In this way we can define the

open BPS partition function, analogously to the closed one. We refer to the partition

function in the presence of the two different types of branes, corresponding to the M5

brane wrapping the zα=1,2 plane, as Ψα.

3.2 Ω-Deformation of N = 2, d = 4 Theories

The so-called Ω-background for four-dimensional N = 2 supersymmetric theory, where

the parameters ǫ1,2 correspond to the equivariant U(1)×U(1) action on the Euclidean

space-time C2 ∼= R4, has been considered in [1, 24, 25], based on earlier work [26,

27]. More precisely, one considers a deformation of the theory where one replaces the

adjoint-valued scalars Φ by

Φ → Φ +
∑

α

ǫαzα
D

Dzα
, (3.4)

corresponding to adding generators of infinitesimal rotation along the two complex

planes of C2, with coordinates z1,2, accompanied by an R-symmetry twist. Since Φ

gives masses to charged fields in the theory, this deformation effectively adds a mass

to the modes of the fields in the theory according to their transformation properties

under the U(1)×U(1) action. The partition function of the theory in this background

defines a refined partition function ZN=2(ǫ1, ǫ2).

When the N = 2 theory in question is a gauge theory, the Ω-background allows one

to compute the partition function explicitly by performing integrals over the instanton

moduli spaces. Moreover, if we consider a five-dimensional gauge theory with an ad-

ditional S1, the partition function can also be computed using the instanton calculus.

Furthermore, this maps to our M-theory construction above in the cases where the

local Calabi-Yau X engineers the corresponding 5d gauge system, and thereby makes

contact with the refined A-model topological string. In fact it was explicitly verified in

[28, 29] that in the special case (3.2), the partition function ZN=2(ǫ1, ǫ2)|−ǫ1=ǫ2=gs agrees

with the topological string partition function Ztop(gs) on the corresponding Calabi-Yau

manifold. Furthermore it was checked that a refined version of the topological vertex
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not only reproduces the SU(2)L×SU(2)R quantum numbers of BPS states, but it also

agrees with the full Nekrasov partition function of the N = 2 theory [3].

This viewpoint on deformation also extends to the open topological string. The A-

branes can be given a purely gauge-theoretic formulation as surface operators, studied

recently in [30, 31, 32, 33], for example. For general deformation ǫα’s, the symmetry

between z1 and z2 is broken and we obtain two types of branes. The breakdown of

symmetry can already be seen at the classical level.

From the string theory perspective, the surface operators are described by the

branes of the theory. The world-volume theory on the brane wrapping the z1,2-plane

starts out as an N = (2, 2) supersymmetric theory in d = 2 with a superpotential

W (x), where x is a chiral superfield. Since the equivariant action is in essence a kind

of Kaluza-Klein reduction that effectively gives the zα plane a volume proportional to

1/ǫα, the classical partition function of the brane wrapping the zα plane becomes

ψα,class.(x) = exp

(

W (x)

ǫα

)

, α = 1, 2 .

In the case of the B-model topological string, as discussed in section 2, the correspond-

ing superpotential is identified with

W (x) = −
∫ x

p(x′)dx′ ,

leading to a WKB-type wave-function

ψα(x) = exp

(

− 1

ǫα

∫ x

p(x′)dx′
)

. (3.5)

for the two types of branes wrapping the zα-plane.

3.3 The β-Ensemble as a Refinement of the Topological B-model

The above discussion was geared towards A-model topological strings. By employing

mirror symmetry it also gives us an answer for the B-model in principle. However,

given the simplicity of the B-model, it is convenient to give a direct definition of the

refined B-model. Indeed a proposal for such a definition has been put forth in [2] in

terms of a certain deformation of matrix models.

Large N matrix models provide an alternative description of topological B-models

on a class of geometry and an excellent testing ground for the ideas we just reviewed.

In view of its importance in the rest of the discussion, we will now review the relation
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between random matrices and topological strings. We will start by first reviewing the

usual B-model and focus on the refined case afterwards.

For the type of geometries described by the local curve

H(x, p) = −p2 +W ′(x)2 (3.6)

with W (x) a degree g + 2 polynomial, there is a conifold singularity near each critical

point of the potential W (x) which we can blow up into a P1. The B-model topological

string in this background has a matrix model description [34]. Its partition function is

given by

Z =

∫

dΦ e−
2
gs

TrW (Φ) , (3.7)

expanded around a given distribution NI of eigenvalues of the matrix Φ among the

g + 1 critical points of the potential W (x).

This matrix model can be derived from the B-model [34, 8] as follows. If we cut

the geometry into two halves, corresponding to writing (3.6) as

−H(x, p) =
(

p+W ′(x)
)(

p−W ′(x)
)

= HL(x, p)HR(x, p),

the branes on the P
1 are obtained by gluing non-compact branes on HL,R(x, p) = 0

across their boundary. From HL, with branes inserted at x = zi, for i = 1, . . .N we get

〈ψ(z1)ψ(z2) . . . ψ(zN)〉L = e−
1
gs

∑
i W (zi)

∏

j<k

(zj − zk) . (3.8)

The interaction term comes from the two-point functions of ψ(zi) with each other, while

the potential term is the wave-function of a single D-brane as we explained before. Since

this is a genus zero Riemann surface, the result is exact as we will argue later. Similarly,

from HR(x, p) we end up getting another copy of this, as the orientation of the branes

is naturally opposite. Setting the values of zi equal on both sides and integrating them,

we indeed obtain the partition function (3.7), which reads in the eigenvalue basis

Z =

∫

dNz
∏

i<j

(zi − zj)
2e−

2
gs

∑
i W (zi) .

It was conjectured in [35, 34] that the geometry with the branes go through a

transition to a smooth geometry where the P1’s are replaced by S3’s with size

µI = gsNI .
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More precisely, we now have the geometry given by

H(x, p) = −p2 +W ′(x)2 + f(x) , (3.9)

where the correction (deformation) f(x) term is a degree g polynomial and determined

by the distribution

N = N1 + . . .+Ng+1 ,

of the N branes over the g + 1 P1’s given by critical points of W (x). The open-closed

duality states that the matrix model, in the large N ’t Hooft limit

N → ∞, gs → 0 , Ngs fixed ,

gives a description of the B-model on the geometry (3.9) after the transition. The

curve

Σ : H(x, p) = −p2 +W ′(x)2 + f(x) = 0 (3.10)

is now the spectral curve of the matrix model, from which the higher gs correction of

the matrix model partition function can be computed [36].

From the same argument, we can also deduce that the insertion of a non-compact

brane corresponds to the insertion of the characteristic determinant on the matrix

model side and leads to the brane partition function

Zbrane(x) = 〈ψ(x)〉 = e−
1
gs

W (x)

∫

dΦ e−
2
gs

TrW (Φ) det(Φ− x) . (3.11)

The generalization of the above picture to the refined background is proposed in [2].

For β 6= 1, or ǫ1+ ǫ2 6= 0, the matrix model obtains a different measure while retaining

the same potential. The generalization simple changes the power of the Vandermonde

determinant to 2β, together with a rescaling of the coupling constant in front of the

potential W , i.e.,

Z =

∫

dNz
∏

i<j

(zi − zj)
2βe−2

√
β

gs

∑
i W (zi) .

In terms of the variables ǫ1, ǫ2 this translates into

Z =

∫

dNz
∏

i<j

(zi − zj)
−2ǫ1/ǫ2 e

− 2
ǫ2

∑
i W (zi) . (3.12)

In particular, for logarithmic potentials relevant for the discussion on relations to

N = 2, d = 4 gauge theories, the β-ensemble matrix model integral takes the form of
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a Coulomb gas representation of the conformal blocks of Liouville theory with back-

ground charge given by β.

This deformation can also be understood from our space-time perspective. Namely,

if we consider branes wrapping the zα plane, in the space time C2, rotated by ǫα,

the classical partition function becomes (3.5), instead of (2.4). So, in deriving the

matrix model, as we reviewed in section 2, we expect to simply replace the fermion

ψ(x) = exp(φ(x)/gs), by the operators

ψα(x) = exp(φ(x)/ǫα), α = 1, 2. (3.13)

On the other hand, the scalar field φ(x) still has the same correlation functions as

before (this is the essence of the Coulomb gas formalism), which is consistent with the

fact that the quantum mechanics of the closed string is unchanged, as we will later

discuss in the context of holomorphic anomaly. This means that the correlator (3.14)

computing the partition function of branes on the halved geometry changes to

〈ψ2(z1)ψ2(z2) . . . ψ2(zN )〉L =
∏

i<j

(zi − zj)
g2s/ǫ

2
2e

− 1
ǫ2

∑
i W (zi) , (3.14)

which leads to the partition function (3.12) upon gluing, using the fact that g2s = −ǫ1ǫ2.
From the saddle point equation

W ′(zi) = −ǫ1
∑

j 6=i

1

zj − zi
,

we see that the relevant ’t Hooft coupling is given by

µ = ǫ1N .

We see that the amount by which the branes change the geometry around them now

depends on the type of the brane. More generally, from (3.13) we expect that inserting

an ǫ1(ǫ2) brane at a point x0 on the Riemann surface deforms the geometry by ǫ2(ǫ1).

∮

x0

∂φ ψα(x0) =
g2s
ǫα
ψα(x0). (3.15)

We can also easily describe non-compact D-branes for this matrix model. The two

different kinds of branes

ψ∗
α(x) = exp(−φ(x)/ǫα),
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correspond in the matrix model language to the operators

e
1
ǫα

W (x) · det(x− Φ)ǫ1/ǫα , α = 1, 2,

respectively. Such an explicit realization of branes in the matrix model allows us to

study them very directly. We will come back to this theory in the next section, where

we will derive the exact, time-dependent Schrödinger equation that they satisfy.

Before we go on, note that we can rewrite the partition function (3.12) as

Z =

∫

dNz
∏

i<j

(zi − zj)
2 e

− 1
ǫ2

(

2
∑

i W (zi)+2(ǫ1+ǫ2)
∑

i<j log(zi−zj)
)

(3.16)

and view the change of the measure from the usual Vandermonde squared as adding a

non-local operator with a coupling constant

~ := ǫ1 + ǫ2 .

Writing the β-ensemble partition function as in (3.16), makes manifest that apart from

the usual genus expansion in gs, the free energy F = logZ has another expansion in

terms of the parameter ~ defined above. We end up with the double expansion 3

F(~a; ǫ1, ǫ2) =
∑

g≥0,ℓ≥0

F (g,ℓ)(~a) g2g−2
s ~

ℓ . (3.17)

The expansion (3.17) and its recursion relation has been studied in [37, 38, 39].

