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Abstract: We develop the first steps towards an analysis of geometry on the quantum
spacetime proposed in Doplicher et al. (Commun Math Phys 172:187–220, 1995). The
homogeneous elements of the universal differential algebra are naturally identified with
operators living in tensor powers of Quantum Spacetime; this allows us to compute their
spectra. In particular, we consider operators that can be interpreted as distances, areas,
3- and 4-volumes.

The Minkowski distance operator between two independent events is shown to have
pure Lebesgue spectrum with infinite multiplicity. The Euclidean distance operator is
shown to have spectrum bounded below by a constant of the order of the Planck length.
The corresponding statement is proved also for both the space-space and space-time area
operators, as well as for the Euclidean length of the vector representing the 3-volume
operators. However, the space 3-volume operator (the time component of that vector)
is shown to have spectrum equal to the whole complex plane. All these operators are
normal, while the distance operators are also selfadjoint.

The Lorentz invariant spacetime volume operator, representing the 4-volume spanned
by five independent events, is shown to be normal. Its spectrum is pure point with a finite
distance (of the order of the fourth power of the Planck length) away from the origin.

The mathematical formalism apt to these problems is developed and its relation to
a general formulation of Gauge Theories on Quantum Spaces is outlined. As a byprod-
uct, a Hodge Duality between the absolute differential and the Hochschild boundary is
pointed out.

1. Introduction and Preliminaries

The concurrence of the principles of Quantum Mechanics and of Classical General Rel-
ativity imposes limits on the joint precision allowed in the measurement of the four
spacetime coordinates of an event, as a consequence of the following principle:
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The gravitational field generated by the concentration of energy required by the
Heisenberg Uncertainty Principle to localise an event in spacetime should not be
so strong to hide the event itself to any distant observer - distant compared to the
Planck scale.

These limitations pose no restriction on the precision in the measurement of a single
coordinate,1 but lead to Spacetime Uncertainty Relations

�q0 ·
3∑

j=1

�q j � λ2
P ;

∑

1≤ j<k≤3

�q j�qk � λ2
P , (1.1)

that were shown to be exactly implemented by Commutation Relations between coor-
dinates, which turn spacetime into Quantum Spacetime [1,4].

More precisely, the four spacetime coordinates of an event are described by four
operators which fulfill

[qμ, qν] = iλ2
P Qμν, (1.2)

where λP denotes the Planck length,

λP =
(

G�

c3

)1/2

� 1.6 × 10−33 cm,

hereafter set equal to 1 adopting absolute units, where � = c = G = 1; Q fulfills the
Quantum Conditions

(1/4)[q0, q1, q2, q3]2 = I, (1.3a)

[qμ, qν][qμ, qν] = 0, (1.3b)

[[qμ, qν], qλ] = 0. (1.3c)

Namely, the only full Lorentz invariant constructed with the commutator which is
required to be nonzero is the square of the pseudoscalar

[
q0, q1, q2, q3

]
≡ det

⎛

⎜⎜⎝

q0 q1 q2 q3

q0 q1 q2 q3

q0 q1 q2 q3

q0 q1 q2 q3

⎞

⎟⎟⎠

≡ εμνλρqμqνqλqρ

= −(1/2)Qμν(∗Q)μν, (1.4a)

where

(∗Q)μν = 1

2
εμνλρQλρ. (1.4b)

1 This does not conflict with the famous Amati Ciafaloni Veneziano Generalised Uncertainty Relation: all
the derivations we are aware of (see e.g. [2,3]) implicitly assume that all space coordinates of the event are
measured with uncertainties of the same order of magnitude; in which case they agree with our Spacetime
Uncertainty Relations.
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In this model, the C*-Algebra of Quantum Spacetime E is defined as the enveloping
C*-Algebra of the Weyl form (selecting the regular representations2) of the commuta-
tion relations between the coordinates:

eiαμqμeiβμqν = e−(i/2)αμQμνβν ei(α+β)μqμ; α, β ∈ R
4.

The unbounded operators qμ are affiliated to the C*-Algebra E and fulfill the desired
commutation relations. Poincaré covariance is expressed by an action τ of the full Po-
incaré group by automorphisms of E , determined by the property that its canonical
extension to the q ’s fulfill

τL(q) = L−1(q).

The C*-Algebra E turns out to be the C*-Algebra of continuous functions vanishing at
infinity from a manifold 
 to the C*-Algebra of compact operators on the separable
infinite dimensional Hilbert space.

Here 
 is the (maximal) joint spectrum of the commutators, which is the manifold
of the real antisymmetric two-tensors fulfilling the constraints imposed by the above
quantum conditions; namely, specifying such a tensor by its electric and magnetic com-
ponents �e, �m, �e 2 = �m2, �e · �m = ±1. Thus 
 can be identified with the full Lorentz
orbit of the standard symplectic form in four dimensions, that is 
 is the union of two
connected components, each homeomorphic to SL(2,C)/C∗, or to the tangent manifold
T S2 to the unit sphere in three dimensions. If �e = ± �m they must be of length one, and
span the base 
(1) of 
. Thus 
 can be viewed as T
(1).

If we choose σ = (�e, �m) in 
(1) with �e = �m = (1, 0, 0), the corresponding irreduc-
ible representation of the operators qμ can be realised on the Hilbert space H ⊗ H , with
H = L2(R) by

q0 = Q ⊗ I, (1.5a)

q1 = P ⊗ I, (1.5b)

q2 = I ⊗ Q, (1.5c)

q3 = I ⊗ P, (1.5d)

where Q is the operator of multiplication by s in H = L2(R, ds) and P is the operator
1
i
∂
∂s on H .

Regarding the interpretation of the operators qμ we recall that in ordinary quantum
field theory, the physical meaning of spacetime coordinates is to specify regions on
which the observables of the theory, which are expressed in terms of quantum fields, are
localized. This is still true in quantum field theory on quantum spacetime, with the only
variant that in this case, the joint effect of Heisenberg’s principle and general relativity
are taken into account by noncommutativity, cf. [1]. In this sense, the noncommutative
geometry of the underlying quantum spacetime has the same status as classical geometry
(Minkowski space) in ordinary quantum field theory, and in both cases, the coordinates
merely describe the underlying geometry.

2 An irreducible representation of (1.2) is regular if and only if it generates an irreducible representation
of E , or, by the Dixmier - Nelson Theorem, if and only if the sum of the squares of the qμ is essentially
selfadjoint. In this paper we will deal only with such representations.
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We now examine the Minkowski square operator qμqμ in Quantum spacetime. Since
it is a full Lorentz scalar, it can be computed at a fixed point σ in 
. Hence, choosing σ
as here above, we can compute qμqμ using that particular irreducible representation as

qμqμ = (Q2 − P2)⊗ I − I ⊗ (Q2 + P2).

