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We investigate the behaviour of the recently proposed Quantum PageRank algorithm, in large complex
networks.We find that the algorithm is able to univocally reveal the underlying topology of the network and
to identify and order the most relevant nodes. Furthermore, it is capable to clearly highlight the structure of
secondary hubs and to resolve the degeneracy in importance of the low lying part of the list of rankings. The
quantum algorithm displays an increased stability with respect to a variation of the damping parameter,
present in the Google algorithm, and amore clearly pronounced power-law behaviour in the distribution of
importance, as compared to the classical algorithm.We test the performance and confirm the listed features
by applying it to real world examples from the WWW. Finally, we raise and partially address whether the
increased sensitivity of the quantum algorithm persists under coordinated attacks in scale-free and random
networks.

I
t is of great interest to explore and classify the large amount of information that is stored in huge complex
networks like the World Wide Web (WWW). A central problem of bringing order to classical information
stored in networks such as theWWW amounts to rank nodes containing such information according to their

relevance. A highly successful and nowadays widespread tool for this purpose is the PageRank algorithm1,2, which
lies at the core of Google’s ranking engine. In the foreseeable future where large-scale quantum networks have
become a reality, classifying the quantum information stored in these networks will become a priority. In this
context, the recently introduced quantum PageRank algorithm3 represents an important achievement as it
constitutes a quantisation of the classical PageRank protocol.When applied to small networks, this new quantum
algorithm has shown remarkable features. These include the possibility to produce a different hierarchy of the
nodes, paired with increased performance properties. In this paper we investigate the properties of the quantum
algorithm for networks which model large real-world complex systems, and also test the algorithm on real-world
data stemming from a part of the WWW.

Complex networks are more and more pervasive and essential in our everyday’s life. Consequently, network
science has become a very active field of research and considerable research is devoted to analyse and understand
networks like the World Wide Web, the Internet, networks associated to transportation and communication
systems and even biological and social networks. Startingwith the seminal papers byWatts and Strogatz on small-
world networks4 and by Barabási and Albert on scale-free networks5, researchers realised that most relevant
networks belong to a class known as small-world scale-free networks. They exhibit both strong local clustering, i.e.
nodes have many mutual neighbours, and a small average path length, while sharing another important char-
acteristic: the number of links of nodes usually obeys a power-law distribution, thus the network is scale-free.
Moreover, it has been found that many real networks, including the WWW, are also self-similar, see6. Such
properties can often be related to amodular and hierarchical structure and organisationwhich is essential for their
communication and dynamical processes7–9. On the other hand, this hierarchical structure could explain the
existence of nodes with a relatively large number of links (termed hubs), which play a critical role in the
information flow of the system. Hubs are also associated with a low average distance in the network. Several
review papers and books on complex networks are now available, to which we refer the reader interested in more
information on this topic10–12.

The networks considered in this paper are modelled by three classes of graphs: The first type are Erdős-Rényi
random graphs13. These graphs are constructed by connecting a given set of nodes with directed edges, each one
added according to a certain fixed probability. The second class of graphs are scale-free graphs which were
introduced by Barabási and Albert to model the WWW5,14. In this case, a graph can be dynamically formed by a
continuous addition of new vertices. In this growth process, the new nodes are connected preferentially to vertices
which already have a large degree. In this work, we consider a version of directed scale-free graphs15. The third
family of graphs we consider are hierarchical graphs. They are also scale-free but their clustering and degree
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distributions are negatively correlated, i.e. hubs have a smaller clus-
tering coefficient than nodes with a lower degree. It has been found
that hierarchical graphs constitute also a good model for the
WWW7,8.
In the next sections we apply the quantum Google algorithm

proposed in ref. 3 to representatives and statistical ensembles of
graphs falling into the aforementioned categories of graphs. Our
focus lies on directed scale-free networks, and also on hierarchical
graphs as they are goodmodels for theWWW. However, in addition
we also consider Erdős-Rényi random networks as a reference in
order to contrast the results which we find for the other network
classes.
In particular, two main fundamental questions will be addressed:

1. Does the quantum PageRank algorithm preserve the structure of
a scale-free network? In other words, does the ranking distri-
bution obtained by the quantum algorithm follow the same
pattern of node-importance as the underlying scale-free net-
work, and can it be clearly distinguished from the distribution
corresponding to a random Erdős-Rényi network? Comple-
mentary, for Erdős-Rényi networks we study the characteristic
behaviour of the quantum Page Rank algorithm applied to these
random networks and contrast it with the results for scale-free
networks.

2. To which extent does the quantumGoogle algorithm provide an
improvement on the information gained on some properties of
scale-free networks, as compared to the classical PageRank algo-
rithm?

Before outlining in more detail and answering these questions in
the main body of the paper, here we briefly summarise some of our
main results:

. We find that the quantum PageRank algorithm is able to detect to
which class of complex networks a particular instance of a graph
belongs to. More precisely, the classification results show that the
ranking of the nodes follows a similar distribution law than the
degrees of the network. In particular, for scale-free networks this
distribution remains scale-free under the application of the
quantum PageRank algorithm. This implies that the quantum
PageRank algorithm is expected to be robust with respect to ran-
dom external noise.

. Remarkably, the detection of the hubs for a network in the
class of scale-free networks with the QG algorithm is clearly
enhanced with respect to the classical PageRank algorithm. In
particular, the quantum PageRank algorithm is able to more
clearly reveal the existence of secondary hubs in scale-free
networks.

. We find that the quantum PageRank algorithm and the resulting
rankings are more stable than the classical PageRank protocol
with respect to the variation of the damping parameter a that
appears in the Google algorithm. The weak dependence on this
parameter, which inevitably has to be arbitrarily tuned in the
classical algorithm, provides the quantum algorithm with a
higher objectivity of the importance rankings.

. Our study shows that the quantum PageRank algorithm displays
for scale-free graphs a power law scaling behaviour of the impor-
tances of the nodes. Furthermore, this power law behaviour is
more favourable than the one the classical algorithm exhibits:
Indeed, a smoother behaviour is related to a more harmonious
distribution of importance among the nodes. This property
enables the algorithm to better uncover the structure of hubs in
the underlying scale-free graphs.

. Based on a numerical study of the quantum PageRank algorithm
applied to scale-free networks of mesoscopic size, we conjecture
that the enhanced sensitivity of the quantumPageRank algorithm
to structural details of the networks comes at the cost of an

increased sensitivity with respect to coordinated attacks of the
most important nodes in scale-free networks.

Motivated by the fact that in a near-future scenario a certain class
of quantum networks will be operative16–21, but not yet a scalable
quantum computer, in ref. 3 a class of quantum algorithms to rank
the nodes in a quantumnetworks was put forward. The algorithms in
this class must be compatible with the classical one. Indeed, existing
projects for large-scale quantum networks contemplate using the
backbone of existing communication networks, upgrading them to
include the quantum hardware in order to store and manipulate
quantum information. In particular, the directed structure of the
graph must be preserved, a feature which is crucial to measure a
node’s authority. An instance of this class of algorithmswas explicitly
constructed and analysed for graphs of small size and it was found to
serve as a valid quantum counterpart of Google’s PageRank algo-
rithm (for details see ref. 3).
To perform such a quantum task, it is important that the ranking

algorithm incorporates some of the quantum properties of the net-
work, such as quantum fluctuations, and that it is objective. Indeed,
the latter property earned much of Google’s PageRank’s success. For
the classical protocol it was achieved by embedding in the algorithm
the random walk of a surfer, who stochastically explores the WWW
based on simple sensible rules. Within the same line of reasoning,
we set up a quantum walk based algorithm that mimics the explora-
tion of nodes in a quantum network. In this setting the nodes are
represented by states of a Hilbert space, and the simple rules are
encoded in the quantum dynamics. In doing so the quantum nature
of the networks and the information stored is properly taken into
account. In the setting where a fully fledged large-scale quantum
computer is not yet available, a key property of the quantum algo-
rithm is that it can be efficiently simulated on a classical computer.
This means that it must belong to the computational complexity
class P. For the class of quantum ranking algorithms proposed in
ref. 3, this is guaranteed since the quantum PageRank algorithm is
based on a single particle quantum walk, which is classically effi-
ciently simulatable.
Furthermore, the fact that the quantum algorithm contains a

quantum walk at its heart allows one to analyse its dynamics from
a purely physical perspective: In our work, we analyse extensively the
localisation properties of the quantum walk contained in the algo-
rithm, by applying it to several classes of networks (see sect. IV) and
studying its effects on ranking. To achieve this, we introduce the new
concept of a quantum Inverse Participation Ratio (IPR). This is a
generalisation of the classical IPR. The IPR is the principal quantity
that has been used extensively to probe localisation properties in the
study of classical random walks.
Besides its application to future quantum networks, the Quantum