3.4 Refinement, Topological Strings and Quantum Mechanics

One striking aspect of topological string theory, is that quantum mechanics makes

two independent, though related, appearances in the theory. On the one hand, as

we reviewed above, the open topological string partition function is a wave-function

with the Riemann surface as the level set of the Hamiltonian. As we will see later,

this continues to be true after we turn on the two independent parameters ǫ1,2. On

3Note that the refined matrix model free energy (3.17) generally possesses an expansion into even

and odd powers of ~. From the M-theory perspective reviewed in section 2, we expect that the refined

topological string partition function actually possesses an expansion into even powers of ~ only. This

simply comes from the fact that the BPS states fit into complete spin multiplets (3.3). Apparently,

the β-ensemble breaks this symmetry. However, as anticipated in [5], the symmetry can be restored

via appropriate redefinition of the (deformation) parameters as we will see later both in the general

discussion and in the explicit examples we will consider.
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the other hand, the holomorphic anomaly of [40] implies that the closed topological

string partition function is also a wave-function. In other words, it is a state in the

Hilbert space obtained by quantizing H3(X,C) [41]. This remains true for the refined

topological string [4]. As we will explain, this fact can be understood from the way

branes deform the geometry and the monodromy transformation of the brane partition

function. Moreover, in section 5 we will see how the monodromy properties of the open

topological string partition function can be used to derive differential (or difference)

equations that the closed string partition satisfies.

Given a symplectic basis of H3(X,Z) with AI ∩ BJ = δJI , the periods of the holo-

morphic three form ω parameterize the phase space H3(X,C). In our case, this is

equivalent to periods of the one-form λ on the Riemann surface Σ

aI =

∮

AI

λ , aJD =

∮

BJ

λ .

Classically, aID and aJ are not independent, but satisfy the special geometry relation

aJD =
∂

∂aJ
F (0) (3.18)

in terms of the genus zero topological string amplitude F (0). On the exact, unrefined,

topological string partition function

Ztop(~a; gs) = exp

(

∑

g

F (g)(~a) g2g−2
s

)

,

the periods aI , a
J
D are realized as canonically conjugate operators,

[âJD, âI ] = g2sδ
J
I , (3.19)

where we used hats to distinguish the operators from their expectation values. In

particular, (3.18) is a semiclassical approximation to this.

The above quantum equation as well as its generalization to the refined topological

strings can be derived by considering the way the branes deform the geometry. As

we have seen in section 3.3, an ǫα-brane deforms the period of ∂φ around any cycle

surrounding it by (3.15).

Consider creating an ǫα-brane/anti-brane pair at a point on Σ, and taking one of

the branes around a cycle γ before annihilating with each other. Taking the branes

around γA =
∑

I ℓ
IAI does not change the expectation value

aI =

∮

AI

∂φ .
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(Note that
∮

γ
∂φ is the quantum generalization of

∮

γ
pdx.) However, such a monodromy

around γA changes the phase of the partition function by

MγA : Ztop(~a) → exp

(

1

ǫα

∑

I

ℓIaI

)

Ztop(~a) ,

since this change of phase is induced by the change of phase of

〈... exp(−φ(x)/ǫα)〉 ,

as we transport the brane around. This is to be contrasted with the situation if we

take the branes around a γB =
∑

I mIB
I cycle

MγB : Ztop(~a) → Ztop(~a+
g2s
ǫα
~m) = exp

(

g2s
ǫα

∑

I

mI
∂

∂aI

)

Ztop(~a) ,

as a consequence of (3.15), generalizing the shift reviewed in section 2.2. Now, consider

writing Z in the terms of the dual variables aID associated with the B-cycles instead.

In this dual basis the monodromy around the cycle γB acts on Z as a multiplication

operator by exp(
∑

I
1
ǫα
mIa

I
D), and that around the cycle γA becomes a shift operator.

The consistency of the two dual pictures requires aID to be realized as

aID = g2s
∂

∂aI

acting on the partition function in the aI-basis. We conclude that the commuta-

tion relation (3.19) between the operators aI , a
J
D also holds for the refined topological

string, and therefore the closed string partition function Z is indeed a wave-function

on H3(X,C) for arbitrary ǫ1,2. The only effect of the β deformation is to change the

unit of the shift and hence the form of the wave-function. This is consistent with the

observation made in [4, 5] that in known cases the refined topological string partition

function still satisfies the holomorphic anomaly equation of [40].

4 Matrix Models and Schrödinger Equations

In this section, we will show that we can derive from matrix models a multi-time

dependent Schrödinger equation for arbitrary β, satisfied by a brane probing a Riemann

surface (3.10), with

W (x) =

g+2
∑

n=0

tnx
n (4.1)
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and f(x) a polynomial of degree g. We will sometimes take g to infinity, so that W (x)

becomes a formal sum. The relation between quantum geometry and the β-ensemble

matrix model has been discussed in [42, 43, 44] in terms of the resolvent of the matrix

model. Here, for us we the natural object to study is the brane partition function for

which the quantum geometry of the matrix model becomes manifest.

We will also see that the time-dependent Schrödinger equation satisfied by the

brane wave-function can be rephrased in the form of the BPZ equation [45] satisfied by

a correlation function in two-dimensional CFT with a degenerate operator insertion,

similar as for surface operators in the Liouville context [9].

4.1 Time-Dependent Schrödinger Equation

From section 3.3, inserting an ǫα-brane, the refined topological string partition function

on this geometry becomes

Zα(x) = e
1
ǫα

W (x)

∫

dNz
∏

i<j

(zi − zj)
−2ǫ1/ǫ2

∏

i

(x− zi)
ǫ1/ǫα e

− 2
ǫ2

∑
i W (zi) . (4.2)

To derive the equation satisfied by (4.2), consider differentiating it with respect to x.

For simplicity of the derivation, we will remove the classical piece e
1
ǫα

W (x) for the time

being and restore it later. Moreover, we will denote by h = ǫ1/ǫα the power of the

determinant det(x − Φ) =
∏

i(x − zi). Different values of h correspond to different

types of branes.

It is easy to see that differentiating is the same as inserting the following function

inside the intergral

∂2

∂x2
=
∑

i,j

h2

(x− zi)(x− zj)
−
∑

i

h

(x− zi)2

=
∑

i<j

2h2

(x− zi)(zi − zj)
+
∑

i

h2 − h

(x− zi)2
.

At the same time, from the loop equation

0 =
N
∑

i=1

∫

dNz
∂

∂zi

(

1

x− zi
O(z) e

− 2
ǫ2

∑
j W (zj)

∏

j<k

(zj − zk)
−2ǫ1/ǫ2

)

(4.3)

with the choice of operator O =
∏

i(x− zi)
h, we obtain the identity

∑

i

1− h

(x− zi)2
− 2

ǫ2

(

∑

i

W ′(zi)

x− zi
+ ǫ1

∑

i<j

1

(x− zi)(x− zj)

)

= 0
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under the integral sign. As we will mention in more details later, the above loop

equation has the meaning of the Ward identity of a quantum symmetry of the matrix

theory. In order to have a simple operator equation, we would like to cancel the terms
∑

i
1

(x−zi)2
and

∑

i 6=j
1

(x−zi)(zj−zi)
and the above equations show that this is possible

exactly when h takes the two values h = ǫ1/ǫα corresponding to our two types of

branes!

Reincorporating the classical piece e
1
ǫα

W (x) and putting everything together, we find

that Zα satisfies an operator equation (under the integral) of the form

− ǫ2α∂
2
x +W ′(x)2 + ǫαW

′′(x) + f(x) = 0 , (4.4)

with

f(x) = 2ǫ1

N
∑

i=1

W ′(zi)−W ′(x)

zi − x
.

The effect of inserting f(x) is the same as acting by a linear differential operator

f̂(x) = g2s

g
∑

n=0

xn∂(n) ,

with

∂(n) =

g+2
∑

k=n+2

ktk
∂

∂tk−n−2
.

Here we differentiate the matrix model partition function with respect to the coefficients

tk of the potential. We have also set ∂
∂t0

= − N
2ǫ2
.

In summary, we find that the brane partition functions Zα(x) satisfy a linear dif-

ferential equation

(

−ǫ2α∂2x +W ′(x)2 + ǫαW
′′(x) + f̂(x)

)

Zα(x; t) = 0 , α = 1, 2 . (4.5)

We emphasize that we have not taken any limits here – the equation is exact.

This equation is in fact a multi-time dependent Schrödinger equation, with the

Riemann surface playing the role of a time-dependent Hamiltonian. In order to see

this, we can proceed as follows. To begin with, Zα(x) contains both open and closed

string contributions, since it corresponds to an unnormalized expectation value. Corre-

spondingly, the time-dependent Schrödinger equation we got has no reference to filling
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fractions, or the choice of the background, as they do not enter the matrix integral ex-

plicitly. For many purposes, the normalized expectation value Ψα(x) is a more natural

quantity

Ψα(x) =
Zα(x)

Z
.

Here Z is the matrix model partition function without the brane, in the sector corre-

sponding to specific filling fractions

N → (N1, . . . , Ng+1) ,

around which we expand in the ’t Hooft expansion, Z = Z(µI ; ǫ1, ǫ2) where µI = NIǫ1

are the ’t Hooft couplings. The normalization induces explicit dependence on the

background. It follows that Ψα(x) is the purely open string partition function and

satisfies
(

−ǫ2α
∂2

∂x2
+W ′(x)2 + f(x) + g2s

g
∑

n=0

xn∂(n)

)

Ψα(x) = 0 , (4.6)

where

f(x) =

g
∑

n=0

xnbn (4.7)

is now a polynomial with some coefficients bn that parameterize the complex structure

moduli, and thus implicitly contain the choice of the background. More precisely,

writing logZ = Fclosed/g
2
s , we have that

bn = ∂(n)Fclosed + ǫα(n+ 1)(n+ 2)tn. (4.8)

Notice that we have incorporated the term proportional to W ′′(x) into our definition

of the polynomial f(x). This shift has origin in the ordering ambiguity in quantization

and corresponds to the 1
2
~ shift in the ground state energy of the harmonic oscillator

when we consider the Gaussian potential.

To understand the meaning of this consider the planar limit

ǫ1 → 0 , NI → ∞ with µI = NIǫ1 fixed .

We immediately see from (4.6) that a particularly interesting limit is to take this planar

limit while keeping

ǫ2 = ~ fixed .
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In this limit the time dependence of the differential equation (4.6) drops out and we

are left with an interesting time-independent Schrödinger equation for the ǫ2-brane.

We will devote section 5 to the discussion of this limit.

On the other hand, the theory becomes classical if we in addition take ǫ2 to zero.

In this limit, the Schrödinger equation becomes the Riemann surface equation (3.9),

−p2 +W ′(x)2 + f(x) = 0 .

Here the coefficients bn are fixed in terms of the filling fractions, either by requiring
∮

AI

p dx = µI = NIǫ1 ,

around the cuts that open up from the critical points of the potential W (x), or equiva-

lently from the classical pre-potential F (0)(µ), by bn = ∂(n)F (0). For general ǫ1, ǫ2, the

Riemann surface becomes quantum, as p becomes an operator

p = ǫα
∂

∂x
,

and moreover, the times begin to flow, as the Schrödinger equation is time dependent.