While Q2+P2 has pure point spectrum, equal to 2n + 1, n = 0, 1, 2, . . ., (1/2)(P2−Q2)

is the Hamiltonian of the anti-harmonic oscillator, which is known to be unitarily equiv-
alent to the direct sum of two copies of Q (or of P). For instance, a unitary U changing
P ⊕ P to (1/2)(Q2 − P2) by its adjoint action can be given as

(U (ψ1 ⊕ ψ2))(s) = e(i/2)(−i ∂
∂s )

2
e(i/4)s

2 |s|−1/2 (
θ(s)ψ1(ln |s|) + θ(−s)ψ2(ln |s|))

with the Heaviside function θ . Now a P +bI is unitarily equivalent to P and to Q for any
real a, b, with a nonzero; therefore qμqμ is unitarily equivalent to the direct sum of infi-
nitely many copies of Q, in any irreducible representation, hence in any representation
of E .

The Euclidean square operator 
q2
μ has been analysed in [1]. In the above represen-

tation, it agrees with the operator,

(P2 + Q2)⊗ I + I ⊗ (P2 + Q2),

with pure point spectrum whose minimum is 2, corresponding to a state optimally local-
ised around the origin. It was shown there that this is the minimum of the spectrum over
all representations, and can be attained only in pure states in irreducible representations
associated to points in the base
(1) of
, or in states obtained from them by integration
with a regular probability measure on 
(1).

These statements will extend immediately to the Minkowskian respectively Euclid-
ean distance operators between two independent events.

In Quantum Mechanics the observables for the system composed of independent
subsystems are described by tensor products of observables for the subsystems. This
suggests to describe the algebra of coordinates for n independent spacetime events as
the tensor product E ⊗ E ⊗ · · · ⊗ E (n times). Thus the coordinate operators for the j th

event are

q j = I ⊗ I ⊗ . . . I ⊗ q ⊗ I ⊗ · · · ⊗ I, ( j thplace).

It is however more natural to use not the standard tensor product over the complex
numbers, but the Z-module tensor product, where Z denotes the centre of the multiplier
algebra of E , that is the algebra of continuous bounded complex functions on 
. This
amounts to require that the commutators of the different spacetime components of q j
are independent of j , so that

[qμj , qνk ] = i Qμνδ j,k,

or, in the language of the next section, that

d Q = 0.

This choice has been discussed and motivated in [5], and implies in particular that the
normalised difference variables

1√
2
(q j − qk)
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for distinct j, k obey the same commutation relations (1.1), and commute with the bary-
centre coordinates.

In particular, the Minkowski, respectively Euclidean, distance operators, evaluated
with these normalised difference variables for two independent events, will have exactly
the same spectral properties as above described for the qs themselves, so that, in absolute
units,

3∑

μ=0

(qμj − qμk )
2 � 4.

In the next section we will briefly discuss a variant of the Universal Differential
Calculus where this formalism fits best, and the two distinct relevant algebraic structures.
This is the natural mathematical ground for a general formulation of Gauge Theories on
Quantum Spaces, briefly touched upon in the subsequent section.

In the course of the discussion we will present a novel pairing between differential
forms, the q-pairing, which yields a duality between the exterior differential and the
Hochschild boundary, which makes of the latter a codifferential.

In this formalism, the exterior products of the dq’s will describe precisely the opera-
tors for the area, volume, four-volume spanned by respectively 3, 4 or 5 points describing
independent events.

The spectrum of each of these operators, however, has to be defined relative to another
structure of *-Algebra, namely viewing the differential forms as operators affiliated to
the C*-Algebra direct sum of the C*-algebraic Z-module tensor powers of E .

A similar distinction of structures underlies the usual differential calculus.
The spectra of these operators will be fully computed in the last section. The results

confirm what might be anticipated on intuitive grounds, based on the uncertainty rela-
tions: if one space coordinate has a very small uncertainty a, then at least one other space
coordinate and the time coordinate must have an uncertainty b such that ab � 1; this
suggests that the space - space and the space - time areas ought to be bounded below by
1, as well as the spacetime volume; while the space 3-volume (the time component of the
vector representing the 3-volume operators) might be arbitrarily small, since, in the above
situation, the third space coordinate might well have an uncertainty of the same order a,
so that the product of the three space uncertainties has the same arbitrarily small order;
while the further product with the time uncertainty, of order b, is again at least of order
one. These arguments could be cast into a mathematical proof that the product of the four
spacetime uncertainties must be bounded below by order one as a consequence of (1.1).

It is worth noting that the restrictions we find here upon the spectra of the dis-
tance, area, and volume operators are just the minimal restrictions, imposed merely
by the underlying geometry of our model of quantum Spacetime. In a realistic theory,
the restrictions coming from dynamics together with the expected interconnections of
spacetime and fields [6] might well impose tighter limitations.

2. Independent Events and the Universal Differential Calculus

Let A be an associative algebra with unit over C, obtained e.g. by adding the unit to
an algebra A0. Any tensor power �n(A) := A⊗(n+1) of A over C can be viewed as an
A-bimodule (using the product in A on the first, resp. last factor), and the direct sum

�(A) =
∞⊕

n=0

�n(A)
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can be viewed as the A-bimodule tensor algebra,3 so that, in �(A),

(a0 ⊗ · · · ⊗ an) · (b0 ⊗ · · · ⊗ bm) = a0 ⊗ · · · ⊗ anb0 ⊗ · · · ⊗ bm . (2.6)

The exterior differential is defined on �(A) by

d(a0 ⊗ · · · ⊗ an) =
n+1∑

k=0

(−1)ka0 ⊗ · · · ⊗ ak−1 ⊗ I ⊗ ak ⊗ · · · ⊗ an . (2.7)

As usual d is a graded differential, i.e., if φ ∈ �n(A), ψ ∈ �(A), we have

d2 = 0;
d(φψ) = (dφ)ψ + (−1)nφdψ.

Note that A = �0(A) ⊂ �(A), and the d-stable subalgebra �(A) of �(A) generated
by A is the universal differential algebra (or the universal differential algebra of A0
following [8, §1.α]).

Observe that�(A) defined as above coincides with the usual notion of the universal
differential algebra

⊕
n≥0�

n(A) with �0(A) := A, and

�n(A) := �1(A)⊗A · · · ⊗A �
1(A) (n times).

For n = 1, 2, . . ., consider the multiplication maps mk : �n+1(A) → �n(A) which
linearly extend

mk(a0 ⊗ · · · ⊗ an) := a0 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an,

where k = 0, . . . , n − 1. Then �n(A) coincides with the intersection of the kernels of
all multiplication maps [9].

On�(A), we define an A-valued pairing, called the q-pairing, by linearly extending

〈a0 ⊗ · · · ⊗ an, b0 ⊗ · · · ⊗ bm〉 := δn,m a0b0 . . . anbn .