PageRank algorithm can also be regarded as a valuable ‘‘quantum
tool’’, which can be run efficiently on a classical computer, and which
constitutes an interesting alternative method to perform the ‘‘clas-
sical’’ task of ranking nodes in existing classical networks. Indeed,
embedding nontrivially the network connectivity structure in the
quantum dynamics, our protocol turns out to show several features
that improve those present in the classical algorithm.
Here we do not concentrate on possible quantum speedups and a

detailed resource analysis for the quantum algorithm, which lies in
the computational complexity P of efficiently simulatable algo-
rithms. Instead, we focus on the advantages that ranking nodes in
classical networks using the quantum algorithm displays. These
advantages include an increased resolution in the structure analysis
of scale-free graphs and an increased stability with respect to the
variation of the damping parameter.
Let us briefly review the quantum PageRank algorithm from an

operational point of view; a reader familiar with the quantum algo-
rithm can skip this part. More details of the construction and the
computational complexity class of the algorithm can be found in ref. 3.

www.nature.com/scientificreports
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This quantum PageRank algorithm satisfies all the properties of the
general requirements of the class of ranking algorithms proposed in
ref. 3 and represents a valid quantisation of Google’s PageRank algo-
rithm. A step-by-step illustration of the quantum algorithm is pre-
sented in fig. 1.
In Google PageRank’s algorithm the ranking is performed by set-

ting up a classical randomwalk on the network. The dynamics of the
walk are based on a transitionmatrix, known as the GooglematrixG.
The Google matrix is the weighted sum of two transition matrices.
The first contribution describes a walk, which is driven by amodified
connectivity matrix E where outgoing links to all other nodes have
been added to every node that has no outgoing link. The second part
accounts for a simple random hopping process, where every node it
connected to any other node of the graph. Accordingly, the Google
matrix G associated to a given graph is defined as

G : ~aEz
1{að Þ
N

1, ð1Þ

where 1 is a matrix with entries all set to 1 andN denotes the number
of nodes. The parameter a is known as the damping parameter.

The ranking of the nodes is performed according to the import-
ance values stored in the vector I, which quantify the probability to
find the walker on a specific node once the stationary probability
distribution I has been reached, i.e. when GI 5 I.
In the quantum PageRank algorithm the idea is to set up a

quantumwalk on the nodes of the network and to perform a ranking
of the nodes accordingly by measuring the probability of finding the
quantum walker on such nodes. The quantum walk is a quantisation
of the Markov chain underlying the classical PageRank algorithm
and is set up using Szegedy’s method22. In particular, this approach
allows one to take into account explicitly the connectivity structure
and the directedness of the network. The quantisation of the Markov
chain on theN-vertex graphwith transitionmatrixG is performed by
introducing a discrete-time quantum walk, which embeds the stoch-
astic N 3 N matrix G on the same graph.
The Hilbert space is the span of all vectors representing theN3N

(directed) edges of the graphs i.e. H~span ij i1 jj i2
�

, with i,

j[N|Ng~C
N
6C

N . The order of the spaces in the tensor product
is crucial because we are dealing with a directed graph. For each
vertex j of the graph one defines the quantum state vector,

Figure 1 | Schematic outline and summary of the quantum PageRank algorithm as proposed in3. (a) The internet can be thought of as a set of pages

(nodes of a graph) connected by directed hyperlinks (edges of the graph). The classical (quantum) PageRank algorithm can be regarded as a single walker

performing a directed classical (quantum) randomwalk on the graph. (b) The connectivity structure of the graph, captured by the connectivity matrix C,

is of paramount importance to perform the ranking of the importance of pages both in the classical and the quantum case. In the classical (quantum) case

the walker performs an incoherent (coherent) walk according to a combination of two hopping processes along the graph. The dynamics is governed by

the ‘‘Google matrix’’ G, which describes the dynamics as a combination of contributions: (i) the first corresponds to a hopping according to a (patched)

connectivity matrix E of the graph (parameter a, see main text and3 for more details). (ii) The second contribution represents a completely random

hopping process (parameter 12 a), where each node is connected to all other nodes of the graph. (c) In the quantum PageRank algorithm the Hilbert

space is spanned by the set of directed links between all pairs i and j of nodes of the graph, as tensor product states | iæ1 | jæ2. The initial state |y0æ as well as the

coherent discrete time evolution operator U2 for the directed quantum walk (see main text) are determined by the Google matrix G. (d) Quantum

fluctuations can lead to a reversal of the order of importances of pages at certain instances of (discrete) time (so-called instantaneous hierarchy non

preserving property), as well as on the average over longer times (average hierarchy non preserving property). The latter effect is reflected by changes in the

ordered list of pages (nodes) when the importance of pages according to the quantumPageRank algorithm is compared to its classical counterpart, the list

of classical PageRank values. Red, blue and green curves in (d) show the instantaneous quantum PageRank of nodes # 4, 5 and 7 of the seven-node-graph

shown in (c), which was explored in Ref. 3, and leads to the quantum PageRank and classical PageRank lists displayed in (e).

www.nature.com/scientificreports
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jj i1 kj i2 ,Vj ð2Þ

This state is a weighted superposition of the quantum states repre-
senting the edges, which are outgoing from the jth vertex, andwith the
weights given by the (square root of the) Google matrix G.
The quantum PageRank algorithm corresponds then to a quantum

walk starting from the initial state y0j i~ 1
ffiffiffiffi

N
p

X

N

i~1

yj

�

�

�

E

. Its dynamics

is governed by the quantum evolution operator U : ~S 2P{ð Þ
where S is the swap operator i.e. S~

P

N
j,k~1 jj i kj i kh j jh j and

P : ~
P

N
j~1 yj

�

�

�

E

yj

D
�

�

�. The Hilbert space is N2 dimensional, how-

ever it can be shown that the dynamics takes place in an invariant
subspace which is at most 2N dimensional3. In practice, this allows
one to numerically treat networks with a larger number of nodes.
The ranking of the nodes in the quantum network can be done

based on the instantaneous quantum PageRank:

Iq Pi,tð Þ~ y0h jU{2t ij i2 ih jU2t y0j i: ð3Þ

The average quantum PageRank is defined as the time-average of
Iq(Pi, t),

Iq Pið Þ
� �

: ~
1

T

X

T{1

t~0

Iq Pi,tð Þ: ð4Þ

Whereas the latter quantity can be shown to converge for T suffi-
ciently large and will be used in the following when we refer to the
quantum PageRank of a graph, the Instantaneous Quantum
PageRank does not converge in time23.
The exploratory study in ref. 3 revealed nontrivial features of the

quantum PageRank algorithm: these include the effect of instantaneous
outperformance, i.e. the change of the hierarchy of nodes at certain
instances of time (as measured by the instantaneous quantum
PageRank). Furthermore, the violation of the hierarchy of nodes as
predicted by the classical algorithm, was observed for the quantum
PageRank, when the time-averaged importance values were studied
(average quantum PageRank). These properties motivate us to invest-
igate the persistence of these novel effects on larger complex networks.
This paper is organised as follows: in the next chapter we present

an analysis on graphs of the scale-free type for networks with hun-
dreds of nodes, and in particular for a real-world network.We extend
the analysis of the quantumPageRank algorithmonErdős-Rényi and
hierarchical graphs. From this we conclude that the behaviour of the
quantum PageRank displays features which are characteristic for
each type of complex networks. Moreover, the behaviour of the
quantum algorithm is different from the classical PR algorithm, as
in the quantum scenario the classical ranking of nodes can change
due to quantum fluctuations. The new quantum dynamics incorpo-
rated in the task of ranking also raises other important questions on
the properties of the quantum walk embedded in the algorithm such
as the localisation phenomenon of the walker on the network. In the
next chapter we analyse this issue and the stability of the rankingwith
respect to the noise (or damping) parameter a. We address the ques-
tion whether the power law behaviour displayed by the classical
PageRanks is preserved by the quantised algorithm and compute
the corresponding scaling exponent. We partially address the ques-
tion how sensitive the quantum PageRank algorithm is under coor-
dinated attacks in scale-free graphs. In theDiscussion we present our
conclusions and discuss possible future work.