The b′ns started out as complicated, ǫα dependent function of the ’t Hooft couplings,

µI determined from (4.8). However, since they parameterize the closed string moduli

space equally well as µI ’s do (since there are as many of them as there are cuts and

the B-periods), we can use them to parameterize our ignorance of the (in general)

complicated closed string amplitude that underlies them. Later on, we will see that

from the solutions to the Schrödinger equation Ψ(x; {bn}) we can in fact determine

Fclosed, at least in the NS limit.

4.2 Virasoro Constraints and Hidden Conformal Symmetry

The matrix model has a conformal symmetry, which is well known in the unrefined

case, and which survives refinement. It leads directly to the Schrödinger equation.

Just as in the usual matrix model [46], in the β-ensemble matrix model with poly-

nomial potential W (x) we can identify the scalar field as

φ(x) = g−1
s W (x)− gs

ǫ2
Tr log(x− Φ) .

Using the operator equation

TrΦn = −ǫ2
2

∂

∂tn
,
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we get the standard mode expansion of a free chiral boson

∂φ(x) = g−1
s

∞
∑

k=1

ktkx
k−1 +

gs
2

∞
∑

k=0

x−k−1 ∂

∂tk
.

The symmetry of the matrix model corresponding to re-parametrizing the eigen-

values hides a conformal symmetry. Concretely, the Ward identity

0 =
N
∑

i=1

∫

dNz
∂

∂zi

(

1

x− zi
O e

− 2
ǫ2

(∑
j W (zj)+ǫ1

∑
k<j log(zk−zj)

)
)

, (4.9)

ensures the invariance of physical quantities under reparametrizing the eigenvalues via

arbitrary polynomial functions.

Let T (x) be the energy-momentum tensor

T (x) =
∑

k

x−k−2Lk =: ∂φ(x)∂φ(x) : +
ǫ1 + ǫ2
gs

∂2φ(x) ,

where the second term reflects the presence of a background charge Q = (ǫ1 + ǫ2)/gs

in the corresponding conformal field theory. Indeed one can show that the operators

Lk satisfy the Virasoro algebra with a central charge given by Q. Using the formula

for φ(x) we arrive at the following expression for the energy-momentum tensor as an

operator

g2sT (x) = 2ǫ1
∑

i

W ′(x)−X ′(zi)

x− zi
+W ′(x)2 + (ǫ1 + ǫ2)W

′′(x) .

Then one can show that the Ward identity satisfied by the partition function takes

simply the form of the Virasoro constraint satisfied by the ground state wave-function

Ln Z = 0 , n ≥ −1 .

Now we will turn our attention to the brane partition function. We will see that

also the Ward identity equation for the brane partition function can again be written

in terms of Virasoro constraints. But instead of the Virasoro ground state condition

satisfied by the closed partition function, the brane partition function satisfies equations

analogous to the BPZ equations satisfied by the degenerate states corresponding to

reducible representations of the Virasoro algebra. In particular, the two types of branes

of the matrix model exactly correspond to the two types of degenerate states in the

Virasoro minimal model and Liouville conformal field theory.
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The comparison with the conformal Ward identity is analogous to the vacuum

equation discussed above. The only difference is, just as the energy-momentum tensor

acts on the degenerate insertion as well as other operator insertions, in the matrix

model energy-momentum tensor we should use the effective potential W̃ (y) perturbed

by the brane insertion at location x and related to the original potential W (y) as

W̃ (y) = W (y)− ǫ1ǫ2
2ǫα

log(x− y) .

This correction gives an extra term

1

2πi

∮

W̃ ′(y)2

y − x
dy = W ′(x)2 − ǫ1ǫ2

ǫα
W ′′(x)

in the operator

L−2(x) =
1

2πi

∮

dy
T (y)

y − x
.

Using the energy-momentum operator, the differential equation (4.5) can be written

as
(

−ǫ2α∂2x + g2sL−2

)

Zα(x) = 0 . (4.10)

Notice that, upon a simple rewriting of the above equation as

(

b2∂2x + L−2

)

Z1 = 0 ,
(

b−2∂2x + L−2

)

Z2 = 0 , b2 =
ǫ1
ǫ2
, (4.11)

the Ward identity equation with a brane insertion takes the form of the BPZ equation

satisfied by a correlation function in two-dimensional CFT with a degenerate operator

inserted at location x.

5 Quantum Riemann Surface and the NS Limit

In section 4.1, we have seen that an interesting limit to consider in the β-ensemble

matrix model is when

ǫ1 → 0 with ǫ2 = ~ finite . (5.1)

In this limit, the ǫ1-brane decouples, as the corresponding coupling constant ǫ1 vanishes.

However, the coupling constant of the ǫ2-brane remains finite, and the time-dependent

Schrödinger equation (4.6) reduces to a time-independent Schrödinger equation

(

−p2 +W ′(x)2 + f(x)
)

Ψ2(x) = 0 , with [p, x] = ~ . (5.2)
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This is the limit considered in [7] in the gauge theory context, and we will refer to it

as the NS limit.

This section will be devoted to the study of refined topological strings in the NS

limit. Notice that in this limit we have g2s = −ǫ1ǫ2 → 0 and we infer that the refined

topological string theory becomes classical, since gs continues to play the role of the

closed string coupling constant in the refined theory as we discussed in section 3. This

constitutes a significant simplification.

For the more general class of geometries introduced in section 2, we do not have a

similarly rigorous derivation of the Schrödinger equation satisfied by the brane wave-

function as for the (subclass of) geometries with matrix model duals. In particular, in

general we do not have enough input to settle the ordering ambiguities. However it is

natural to extend the methods of section 4 to the β-deformed Toda matrix model [2],

and show that the same result follows. Moreover, note that by taking the rank r of

the Lie algebra of the Toda matrix model arbitrarily high, we can get an arbitrarily

high degree polynomial for H(x, p). We leave the details to future work. Here, we

will just assume that what we derived from matrix model is a general phenomenon.

Namely, for a B-brane on any Riemann surface Σ : H(x, p) = 0 arising from a Calabi-

Yau geometry, as described in section 2, we claim that in the NS limit the ǫ2-brane

satisfies a time-independent Schrödinger equation with the Riemann surface as the

Hamiltonian, i.e.,

H(x, p)Ψ(x) = 0 , [p, x] = ~ (5.3)

with Ψ(x) := Ψ2(x). We will test this idea in section 7 for several non-trivial toric

geometries and observe that the conjecture checks extremely well, despite the absence

of a matrix model and the presence of ordering ambiguities. A related observation that

the gauge theory instanton partition function in the presence of the surface operator

becomes in the NS limit the eigenfunction of the Hamiltonians of the corresponding

quantum integrable systems has been previously made in [47, 11, 9, 48].

In the next subsection, we show how the brane wave-functions transform under

monodromy in the NS limit. This will be useful to elucidate the observation of [7]

relating the instanton partition function and the energies of certain quantum integrable

systems, as we will explain in the following subsection.
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5.1 Brane Monodromies and the NS Partition Function

As discussed in sections 2.2 and 3.4, the monodromies of the exact wave-functions of

the branes put constraints on the closed topological string partition function. This

is true both for the usual as well as the refined topological strings. Combined with

the Schrödinger equation (5.3) describing the probe ǫ2-brane wave-function, this gives

important and computable information about the closed string partition function in

the NS limit.

Solving the Schrödinger equation for Ψ2(x) and writing

Ψ2(x) = 〈e−
1
ǫ2

φ(x)〉 = e
1
ǫ2

∫ x ∂S
,

we conclude that taking the brane around γB =
∑

I mIB
I induces a change in the

phase of the closed string partition function by

Ztop(~a) → e
1
ǫ2

∮
γB

∂S
Ztop(~a) . (5.4)

On the other hand, as we have seen in section 3.4 on general grounds, taking an ǫ2-brane

around γB changes the closed string partition function by

MγB : Ztop(~a) → Ztop(~a +
g2s
ǫ2
~m) .

On the other hand, we know that the following is true in the NS limit we have gs → 0

and hence

Ztop(~a; ǫ1, ǫ2) = exp

(

1

g2s
F (0)(~a; ~) + . . .

)

,

where the dotted terms are suppressed by a factor of g2s . On the other hand, the finite

shift due to the brane monodromy becomes infinitesimal, so Ztop(~a) changes by

lim
ǫ1→0,
ǫ2=~

MγB : Ztop(~a) → exp

(

1

~

∑

I

mI∂aIF (0)(~a; ~)

)

Ztop(~a) . (5.5)

Consistency of the two equations (5.4) and (5.5) implies that as we take the ǫ2-brane

around a BI cycle, its phase changes by
∮

BI

∂S = ∂aIF (0)(~a; ~) . (5.6)

Note that this is accompanied by
∮

AI

∂S = aI(~) , (5.7)
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by definition of what we mean by the AI-cycle. Solving for the brane wave-function

explicitly from (5.3) given the classical curve equation Σ : H(x, p) = 0 (involving some

arbitrary coordinates on the Calabi-Yau moduli space) and computing the periods (5.6)

and (5.7) from brane monodromies around the corresponding cycles hence defines a

‘quantum’ special geometry on the Calabi-Yau moduli space. This is an ~-dependent

generalization of the usual special geometry. In particular, the aI(~) periods obtained

in this way are good, ‘flat’ coordinates on the moduli space.

5.2 An Explanation of the Results of Nekrasov-Shatashvili

From the point of view of four-dimensional gauge theory, the NS limit (5.1) is clearly

an interesting one. In this limit, two of the four dimensions where the Poincaré invari-

ance is broken become effectively compactified and we are left with a system that is

effectively two-dimensional. Indeed, in [7] Nekrasov and Shatashvili observed that the

gauge theory in the Ω-background in this limit is connected to various quantum inte-

grable systems in a highly non-trivial way, a feature shared by various two-dimensional

supersymmetric gauge systems [49, 50, 51, 52, 53, 26]. The Bethe ansatz equation for

the corresponding integrable system turns out to coincide, according to [7], with the

critical points of the free energy in this limit. More precisely it is given by

exp

(

∂W(~a; ~)

∂aI

)

= 1 . (5.8)

These equations determine aI given a g-tuple of integers nI by

∂W(~a; ~)

∂aI
= 2πinI .

The function W is related to the refined gauge theory partition function ZN=2(~a; ǫ1, ǫ2)

at arbitrary ǫ1,2 via

W = lim
ǫ1→0

ǫ1 logZN=2 .

Furthermore, the corresponding eigenvalues of the g commuting Hamiltonians can be

expressed in terms of functions of the solutions aI to the above equation. The question

to address is why studying the partition functions of a 4d gauge theory system and

taking such a limit should have anything to do with answering these questions for an

integrable model. Here we would like to explain this fact. The basic point will be the

following: We can study an N = 2 gauge theory system in 4d in two different ways.

The first one uses a target space description while the second one uses world-sheet
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techniques. The fact that these two approaches have to render the same results will be

the key to an explanation of the observation in [7]. A related consideration has also

appeared in [12]. See also [54].