Observe that for any a, b ∈ A, ω ∈ �n(A), φ ∈ �m(A), we have

〈aω, φb〉 = a 〈ω, φ〉 b. (2.8)

Moreover,

〈da ω, db φ〉 = [a, b]〈ω, φ〉, (2.9)

〈ω da, φ db〉 = 〈ω, φ〉[a, b], (2.10)

for all a, b ∈ A, ω, φ ∈ �n(A). It follows that, when restricted to �(A), the q-pair-
ing has some additional properties: for any ai , bi , a, b ∈ A, and ω, dψ ∈ �n(A), and
φ, λ ∈ �m(A), we have

〈da1...dan, db1...dbn〉 = [a1, b1]...[an, bn], (2.11a)

〈ωφ, (dψ)λ〉 = 〈ω, dψ〉〈φ, λ〉, (2.11b)

〈λdψ, φω〉 = 〈λ, φ〉〈dψ,ω〉. (2.11c)

3 For closely related notions, as the free product of two algebras, see [7].



Quantum Geometry on Quantum Spacetime: Distance, Area and Volume Operators 573

The A-valued pairing 〈·, ·〉 turns into an interesting C - valued pairing by composition
with a trace τ . Namely, let τ be a complex valued linear map defined on a two sided
ideal J , such that

τ(ab) = τ(ba), a ∈ A, b ∈ J ;
τ is faithful if a in A fulfills τ(ab) = 0 for all b in J only if a = 0.

If�J (A) denotes the differential ideal in�(A) generated by J , we have that�J (A)
is the span of elements a0 ⊗ · · · ⊗ an, where a j ∈ J for at least one j , and

〈φ,ψ〉 ∈ J, φ ∈ �(A), ψ ∈ �J (A).

Let δ denote the Hochschild boundary defined by

δ(a0 ⊗ · · · ⊗ an) =
n−1∑

k=0

(−1)ka0 ⊗ · · · ⊗ ak−1 ⊗ akak+1 ⊗ ak+2 ⊗ · · · ⊗ an

+(−1)nana0 ⊗ · · · ⊗ an−1.

Then we have

Proposition 2.1. The Hochschild boundary is a Hodge dual of the differential for the
pairing τ(〈·, ·〉), namely

τ(〈δω, φ〉) = τ(〈ω, dφ〉), ω, φ ∈ �(A).
Proof. A routine computation. ��

Thus the associated Laplacian is (d + δ)2 = dδ + δd; this operator, and the asso-
ciated Hodge theory, has been studied by Cuntz and Quillen in the context of Cyclic
cohomology [7].

A similar conclusion as above might be drawn using, in place of a trace τ , the
universal trace, namely the quotient map of A modulo the vector subspace spanned by
the commutators [10].

The pairing discussed here reduces exactly to zero in case of a commutative algebra,
so it seems to describe an alternative to the classical formalism, possibly valid only in
the purely quantum picture, rather than a deformation of the classical calculus, which
reduces to it in the limit where the relevant parameter, as the Planck length, is neglected.
This property is however fulfilled, in the case of the model of Quantum Spacetime
described in the Introduction, by another pairing, that we will mention here below.

Note first that the above formalism can be applied to E , or to E embedded in its
multiplier algebra with centre Z; we will actually use it also for the affiliated unbounded
operators as q. But it will be important for our application to use everywhere in the
above formalism the Z -module tensor product, as anticipated in the Introduction, that
is d Q = 0. We will still write �n(ME) for the nth Z - module tensor product.

In the language of the universal differential calculus, the difference operator for coor-
dinates of two independent events as discussed in the previous section, i.e. q2 − q1 =
1⊗q−q⊗1 is given as dq. Observe that this order makes sense since on a (commutative)
vector space, q2 −q1 is the vector that connects q1 with q2, so it has the same sign as the
tangent vector of a straight curve from q1 to q2. Furthermore, the geometric operators
describing area, volume and spacetime volume on Quantum Spacetime spanned by the
independent points will be described by the exterior products of the dq’s, evaluated in
�(ME).
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In this setting, we can introduce other pairings (·, ·) on �(E) by choosing suitable
elements μ in �(E), and setting

(φ,ψ) = τ(〈φψ,μ〉)δn,m, φ ∈ �n(E), ψ ∈ �m(E). (2.12)

Using the product of differential forms in �(E), we now consider a particular choice
of μ which has a natural interpretation as a metric form. To this end, first observe that
the ν-component of spacetime derivations on Quantum Spacetime is given by iAd q̃ν ,
where q̃ν = (Q−1q)ν . Now consider

μ :=
∑

n

(dq̃[μ1 dq̃μ2 . . . dq̃μn ])(dq̃[μ1 dq̃μ2 . . . dq̃μn ]) (2.13)

with totally antisymmetrized products in each of the brackets and Lorentz contrac-
tion of upper and lower indices. As we shall see in Sect. 4, this metric operator, μ =∑

n(dq̃ ∧ · · · ∧ dq̃)(dq̃ ∧ · · · ∧ dq̃) in the notation adopted there, can be understood in
terms of distance, area and volume operators.

We then find for the corresponding pairing

(a0da1 . . . dan, db1 . . . dbnbn+1) = τ(a0∂[μ1a1 . . . ∂μn ]an∂
[μ1 b1 . . . ∂

μn ]bnbn+1),

(2.14)

which justifies the interpretation of μ as a metric form.

3. Connection and Parallel Transport

In order to introduce gauge theories on noncommutative spaces, one usually starts from
modules, interpreted as spaces of sections of a vector bundle with a noncommutative
base. Connections for the universal differential calculus can be introduced as covariant
derivatives, provided the module is projective.4 We also introduce a concept of parallel
transport, and by using the q-pairing, extended to module valued forms, we construct
a linear map from the algebra to the endomorphisms of the module. This map corre-
sponds to the transition from coordinates to covariant coordinates as introduced in [12]
in a somewhat different context. Similar to the discussion there, the curvature of this
map turns out to be related to the curvature of the connection. The map can be used
to construct gauge invariant local functionals (”local observables”) of the theory. The
exposition here extends an earlier publication [13].