Results
Quantum pagerank on scale-free networks. In the following, we
will analyse the quantum PageRank algorithm applied to complex
networks. We will in particular focus on random scale-free networks

because of their widespread appearance and relevance in real-world
applications. In the next section we will also deal with the important
cases of random (Erdős-Rényi) and hierarchical networks in order to
check whether the quantum PageRank algorithm preserves the
characteristics of different classes of complex networks. Moreover,
the study of random and hierarchical networks results to be useful to
confront its features with scale-free networks.
Random scale-free graphs24,25 are ubiquitous in nature. They

appear as good models of the World Wide Web26, airline networks27

ormetabolic networks28,29, just to name a few. Networks belonging to
this class display a small fraction of hubs, i.e. nodes with a high
connectivity. This characteristic property follows from the degree
distribution P(k) that shows a scale-free behaviour, P(k) < k2c.
Scale-free networks exhibit intriguing properties which have been
studied extensively, such as robustness against uncoordinated
attacks30–32, good navigability33–35 and controllability36–38.
One of the first models proposed to describe scale-free networks is

the preferential attachment model5,14. In this model links are pref-
erentially formed to already highly connected nodes. A random
directed scale-free model for the WWW was introduced in39 and a
generalisation appeared in15. To produce the characteristic power-
law degree distribution of degrees, the models consider two main
mechanisms: growth and preferential attachment. A graph is dynam-
ically formed by a continuous addition of new vertices and each new
vertex is joined to several existing vertices, which are selected with a
probability that is proportional to their in and out degrees. The
generalised model allows also the introduction of directed edges
between two already existing nodes. In this work we study the
quantum (and classical) Page Rank algorithm on graphs created with
this model as implemented in NetworkX40.
Let us now discuss results from the application of the quantum

PageRank to complex networks of the scale-free type with sizes that
range up to hundreds of nodes. We find that the algorithm clearly
identifies that the networks are of scale-free type and is able to point
out themost important hubs. This is a task already well performed by
the classical PageRank. However, the quantum PageRank algorithm
has improved ranking capabilities in the sense that is does not con-
centrate all the importance on these few nodes. Indeed, it is capable to
unveil the structure of the graph in more detail as it also highlights
the secondary hubs of the scale-free networks (see figures 2, 3, 4 and
captions therein for examples, as well as the appendix for a statistical
analysis of an ensemble of random graphs).
Furthermore, we find that the hierarchy as predicted by the clas-

sical PageRank is not preserved. This is a property already found in3

for smaller networks. From the present study we are able to clearly
conclude that far from being an artefact of choosing small networks,
this results are a generic feature of the quantum PageRank algorithm.
We also found that the quantum PageRank is able to lift the degen-
eracy of the nodes that have a lower importance. This feature can be
seen clearly in figure 5 where we analyse a subgraph of the WWW
obtained by exploring pages linking to www.epa.gov and available
from Pajek41.

Quantum pagerank on Erdős-Rényi networks and hierarchical
networks. Erdős-rényi networks. In this section we will briefly
introduce the Erdős-Rényi class of random networks and analyse
the performance of the quantum PageRank algorithm applied to
them. This class of graphs was introduced by Paul Erdős and
Alfred Rényi more than fifty years ago13,42,43, and is of particular
importance in the context of graph theory. There are different
equivalent methods to describe this family. To allow an easy
computer implementation we use the following procedure: a graph
of order N can be constructed by connecting N vertices randomly by
adding edges with a given probability, which is independent from
other edges. We use directed versions of the graphs created with
NetworkX40.

www.nature.com/scientificreports
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The graphs falling into this class follow a Poissonian degree dis-
tribution, i.e., P(k) < Ækæk exp (2Ækæ)/k! where Ækæ is the average
degree. Thus, most nodes have a degree not very different from the
average and therefore the graphs do not display relevant hubs when
applying the PageRank algorithm. We have performed a numerical
study on graphs of the Erdős-Rényi type, which leads to two principal
conclusions: i/ Applied to networks of the Erdős-Rényi class, the
quantum PageRank algorithm shows a characteristic behaviour: in
particular, the absence of hubs is reflected at the quantum level by the
structureless importance distribution. ii/ However, the quantum
PageRank algorithm leads to changes in the ranking of nodes as
predicted by the classical algorithm (see figure 6).

Hierarchical networks. Some relevant real-life networks which
describe technological and biological systems, such as the WWW,
some electronic circuits and protein or metabolic networks are usu-
ally scale-free but have also a modular structure6,44. That is, they are
composed of modules that group different sets of nodes. These mod-
ules can be distinguished by the fact that nodes belonging to the same
module are usually strongly connected. Conversely, modules are
relatively weakly connected among them. Thus, even when the net-
works are scale-free, their hubs use to have a low clustering as they
joint different modules. Several authors claim that a signature for a
hierarchical network is that, different from the small-world scale-free
characteristics, the scaling of the clustering of the vertices of the
graph with their degree follows a Ci / 1/ki scaling behaviour

7,8.
Hierarchical network models usually are constructed based on

recursive rules. For example, one can start from a complete graph
Kn and connect to a selected root node n2 1 replicas ofKn. Next, n2
1 replicas of the new whole structure are added to this root. At this
step the graph will have n3 vertices. The process continues until the
desired graph order is reached. There are many variations for these
hierarchical networks, depending on the initial graph, the introduc-
tion of extra edges among the different copies of the complete sub-
graphs, etc. However, once the starting graph is given, these networks

do not have adjustable parameters and their main characteristics are
fixed.
In45, Barabási et al. introduced a simple hierarchical family of

networks and showed that it had a small-world scale-free nature.
The model was generalised in7 and further studied in46. For our
analysis we have designed a directed version based on these graphs,
see figure 7b. In this case the starting point of the construction
process is a directed 3-cycle.
Another interesting family of hierarchical directed graphs has

been obtained by giving directions to the edges of the construction
published in47,48, see figure 7a. The graphs are in this case of small-
world type, self-similar, unclustered and outerplanar (a planar graph
is called outerplanar if it has an embedding where all vertices lie on
the boundary of the exterior face). However, they are not scale-free,
but follow an exponential distribution. It has been shown that many
algorithms which are NP-complete for general graphs perform poly-
nomially in outerplanar graphs49.
We have performed a numerical study on hierarchical networks

using the quantumPageRank algorithm.We analysed two families of
graphs (see figure 7 for the construction) and we find that the hier-
archy (similarly to what was found in ref. 3 for the binary tree) is
preserved by the average PageRanks. Interestingly, though, the
quantum PageRank is able to highlight the connectivity structure
of the nodes that belong to the same level in the hierarchical con-
struction (see figures 8 and 9). We observe that the difference in
importance between nodes belonging to the same hierarchical level
but with different local connectivity is amplified when calculated
using the quantum PageRank algorithm.

Figure 3 | Scale-free graph with 128 nodes (see text in the section entitled
Results) and a comparison of the importance of the nodes when evaluated
with the quantum and classical PageRank. The classical PageRank shows a
very sharp concentration of importance on the three main hubs, nodes 0, 1

and 2. One can see from the comparison of the predictions of the two

algorithms the relative emergence of secondary hubs (nodes 8, 9, 10, 20 and

21) when the importance is calculated with the quantum PageRank (see

text in the section entitled Results).

Figure 2 | Scale-free graph with 64 nodes and the comparison of the
importance of the nodes when evaluated with the quantum and classical
PageRank. The classical PageRank shows a very sharp concentration of

importance on the three main hubs, nodes 0, 1 and 2. The quantum

PageRank algorithm is able to better distinguish and to highlight the

secondary hubs (in this graph nodes: 12 and 25) whose importance rises

with respect to the primary hubs. (see text in the section entitled Results).

www.nature.com/scientificreports
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Localisation-delocalisation transition. We have seen in the
previous sections that the quantum PageRank algorithm is able to
distinguish between networks of Erdös-Rényi and scale-free type. In
particular, the quantum algorithm, as compared to the classical one,
is also able to highlight more clearly the secondary hubs in the case of
scale-free networks. Furthermore, regarding the classical and
quantum algorithms as walks on a network, a necessary condition
that few nodes (the hubs) account for the majority of the importance
is that the walker is localised. This means that the number of nodes

Figure 5 | Scale-free graph with 32 nodes and the comparison of the
importance of the nodes when evaluated with the quantum and classical
PageRank. The classical PageRank shows a very sharp concentration of

importance on the three main hubs, nodes 0, 1 and 2. One can see from the

comparison of the predictions of the two algorithms the relative emergence

of secondary hubs (nodes 6, 7 and 14) when the importance is calculated

with the quantum PageRank (see text in the section entitled Results).