In particular, the NS computation is the target space viewpoint, and the integrable

system emerges from the world-sheet viewpoint. The equality of ZN=2 and the refined

topological string partition function Ztop implies

W(~a, ~) = 1
~
F (0)(~a; ~) ,

where F (0)(~a; ~) is the genus zero refined topological string amplitude.

Consider an N = 2 system given by a Seiberg-Witten curve Σ : H(x, p) = 0. We

assume, as in the rest of this paper, that the corresponding SW differential is λ = p dx.

This theory can be engineered in type IIB strings by considering a local CY given by

a hypersurface with the equation (2.1), or in M-theory in terms of M5 brane wrapping

the curve Σ in the complex two dimensional space (x, p) ⊂ C2. Let us assume this

curve has genus g. Then we know that there are g deformations of this curve given

by the g Coulomb parameters aI=1,···,g. Let us further assume, as is the case in all the

known examples, that the aI dependence of H can be written as

H(~a; x, p) = H0(x, p) +

g
∑

I=1

fI(x, p)EI(~a)

for some parameters EI that are functions of the flat coordinates aI . The NS pre-

scription turns out to translate in this language to the statement that aI are fixed

by the ‘critical points’ of W and these specify the eigenvalues EI of the g commuting

Hamiltonians.

The key idea to connect the integrable system to the refined topological string

considerations is a trick known as the ‘separation of variables’ (SOV) [55]. Think

about C2 as a complexified classical phase space. Consider g points on it given by

(pI , xI), as I runs from 1, ..., g. We can choose the moduli of the SW curve to pass

through all these points. In particular this fixes all the EI in the above equation in

terms of these g points:

EI = hI(p1, x1; p2, x2, ...) ,

for some functions hI that are readily computed from requiring that

H(pJ , xJ) = 0 , J = 1, . . . g .
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It is not difficult to see that the defined hI are classically, as well as quantum mechan-

ically, commuting and thus define an integrable structure (i.e., we have g commuting

Hamiltonians hI for a 2g dimensional phase space (pI , xI)) [56]. Furthermore, it can

be shown that in the quantum theory the eigenstates of hI can be written using the

separation of variables in terms of single-particle wave-functions:

Ψ(x1, ..., xg) =
∏

I

ΨI(xI) ,

where each ΨI(xI) is annihilated by H(x, p). Namely, they separately satisfy the equa-

tion (5.3). In the context of refined topological strings, we identify the corresponding

wave-functions Ψ(x) as the amplitudes for the branes in the refined open topological

strings, in the NS limit. We are almost finished except for the fact that the brane

wave-functions are holomorphic functions defined on the complex x-plane and not just

on a real space. Hence, the wave-functions could have monodromies and the question

of their single-valuedness arises. To study this issue, let us assume that we have chosen

a real subspace as well as a choice of the real coefficients hI in the SW geometry, such

that H = 0 leads classically to g physically allowed intervals in the x space. Let us call

these intervals bI , for I = 1, ..., g. Note that the end points of the classical intervals

correspond to p = 0 and in the hyperelliptic case, and correspond to branch points of

the SW curve over the x-plane. Let us assume that the exact wave-functions have nI

zeros in the interval bI . Consider cycles BI in the complex plane encircling bI . These

would correspond to a basis of B-cycles of the SW curve. The fact that Ψ has nI zeroes

on the interval bI implies that in the analytically continued picture, surrounding the

BI cycle picks up a phase exp(2πinI). This would also guarantee that the restriction

of Ψ to the real slice is single-valued and well-defined. On the other hand, we have

seen in the last section in (5.5) that taking the brane around the BI cycles changes its

phase by the derivative of the closed string partition function ∂IW(~a):

Ψ(x+BI) = exp

(

∂W(~a; ~)

∂aI

)

Ψ(x) .

Putting the two together, we conclude that

∂W(~a; ~)

∂aI
= 2πinI ,

thus explaining the results of NS. This relation between the phase of the wave-function

and the integers nI is known as the ‘exact Bohr-Sommerfeld’ quantization rule. It

generalizes the usual rule to a form which is true to all orders in ~. In this context,

the relevance of the NS limit was also pointed out in [57, 58, 9].
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The scaling nI ∼ βÑ I

The quantization of nI for the solutions of the Bethe-ansatz equations is reminiscent

of the filling fractions in the context of matrix models. Let us consider the cases where

the topological string theory is dual to a matrix model. Then consider a closely related

matrix model with a number of critical points, for which the above physical intervals

bI become the cut around the critical points in the eigenvalue plane C at large N . By

considering this other matrix model we are effectively exchanging what we call the A-

and the B-cycle. Denote by Ñ I the filling fractions for each of the critical points. As

noted before, the NS limit corresponds to taking ǫ1 → 0, Ñ I → ∞ while keeping the

’t Hooft coupling µ̃I = ǫ1Ñ
I finite. And the period around the cycle BI encircling the

cut is given by
∮

BI

p dx = Ñ Iǫ1 .

On the other hand, in the WKB approximation the Bethe-ansatz equation reduces to
∮

BI

p dx = nIǫ2 .

Thus in this limit we have

nIǫ2 = Ñ Iǫ1 ⇔ nI = Ñ Iβ .

Of course this relation is only valid to leading order in ~ = ǫ2.

6 Genus Zero Examples

In the context of matrix models we have shown that if we consider the Gaussian

matrix model the brane wave-functions satisfy the exact equations H(x, p)Ψα(x) = 0

with [p, x] = ǫα , where

H(x, p) = −p2 + x2 − µ .

In particular the time-dependent Schrödinger equation (4.6) has trivial time depen-

dence that has been absorbed in the shift of the background, and therefore we obtain

the same equation in the NS limit as in the general case without taking the NS limit.

For multi-cut matrix models with have higher degree potentials, this is no longer true.

In these cases the genus of the spectral curve is greater than zero, and the multi-time

dependence of the Schrödinger equation captures the moduli of the higher genus curve,

which are absent for the genus zero case. It is thus natural to conjecture that for
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all the cases where Σ : H(x, p) = 0 is a genus zero curve, as in the Gaussian matrix

model example, the time dependence of the Schrödinger equation is absent. As already

noted, the exact equation satisfied by the branes for any ǫ1, ǫ2 is the time independent

Schrödinger equation.

In more details, on a genus zero Riemann surface, in general we have a set of

compact A-cycles. All the B-cycles are by necessity non-compact, though we can find

a basis of them satisfying AI ∩BJ = δJI . The monodromies around the A-cycles define

the flat coordinates
∮

AI

∂S/ǫ1 = aI/ǫ1 .

In particular, the partition function of the brane depends only on one ǫα, associated

to the corresponding brane

Ψα(x) = exp(S(x, ǫα)/ǫα) .

Solving the Schrödinger equation, we can find not only the brane partition functions,

but also the closed string partition functions. In general, on a genus zero Riemann

surface we have a set of compact A-cycles. All the B-cycles are by necessity non-

compact, though we can find a basis of them satisfying AI∩BJ = δJI . The monodromies

around the A-cycles define the flat coordinates

∮

AI

∂S/ǫ1 = aI/ǫ1 .

Consider now taking the brane Ψ1 brane around a B-cycle. On the one hand, from

general considerations

∮

BI

∂S/ǫ1 = F(aI + g2s/2ǫ1)/g
2
s − F(aI − g2s/2ǫ1)/g

2
s ,

where F(~a; ǫ1, ǫ2) = g2s logZtop is the exact free energy of the refined topological string.

On the other hand, since the solution for the brane is independent of ǫ2, and taking

the NS limit ǫ2 → 0, we find that the same amplitude equals ∂IW:

∮

BI

∂S/ǫ1 = ∂IW .

Hence, we derive that

F(aI + g2s/2ǫ1)/g
2
s −F(aI − g2s/2ǫ1)/g

2
s = ∂IW ,
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and both equal to the change of phase of the brane, after being transported around

the B-cycle. The fact that the two expressions agree is special for genus zero Riemann

surfaces. In general, monodromies of the branes give rise to difference equations for

the partition functions. In the NS limit, the difference equation becomes a differential

equation, for W.

In this section we present two classes of examples along these lines. The first one

involves the Gaussian matrix model and the second class involves toric geometries

without compact 4-cycles.

6.1 The Gaussian

The simplest matrix model to which our derivation of the Schrödinger equation of

section 4 applies is the Gaussian

Z =

∫

dNz
∏

i<j

(zi − zj)
−2ǫ1/ǫ2e

− 1
2ǫ2

∑
k z2k .

The classical spectral curve is the deformed conifold

H(x, p) = −p2 + x2 − µ = 0 , (6.1)

which has one A-cycle, corresponding to the circle at real values of x and p, and one

non-compact B-cycle. The β-ensemble matrix model partition function can be easily

evaluated explicitly to find the free energy (under the shift µ→ µ+ (ǫ1 + ǫ2)/2)

F(µ)/g2s = logZ =

∫

ds

s

e−µs

(eǫ1s/2 − e−ǫ1s/2)(eǫ2s/2 − e−ǫ2s/2)
.

One infers that this is exactly the partition function of the c = 1 string at radius

R = 1/β [2], which has been computed in [59]. Note that the NS limit in this case

corresponds to the R → ∞ limit at fixed µ. In particular, the partition function per

unit volume corresponds precisely to the NS definition of the partition function in this

limit:

W(µ) = lim
ǫ1→0

ǫ1 logZ ,

with

∂µW =

∫

ds

s

e−µs

(eǫ2s/2 − e−ǫ2s/2)
.

Note that from this it follows immediately that
(

F(µ+ g2s/2ǫ1)− F(µ− g2s/2ǫ1)
)

/g2s = ∂µW
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in agreement with our claim. We want now to check that we can indeed recover

in the NS limit the coefficients (6.2) via the monodromies of the brane solving the

Schrödinger equation we derived in sections 4 and 5. For this, we will need the power

series expansion of W:

W =
1

2
µ2 log µ+W(0) log µ+

∑

n>0

ǫn2
µn

W(n) ,

where

W(0) =
1

24
, W(n) =

(2−n−1 − 1)

n(n + 1)(n+ 2)
Bn+2 . (6.2)

Adding an ǫ1-brane, the Riemann surface becomes quantum:

(−ǫ22∂2x + x2)Ψ(x) = µΨ(x) .

This is the (inverted) quantum harmonic oscillator. The monodromies of the wave-

function Ψ(x) around the B-cycle have been in fact calculated to all orders in ~ already

some time ago in the context of Stokes phenomena in quantum mechanics, see for

instance [60]. (We let ~ = ǫ2 for the rest of this section.) The result can be matched

with (6.2). Alternatively, they can also be computed using the matrix model techniques

of solving the loop equations. This method has been used to solve the β-ensemble

Gaussian matrix model in [61].