Let H be a right module over A. We set

�n(A, H) := H ⊗A �
n(A) = H ⊗ A⊗n , (3.15)

which is a right A-module. For σ ∈ �n(A, H), ω ∈ �m(A), we have σ ⊗A ω ∈
�n+m(A, H), so

�(A, H) :=
∞⊕

n=0

�n(A, H)

4 We are grateful to Jochen Zahn for drawing our attention to [11, Prop 8.3].
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is a right �(A)-module with respect to the action σω := σ ⊗A ω. As on �n(A), we
have the multiplication maps mk : �n(A, H) → �n−1(A, H) for k = 0, . . . , n − 1,
given by linearly extending (σ ∈ H , a j ∈ A)

m0(σ ⊗
n⊗

i=1

ai ) := σa1 ⊗
n⊗

i=2

ai ,

mk(σ ⊗
n⊗

i=1

ai ) := σ ⊗ a1 ⊗ · · · ⊗ akak+1 ⊗ an for 1 ≤ k ≤ n − 1

The q-pairing has a straightforward extension to a pairing of�n(A, H)with�n(A)with
values in H , by

〈σ ⊗ a1 ⊗ · · ⊗an, b0 ⊗ · · ⊗bn〉 := σb0

n∏

i=1

ai bi . (3.16)

We now consider the set of H -valued (universal) n-forms

�n(A, H) := H ⊗A �
n(A) ,

which is a right A-module. For σ ∈ �n(A, H), ω ∈ �m(A), we have σ ⊗A ω ∈
�n+m(A, H), so

�(A, H) :=
∞⊕

n=0

�n(A, H)

is an �(A)-module with respect to the action σω := σ ⊗A ω. In particular, we can
identify �1(A, H)⊗A �

n(A) with �n+1(A, H).
Once again,�(A, H) is the submodule of�(A, H)which is given by the intersection

of the kernels of the multiplication maps mk .
A universal covariant differential (a universal connection) on H is a linear map

D : H → �1(A, H) (3.17)

satisfying the Leibniz rule

D(σa) = (Dσ)a + σda (3.18)

for all σ ∈ H , a ∈ A.
Observe that a right H -module must be projective in order to admit a universal con-

nection [11, Prop. 8.3].
If D is a universal connection, it has an extension (still denoted by D) to �(A, H),

which is uniquely fixed by the requirement

D(σα) := (Dσ)α + σdα

for all σ ∈ H , α ∈ �(A). Recall here that σα = σ⊗Aα, and that (Dσ)α = (Dσ)⊗Aα,
and that we have �m(A, H) ⊗A �

n(A) = �m+n(A, H). For σ ∈ �n(A, H), and
α ∈ �(A), we then have the graded Leibniz rule

D(σα) := (Dσ)α + (−1)nσdα. (3.19)
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We will now show that the map D2 : �(A, H) → �(A, H) is a right�(A)-module
homomorphism with D2 : �n(A, H) → �n+2(A, H).

To that end, let σ ∈ �n(A, H) and ψ ∈ �(A). Then from the graded Leibniz’ rule
and d2 = 0 we get

D2(σψ) = D
(
(Dσ)ψ + (−1)nσdψ

)

= (D2σ)ψ + (−1)n+1(Dσ)dψ + (−1)n(Dσ)dψ

= (D2σ)ψ. (3.20)

By analogy with differential geometry, F := D2 is called the curvature of the con-
nection D.

Making use of the inclusion of�n in�n and the q-pairing, we now introduce two new
concepts: the parallel transport associated to covariant derivative, and a right module
map which generalises the notion of the covariant coordinates introduced in [12].

Let S : H → �1(A, H) be a linear map, then we associate a linear map U : H →
�1(A, H) to S by

U (σ ) := Sσ + σ ⊗ 1. (3.21)

Given a universal connection D : H → �1(A, H), the linear map U : H →
�1(A, H) associated with D is called the parallel transport (along D).

A related notion of parallel transport has been introduced in the context of lattice
gauge theory [14,15]

Proposition 3.1. The linear map U associated to a linear map S : H → �1(A, H) in
the sense of (3.21) is a right module map if and only S satisfies the Leibniz rule w.r.t. the
universal calculus.

Observe that we do not assume that S takes values in �1(A, H).

Proof. Let S satisfy the Leibniz rule, then for σ ∈ H , and a ∈ A, we have

U (σa) = S(σa) + σa ⊗ 1 = (Sσ)a + σda + σa ⊗ 1

= (Uσ − σ ⊗ 1)a + σ(1 ⊗ a − a ⊗ 1) + σa ⊗ 1

= (Uσ)a.

On the other hand, let U be a right module map, then S(σ ) := U (σ ) − σ ⊗ 1 satisfies
the Leibniz rule w.r.t. the universal calculus,

S(σa) = U (σ )a − σa ⊗ 1 = (S(σ ) + σ ⊗ 1)a − σa ⊗ 1 = S(σ )a + σda.

��
If D is a universal connection, the parallel transport U along D is a right module map

(by the proposition above) and moreover satisfies m0 ◦ U = 1, since D takes values in
�1(A, H), so that m0 ◦ D = 0 whence m0 ◦ U (σ ) = m0(σ ⊗ 1) = σ . Conversely, if
U is a right module map that satisfies m0 ◦ U = 1, then S := U − · ⊗ 1 is a universal
connection.

It follows that the parallel transport splits the exact sequence

0 −→ �1(A, H) ↪→ H ⊗ A
m0−→ H −→ 0. (3.22)
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This splitting map was used to prove that a module admitting a universal connection
must be projective in [11, Prop. 8.3].

Using the notion of the parallel transport, we now extend D to all of �(A, H) in
the same spirit as in the definition of the exterior differential on �(A) in the previous
section.

Definition 3.2. On�n(A, H), the covariant differential is defined, as a linear map into
�n+1(A, H), by

Dσ ⊗
n⊗

i=1

ai = Uσ ⊗
n⊗

i=1

ai +
n+1∑

k=1

(−1)kσ ⊗
k−1⊗

i=1

ai ⊗ 1 ⊗
n⊗

i=k

ai . (3.23)

The map defined above satisfies the graded Leibniz rule,

D(σψ) = (Dσ)ψ + (−1)nσdψ , σ ∈ �n(A, H), ψ ∈ �(A). (3.24)

To see this, it suffices to prove the proposition for n = 0. Let ψ = ⊗m
i=0 ai . Then

σψ = σa0 ⊗ ⊗m
i=1 ai and

D(σψ) = Uσa0 ⊗
m⊗

i=1

ai +
m+1∑

k=1

(−1)kσa0 ⊗
k−1⊗

i=1

ai ⊗ 1 ⊗
m⊗

i=k

ai (3.25)

On the other hand,

(Dσ)ψ = (Uσ − σ ⊗ 1)ψ

= Uσa0 ⊗
m⊗

i=1

ai − σ ⊗
m⊗

i=0

ai ,

hence
D(σψ)− (Dσ)ψ = σdψ

which proves the assertion.
By the same argument used for proving (3.20), we see that D2:�(A, H)→�(A, H)

is a right �(A) module homomorphism.
We now turn to the generalisation of covariant coordinates.

Proposition 3.3. For any a ∈ A,

L(a)σ := σa − 〈Dσ, da〉 = σa − 〈Uσ, da〉 (3.26)

is a right module map L(a) : H → H.

Proof. By definition, we have L(a)σ ∈ H . To prove that L(a) is a right module homo-
morphism, we first note that for b ∈ A,

L(a)(σb) = σba − 〈(Dσ)b + σdb, da〉.
Now, according to the rules for the q-pairing, we get

〈(Dσ)b, da〉 = 〈Dσ, da〉b
and

〈σdb, da〉 = σ [b, a].
Hence L(a)(σb) = (L(a)σ )b. ��
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We now show that in the special case of the quantum spacetime algebra E , the L(qμ)’s
are the covariant coordinates of [12]. For a related discussion, see [16].