Figure 6 | Quantum and classical PageRank in random (Erdős-Rényi)
networks. Subfigure a shows a prototypical example of a random network

of 64 nodes clearly indicating the absence of hubs in this class. (b) A

comparison of the importance as obtained from the quantum and classical

PageRank applied to a 64 nodes random graph. The importances

calculated using the quantum PageRank algorithm display a change in

hierarchy (see text in the section entitled Results).

Figure 4 | Comparison of the quantum and classical PageRank on a real network originating from the hyperlink structure of www.epa.gov41. One can
clearly see how the hubs in the classical algorithm tend to concentrate nearly all the importance. The insets show that the quantum algorithm is capable to

lift the degeneracy of nodes in the the low part of the list (see text in the section entitled Results).

www.nature.com/scientificreports
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with a significant probability to find the walker on them is negligible
with respect to the number of nodes in the network.
In this section we will, therefore, study the localisation properties

of the walker on different networks of Erdős-Rényi and scale-free
type. We will first briefly review the case of the walker in the classical
PageRank algorithm. Then, we explore which phases the quantum
walker chooses in the case of the quantum PageRank as a function of
the structural properties of the underlying network. In order to mea-
sure the localisation phenomenon we will employ the Inverse
Participation Ratio (IPR). This concept was introduced in the context
of condensed matter and, more specifically, to study the Anderson
localisation phenomenon in disordered systems (see for exam-
ple50). It is particularly useful to study localisation-delocalisation
transitions.
The IPR jcl, for the case of a classical walker, is defined as:

jcl : ~

X

N

i~1

Pr X~ið Þ½ �2r, ð5Þ

where r. 0 is an integer parameter which can be freely chosen and is
fixed.
If we consider a classical walker on a network, we can have two

extreme behaviours. The first one corresponds to the case where the
walker is completely delocalised, i.e., the probability distribution of
finding it on a site is uniform. Therefore, introducing a random
variable Xwhose realisations are the sites of the lattice, one can write
Pr(X 5 i) 5 1/N, ;i. The other limiting case is that the walker is
localised only on one site. In this case the probability of finding the
walker is a Kronecker delta, that is Pr(X 5 i) 5 dij, if the walker is
localised on say, site j. The IPR (eq. (5)) yields for the two limiting
behaviours:

jcl :~
1 If the walker is localised

N1{2r If the walker is delocaliseded:

�

ð6Þ

Thus the IPR, displaying respectively, a power law or a constant
behaviour as a function of the number of nodes, is an appropriate
witness of the localisation of the walker over the graph.
One can rewrite the IPR jcl as jcl~N{t2r . In order to study the

localisation-delocalisation transition, it is useful to introduce the
normalised anomalous dimension D2r:

t2r : ~ 2r{1ð ÞzD2r, ð7Þ

This quantity interpolates between the two phases when the system
undergoes a transition from a localised regime (where D2r5 12 2r)
to a delocalised one (where D2r 5 0).
In ref. 51 the localisation-delocalisation transition for a classical

walker performing a random walk (with transition matrix given in
(1)) was characterised by studying its dependence on the damping
parameter a where 0, a, 1. This study is important to understand
at a deeper level the classical PageRank algorithm. Indeed, as we have
anticipated, in the case of a scale-free graph observing localisation
over a broad range of values for a is a necessary condition for the
algorithm, quantum or classical, to perform well the task of ranking
the nodes. The PageRank vector I, is given by:

GI~I ð8Þ

and represents the stationary probability distribution of the walker
on the network. In ref. 51 it was found that delocalisation is absent for
a very large range of values of a ranging from 0.4 to 1.

Figure 7 | Construction of hierarchical networks. (a) The family of

outerplanar directed hierarchical graphs. Note that the generation labeled

by n has 2n11 nodes.We consider graphs of the generations with n5 4, 5, 6.

(b) The family of directed hierarchical graphs. In this case the generation

labeled by n has 3n nodes. We consider graphs of the generations with n5

2, 3, 4.
Figure 8 | Comparison of the quantum and classical PageRank for the
family of hierarchical graphs described in the text (see the section entitled
Results and figure 7b for the construction). We consider graphs with n5

2, 3, 4 (see subfigures a, b and c respectively). We find that the quantum

PageRank preserves the hierarchy of the nodes but in addition it is able to

highlight the connectivity structure of the nodes belonging to the same

level. Indeed, in subfigure a, for example, the difference in importance

between nodes 2 and 3 and 5 and 6 is amplified when calculated using the

quantum algorithm.
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This is quite natural because for the range of values of the damping
factor a stated above, the second term, corresponding to random
hopping in the Google matrix (see eq. (1)) is suppressed. This yields
the localisation effect. On the other hand, for a close to 0, it was found
that the walker is delocalised over the network. This can be under-
stood by remembering that indeed for a close to 0 the second term in
the Googlematrix is dominant. In this case, the walker is only subject
to random uniform hopping between any pair of nodes. This leads to
a trivial phenomenon of delocalisation of the walker over the whole
network.
Let us now focus on the localisation phenomenon in the case of the

quantum walk on a network according to the quantum PageRank
protocol. In order to carry out the analysis we need to generalise the
definition of the IPR given above reinterpreting the notion of prob-
ability of finding a walker on a node when dealing with the quantum
PageRank. In doing so, we will choose as a guiding principle the
interpretation of the average quantum PageRank of a node (see eq.
(4)) as the probability of finding the quantum walker on a particular
node. Therefore, we will employ the definition given in eq. (4) that
can be rewritten as:

Iq Pið Þ
� �

~ Tr1Tr2 U2tr 0ð ÞU{2tM
2ð Þ
i

� 	D E

t
, ð9Þ

Here,M
2ð Þ
i is the (strong)measurement operator on the second space

(indexing the nodes where the edges point to, see the introduction),

i.e. M
2ð Þ
i ~ ij i2 ih j.

We are now in a position to define the IPR j in the case of a
quantum walk as

j :~

X

N

i~1

Iq Pið Þ
� �2r

: ð10Þ

Also in the case of a quantumwalkwe have j~N{t2r and it is evident
that one can extract the localisation phase of a walker from the
scaling exponent of the IPR as a function of the number of nodes
N. Indeed, from equation

log j* 1{2r{D2rð Þ log N ð11Þ

it is clear that the witness of the localisation lies in the slope of the
graph of the aforementioned log-log plot.
We consider two kinds of networks, of the scale-free and of the

Erdős-Rényi type. In order to study the localisation phenomenon we
generated networks with different numbers of nodes belonging to the
two aforementioned classes. We then calculate the IPR (in the fol-
lowing we will fix the parameter r 5 1) in order to understand
whether for a5 0.85 the quantumwalker was localised or delocalised
on the network.
We find that the IPR in the case of the class of scale-free networks

does not vary appreciably (see fig. 10) signalling localisation of the
walker on the graph. Notice however that also in ref. 51 for these
values of a a similar behaviour was found.
We have analysed also the graphs in the Erdős-Rényi class per-

forming the same steps as above. Our study shows that, albeit the fact
that the networks are random graphs and that for this value of the
damping parameter a the walk is strongly influenced by the topology
of the network, the quantumwalker is delocalised in this case. Indeed
it can be seen from figure 10 that the behaviour of the logarithm of
the IPR is linear in the logarithm of the number of nodes. This is a
clear witness of the delocalisation phenomenon.
This behaviour is remarkable for two reasons. The first reason is

that in the classical random walk case localisation of the walker was
found51. The second reason is that albeit randomness being expected
to give rise to localisation, in the case of graphs of Erdős-Rényi type,
our study shows that the opposite is true.
We conclude that the scale-free graph seems to favour a localisa-

tion phase in both the random and the quantumwalks, which under-
lie the classical and quantumPageRank algorithm. This result in the
latter case was obtained with a value of a 5 0.85. This is consistent
with a good ranking of nodes in a network. Indeed, in order to unveil
the main hubs the random or quantum walk must be able to localise
the walkers on few important nodes. Interestingly, instead, the
Erdős-Rényi graphs seem to prefer a delocalised phase albeit the
networks being grown randomly. Both for the classical and the
quantum PageRank one finds delocalisation for this class of graphs.
This can be correlated with the absence of a small number of main
hubs in this class of networks.
For the classical PageRank the localisation-delocalisation trans-

ition was characterised as a function of the damping parameter a. On
the same footing, it is important to understand how the quantum
PageRank depends on the value of a. We will study this dependence
in the next section.