In order to illustrate the technique we will use later in the context of the more

complicated cubic potential in section 7, let us re-derive this result in a simpler, but

non-exact fashion. In detail, we can solve the Schrödinger equation for the brane wave-

function Ψ(x) via the usual WKB Ansatz known from elementary quantum mechanics,

i.e.,

Ψ(x) = exp

(

1

~
S(x)

)

, (6.3)

with

S(x) = S0(x) +
∞
∑

n=1

Sn(x) ~
n . (6.4)

Plugging this Ansatz into the Hamiltonian and expanding in ~ yields for the first few

orders

∂xS0 = p , ∂xS1 = −1

2
∂x log p , ∂xS2 = −(∂x log p)

2 − 2∂2x log p

8p
, . . . . (6.5)

Note that the WKB approximation determines directly not S(x), but ∂xS. Near any

point on the Riemann surface, we can integrate this to obtain S(x) locally, however
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the global solutions have monodromies. In particular, to obtain from the semi-classical

wave-function Ψ(x) the (quantum corrected) periods ΠC =
∑∞

n=0Π
(n)
C ~n, we have to

integrate ∂S along the classical cycles of the geometry.

For specific examples, or better potentials V (x), things considerably simplify, since

we can turn the contour integration for the higher order corrections into a differentia-

tion. For example, this idea has been put forward in the gauge theory context in [57].

In detail, we can argue for differential operators D(n) such that

Π
(n)
C = D(n)Π

(0)
C . (6.6)

Defining

D = 1 +
∞
∑

n=1

D(n)
~
n ,

the full quantum corrected periods are simply given by ΠC = DΠ
(0)
C . 4

We can partially integrate the contour integrals of (6.5) to obtain the more conve-

nient expressions 5

S ′
0(x) =

√

(V (x)−E) ,

S ′
2(x) =

V ′′(x)

48(V (x)−E)3/2
,

S ′
4(x) = − 7V ′′(x)2

1536(V (x)−E)7/2
− V ′′′′(x)

768(V (x)− E)5/2
,

...

(6.7)

where we used the parametrization p(x) =
√

W ′(x)2 + f(x) =:
√

V (x)− E. For the

Gaussian, we can identify V (x) = x2 and E = µ and the operators D(n) are particularly

simple because V ′′(x) = 2 and ∂>2
x V (x) = 0. Namely, one has

D(2) = − 1

24
∂2µ , D(4) = +

7

5760
∂4µ , D(6) = − 31

967680
∂6µ , . . . . (6.8)

We conclude that the period Π
(0)
A does not receive any quantum corrections, while we

obtain for the B-period ΠB = DΠ
(0)
B ,

4 Note that we know from the M-theory picture described in section 3.1 that the refined partition

function in the NS limit is odd in ~, hence D(n) with n odd vanishes. In particular, since S′

n is always a

total derivative for n odd, this implies the integral of total derivatives vanish and there is no subtleties

involving singularities.
5For simplicity, we absorbed a normalization factor of

√
2.
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ΠB(µ) = Π
(0)
B (µ)− 1

24
µ−1

~
2 +

7

2880
µ−3

~
4 − 31

40320
µ−5

~
6 + . . . , (6.9)

or, after integrating over µ,

~W(µ) = F (0)(µ)− ~2

24
logµ− 7

5760
µ−2

~
4 +

31

161280
µ−4

~
6 + . . . , (6.10)

in agreement with the expectation (6.2).

6.2 Toric Geometries without 4-cycles

Consider the A-model topological string on a toric Calabi-Yau X without compact

4-cycles. This is mirror to the B-model on the Calabi-Yau

uv +H(ex, ep) = 0 .

The corresponding Riemann surface has genus zero and is of the form

H(ex, ep) = Pn(e
x) + ep+mxPk(e

x) = 0 , (6.11)

where Pn,k(e
x) are polynomials of degree n and k in variable ex, and m is an arbitrary

integer. This Calabi-Yau has n + k − 1 moduli which enter as coefficients of the

polynomials. The simplest example is the conifold with n = k = 1 and m arbitrary.

As explained in [13, 62], there is a particularly natural way of writing the Calabi-Yau

geometry in terms of open and closed string flat coordinates that are typically given

by certain periods on the mirror geometry. By a change of variables we can rewrite

(6.11) as

H(ex̂, ep̂) =

n
∏

I=0

(1−QαI
ex̂)− ep̂+mx̂

k
∏

J=0

(1−QβJ
ex̂) . (6.12)

Depending on the chamber, it is natural to set one of QαI
or QβJ

to 1, which we can do

by a leftover degree of freedom to shift x̂ and p̂ by constant values. This gives indeed

altogether k + n − 1 moduli. The Riemann surface can be viewed as a copy of a û

cylinder, where the one-form

∂φ = p̂ dx̂

has singularities at x̂ = tαI
, x̂ = tβJ

. Up to a gauge degree of freedom discussed above,

x̂, tαI
= − logQαI

and tβJ
= − logQβJ

are flat coordinates on the open and closed

moduli space. The canonically conjugate variables are

[p̂, x̂] = ǫ1
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In particular, the brane Ψ(x̂) satisfies the exact Schrödinger equation

H(ex̂, ep̂)Ψ(x̂) = 0 , (6.13)

which is a difference equation,

n
∏

I=0

(1−QαI
ex̂q

−1/2
1 )Ψ(x̂)− emx̂

k
∏

J=0

(1−QβJ
ex̂q

−1/2
1 )Ψ(x̂+ ~) = 0 ,

where q1 = e−ǫ1 . Note that we have redefined the Kähler parameters tα and tβ with a

shift. This has exact solutions in terms of quantum dilogarithm functions

Ψ(x̂) = e−
mx̂2

2~
+mx̂

2

∏n
I=0 L(QαI

ex̂)
∏k

J=0 L(QβJ
ex̂)

,

where

L(ex) =
∞
∏

ℓ=1

(1− q
ℓ−1/2
1 ex) .

Note that L(ex), given by the quantum dilogarithm, satisfies

L(ex+ǫ1) = (1− q
−1/2
1 ex)L(ex) .

This includes, for example, the conifold, where

Ψconifold(x̂) =
L(ex̂Q)

L(ex̂)

solves (6.13) with

Hconifold(x̂, p̂) = (1− ex̂q
−1/2
1 )ep̂ − (1− ex̂Qq

−1/2
1 ) .

Note that in general there are ordering ambiguities in defining the Hamiltonians, but

they can all be absorbed into the shifts of the open and closed moduli, i.e., what we

mean by x̂, t. As a consequence, in this particular case, there is really no physics

behind the quantum shifts, and we can simply choose them in the way that is the most

convenient. Any two such choices differ by re-parametrization of the moduli space, and

hence are physically equivalent. Finally, the above expressions all assume we are in the

regime of the moduli space where Qex̂ < 1. If that fails to be the case, for example

due to moving the brane around the Riemann surface, it is better to use the analytic

continuation

L(ex) = e−(x2+iπx)/ǫ1L(e−x)
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to rewrite the wave-function.

Consider now moving the branes around. First, it is easy to show, in these coor-

dinates the variables t and x̂ coordinates we defined via (6.12) are already the open

and closed A-periods. Secondly, since there are no compact B-periods, the branes are

essentially single-valued on the Riemann surface (the only shifts come from the classi-

cal piece of the wave-function). As a consequence, computing the B-periods amounts

to evaluating Ψ at the poles of the Riemann surface. The good B-periods are obvious

either from the A-model – they are mirror to non-compact 4-cycles, or equivalently, by

asking that the only infinities in evaluating the periods come from the classical pieces

of the wave-function, corresponding to the fact that at infinity, all instanton correc-

tions are suppressed. Consider, for example, the B-period corresponding to bringing a

brane in from infinity to a singularity with x̂ = tαI
, and sending the brane back out to

infinity at the singularity with x̂→ ∞. Correspondingly, we find

exp

(

1

ǫ1

∫

BI

∂S

)

=
Ψ(tαI

)

Ψ(∞)

up to the contribution of the classical pieces x2/ǫ1 to the answer – these are ambiguous

and reflect the non-compactness of the geometry. On the other hand, this non-compact

B-cycle intersects all the 2-cycles whose areas are of the form
∫

A

k =
∑

I

nItαI

by

BI ∩ A = nI .

This implies that the free energy jumps by

exp

(

1

ǫ1

∫

BI

∂S

)

=
Z(tαI

+ ǫ2
2
)

Z(tαI
− ǫ2

2
)

or
Ψ(tαI

)

Ψ(∞)
=
Z(tαI

+ ǫ2
2
)

Z(tαI
− ǫ2

2
)
.

To compute Ψ(tαI
) we need to analytically continue all the terms in the solution above

corresponding to which Qex̂ becomes greater than one at x̂ = tαI
. There are similar

equations with tα replaced by tβ. We can view this as n+k equations for the partition

function Z(tα, tβ) depending on n+k parameters, which we can solve, with the bound-

ary condition, that in the limit where all the t’s we recover the partition function of
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n + k disconnected copies of C3. It is easy to see that the solution to these equations

is the refined partition function of the closed topological string on this Calabi-Yau

Z(tαI
, tβJ

) =M(1)n+k

∏

0≤I<I′≤nM(QαIαI′
)
∏

0≤J<J ′≤kM(QβJβJ′ )
∏n,k

I,J=0M(QαaβJ
)

,

where, e.g, QαIβJ
is understood to be QαI

/QβJ
if Re(tαI

) > Re(tβJ
) and QβJ

/QαI

otherwise, and similarly for the rest, and

M(Q) =
∞
∏

ℓ1,ℓ2=1

(1− q
ℓ1−1/2
1 q

ℓ2−1/2
2 Q)−1

is the refined MacMahon function, where we have defined q2 = eǫ2. In the above we

have repeatedly used relations such as L(Q) =
M(Qq

1/2
2 )

M(Qq
−1/2
2 )

. For example, for the conifold,

we get simply

Zconifold(t) =
M2(1)

M(Q)
.

The fact that this is also consistent with the monodromies being computed by W
can be seen as follows. Note that we can write the free energy of the topological string,

F/g2s = log(Z) as

F/g2s =
∑

0≤I<I′≤n

γ(tαIαI′
) +

∑

0≤J<J ′≤k

γ(tβJβJ′ )−
n,k
∑

I,J=0

γ(tαIβJ
),

where

γ(t; ǫ1, ǫ2) = logM(Q) . (6.14)

In particular,

γ(t, ǫ1, ǫ2) =

∞
∑

n=1

Qn

n[n]ǫ1[n]ǫ2
,

with [n]ǫα := (q
n/2
α − q

−n/2
α ), and Q = e−t. On the other hand, the reduced partition

function W = limǫ2→0F/ǫ1 is built out of the function

γNS(t, ǫ2) =

∞
∑

n=1

Qn

n2[n]ǫ2

as

W =
∑

0≤I<I′≤n

γNS(tαIαI′
) +

∑

0≤J<J ′≤k

γNS(tβJβJ′ )−
n,k
∑

I,J=0

γNS(tαIβJ
) .
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The fact that

γ(t + ǫ2
2
)− γ(t− ǫ2

2
) = ∂tγNS

immediately implies that we could have equivalently written

exp

(∫

BI

∂S/ǫ2

)

= exp(∂tαI
W),

in agreement with our claim.