Consider the algebra as a module over itself. Pick a covariant derivative, Da =
da + Aa, where A is a 1-form. Then for the quantum coordinates qμ, we find

L(qμ)(a) = aqμ − 〈Da, dqμ〉 = aqμ − 〈da, dqμ〉 + 〈Aa, dqμ〉
= aqμ − [a, qμ] + 〈A, dqμ〉a = qμa + 〈A, dqμ〉a, (3.27)

where we have used the rules (2.11) for the q-pairing to pass from the first to the second
line. Now, if A = A(1)ν dqν A(2)ν (in Sweedler’s notation), we indeed find,

L(qμ)(a) = (qμ + i Qμν A(1)ν A(2)ν ) a (3.28)

by application of the rules (2.11).
It should be noted that L is not multiplicative. Instead we have:

Proposition 3.4. Let a, b,∈ A. Then the algebraic curvature

RL(a, b) := L(a)L(b)− L(ab) (3.29)

of L is related to the geometric curvature F = D2 by

RL(a, b)σ = 〈Fσ, dadb〉 (3.30)

for all σ ∈ H.

Proof. Let Dσ = ∑
σi dci . Then

L(b)σ = σb −
∑

σi 〈dci , db〉

and

L(a)L(b)σ = (σa − 〈Dσ, da〉)b −
∑

(σi a − 〈Dσi , da〉)〈dci , db〉.
We have

∑
σi a〈dci , db〉 = ∑

σi 〈dci , adb〉 = 〈Dσ, adb〉 and 〈Dσi , da〉〈dci , db〉 =
〈D2σ, dadb〉, hence

L(a)L(b)σ = L(ab)σ + 〈Fσ, dadb〉.
��

Gauge invariant quantities are now obtained in terms of a trace on the algebra of
endomorphisms of H . For instance, the evaluation of the a, b-component of the field
strength smeared with a “test function” represented by some suitable element c of A
may be defined as

TrL(c)RL(a, b). (3.31)

Therefore, we can interpret the above expressions as providing noncommutative ana-
logues of local gauge invariant quantities.



Quantum Geometry on Quantum Spacetime: Distance, Area and Volume Operators 579

4. The Spectrum of Geometric Operators on Quantum Spacetime

We will now use the concepts developed in the previous section to define volume, area
and distance operators associated with the coordinates qμ uniquely associated with the
quantum spacetime algebra E , as described in the Introduction. To define their spectra
we regard the homogeneous elements of the universal differential algebra as elements
of tensor powers (of Z-modules) of the quantum spacetime.

We will make use of the noncommutative analogue of the wedge product: For any
two tensors A = (Aμ1...μn ), B = (Bν1...νm )with entries from a noncommutative algebra,
we define the tensor

A ∧ B = (A[μ1...μn Bν1...νm ]), (4.32)

where the brackets denote total antisymmetrisation as usual. In the highest rank case, we
will consider, unless otherwise stated, the component (A ∧ B)0123 and denote it (also)
by A ∧ B.

4.1. The four-volume operator. We start by defining the 4-volume operator as an ele-
ment of �4(E),

V = dq ∧ dq ∧ dq ∧ dq = εμνρσdqμdqνdqρdqσ , (4.33)

so that the operator V is an element of the 5th tensor power. It is crucial to observe that,
while the product operation used in (4.33) is defined in �(E), the spectrum of V has to
be computed in the completed tensor product E⊗5, equipped with its own C*-algebra
structure. We interpret V as a function of 5 mutually commuting independent quantum
coordinates qμj = 1⊗ j−1 ⊗ qμ ⊗ 1⊗5− j−1, j = 1, . . . , 5, denoting the vertices of a 4
dimensional simplex.

We now represent V as an operator on the 5th tensor power of the representation
space of the standard representation and analyse its spectrum. The explicit form of V is

V = εμνρσ (q
μ
2 − qμ1 )(q

μ
3 − qμ2 )(q

μ
4 − qμ3 )(q

σ
5 − qσ4 ). (4.34)

We expand this product into a sum of products of coordinates,

V =
∑

±εμνρσqμj1qνj2qρj3qσj4 , (4.35)

where the sum runs over all choices of j1, . . . j4 ∈ {1, . . . , 5} with jk ∈ {k, k + 1},
and where the overall sign is (−1)

∑
k jk . We may decompose the sum into three parts

corresponding to the number of coincidences in the indices jk . The only term with 2
coincidences corresponds to

( j1, j2, j3, j4) = (2, 2, 4, 4). (4.36)

This term is

εμνρσqμ2 qν2 qρ4 qσ4 = 1

4
εμνρσ [qμ2 , qν2 ][qρ4 , qσ4 ]. (4.37)

We performed the tensor product over the centre, which means that the commutators
with different lower indices can be identified, and find

= −1

4
Q ∧ Q = −2η, (4.38)
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where η is the central element of the algebra M(E) of Quantum Spacetime describing
the orientation (with spectrum ±1).

The part A with no coincidences corresponds to the 5 subsets of {1, . . . , 5} with 4
elements,

A =
5∑

k=1

(−1)k Ak , Ak =
∧

j �=k

q j . (4.39)

The part with 1 coincidence corresponds to the 10 subsets of {1, . . . , 5} with 2 elements

B =
∑

i<k

(−1)i+k Bik , Bik = i
1

2
Q ∧ qi ∧ qk . (4.40)

We obtain the decomposition

V = A + B − 2η. (4.41)

Here A and η are selfadjoint and B skewadjoint. We now prove that A and B commute,
i.e. V is normal.

We have

[qμk , Bi j ] = Qμ· ∧ Q ∧ (δikq j − δ jkqi ). (4.42)

For any 4-vector a it holds

Qμ· ∧ Q ∧ a = ενλρσ QμνQλρaσ = 2(Qμν(∗Q)νσ )a
σ , (4.43)

where ∗Q denotes the Hodge dual of the commutator tensor (1.4b).
But by the relations defining quantum spacetime we have

Qμν(∗Q)νσ = 1

4
Qνρ(∗Q)νρδ

μ
σ = ηδμσ , (4.44)

hence we arrive at

[qμk , Bi j ] = η(δikqμj − δ jkqμi ). (4.45)

Thus adBi j acts on the coordinates qk as η times the i j-generator of the Lie algebra of
SO(5). It follows that adB generates a 1-parameter subgroup of SO(5). Now

adB(
5∑

k=1

qk) = η
∑

i< j

∑

k

(−1)i+ j (δikq j − δ jkqi ) = η
∑

i< j

(−1)i+ j (q j − qi ) = 0,

(4.46)

hence this 1-parameter subgroup is contained in the stabiliser N of the vector
(1, 1, 1, 1, 1)T in the fundamental representation of SO(5).
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Now A can be written in the form5