Stability of the quantum Google algorithm with respect to the
noise parameter. In the previous section we have analysed the
localisation properties of the quantum PageRank algorithm. We
have studied this phenomenon having fixed the damping para-
meter using the value a 5 0.85. Here, we will study how the
quantum PageRank varies with respect to the variation of a.
The stability of the quantum PageRank is an important issue to

consider because the damping parameter is arbitrarily tuned to a
specific value. Indeed there is no a priori argument to fix the value
of a. The value of 0.85 was originally chosen in the classical PageRank

Figure 9 | Comparison of the quantum and classical PageRank for the
family of hierarchical graph described in the text (see section entitled
Results and figure 7a for the construction). We considered graphs with n

5 4, 5, 6 (see subfigures a,b and c respectively). Also in this case we find that

the quantum PageRank preserves the hierarchy of the nodes highlights

moreover the connectivity structure of the nodes belonging to the same

level.
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protocol tomimic the behaviour of a surfer (or a randomwalker) that
randomly hops to any other page once every seven times. Only a
posteriori it turned out that this is indeed a sensible choice given that
the network is of small-world type, being in fact a crucial ingredient
for the PageRank algorithm to yield reasonable ranking results. In
view of the ad-hoc choice of the precise of the parameter a, it is a
desirable property that the output of the algorithm is stable, i.e. the
ranking vary slowly with respect to the variation of the damping
parameter. A question that was addressed in the computer science
community is to quantify how susceptible to changes in this para-
meter the classical PageRank algorithm is. It was found that the effect
of this parameter on ranking is large and that two rankings obtained
by running the algorithm using different values of this parameter can
be very different51.
To tackle this problem in the quantum case we will make use of

two quantities. The first one is related to the quantum fidelity (see
e.g.52–54) that provides a way to measure the distance between two
quantum states. The second quantity that we will use is the classical
fidelity. It is employed for the same task when dealing with probabil-
ity distributions.
Since in the classing ranking algorithm the PageRank vectors are

classical probability distributions one can measure the distance
between two PageRank vectors, calculated using different values of
the damping parameter, with the classical fidelity. The latter can be
written as:

f a,a’ð Þ~
X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I Pj,a

 �

I Pj,a’

 �

q

ð12Þ

In ref. 51 it was found that there is a plateau around (a, a9)< (0.5, 0.5)
and that the fidelity f(a, a9 5 0.85) does not display a significant

variation for a< 0.85. In particular, one can observe that the fidelity
varies less than 5% for ag [0.8, 0.9], thus implying that the classical
PageRank is rather robust against perturbations.
The quantum fidelity is a quantity that measures the distance of

two quantum states.

F s,rð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1=2sr1=2
p

ð13Þ

In the case of commuting density matrices it reduces to the classical
fidelity.
Another valid measure of the distance of two quantum states is the

trace distance:

D s,rð Þ~ 1

2
tr r{sj j ð14Þ

where jtj denotes the square root of the (positive) operator t{t.
The fidelity and the trace distance turn out to be equivalent mea-

sures of distance. Indeed, if the fidelity of quantum states is near to
one then their trace distance is close to zero and viceversa (this can be
seen from a general formula that relates the twomeasures of distance:

1{F s,rð ÞƒD s,rð Þƒ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{F s,rð Þ2
q

, see e.g.53 chap. 9). Therefore,
either can be used for our purpose of measuring the stability of the
quantum PageRanks and the choice is a mere matter of convenience.
To tackle the problem of stability in the case of the quantum
PageRank we will use the trace distance and the classical fidelity.
Let us rewrite explicitly the definition of the averaged quantum

PageRank ÆIq(Pi, a)æ by adding the dependence on a as:

Iq Pi,að Þ
� �

~ Tr1 Tr2 r12a 2tð ÞM 2ð Þ
i

h i� 	D E

t
ð15Þ

The a-dependence enters in the initial state and in the evolu-

tion operator of the walk. Here, r12a 2tð Þ~U2t
a r

12
a 0ð ÞU{2t

a and for

Figure 10 | The IPR (for r 5 1) for networks of different classes, using the classical and the quantum walk, plotted versus the number of nodes in
a log-log scale. (a) The IPR using the quantum walk in the case of a scale-free graph and b) an Erdős-Rényi graph. (c) The IPR using the classical walk in

the case of an Erdős-Rényi graph. The value of a is set to 0.85 in all cases. In order to obtain the data we created using NetworkX 4 networks in the same

class and with the same parameters having 32, 64,128 and 256 nodes.We then calculated the IPR. In order to infer the phase of the walker we plotted log j

vs. logN. A constant behaviour signals that the walker is localised whether a monotonically decreasing behaviour signal delocalisation over the network.

We can infer that the quantum walker is in a localised phase in the case of the scale-free network (see (a)). This behaviour is in contrast with what is

displayed in the case of the Erdős-Rényi graphwhere delocalisation is found in both the quantum and classical case (see subfigures (b) and (c)). This result

holds true alsowhen one considers graphswith a significantly lower link to node ratio. In this case we have superimposed two lines that result from a linear

fit. These have equation log j5 aq log N1 bq with aq 520.8565 and bq 520.2482 for the quantum PageRank (see subfigures (d)). In the case of the

classical PageRank the equation is log j 5 acl log N 1 bcl with acl 5 21.0932 and bcl 5 0.7125 (see subfigures (e)). These results are consistent with

delocalisation (confront text in the section entitled Results).
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bookkeeping purposes it has been made explicit to which spaces the
density matrix refers to.
Let us discuss how to apply the concept of trace distance in our

case. We might measure the instantaneous distance D(ra(2t),
ra9(2t)), thus measuring the distance of the quantum states.
However, it is more significant to take the time-average of the dis-
tance between the partial traces of the states, because we are inter-
ested in the quantum PageRank as an observable, rather than the
state itself.We can thusmake use of a less refinedmeasure of distance
(that is, one that appreciates less the difference of two states). This
can be written in the following form (see the section entitledMethods
for the derivation):

D Tr1r
12
a 2tð Þ, Tr1r12a0 2tð Þ


 �� �

t

~max
i

Iq Pi,t,að Þ
� �

{ Iq Pi,t,a
0ð Þ

� �
�

�

�

�

ð16Þ

To summarize, we will study the stability making use of the classical
fidelity and the quantity in (16), i.e., is a simpler measure descending
from the trace distance (which turns out to be equivalent to the
quantum fidelity).

We perform an analysis of how the quantumPageRank varies with
respect to the rankings when the value of a goes from 0.01 to 0.98.We
analyse a scale-free graph with 128 nodes that was generated with
NetworkX, a python module. The results show clearly that the
quantum PageRanks vary very little when the quantum walk under-
lying the quantum PageRank has a different damping parameter a.
Indeed, it can be seen from figure 11 that the minimum fidelity
between two values of a and a9 does not fall below the value of
0.91. One should compare this with the analysis of the classical
PageRank51, where the fidelity between different values of a and a9
can be approximately 0. It can thus be inferred that the ranking is
more robust when it is performed with the quantum PageRank.
We have also investigated the behaviour around the value of the

damping parameter a5 0.85. From the classical fidelity between the
quantum PageRanks at a 5 0.85 and at a ranging from 0.01 to 0.98
one can see that there is a plateau around the value of a 5 0.85 (see
figure 11) extending especially for smaller values of a. There is a dip
for a5 0.95 which is due to the fact that the ranking is very sensitive
to changes in the damping parameter a when its value approaches 1.
For this value only the second term in the Google matrix G, giving
random hopping, survives.
We havemade the analysis more precise and the conclusionsmore

cogent by considering also the measure of distance of rankings ori-
ginating from the trace distance (see (16)). Also in this case the
overall robustness of the ranking performed with the quantum
PageRank is evident. One can see from figure 11 that the maximum
value of this measure of distance is 0.18 comparing any two values of
a and a9 ranging in the aforementioned interval. It can also be
observed that the region where this ranking is more robust is around
the value a < 0.8. Indeed in figure 11 the blue region is wider, and
correspondingly the ranking more robust with respect to perturba-
tion of the value of a. We find also in this case that (see fig. 12) the
trace distance is rather smooth for a 5 0.8. One can see that also in
this case there is a curious peak for for a < 0.95 similarly to the
previous case.
Finally, we have performed a statistical analysis considering

ensembles of scale-free networks of increasing size (see the appendix
and figure 18 for details). We have analysed the average behaviour of
the classical fidelity for different values of the damping parameter a
both for the classical and the quantum PageRank algorithm. Also in
this case we find that the average fidelity of the QPR is always larger
than its classical counterpart. In conclusion, the quantum PageRank
as measured by the classical fidelity or by the trace distance varies
mildly with respect to the variation of the damping parameter a. In
fact, the minimum fidelity between any two distributions of import-