7 Genus One Examples

Let us now consider some more non-trivial geometries and confirm that also for them

the NS limit of the refined topological string partition function can be recovered from

a brane probing the quantum geometry, as expected from the discussion of section 5.

7.1 The Cubic

Let us consider the matrix model with cubic potential

W (x) = g

(

1

3
x3 +

δ

2
x2
)

.

The β-ensemble matrix model partition function can be calculated perturbatively, as

for example done in [63]. The most leading ~-correction to the free energy of the

cubic β-ensemble matrix model has also been computed in [39] using the loop equation

techniques. Here we will use the techniques discussed in section 5 and obtain more

non-trivial higher order results.

As a check of the statements of section 5.1, we now want to compute the first few

terms in the ~-expansion in the refined topological string free energy for the cubic

by studying the brane wave-function satisfying the Schrödinger equation of section 5,

which can be obtained by simply canonically quantizing the spectral curve. For that,

note that in the case of the cubic, the 1-form of the matrix model spectral curve (3.10)

can be expressed in terms of the branch-points (roots) x1,...,4 as

λ = dx g
√

(x− x1)(x− x2)(x− x3)(x− x4) . (7.1)

Following [35], we define new variables

z1 =
1

4
(x4 − x3)

2 , z2 =
1

4
(x2 − x1)

2 ,

Q =
1

2
(x1 + x2 + x3 + x4) , I =

1

2
(x3 + x4 − x1 − x2) .

(7.2)
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In terms of these variables, explicit expressions for the periods Π
(0)
A1
,Π

(0)
A2
,Π

(0)
B1

and Π
(0)
B2

can be easily found via expansion for small z1 and z2 of the corresponding contour

integrals of λ (see appendix B of [35]). As usual, we will set Q = −δ and I =
√

δ2 − 2(z1 + z2).

On the other hand, it is known that the B-model refined 1-loop amplitude on this

geometry is given by

F (1)(s1, s2; β) =
1

2
log det g +

3
∑

I=1

κI(β) log(∆I) , (7.3)

where s1,2 denote the flat coordinates given by the A-periods, z1,2 are other coordinates

given in (7.2), gij = ∂sizj, ∆I are the three discriminant loci (cf., [64])

∆1 = z1z2 , ∆2 =
√

δ2 − 2(z1 + z2) , ∆3 = (δ2 − 3z1)
2 − 6z2δ

2 + 9z22 + 14z1z2 ,

where κI(β) are β-dependent coefficients. In particular, we expect that in the B-model

all the information about the refinement is encoded in the coefficients κI(β), hence is

of a purely holomorphic nature.

It remains to fix κI(β) by the behavior of the topological strings amplitude near

the singular points. Since ∆1 is a conifold like singularity, we expect from [4] that

κ1(β) = − 1

24
(β + β−1) . (7.4)

The other two k2,3(β) can be fixed by considering the special moduli s1 = −s2 = s(δ)

that is related to the SU(2) Seiberg-Witten theory [65]. By matching the refined 1-loop

amplitude at these special moduli to the SU(2) partition function in the Ω-background,

we conclude

κ2(β) = −1

2
, κ3(β) =

1

12
(6− β − β−1) . (7.5)

Comparing with the explicit perturbative matrix model expansion shows that (7.3)

with (7.4) and (7.5) indeed reproduces the refinement of the cubic results, and hence

we have verified that the refined B-model is indeed dual to the β-ensemble, at least at

the 1-loop level.

For later comparison let us give the following explicit expansions of F (1)(s1, s2; β),

obtained using (7.3) and (7.4) and (7.5)

lim
β→0

β ∂2sF (1)(s,−s; β) = 1

12
s−2 + 153 +

46810

3
s+ 1217160 s2 + . . . , (7.6)
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lim
β→0

β ∂2s1F (1)(s1, s2; β) =
1

24
s−2
1 +

97

3
+

4004

3
s1 −

6467

3
s2 −

299731

2
s1s2 + . . . , (7.7)

where we have set for simplicity δ = g = 1. 6

Seiberg-Witten slice

Let us consider first the simplified case with s = s1 = −s2 (the Seiberg-Witten slice).

This restriction of parameters has been discussed in detail in [65]. The one-form takes

the simpler form

λ = dx
√

(x2 − a2)(x2 − b2) ,

and the periods can be easily expressed through complete elliptic integrals of first and

second kind, i.e.,

Π
(0)
A =

1

2πi

∫ b

a

λ =
a

6π

(

(a2 + b2)E(k1)− 2b2K(k1)
)

,

Π
(0)
B = 2

∫ b

−b

λ =
2a

3

(

(a2 + b2)E(k2)− (a2 − b2)K(k2)
)

,

(7.8)

with k21 = 1− b2

a2
and k22 =

b2

a2
. The relation between the parameters a, b and the original

parameters δ,Λ reads

a = −1

2

√
δ2 + 8Λ2 , b = −1

2

√
δ2 − 8Λ2 .

Inverting Π
(0)
A (Λ), plugging it into Π

(0)
B (Λ) and taking the Π

(0)
A derivative yields the

gauge kinetic function of the cubic matrix model under specialization s1 = −s2 = s

[65].

Let us now apply the approach of section 5, using the technique introduced in

subsection 6.1. It is convenient to absorb the energy E into the potential V (x) such

that V (x) = (x2 − a2)(x2 − b2) and E = 0. Hence, at order ~2 we have to integrate

(see (6.7))
∫

dx
V ′′(x)

48((x2 − a2)(x2 − b2))3/2
. (7.9)

6Notice that, as explained in the previous sections, from the quantum mechanics point of view it

is more natural to consider a double expansion in g2s = −ǫ1ǫ2 and ~ = ǫ1 + ǫ2, while from the point of

view of the holomorphic anomaly equation it is more natural to expand in gs and treat β = −ǫ1/ǫ2 as

a parameter. Also notice that the parameter β always enters in the symmetric combination β + β−1

in the latter formalism. In order to compare the results obtained from these two viewpoints, simply

notice that g2s(β + β−1) = ~2 +2g2s . So the coefficients limβ→0 β F (1) should really be compared with

the g0s~
2 term in the gs, ~ expansion when taking the NS limit. More generally, the term limβ→0 β

g F (g)

contributes to the term g0s~
2g in the gs,~-expansion.
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It is convenient to define a differential operator D(2) acting on

1

2πi

∫ b

a

dx
1

√

(x2 − a2)(x2 − b2)
= − 1

2πa
K(k1) ,

and

2

∫ b

−b

dx
1

√

(x2 − a2)(x2 − b2)
=

2

a
K(k2) ,

to obtain (7.9). It is easy to see that

D(2) = − 1

6ab(a2 − b2)

(

a(a2 − 5b2)∂b − b(b2 − 5a2)∂a
)

,

does the job. Hence, (7.9) evaluates to

S(2) = − 1

12πab2(a2 − b2)

(

(a4 − 10a2b2 + b4)E(k1) + 4b2(a2 + b2)K(k1)
)

,

Π(2) = − 1

3ab2(a2 − b2)

(

(a4 − 10a2b2 + b4)E(k2)− (a4 − 6a2b2 + 5b4)K(k2)
)

.

Proceeding for s := Π
(0)
A + ~2Π

(2)
A and ΠB = Π

(0)
B + ~2Π

(2)
B as sketched for the pure

classical part above, yields the first order quantum correction to the gauge kinetic

function. The result precisely matches the expectation (7.6).

General case

Let us check that the agreement also holds for the general cases where s1 and s2 are

independent. The starting point is as in the previous section the one-form expressed

through the roots given in (7.1). We have to integrate
∫

dx
V ′′(x)

48((x− x1)(x− x2)(x− x3)(x− x4))3/2
, (7.10)

where now V (x) = (x−x1)(x−x2)(x−x3)(x−x4). As above, this can be achieved via

defining an operator D(2) acting on the classical periods. In order to construct such an

operator, note that it is sufficient to find operators DI with I = 0, 1, 2 satisfying

DIV (x) = xI ,

since V ′′(x) is a polynomial of degree 2. The operator D(2) is then a combination of

the DI . Such a basis of operators for the given potential can be inferred to be

D0 =
1

(x1 − x2)(x3 − x4)

(−(x2 − x3)∂x1 + (x1 − x3)∂x2 − (x1 − x2)∂x3

(x1 − x3)(x2 − x3)

+
(x2 − x4)∂x1 − (x1 − x4)∂x2 + (x1 − x2)∂x4

(x1 − x4)(x2 − x4)

)

,
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D1 =
1

(x4 − x3)

(

x4
(x2 − x4)(∂x2 − ∂x1)− (x1 − x2)(∂x2 − ∂x4)

(x1 − x2)(x2 − x4)(x1 − x4)

+ x3
(x2 − x3)∂x1 − (x1 − x3)∂x2 + (x1 − x2)∂x3

(x1 − x2)(x1 − x3)(x2 − x3)

)

,

D2 =
1

∏4
I<J(xI − xJ )







4
∑

I=1

4
∏

J<K
J,K 6=I

(xJ − xK)x
2
I∂xI






.

The combined operator reads

D(2) =
1

3
(c2D2 + c1D1 + c0D0)D0 ,

with

c0 = 2(x2x3 + (x2 + x3)x4 + x1(x2 + x3 + x4)) ,

c1 = −6(x1 + x2 + x3 + x4) ,

c2 = 12 .

Applying D(2) to the classical periods yields the first quantum corrections. Inverting

sI := (1 + ~2D(2))Π
(0)
AI

yields the quantum correction to the mirror map at order ~2,

i.e.,

z1(s1, s2)|~2 = 2 + 62s1 − 78s2 − 4808s1s2 + . . . ,

z2(s1, s2)|~2 = 2 + 78s1 − 62s2 − 4808s1s2 + . . . .

Plugging these into Π1 = (1 + ~2D(2))Π
(0)
1 and taking the s1 derivative yields the

expected expansion (7.7).

7.2 Local P1 × P1

Let us consider non-trivial toric Calabi-Yau geometries of genus 1. For example, the

mirror curve for local P1 × P1 can be parameterized as

H(p, x) = −1 + ex + ep + z1e
−x + z2e

−p = 0 . (7.11)

The skeleton of the corresponding Riemmanian surface is illustrated in figure 1 together

with the integration contours for the classical periods [66].