A =
∑

j

(−1) j
∧

i �= j

qi = det

⎛

⎜⎜⎜⎜⎜⎜⎝

1 q0
1 q1

1 q2
1 q3

1

1 q0
2 q1

2 q2
2 q3

2

1 q0
3 q1

3 q2
3 q3

3

1 q0
4 q1

4 q2
4 q3

4

1 q0
5 q1

5 q2
5 q3

5

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4.47)

If we multiply the matrix on the right-hand side from the left by a SO(5)-matrix R, the
left-hand side does not change. If R ∈ N , the right-hand side of (4.47) assumes the form

det

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 q ′0
1 q ′1

1 q ′2
1 q ′3

1

1 q ′0
2 q ′1

2 q ′2
2 q ′3

2

1 q ′0
3 q ′1

3 q ′2
3 q ′3

3

1 q ′0
4 q ′1

4 q ′2
4 q ′3

4

1 q ′0
5 q ′1

5 q ′2
5 q ′3

5

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (4.48)

where q ′
j = R j

kqk . Hence A commutes with all linear combinations of Bi j correspond-
ing to elements of the Lie algebra of N . In particular, A commutes with B.

Since V is invariant under proper Lorentz transformations and changes sign under
parity, we may evaluate it on a point σ ∈ 
 of the spectrum of Q. We choose the rep-
resentation (1.5), where σ = (�e, �m) with �e = �m = (1, 0, 0). We represent the operators
qμj on the Hilbert space H⊗5 ⊗ H⊗5 by

q0
k = Qk ⊗ I, (4.49a)

q1
k = Pk ⊗ I, (4.49b)

q2
k = I ⊗ Qk, (4.49c)

q3
k = I ⊗ Pk, (4.49d)

where the index k refers to the tensor factor in H⊗5.
In this representation, A assumes the form

A = det

⎛

⎜⎜⎜⎝

1 Q1 ⊗ I P1 ⊗ I I ⊗ Q1 I ⊗ P1
1 Q2 ⊗ I P2 ⊗ I I ⊗ Q2 I ⊗ P2
1 Q3 ⊗ I P3 ⊗ I I ⊗ Q3 I ⊗ P3
1 Q4 ⊗ I P4 ⊗ I I ⊗ Q4 I ⊗ P4
1 Q5 ⊗ I P5 ⊗ I I ⊗ Q5 I ⊗ P5

⎞

⎟⎟⎟⎠

= 1

4

5∑

i, j,k,l,m=1

εi jklm M jk ⊗ Mlm, (4.50)

where M jk = Q j Pk − Qk Pj is the generator of rotations in the ( jk)-plane of R
5.

We see this by developing first the determinant along the first column, in terms of the

5 Note that in our matrices here and in the following only entries on the same row may fail to commute
with each other; as a consequence, we can develop indifferently by rows or by columns.
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determinants of the 4 x 4 complementary minors, and then developing each of those in
terms of the determinants of their 2 x 2 minors from the two first columns times the
determinants of their 2 x 2 complementary minors.

We may now multiply the matrix in (4.50) from the left with an SO(5) matrix, such
that the column vector (1, 1, 1, 1, 1)T is mapped onto the vector (0, 0, 0, 0,

√
5)T . This

will not change the operator A. The evaluation of the determinant gives

A =
√

5

4

4∑

j,k,l,m=1

ε jklm M ′
jk ⊗ M ′

lm , (4.51)

where M ′
jk is the generator of rotations in the ( jk)-plane in the transformed coordinates,

j, k = 1, . . . , 4.
Let now �B = (M ′

23,M ′
31,M ′

12), �D = (M ′
14,M ′

24,M ′
34). Then �L± = 1

2 (
�B ± �D) are

mutually commuting generators of SU(2), in terms of which A can be written as

A = 2
√

5( �L+ ⊗ �L+ − �L− ⊗ �L−). (4.52)

The spectrum of A can now be obtained from an analysis of the representations of SO(4)
in terms of the representations of the two commuting SU(2)’s. They are labeled by pairs
of spins ( j+, j−) where j+ + j−, must be integer. We thus obtain

spec(A) ⊂ √
5Z. (4.53)

In view of (4.41) and the fact that B is skewadjoint and commutes with A, we find that
the spectrum of V has at least a distance

√
5 − 2 from the origin.

For a full determination of the spectrum of V we now determine the spectrum of B.
ηB is a representative of the Lie algebra element

b =

⎛

⎜⎜⎜⎝

0 −1 1 −1 1
1 0 −1 1 −1

−1 1 0 −1 1
1 −1 1 0 −1

−1 1 −1 1 1

⎞

⎟⎟⎟⎠ (4.54)

of the Lie algebra so(5) of SO(5) under the natural representation on H⊗5 ⊗ H⊗5. The
characteristic polynomial of b is

det(b − λ1) = (−λ)5 + 10(−λ)3 + 5(−λ) (4.55)

with the roots

λ1 = 0 , λ2,3 = ±i

√
5 − 2

√
5, λ4,5 = ±i

√
5 + 2

√
5. (4.56)

We conclude that B has pure point spectrum with eigenvalues of the form nλ2 + mλ4

with integers n and m. Since λ4/λ2 = √
5 + 2 is irrational, the eigenvalues are dense in

iR, hence spec(B) = iR.
The point spectrum of the volume operator V is thus contained in the set

S = ±2 + Z

√
5 + i

(
Z

√
5 − 2

√
5 + Z

√
5 + 2

√
5

)
. (4.57)
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It is easy to see that actually all points of S belong to the point spectrum of V . Namely,
the eigenvalue a of A is determined by fixing the eigenvalues for | �L± ⊗ I |2, |I ⊗ �L±|2
and | �L± ⊗ I + I ⊗ �L±|2. If we call the corresponding spin quantum numbers j±1 , j±2
and j±1 + j±2 − m± with m± = 0, 1, . . . , 2 min( j±1 , j±2 ), we obtain

a = √
5
(
( j+

1 + j+
2 − m+)( j+

1 + j+
2 − m+ + 1)− j+

1 ( j+
1 + 1)− j+

2 ( j+
2 + 1)

−( j−1 + j−2 − m−)( j−1 + j−2 − m− + 1) + j−1 ( j−1 + 1) + j−2 ( j−2 + 1)
)

= √
5
(
2 j+

1 j+
2 − 2m+( j+

1 + j+
2 ) + m+(m+ − 1)− 2 j−1 j−2

+2m−( j−1 + j−2 )− m−(m− − 1)
)
. (4.58)