Figure 11 | Measures of distance of quantum PageRanks obtained with
different values of the damping parameter. The network analysed is a

scale free network with 128 nodes (generated with NetworkX). The

damping parameter varies ranging from 0.01 to 0.98. (a) The fidelity

obtained by applying the classical fidelity (see eq. (12)). One can see that

there is a plateau for values of a around 0.8. (b) The measure of distance

obtained from the trace distance (see (16)). We obtain a similar result: a

plateau for values of a around 0.8 is clearly visible.

Figure 12 | Analysis of the stability with respect to the variation of the damping parameter from the value a5 0.85. The network is a scale free graph
with 128 nodes generated using NetworkX for the quantum algorithm (Coloured lines) and of 256 nodes for the classical one. (a) In Colour the classical

fidelity (see (12)) between the quantum PageRank calculated using a5 0.85 and the one calculated using values in the range from 0.01 to 0.98. In grey

the one for the classical algorithm.We notice that the quantum PageRank is more robust with respect to the variation of the damping parameter. (b) The

trace distance between the quantum PageRank calculated using a5 0.85 and the one calculated using values in the range from 0.01 to 0.98 (using (16)).

Plot of the trace distance to compare the quantum PageRank obtained with a5 0.85 to the one obtained using other values of the damping parameter.
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ance arising from the quantum PageRank is 90%. The maximum of
the distance obtained by using the trace distance between any two
states (with different a) is 0.18. This means that the quantum
PageRank is very robust with respect to variation of the parameter
that controls the fraction of random hopping. It is muchmore robust
than in the classical case. From our analysis of the stability of the
classical PageRank we find that for extremal values of a, a9 the value
of the fidelity is less than 0.4 (see fig. 13). In ref. 51 the minimum
fidelity was found to be very close to 0% between PageRanks’ rank-
ings corresponding to extremal values of the damping parameter a.

Power law behaviour for quantum PageRank.We have found that
the quantum PageRank is able to highlight the structure of secondary
hubs. We have shown that this strength of the quantum algorithm is
related to the fact that the quantum walker on networks of scale-free
type is in a localised phase. This phase is characterized by the
property that the nodes with a significant average quantum Page-
Rank constitute a negligible fraction of the nodes in the network. On
the other side, for the classical algorithm, it has been shown55,56 that
for real networks the classical PageRanks Ij of nodes, sorted in
descending order, follow a power law behaviour. That is, the

classical PageRanks decrease approximately like Ij , j2b, where b
< 0.9. This feature is a clear witness of the fact that the algorithm is
able to identify the hubs. Furthermore, the scaling exponent b
measures the relative importance given to the hubs with respect to
the other nodes of less importance.
In this section we perform a similar analysis for the quantum

PageRank algorithm. It is desirable that the quantum PageRank dis-
plays a power law scaling behaviour, as such behaviour is distinctive
of the fact that the algorithm is able to uncover the scale-free nature
of the network.
In order to reveal the scaling behaviour of the quantumPageRanks

of the nodes we consider the conjectured form of the importance
distribution

Iq Pið Þ
� �

*i{bq : ð17Þ

The power law behaviour can then be extracted from the slope of the
log-log plot of the quantum PageRanks versus the (sorted) index of
the i (since logÆIq(Pi)æ , 2bq log(i)).
Here we perform the analysis on scale free networks of 256 nodes.

We calculate the classical and quantum PageRanks of the nodes and
after having sorted the nodes in descending order we analyse the log-
log plot of the classical and quantum PageRanks versus the index of
the nodes. Considering one instance of a graph in this class one can
clearly see (cf. figure 14) that both rankings obtained using the clas-
sical and the quantum PageRank display a power law behaviour. The
plot displays three areas, corresponding respectively to the hubs, to
the intermediate part of the list and the low part of the ranking. In the
classical case the latter are typically degenerate in importance.
The fact that we find this scaling behaviour in the quantum

PageRank on scale-free networks is due to the fact that the walker
is in a localised phase on graphs of this topology (see subsection
entitled Localisation-Delocalisation Transition). A similar behaviour
is found for the classical algorithm51. Consequently the most highly
ranked nodes tend to concentrate nearly the totality of the import-
ance. This can be clearly seen in figure 14, area I, where the import-
ance values of the hubs lie above the line.
Furthermore, it is clear that the scaling coefficients are different in

the quantum and the classical case. We find that bq , bcl, which
indicates that the quantum PageRank has a smoother behaviour,
resulting in less relative importance that assigned to the nodes in

Figure 13 | The fidelity obtained by applying the classical fidelity (see eq.
(12)) in the case of the classical PageRank. The network analysed is a scale
free network with 256 nodes (generated with NetworkX). The damping

parameter varies ranging from 0.01 to 0.98. One can see that for extremal

values of a, a9 the value of the fidelity drops below 0.4.

Figure 14 | (a) The plot of the logarithm of the PageRanks (upper part) and quantum PageRanks (lower part), (after being reordered, see text in the

section entitled Results) versus the logarithm of the node’s label. As a guide to the eye we have superimposed two lines with slope equal to 20.9.

One can clearly distinguish three zones (see text in the section entitledResults). (b) The plot of the logarithm of themeans over the ensemble of graphs in a

class of scale free networks of the PageRanks (upper part) and quantum PageRanks (lower part), (after being reordered, see text in the section entitled

Results) versus the logarithm of the node’s label. As a guide to the eye we have superimposed two lines with slope equal to20.9 in the classical case and

20.85 in the quantum case.
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the high part of the list. On the other hand, the quantum algorithm is
also able to better rank in the low part of the list, where the classical
PageRank produces highly degenerate values. Here, the quantum
protocol partially lifts the degeneracy (cf. the area III in figure 14).
The quantum PageRank is therefore able to better distinguish
between nodes of low importance, which belong to the lowest part
of the list. This is because the difference between the importance of
the nodes in the higher and lower part of the list is lower as compared
to the classical case. Furthermore, in the quantum case the power law
behaviour interpolates over a larger portion of the data as compared
to the classical case. This is reflected by the fact that the area II in
figure 14 extends over a larger interval in the case of the quantum
algorithm.
To complete the analysis we consider an ensemble of scale free

networks in order to display the ensemble properties rather than the
ones of particular instances. The ensemble consists of 29 scale free
networks. The analysis clearly confirms that the properties found for
the particular graph analyzed in figure 14 persist when considering a
mean property of the ensemble (see figure 14). We conclude that
these properties are generic and not associated to a particular
instance of the class of scale-free networks.
Finally, we consider the real-world network, a subgraph of the

WWWobtained by exploring pages linking towww.epa.gov 41, which
we refer as EPA in the following (see figure 15). Also in this case we
find a power law behaviour with bq 5 0.30 , 0.45 5 bcl. The plot
displays three areas as mentioned above for the other cases, so that
the presented conclusions are valid also for this real-world network.