Inspired by the matrix model results of section 5, we consider the brane wave-

fucntion satisfying the difference equation

(−1 + ex + z1e
−x)Ψ(x) + Ψ(x+ ~) + z2Ψ(x− ~) = 0 , (7.12)

48



β1

α1

α2

α3α4

z1, z2 ≪ 1

x̃ = −1

x̃ = 0

x̃ = ∞

Figure 1: The skeleton of the B-model geometry of local P1 × P
1. A-period contours are

drawn in red while B-period contours in blue.

obtained by canonically quantizing the curve (7.11). In the limit x→ ∞, we can view

(7.12) approximately as a difference equation with constant coefficients, whose solution

takes the form

Ψ(x) = π1(x)e
a1
~
x + π2(x)e

a2
~
x , (7.13)

with some functions πI(x) periodic under x → x + ~ and some constants aI . In

particular, for a1 > a2 one can show that [67]

ea1 = lim
x→∞

Ψ(x+ ~)

Ψ(x)
. (7.14)

However, comparing (7.13) with the general form of the brane wave-function near

x→ ∞ which can be inferred from [62], one infers that actually

a1 =
1

2
(ΠAI

− log zI) , I = 1, 2 ,

where ΠAI
denotes the fully quantum corrected A-periods. Explicit calculation of a1

gives

a1 =− (z1 + z2)−
(

4 +
1

q
+ q

)

z1z2 −
3

2
(z21 + z22)

−
(

16 +
1

q2
+ q2 +

6

q
+ 6q

)

(z1z
2
2 + z21z2)−

10

3
(z31 + z32) + . . .

as the first few orders in small z1,2 expansion, where q := e~, and we have kept only the

finite terms. Expansion in ~ yields ΠAI
=
∑∞

n=0Π
(n)
AI

~n with Π
(0)
AI

the classical period
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and the first few quantum corrections

Π
(1)
AI

= 0 ,

Π
(2)
AI

= −2z1z2 − 20(z21z2 + z1z
2
2)− 420z21z

2
2 + . . . .

Π
(3)
AI

= 0 .

...

(7.15)

Inverting ΠAI
gives the mirror maps including quantum corrections thereof. We obtain

z1(Q1, Q2)|~1 = z1(Q1, Q2)|~3 = 0 ,

z1(Q1, Q2)|~2 = −2Q2
1Q2 − 4Q2

1Q
2
2 + . . . .

(7.16)

with Qi = e−ti and ti are the Kähler parameters of the geometry. One can also solve

the difference equation order by order in ~ using a WKB Ansatz. For the leading

(classical) piece we obtain

S ′
0 = p(x) = log

(

−−1 + ex + z1e
−x ± e−x

√

(−ex + e2x + z1)2 − 4e2xz2
2

)

,

where the two different signs correspond to the two solutions Ψ±(x). The higher order

terms S ′
n can be easily obtained, though they are too lengthy to be displayed here. It

is convenient to use the coordinate x̃ = ex instead of x. Let us fix a branch, say Ψ+(x̃)

and let us expand S ′
n for small zi. Effectively, this means that we restrict to a local

C3 patch of the geometry, as also shown in figure 1. We observe that in this limit the

expansion of S ′
n has poles at x̃ = 0 and x̃ = −1. The poles correspond to the two

‘internal’ punctures of the local C3 patch. Taking for instance the residue at x̃ = 0

yields the instanton part of the classical A-period, i.e.,

1

2

(

Π
(0)
AI

− log zI

)

=

∮

α1

dx̃

x̃
S ′
0 = −(z1+z2)−6z1z2−

3

2
(z21 +z

2
2)−30(z21z2+z1z

2
2)+ . . . .

(7.17)

Integrating the higher order S ′
n we can indeed reproduce our previous results (7.15),

as explicit calculation shows. 7

7Depending on the actual parameterization of the curve, one might have to take the correct com-

bination of ‘small’ periods αi, i.e., Π
(n)
AI

=
(

∮

α1

−
∮

α2

)

dũ
ũ S′

n [62], to ensure that the odd sector in ~

drops out. The contour integral around α2 can be obtained by performing a SL(2,Z) transformation

of the curve such that in the limit z1, z2 ≪ 1 we end up in the corresponding local patch.
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Let us now consider the B-period. We observe that we can recover the instanton

part of the classical B-period in the local patch via the integral

∫ Λ

δ

dx̃

x̃
S ′
0 = −z2 −

1

2
z21 −

11

4
z22 − 5z1z2 −

77

2
z1z

2
2 −

47

2
z21z2 −

1377

4
z21z

2
2 + . . .

up to a constant, and where we have taken δ → 0,Λ → ∞. Note that this integral

diverges as δ → 0 and we kept only the finite terms. Hence,

∫ Λ

δ

dũ

ũ
S ′
0 =

1

2

(

Π
(0)
B1

− 1

2
Π

(0)
A log(z1)−

1

4
log(z1)

2

)

.

Similarly, we obtain for the order ~2

Π
(2)
B1

= −1

6
z2 −

8

3
z1z2 −

1

2
z22 −

62

3
z21z2 −

107

3
z1z

2
2 − 564z21z

2
2 + . . . .

Plugging the mirror map (7.16) into ΠB1 = Π
(0)
B1

+Π
(2)
B1
~2 yields at order ~2

ΠB1(Q1, Q2)|~2 = c− Q2

6
− 7

3
Q1Q2 −

Q2
2

6
− 17

2
Q2

1Q2 −
551

3
Q2

1Q
2
2 + . . . ,

where c denotes some constant.

Let us compare this result to what we expect. In the B-model, it is easy to see that

the refined 1-loop amplitude

F (1)(β) =
1

2
log(det g)− β + β−1

24
log(∆)− 15− (β + β−1)

24
log(z1z2) ,

with gIJ = lim~→0 ∂QJ
zI | and ∆ = 1− 8(z1 + z2) + 16(z1 − z2)

2 reproduces the refined

vertex results of [3]. Taking the NS limit, we conclude

ΠB1(Q1, Q2)|~2 = Q2∂Q2 lim
β→0

β F (1) ,

up to the constant part of 1
24

8.

Let us also check the order ~4. For simplicity, we will focus on the special moduli

slice of the moduli space with z = z1 = z2. The mirror map at this order comes out to

be

z(Q)|~4 = −Q
3

6
− 14

3
Q4 + . . . .

8The reason why we do not get the constant part in our calculation is a technical subtlety due to

our method of B-cycle integration rather than a conceptual issue.
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α2

α1

α1

α3

α3

β

β1

β2

x̃ = 0

x̃ = 0

x̃ = −1z ≪ 1

i)

ii)

Figure 2: The skeleton of the B-model geometry of local P2. A-period contours are drawn in

red while B-period contours in blue. Case (i) shows the effective geometry of the parametriza-

tion (7.18) under the limit z ≪ 1, while (ii) of (7.21).

We obtain for the B-period

Π
(4)
B = −2z − 33

2
z2 − 1280

9
z3 + . . . ,

Hence,

Π
(4)
B (Q) =

Q

360
− 19

60
Q2 − 199

20
Q3 + . . . .

Comparison with the refined vertex results of [3] shows that this indeed matches the

β → 0 limit to the corresponding order under the identification Q := Q1 = Q2.

7.3 Local P2

Let us consider local P2 as our final example. We parameterize the mirror curve as

H(p, x) = −1 + ex + ep + ze~/2e−x−p = 0 . (7.18)

The corresponding geometry is sketched in figure 2. A canonical quantization yields

52



the difference equation

(−1 + ex)Ψ(x) + Ψ(x+ ~) + ze−xe~/2Ψ(x− ~) = 0 .

As in the previous example, we solve for a1 defined in (7.14) to extract the quantum

A-period given by a1 =
1
3
(ΠA − log(z)). We obtain

a1 = −1 + q√
q
z −

(

6 +
1

q2
+

7

2q
+

7

2
q + q2

)

z2

− 3 + 9q + 36q2 + 88q3 + 144q4 + 144q5 + 88q6 + 36q7 + 9q8 + 3q9

3q9/2
z3 + . . . .

Hence, via expansion in ~ we infer for ΠA =
∑∞

n=0Π
(n)
A ~n the first few corrections

Π
(1)
A = 0 ,

Π
(2)
A = −3

4
z − 45

2
z2 − 630z3 − 17325z4 + . . . ,

Π
(3)
A = 0 ,

Π
(4)
A = − z

64
− 39

8
z2 − 2961

8
z3 − 19635z4 + . . . .

...

(7.19)

Inverting ΠA(z) gives the quantum corrected mirror map. We obtain for the first few

orders in ~ and in Q expansion

z(Q)|~1 = z(Q)|~3 = 0 ,

z(Q)|~2 = −3

4
Q2 − 9Q3 − 171Q4 + . . . ,

z(Q)|~4 = − 1

64
Q2 − 15

4
Q3 − 3429

16
Q4 + . . . .

(7.20)

Let us now solve the difference equation via the WKB Ansatz given by (6.3) and

(6.4). The leading term of the solution reads

S ′
0(x) = log

(

1− ex ± e−
x
2

√

ex(1− ex)2 − 4z

2

)

.

Higher order solutions S ′
n can be obtained easily, but are too length to be explicitly

displayed here. Similar as in the previous example, expansion for z ≪ 1 effectively

zooms into a C3 patch of the geometry and the classical A-period can be read of from

a contour integral around one of the singular points (cf., figure 2), i.e.,

1

3

(

Π
(0)
A − log(z)

)

=

∮

α1

dx̃

x̃
S ′
0 .
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Similarly, the higher order Π
(n)
A can be obtained via integrating S ′

n and we can indeed

reproduce (7.19). Let us turn to the B-period. The integration contour is indicated in

blue in figure 2. We split the integration contour into two parts

β = β1 + β2 .

Taking the limit z ≪ 1 of the parametrization of the curve given in (7.18) restricts to

a C3 patch which includes β1 (cf., figure 2).

Explicit evaluation shows that for integrating along β1
∫ Λ

δ

dx̃

x̃
S ′
0 =

1

3

(

Π
(0)
B − 1

3
log(z)Π

(0)
A − 1

6
log(z)2

)

,

where Λ → ∞, δ → 0 and we kept only finite terms. Let us calculate

Π
(n)
β1

=

∫ Λ

δ

dx̃

x̃
S ′
n .

For example, for even n we obtain the first quantum corrections

Π
(2)
β1

= c− 11

24
z − 87

8
z2 − 3349

12
z3 − 176005

24
z4 + . . . ,

Π
(4)
β1

= − 127

5760
z − 577

160
z2 − 71081

320
z3 − 758401

72
z4 + . . . ,

with c some constant. In contrast to local P1 × P1 discussed in the previous section,

we do not have anymore a Z2 symmetry of the integration contour β and hence we

can no longer expect that the integration along β1 and β2 yields up to signs the same

result. Thus, we have to explicitly calculate the integrals along β2. For that, we have

to change the parametrization of the curve (7.18) such that we end up in the limit

z ≪ 1 in the patch which includes β2. It is not hard to see that the transformation

x → −x, p → −p combined with a change of complex structure achieves this. We

obtain the curve

− 1 + ze−x + e−p + e~/2ex+p = 0 , (7.21)

which we quantize and solved via a WKB Ansatz as above. We obtain
∫ Λ

δ

dx̃

x̃
S ′
0 = −2

3

(

Π
(0)
B − 1

3
log(z)Π

(0)
A − 1

6
log(z)2

)

.