We now choose j±2 = 1
2 . Then m± = 0, 1. We set m± = 0 and obtain a = √

5( j+
1 − j−1 ),

thus all integer multiples of
√

5 occur as eigenvalues of A.
In order to obtain the eigenvalues of B in a given eigenspace of A we determine

the decomposition of the matrix b into the linear combination b = α+b+ + α−b− of
two standard generators b+, b− of the two commuting su(2) sub-Lie-algebras in the
fundamental representation of so(4) in the 4 dimensional subspace of R

5 orthogonal to
(1, 1, 1, 1, 1). Up to a unitary transformation, these generators are given by

b± = 1

2
(M ′

23 ± M ′
14), (4.59)

and they satisfy the relations

(b±)2 = −1

4
, b+b− = b−b+ =: � ,�2 = 1. (4.60)

The coefficients α± can be determined from the characteristic equation

b4 + 10b2 + 5 = 0. (4.61)

Inserting the decomposition of b and using the fact that the even powers of b are linear
combinations of 1 and �, we find

α2
+ + α2− = 20 (4.62)

and

(α2
+ + α2−)2

16
+
α2

+α
2−

4
− 5

2
(α

2

+ + α2−) + 5 = 0 (4.63)

with the solution

α2± = 10 ± 2
√

5. (4.64)

In a representation of so(4) with spin quantum numbers ( j+, j−) with j+ + j− ∈ Z the
representative of b thus assumes the eigenvalues

i(k+α+ + k−α−) (4.65)

with k± = j± − l±, l± = 0, 1, . . . , 2 j±. In terms of the eigenvalues λ2 and λ4 of b (see
(4.56),

λ2,4 = i

√
5 ± 2

√
5 (4.66)
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using

i

2
(α+ ± α−) =

√
5 ± 2

√
5 (4.67)

we find

i(k+α+ + k−α−) = i(k+ + k−)λ4 + i(k+ − k−)λ2. (4.68)

We see that every linear combination of λ2 and λ4 with integer coefficients can be
obtained by an appropriate choice of j± and l±. We conclude that the set S in (4.57) is
the point spectrum of V .

The multiplicity of this point spectrum is uniformly infinite. For our operator com-
mutes with the group of joint translations of the five vertices, and the relevant represen-
tation of this group has no non zero finite dimensional subrepresentations.

4.2. The three-volume operators. The four components of the 3-volume operator can
be expressed, in the formalism used above, as

Vσ = εμνρσdqμdqνdqρ = Aσ + i Bσ , (4.69)

where

Aσ = 1

6
det

⎛

⎜⎜⎜⎜⎝

1 qμ1 qν1 qρ1
1 qμ2 qν2 qρ2
1 qμ3 qν3 qρ3
1 qμ4 qν4 qρ4

⎞

⎟⎟⎟⎟⎠
εμνρσ , (4.70a)

Bσ = 1

2
Qμν(qρ1 − qρ2 + qρ3 − qρ4 )εμνρσ

= q̃1σ − q̃2σ + q̃3σ − q̃4σ . (4.70b)

The operator Vσ is normal. For, by the Leibniz rule, the commutator of the real with
the imaginary part can be computed as 1/2 the sum of the determinants of the 4 by 4
matrices appearing in the last equation, where the 2nd, or the 3rd, or the 4th column are
replaced by the commutators of their entries with Bσ . Thus the first term, for instance,
will give

det

⎛

⎜⎜⎜⎜⎝

1 [qμ1 , Bσ ] qν1 qρ1
1 [qμ2 , Bσ ] qν2 qρ2
1 [qμ3 , Bσ ] qν3 qρ3
1 [qμ4 , Bσ ] qν4 qρ4

⎞

⎟⎟⎟⎟⎠
εμνρσ . (4.71)

For each σ the term [qμj , Bσ ]εμνρσ takes the form

(−1) j [qμj , q̃ jσ ]εμνρσ = (−1) jδμσ εμνρσ = 0.

Analogous computations can be performed for the other columns, so that our operator
is normal.
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It follows that, as operators affiliated to E⊗Z 4, our Vσ fulfill
∑

σ

V ∗
σ Vσ =

∑

σ

(A2
σ + B2

σ ) �
∑

σ

B2
σ . (4.72)

Now, the q̃s obey the relations

[q̃σ , q̃ρ] = i Q−1
σρ , (4.73)

so that we see by Eq. (4.70b) that the operators Bσ obey the commutation relations

[Bσ , Bρ] = i4Q−1
σρ . (4.74)

Now, (4.44) shows that Q−1 is related to Q by the exchange of �e and �m, up to a change
of sign; therefore the arguments of [1] can be repeated to give

∑

σ

B2
σ � 8.

We conclude that the square Euclidean length of the three-volume operator vector is
bounded below by 8 in Planck units.

It is worth noting that, however, the spectrum of the time component, namely of the
space 3-volume operator, is, as we will show now, the whole complex plane.

That operator can be expressed, in our formalism, as

d �q ∧ d �q ∧ d �q ≡ det

⎛

⎜⎜⎜⎜⎝

1 q1
1 q2

1 q3
1

1 q1
2 q2

2 q3
2

1 q1
3 q2

3 q3
3

1 q1
4 q2

4 q3
4

⎞

⎟⎟⎟⎟⎠
+ (i/2)

3∑

j=1

m j

4∑

k=1

(−1)k+1q j
k

= A0 + i B0. (4.75)

This is a normal operator, whose spectrum will contain the spectrum of the image in
any representation; it will then suffice to show that its spectrum is the whole complex
plane in the irreducible representation (1.5), where

q1 = P ⊗ I, q2 = I ⊗ Q, q3 = I ⊗ P, �m = (1, 0, 0); (4.76)

so that, in that representation, we have

d �q ∧ d �q ∧ d �q = det

⎛

⎜⎝

1 P1 ⊗ I I ⊗ Q1 I ⊗ P1
· · · ·
· · · ·
1 P4 ⊗ I I ⊗ Q4 I ⊗ P4

⎞

⎟⎠ + (i/2)
4∑

k=1

(−1)k+1 Pk ⊗ I.

(4.77)

Furthermore, if we develop the determinant in terms of the determinants of the 2 × 2
minors from the two first columns times the determinants of the complementary minors,
we find

d �q ∧ d �q ∧ d �q = (1/4)
∑

ε jklm(Pk − Pj )⊗ Ml,m + (i/2)
4∑

k=1

(−1)k+1 Pk ⊗ I.