Sensitivity of the quantum PageRank algorithm under coor-
dinated attacks in scale-free graphs. In this section, we raise the
question of how sensitive the quantum PageRank algorithm is under
coordinated attacks. More precisely, we ask how much the list of
quantum PageRanks of an N-node graph changes as a whole if the
nmost important nodes (hubs) of a network fail (e.g. due to a hacker
attack) and the quantum quantum PageRank algorithm is run on the
remaining (N2 n) - node graph. Motivated by the fact that the real-
world internet belongs to the class of scale-free networks, we focus in
our study on the scale-free networks of mesoscopic size (graphs of 16
and 32 nodes).
Operationally, we proceed in our numerical study as follows: (i)

First, we determine for the initial N-node graph the quantum
PageRank values and the ordered list of nodes according to the
quantum PageRank algorithm. (ii) Next, we take out the most
important node (main hub) from the graph. On the resulting reduced
network (with corresponding modified connectivity matrix C9) we
carry out the quantum PageRank algorithm to determine the modi-
fied list of quantum PageRanks, with a possibly different order of the
N 2 1 nodes. We note that the quantum algorithms run on the
original N-node network and on the reduced graph differ quantita-
tively as the Hilbert spaces, the initial states and coherent dynamics
are different due to the modified connectivity matrix C9 and resulting
modified Google matrix G9 (see the introduction). (iii) Finally, we
compare the ordered list of (N2 1) nodes according to the quantum
PageRank values with the original list for the N-node graph, where
the most important node is taken out (see fig. 16a). We quantify the
overall difference between these two lists of N 2 1 elements by
Kendall’s coefficient57. This function returns a value of one for lists
in which the order of all elements is the same (irrespective of the
individual values associated to each element of the list), zero for lists
whose order of elements is exactly the opposite, and values in between
the two extremes for lists where the order of elements partially differs.
This procedure of steps (i) to (iii) is iterated to take out subse-

quently the nmost important nodes according to the initial quantum
PageRank list of theN-node graph. The resulting quantumPageRank
list of the reduced (N 2 n) - node graph is then compared to the
initial list (not including the n most important nodes).

To compare the sensitivity of the quantum PageRank algorithm
with the classical PageRank algorithm, we perform the same type of
coordinated attacks in the classical scenario, i.e., we analyse how the
ordered list of classical PageRank values changes when the n most
important nodes (according to the classical PageRank protocol) are
taken out and the classical PageRank algorithm is run to determine
the importance of nodes in the reduced (N 2 n) graphs.
The results are shown in fig. 16b and c.We find that when themost

important nodes (hubs) are attacked and fail, and the PageRank is
recalculated for the reduced graphs, the order of the importance of
the remaining nodes changes with respect to the list of the initial
complete graph both in the classical and in the quantum case. The
results suggest that in the case of the quantum PageRank algorithm,
attacks on hubs could have a stronger effect than for the classical
algorithm. This behaviour can be related to the fact that whereas for
the classical case there is a large degeneracy of importance values of
nodes of low PageRank, quantum fluctuations partially lift this
degeneracy – see discussion in the subsection entitled Quantum
PageRank on Scale-Free Networks and the insets in fig. 2. Thus, when
hubs of the network are attacked and fail, the order of less important

Figure 15 | Plot in log-log scale of the quantum and classical PageRanks
of the nodes of a piece of a real network (from EPA). The quantum and

classical PageRanks are displayed after having been sorted in descending

order, see text in the section entitled Results versus the logarithm of the

node’s label. (a) The classical PageRanks. As a guide to the eye we have

superimposed the fitted lines (in log-log scale) with equation I(i)5 ccli
2bcl

where bcl5 0.4545 and ccl5 0.0185. (b) The average quantum PageRanks.

In this case we have superimposed the fitted line (in log-log scale) with

equation I(i) 5 cqi
2bq where bq 5 0.3066 and ccl 5 0.0095.
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nodes – whose importance values slightly differ, can truly change in
the quantum case, whereas the degeneracy of a larger number of
nodes persists in the classical case. We conjecture that the increased
capability of the quantum algorithm to resolve more structural
details of the directed graphs, comes at the cost of an increased
sensitivity to structural changes of the network.We remark, however,
that the mesoscopic network sizes of the analysed ensemble and the
associated amount of statistical fluctuations require an analysis of
larger networks – being beyond the scope of the present work – to
provide a definite answer to this question of sensitivity of the
quantum PageRank algorithm.

Discussion
In this paper we have studied the behaviour of the quantum
PageRank algorithm, developed in Ref. 3, when applied to complex
networks. We have found that the quantum algorithm is able to
clearly distinguish the structure of the underlying network. More
specifically, the behaviour of the algorithm is distinctive for the three
classes of complex networks studied in this work: scale-free networks,
graphs of Erdős-Rényi type and hierarchical networks. In particular,
we have observed that the quantum algorithm applied to scale-free
networks is able to clearly highlight the structure of secondary hubs in
the graphs. Furthermore, it is able to lift the degeneracy in importance
of the low lying part of the list of rankings, which represents a typical
shortcoming of the classical PageRank algorithm. Although best sui-
ted for scale-free graphs the quantum PageRank is also able to uni-
vocally uncover whether graphs lie in the Erdős-Rényi class. Applied
to hierarchical graphs the algorithm has the capability to reveal more
clearly the hierarchy of levels, out of which the graph is composed,
and to highlight the connectivity structure within every hierarchy
layer better than its classical PageRank counterpart.
Considering the quantum PageRank algorithm as a directed

quantum walk has allowed us to study the localisation properties
of the quantum walker for the quantum protocol. By means of an
analysis of the Inverse Participation Ratio (IPR), we have observed
localisation of the quantum walker in the case of the quantum
PageRank applied to scale-free networks under standard conditions
(damping parameter a 5 0.85). This finding is consistent with the
ability of the quantum algorithm to highlight the hubs of the net-
work. In contrast, for Erdős-Rényi graphs we find that the quantum
walker is in a delocalised phase, which is in accordance with the
absence of hubs for this class of networks.
Furthermore, we have analysed the robustness of the quantum

algorithm with respect to variations of the damping parameter. We
find a higher degree of robustness as compared to the classical
PageRank protocol. This stability indicates that the value of this
parameter, whose choice is to some extent arbitrary, turns out to
be not crucial for the quantum algorithm to work reliably.
Furthermore, we have found that the distribution of importance

values of quantum PageRanks in scale-free networks follows a power
law behaviour. A similar behavior was found for the classical
PageRank protocol. However, the corresponding scaling exponent
is for the quantum protocol smaller than in the classical case, which
indicates a smoother ranking of nodes. In contrast to the classical
algorithm, in the quantum protocol the hubs of the graphs do not
concentrate the whole importance and the algorithm lifts the degen-
eracy of the large set of nodes with low importance values. A numer-
ical study on an ensemble of mesoscopic-sized scale-free networks
suggests that this increased ranking capability might come at the cost
of being more sensitive to structural changes of the network such as
coordinate attacks on hubs.
Remarkably, the described characteristics of the quantum

PageRank persist if the algorithm is applied to real-world networks.
We have studied and successfully tested the performance of the
algorithm by applying it to a real-world network, originating from
the hyperlink structure of www.epa.org41. This study shows that the
intriguing properties of the quantum algorithm are not restricted to a
scenario where the algorithm is applied to artificially, numerically
grown networks.
Complementary to numerical studies including the present work,

it would be valuable to dispose of analytical results for the quantum
algorithm to gain further insight in its performance properties. In
this context, the class of hierarchical networks is a good candidate to
address this question. A related subject of current study is concerned
with the entanglement properties of quantum complex networks58–60.
A different line of studies has pursued the application of the quantum
adiabatic algorithm to the classical PageRank algorithm61 as an
alternative to quantum walk based ones62–64.

Figure 16 | Numerical study of the sensitivity of the quantum and the
classical PageRank algorithm under coordinated attacks in scale-free
graphs. (a) Conceptual schematics illustrating the comparison of the

PageRank list corresponding to networks, where the most important

node(s) are taken out, with the PageRank list corresponding to the

complete graph with all nodes intact, by means of Kendall’s coefficient K.

Numerical results for graphs of 16 and 32 nodes (graphs (b) and (c),

respectively), where up to 5 of themost relevant nodes have been taken out.

The data has been obtained by averaging over 100 random scale-free

networks, which have been generated with NetworkX. Statistical error bars

correspond to one standard deviation.
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In future work it will be interesting to further explore and analyse
in detail the impact of coordinated attacks of hubs in large-scale
networks, as well as to address the consequences of random failures
of nodes in large networks of differing topology. From an algorithmic
point of view, it is an interesting task to develop a dissipative version
of this algorithm and to understand its performance and robustness
properties in such scenario. We note that dissipation has already
been considered as an element with respect to some aspect of the
algorithm65,66, but the development of a truly dissipative version in
the spirit of dissipative quantum algorithms and computation67,68

remains an open question. Furthermore the growing field of complex
quantum networks would benefit from a version of the algorithm
that is able to rank nodes in the more general case where qubits are
located at the nodes of the network. An important question in this
scenario is whether an algorithm based on a multi-particle quantum
walk69,70 is needed in this context, or if there exists for this task an
efficiently simulatable algorithm belonging to the computational
complexity class P.