Hence, adding up the integrations along β1 and β2 yield indeed the classical B-period.

Integrating along β2 for some higher S ′
n yields

Π
(2)
β2

= c− 5

12
z − 57

4
z2 − 2509

6
z3 − 141355

12
z4 + . . . ,

Π
(4)
β2

=
67

2880
z − 317

80
z2 − 45401

160
− 532285

36
z4 + . . . .
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Adding up Π
(n)
B = Π

(n)
β1

+Π
(n)
β2

and inserting the quantum corrected mirror map (7.20),

we finally obtain (up to the constant part of Π
(2)
B )

Π
(2)
B = c− 7

8
Q− 129

8
Q2 − 589

2
Q3 + . . . ,

Π
(4)
B =

29

640
Q− 207

32
Q2 − 55341

160
Q3 + . . . .

(7.22)

Let us compare this result to what we know. From the results of [4] one expects that

the refined B-model 1-loop amplitude is given by

F (1)(β) =
1

2
log (τ) +

−16 + β + β−1

24
log (z)− β + β−1

24
log (1− 27z) ,

with τ := Q∂Qz(Q)|~0 and one can easily infer that this indeed matches the corre-

sponding refined vertex results. Using the usual holomorphic anomaly equations, it

is straightforward to calculate in the B-model higher genus amplitudes F (g)(β), which

can again be matched with refined vertex results [68] (this also has been confirmed in

[6]). Comparing with (7.22) shows that

Π
(2)
B = Q∂Q lim

β→0
β F (1)(β) ,

Π
(4)
B = Q∂Q lim

β→0
β2F (2)(β) .

8 Brane Wave-Functions and Liouville Amplitudes

In section 4 we have seen that the brane partition functions of the β-ensemble ma-

trix models satisfy an operator equation which takes the form of the conformal Ward

identity equation. When specializing to the Penner type logarithmic potential, it is

well-known that the matrix model computes the Liouville conformal blocks with back-

ground charge Q̃ = b+ b−1, where

b2 = −β =
ǫ1
ǫ2
.

In this case, the ǫ1- and ǫ2-brane are exactly given by the two types of degenerate

vertex operators, denoted by V− 1
2b

and V− b
2
respectively, and the differential equation

(4.11) becomes nothing but the usual BPZ equation [45] for conformal blocks with

degenerate field insertions

(

b±2∂2x −
∑

a

1

x− za
∂za −

∑

a

∆αa

(x− za)2

)

Zα(x) = 0 ,
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where ∆α = α(Q̃− α) is the conformal dimension of the operator with momentum α.

We have also argued that, provided we know the answer for the open string partition

function, this knowledge can help us to deduce the closed string partition function,

especially in the NS limit. We will see below how this idea is realized in this case.

The key observation is that the ǫ1-brane partition function (4.2) is always a polyno-

mial of degree N in the brane location x. To be explicit, let us choose the logarithmic

matrix model potential − 2
ǫ2
W (x) = 2b

∑n−2
a=0 αa log(x − za) corresponding to the n-

point function 〈Vαn−1(∞)
∏n−2

a=0 Vαa(za)〉, where the vertex inserted at infinity carries

momentum given by the conservation rule
∑n−1

a=0 αa = Q̃− Nb. Suppose we are inter-

ested in the corresponding n-point conformal block computed by an appropriate choice

of contour following [69], we can probe the n-point function by inserting an ǫ1-brane,

or V− 1
2b
(x) in the Liouville language, and arrive at the brane partition function

Z1(x) =
∏

a<b

(za − zb)
2αaαb

∏

a

(x− za)
αa/b

×
∫

dNz
∏

1≤i<j≤N

(zi − zj)
−2b2

∏

i,a

(zi − za)
2αab

∏

i

(zi − x) (8.1)

which is explicitly a polynomial in x.

As alluded above, this ǫ1-brane has the property that we can move it close to any

other point za of insertions without introducing any non-analyticity, and this gives us

various relations among the n-point function with momenta shifted in units of − 1
2b
. In

this way we can obtain essential information about the n-point function (the closed

partition function) from the knowledge of the n+1-point function (the brane partition

function).

In more details, consider the n-point function

Zclosed(α) =
∏

a<b

(za − zb)
2αaαb

∫

dNz
∏

1≤i<j≤N

(zi − zj)
−2b2

N
∏

i=1

n−2
∏

a=0

(zi − za)
2αab ,

it is easy to see that it satisfies the following relations to Z1(x) given in (8.1):

Z1(za) = lim
x→za

Z1(x) = ZN(αa − 1
2b
) , (8.2)

and

Zclosed(α) =
∏

a<b

(za − zb)
2αaαb

∫

dNz
∏

1≤i<j≤N

(zi − zj)
−2b2

∏

i,a

(zi − za)
2αab .
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Thus we find a set of difference equations for logZclosed, one for each non-degenerate

insertion point, which depends on the open partition function Z1(x) but not on its

normalization

Zclosed(αa − 1
2b
)/Zclosed(αa) = Z1(za)/Z1(∞) .

On the left hand side, we keep everything fixed in both the numerator and the de-

nominator, apart from the momentum of the insertion point Z1(x) approaches.
9 From

these, at least in principle, we can determine (up to normalization) Zclosed from the

knowledge of Z1(x). We will now illustrate this procedure with the of 3+1-point func-

tion example. In this case the potential W (x) has only one critical point and hence the

corresponding spectral curve has genus zero. Recall that from the general discussion

in section 6, the time dependence of the Schrödinger equation is trivial and one does

not need to take the NS limit.

In this case, the open partition function

Z1(x) = x∆α0−1/2b−∆α0−∆1/2b(1− x)∆α1−1/2b−∆α1−∆1/2bΨN(x)

with

ΨN(x) =

∫

dNz
∏

1≤i<j≤N

(zi − zj)
−2b2

N
∏

i=1

(zi)
2α0b (zi − 1)2α0b

∏

i

(zi − x)

satisfies the differential equation
(

−b2 d
2

dx2
+
(1

x
+

1

x− 1

) d

dx
− ∆α0

x2
− ∆α1

(x− 1)2
+

∆α0 +∆α1 +∆−1/2b −∆α2

x(x− 1)

)

Z1(x) = 0

with

α0 + α1 + α2 − 1/2b = Q̃−Nb . (8.3)

This is solved by

ΨN(x) = c F (A,B;C; x)

with

A = −N , B = N − 1 + 2
b
(α0 + α1 − 1

b
) , C = 2

b
(α0 − 1

2b
) ,

and F (A,B;C; x) is the hypergeometric series

F (A,B;C; x) =
∞
∑

n=0

(A)n(B)n
(C)n

xn

n!
,

9From the point of view of Liouville conformal blocks, Z1(∞) is related to

〈Vαn−1−1/2b(∞)
∏n−2

a=0 Vαa
(za)〉 where the momentum of the insertion at infinity has been shifted by

−1/2b.
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with (A)n = A(A + 1) . . . (A + n − 1). The normalization constant c remains to be

fixed. Since A = −N is a negative integer in our case, the solution ΨN(x) is a finite

polynomial in x of degree N , as we argued earlier. From this, we can find the recurrence

equations satisfied by the chiral half of the Liouville 3-point function

ZN(α0, α1) =

∫

dNz
∏

1≤i<j≤N

(zi − zj)
−2b2

N
∏

i=1

(zi)
2α0b (zi − 1)2α1b .

Using (8.2) and colliding x with 0, 1 and ∞ and using analyticity of ΨN(x), it imme-

diately follows that
ZN(α0 + 1/2b, α1)

ZN(α0, α1)
=

ψN (0)

ψN(∞)

ZN(α0, α1 + 1/2b)

ZN(α0, α1)
=

ψN(1)

ψN (∞)
.

Using the special values

F (A,B;C; x = 1) =
Γ(C)Γ(C − A− B)

Γ(C −A)Γ(C − B)

lim
x→∞

x−NF (A = −N,B;C; x) = (−1)N
(B)N
(C)N

,

the above recursive relation reads

ZN(α0 − 1
2b
, α1)

ZN(α0, α1)
=

N−1
∏

j=0

(

2bα0 − 1 + jb2

2bα2 − 1 + jb2

)

ZN(α0, α1 − 1
2b
)

ZN(α0, α1)
=

N−1
∏

j=0

(−2bα1 + 1− jb2

2bα2 − 1 + jb2

)

,

where α2 is given by α0,1 as in (8.3).

From this we conclude that the chiral three-point function must satisfy

ZN(α0, α1) ∼
N−1
∏

j=0

Γ(1− 2bα1 − jb2)

Γ(2bα0 + jb2)Γ(2bα2 + jb2)
.

Indeed, after fixing the value ZN(0, 0) as the initial condition, we then obtain the

expression

ZN(α0, α1) =

N−1
∏

j=0

Γ(−(1 + j)b2)Γ(1− 2bα1 − jb2)

Γ(−b2)Γ(2bα0 + jb2)Γ(2bα2 + jb2)
,

which indeed gives the chiral half of the Liouville three-point function [70, 69].
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9 Conclusion

In this work we have discussed several aspects of refined topological strings, emphasiz-

ing the role of the branes. In particular, we have argued that brane partition functions

are quantum mechanical wave-functions satisfying multi-time dependent Schrödinger-

like equations, with times given by non-renormalizable moduli. The derivation was

done using a matrix model realization of the refined topological string on specific ge-

ometries. However, we expect this to hold in more generalities, though in general the

precise identification of the times is not immediately transparent yet.

In the NS limit, the time dependence drops out and we end up with a time-

independent Schrödinger equation, making contact with the earlier results of [8, 42, 43].

The refined partition function in this limit can be recovered from the brane wave-

function via considering the monodromies around the cycles of the local geometry,

which we have also checked explicitly in several non-trivial examples. Using this fact,

we have explained the observation of Nekrasov and Shatashvili in connecting integrable

systems to gauge theory partition functions: The integrable system arises in the study

of the world-sheet amplitudes and their target interpretation can be phrased in terms

of gauge theory partition functions, thus explaining the NS result.

There are various extensions of the present work one can consider. The simplest

one, which should be straightforward, is to generalize the discussions in this paper from

a single matrix model to Toda-like matrix models. This should in principle allow us to

get arbitrary B-model geometries with arbitrary analytic H(x, p), where the powers of

p, x are bounded.

A more important extension of this work involves a deeper understanding of the

brane partition function away from the NS limit. As already mentioned above, even

away from this limit we expect an interesting wave-function which is now time-

dependent. Uncovering the meaning of this wave-function from the perspective of

integrable systems could be very interesting. Also, finding a way to compute via the

time-dependent wave-function the complete refined topological string partition func-

tion, as we have done for the NS limit via the time-independent wave-function, would

be clearly important. We are currently elaborating on these ideas and plan to report

on them elsewhere.
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