(4.78)



586 D. Bahns, S. Doplicher, K. Fredenhagen, G. Piacitelli

This operator is affiliated to the tensor product of the commutative C*-Algebra gener-
ated by P1, . . . , P4 with all bounded operators. We can evaluate this operator at a point
p = (p1, . . . , p4) of the joint spectrum of P1, . . . , P4; re-expressing, as in the previous
subsection, the Ml,m in terms of the independent generators of two copies of SU (2), we
obtain

μI ⊗ L+
ξ+

+ λI ⊗ L−
ξ− + iηI, (4.79)

where ξ+, ξ− are two unit vectors in three space, and μ, λ, η are real numbers, all func-
tions of p, such that

μξ+ = (1/2)(p3− p2+ p4 − p1, p3 − p2+ p4 − p1, p4 − p3+ p2 − p1) ≡ (u, u, w);
λξ− = (1/2)(p4 − p3+ p2 − p1, p1 − p3+ p4 − p2, p1 − p3+ p4 − p2) ≡ (w, v, v);

η(p) = (1/2)
4∑

k=1

(−1)k+1 pk = −(1/2)(p4 − p3+ p2 − p1) = −w;

where, as p = (p1, . . . , p4) vary in R
4, (u, v, w) span R

3. Since the joint spectrum of
L+
ξ+
, L−

ξ− includes all pairs of relative integers, we have that the spectrum of our operators
includes the set

(2u2 + w2)1/2Z + (2v2 + w2)1/2Z − iw,

for all possible choices of the real numbers u, v, w. From these explicit expressions,
one sees that the last operator has a spectrum which, as p varies in R

4, spans the whole
complex plane, and is pure Lebesgue by (4.79).

4.3. The area operators. The area operators can be discussed separately as the space-
space area operator and the space-time area operator, respectively given by the square
roots of the sum of the square moduli of

dq j ∧ dqk;
dq j ∧ dq0;

now,

εl jkdq j dqk

= εl jk(I ⊗ q j − q j ⊗ I )(I ⊗ qk − qk ⊗ I )

= εl jk(I ⊗ q j ⊗ qk − q j ⊗ I ⊗ qk + q j ⊗ qk ⊗ I ) + iml I ⊗ I ⊗ I,

which is a normal operator since �m is central; the sum over l = 1, 2, 3 of the square
moduli is then bounded below by ( �m)2, which is bounded below by I due to the Quantum
Conditions.

Quite similarly,

dq j ∧ dq0 = (I ⊗ q j − q j ⊗ I )(I ⊗ q0 − q0 ⊗ I )

−(I ⊗ q0 − q0 ⊗ I )(I ⊗ q j − q j ⊗ I )

= (I ⊗ q j ⊗ q0 − q j ⊗ I ⊗ q0 + q j ⊗ q0 ⊗ I )

−(I ⊗ q0 ⊗ q j − q0 ⊗ I ⊗ q j + q0 ⊗ q j ⊗ I ) + ie j I ⊗ I ⊗ I
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are normal operators whose sum of the square moduli is bounded below by (�e)2, which
is bounded below by I due to the Quantum Conditions.

Note that here too normalcy of our operators depends in an essential way upon the
fact that the commutators of the coordinates are central.

Thus both the space-space and the space-time area operators are bounded below by
1 in Planck units.

∗ ∗ ∗
Finally we would like to point out that we might also have calculated the “dual” length,
area, 3- and 4-volume operators, with q replaced by q̃ = Q−1q. These yield the con-
tributions to the metric form discussed in Sect. 2. Note that in the case of the high-
est rank, we find that both V and its dual yield the same contribution to the form,
since

dq̃ ∧ dq̃ ∧ dq̃ ∧ dq̃ = ηdq ∧ dq ∧ dq ∧ dq, (4.80)

and η is the element of Z equal to plus or minus one on 
+ or 
− respectively. Hence
η disappears in the square.

5. Conclusions

We applied concepts of the universal differential calculus to define several geometric
entities on the model of quantum spacetime introduced in [1]. We showed that they can
be interpreted in terms of independent events, the underlying classical picture being a
characterisation of simplices by their vertices. This makes it possible to represent these
entities by operators on a Hilbert space, and we analysed their spectra.

We found that these operators are normal, and that their spectra have an interesting
structure, which matches with the general expectations described in the Introduction. Let
us comment on the fact that the spectra of these operators are complex. These operators
correspond to the volume of simplices in quantum spacetime, and since the vertices of
these simplexes are described by noncommuting operators, the permutation of two ver-
tices produces an additional commutator – which of course is skew-symmetric. Hence,
the full operator cannot be expected to be self-adjoint and its spectrum will not in general
be real. However, the operator’s modulus describes the analogue of the classical absolute
value of the volume, while the phase is the appropriate generalization of the sign which
in classical geometry describes the orientation. We now summarise our findings (where,
as above, we adopt Planck units):

1. In the Introduction, we discussed the Euclidean and Minkowskian Distance Oper-
ators between two independent events. We proved that, while the second has pure
Lebesgue spectrum, the first is bounded below by a constant of order 1, despite the
fact that the model is fully Lorentz invariant.

2. The area operator dqμ ∧ dqν can be split into a spatial and a spacetime part. For
both the sum of the absolute squares of the components is bounded below by the
unit operator.

3. The spectrum of the spatial volume, i.e. the time component of the vector describing
the 3-volume operator, is the full complex plane; the sum of the absolute squares of
the 4 components is, however, bounded below by 8.

4. The 4-volume operator has pure point spectrum

specpp(V ) = S = ±2 + Za+a− + i (Za+ + Za−) , (5.81)
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Fig. 1. Generation of the pure point spectrum of the 4-volume operator

where

a± =
√

5 ± 2
√

5,

so that, of course,

spec(V ) = specpp(V ) = ±2 + Z

√
5 + iR. (5.82)

Figure 1 shows the points in specpp(V ) with small real part, when the integer coef-
ficients of a+, a− have sum of the moduli not exceeding 3. The left and right sides
of each pair of close columns refers to the − and + sign in Eq. (5.81), and larger
dots refer to smaller absolute values of the coefficients.

The translates of S by real integers form a ring, so that finite tensor powers and
direct sums of copies of V fulfill

specpp(V ⊗ · · · ⊗ V ), specpp(V ⊕ · · · ⊕ V ) ⊂ specpp(V ) + Z.

The combinations of 1, a−, a+, a−a+ with rational coefficients form a field. Pres-
ently we have no interpretation of these facts.

We have seen that the appropriate mathematical frame to establish these results is a
combination of the universal differential calculus on one side and the relevant C*-alge-
braic structures on the other.

This mathematical frame allowed us to recognise the Hochschild boundary as a
Hodge dual of the absolute differential. This duality arises from a “quantum pairing”
which vanishes exactly in the commutative case. Nevertheless we used this pairing to
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introduce a metric which generalises the classical metric, and which would allow us
to define noncommutative analogues of an action. In its present form, however, this
approach is valid only in a flat background.

Moreover, applying this formalism to projective modules, we gave a definition of
parallel transport in terms of connections, and we introduced a linear homomorphism
from the algebra to the endomorphisms of our right module, whose algebraic curvature
is related to the geometric curvature. This makes it possible to introduce local gauge
invariant quantities; in the case of our quantum spacetime, this homomorphism maps
the coordinates to the covariant coordinates of [12].
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