Methods
Statistical analysis of the resolution of secondary hubs. In this appendix we present
a statistical analysis, which corroborates quantitatively the claim that the QPR
algorithm resolves more clearly the existence of secondary hubs in scale-free graphs,
as compared to the CPR algorithm. To analyze this property quantitatively, we have
created and analyzed a statistical ensemble of 29 random scale-free networks, each
consisting of N 5 256 nodes.

To distinguish between main hubs, secondary hubs and the large remaining set of
‘‘low-importance nodes’’ we adopt the following simple and natural convention:
Nodes which are assigned importance values smaller than the average importance
value 1/N are considered to fall into the class of ‘‘low-importance nodes’’, whereas
nodes with higher importance values are regarded as hubs.Within the set of hubs one
can further distinguish between main hubs (importance values larger than c/N) and
secondary hubs (importance values smaller than c/N but larger than 1/N), where c. 1
is a fixed constant - for the present analysis we have fixed c5 10. Note that the choice
of c which corresponds to fixing the ‘‘boundary’’ between the two sets of main and
secondary hubs is arbitrary to some extent; however, we have checked that variations
of c do not change the conclusions qualitatively.

Figure 17 shows the results of the statistical analysis. The study confirms that
whereas both the CPR and the QPR protocol clearly identify the main hubs.
Furthermore, the QPR algorithm indeed resolves more clearly the existence of sec-
ondary hubs in large-scale-free networks than the classical protocol – for the con-
sidered random sample of graphs it detects about three times more secondary hubs
than the classical algorithm.

Analysis of the scaling of the fidelity with the network size. A comparison of QPR
and CPR. In the following we provide more quantitative support to one of the main
findings of this work: the fact that theQPR ismore stable than the CPRwith respect to
the variation of the damping parameter a. To corroborate the finding we perform a
statistical analysis considering ensembles of, respectively 32,31,31 and 30 scale-free
networks with 32,64,96 and 128 nodes.We calculate the classical fidelity (see eq. (12))
between the QuantumPageRanks obtained using a5 0.85 and the one using a5 0.05
for each graph in the ensembles. After repeating the same analysis using the Classical
PageRank and comparing the two average behaviours (see fig. 18) we notice that the
average fidelity of the QPR is always strictly larger than the classical one.
Furthermore, considering the statistical uncertainty (in fig. 18 given by one standard
deviation) we can see how the error bars for the QPR and the CPR do not overlap. In
addition, we notice that the statistical uncertainty is smaller in the quantum case
indicating a smaller variability inside the ensembles. From the analysis we can thus
conclude that the QPR is more stable with respect to variations of the a parameter in
all the analysed range. Furthermore, it shows amore favourable scalingwith respect to
the network size.

Distance measure. In this subsection of the appendix we provide the detailed
derivation of eq. (16) that is used to quantify the stability of the Quantum PageRank.
From eq. (15):

Iq
� �

Pi,að Þ~ Tr1 Tr2 r12a 2tð ÞM 2ð Þ
i

h i� 	D E

t
ðA:18Þ

where for bookkeeping purposes in the derivations that follow it has been made
explicit to which spaces the density matrix refers to. Using the fact that trace
preserving quantum operations are contractive. That is:

D r12a 2tð Þ,r12a’ 2tð Þ

 �
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and making use of another property, namely that the trace distance of two states is
attainable as the maximum over all strong (i.e. PVM) measurement outcomes of the
difference of the two states:
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that, in our case, specializes to:
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we obtain Finally it is useful tomeasure the average distance as we are interested in the
stability of the average quantum PageRank:
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eq. (A.22) can be rewritten as:
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which in our case is clearly stated as:
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Figure 17 | Statistical analysis of the resolution of main hubs and
secondary hubs by the classical and the quantum PageRank algorithm.
(a) Histogram of average number of hubs (blue), secondary hubs (green)

and low-importance nodes (red), as detected by the QPR and the CPR

algorithm (see text for details). The data is obtained by averaging over an

ensemble of 29 random scale-free networks of 256 nodes. (b) Zoom into

(a): The third set of columns displays the average difference between the

number of main hubs, secondary hubs and low-importance nodes as

detected by the QPR and the CPR. Error bars correspond to a statistical

uncertainty of one standard deviation. Both the CPR and QPR detect

(within statistical error bars) the same number ofmain hubs. However, the

quantum PR algorithm resolves significantly more secondary hubs than

the classical protocol (about 10 more secondary hubs for the considered

network sizes of 256 nodes). (c) Numbers of secondary hubs as resolved by

the QPR and the CPR algorithms, for each of the 29 instances of the

analyzed ensemble of scale-free networks.
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Where we can take the absolute value because the distance between two states is a
nonnegative number.
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49. Brandstädt, A., Le, V. B. & Spinrad, J. P. Graph Classes: A Survey. SIAM
Monographs on Discrete Mathematics and Applications, vol. 3. (Society for
Industrial and Applied Mathematics, 1999).

50. Evers, F. & Mirlin, A. D. Anderson transitions. Rev. Mod. Phys. 80, 1355 (2008).
51. Georgeot, B., Giraud, O. & Shepelyansky, D. L. Spectral properties of the Google

matrix of the world wide web and other directed networks. Phys. Rev. E 81, 056109
(2010).

52. Galindo, A. & Martin-Delgado, M. A. Information and computation: Classical
and quantum aspects. Rev. Mod. Phys. 74, 347 (2002).

53. Nielsen, M. A. & Chuang, I. L. Quantum computation and quantum information
(Cambridge university press, 2010).

54. Lo, H.-K., Spiller, T. & Popescu, S. Introduction to quantum computation and
information (World Scientific Publishing Company, 1998).

55. Donato, D., Laura, L., Leonardi, S. & Millozzi, S. Large scale properties of the
webgraph. The European Physical Journal B-Condensed Matter and Complex
Systems 38, 239–243 (2004).

56. Pandurangan, G., Raghavan, P. & Upfal, E. Using pagerank to characterize web
structure. Computing and Combinatorics 1–4 (2002).

Figure 18 | Analysis of the scaling of the fidelity for the Quantum and
Classical PageRank (see text for details). The data is obtained by averaging
over ensembles of, respectively 32, 31, 31 and 30 random scale-free

networks of 32, 64, 96 and 128 nodes. The error bars correspond to a

statistical uncertainty of one standard deviation. It is clear that theQPR (in

blue) is more stable with respect to the variation of the damping parameter

than the CPR (in red).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2773 | DOI: 10.1038/srep02773 15

http://swissquantum.idquantique.com
http://vlado.fmf.unij.si/pub/networks/data/
http://vlado.fmf.unij.si/pub/networks/data/


57. Kendall, M. G. & Smith, B. B. The problem of m rankings. The annals of
mathematical statistics 275–287 (1939).

58. Cuquet, M. & Calsamiglia, J. Growth of graph states in quantum networks. Phys.
Rev. A 86, 042304 (2012). URL http://link.aps.org/doi/10.1103/
PhysRevA.86.042304.

59. Acı́n, A., Cirac, J. I. & Lewenstein, M. Entanglement percolation in quantum
networks. Nat. Phys. 3, 256–259 (2007).

60. Cuquet, M. & Calsamiglia, J. Entanglement percolation in quantum complex
networks. Phys. Rev. Lett. 103, 240503 (2009).

61. Garnerone, S., Zanardi, P. & Lidar, D. A. Adiabatic quantum algorithm for search
engine ranking. Phys. Rev. Lett. 108, 230506 (2012).

62. Venegas-Andraca, S. E. Quantum walks: a comprehensive review. Quantum
Information Processing 1–92 (2012).

63.Whitfield, J. D. Reflections in hilbert space ii: Szegedy, a scheme for Markov chain
quantization (2012).

64. de Lima Marquezino, F., Portugal, R. & Boettcher, S. Spatial search algorithms on
hanoi networks. Phys. Rev. A 87, 012329 (2013).

65. Garnerone, S. Thermodynamic formalism for dissipative quantum walks. Phys.
Rev. A 86, 032342 (2012). URL http://link.aps.org/doi/10.1103/
PhysRevA.86.032342.

66. Sánchez-Burillo, E., Duch, J., Gómez-Gardeñes, J. & Zueco, D. Quantum
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