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Quantum gravity phenomenology opens up the possibility of probing Planck scale physics. Thus, by ex-
ploiting the generic properties that a semiclassical state of the compound system fermions plus gravity should
have, an effective dynamics of spin-1/2 particles is obtained within the framework of loop quantum gravity.
Namely, at length scales much larger than Planck length,P;10233 cm and below the wavelength of the
fermion, the spin-1/2 dynamics in flat spacetime includes Planck scale corrections. In particular we obtain
modified dispersion relationsin vacuo for fermions. These corrections yield a time of arrival delay of the
spin-1/2 particles with respect to a light signal and, in the case of neutrinos, a novel flavor oscillation. To detect
these effects the corresponding particles must be highly energetic and should travel long distances. Hence
neutrino bursts accompanying gamma ray bursts or ultrahigh energy cosmic rays could be considered. Re-
markably, future neutrino telescopes may be capable of testing such effects. This paper provides a detailed
account of the calculations and elaborates on results previously reported in a Letter. These are further amended
by introducing a real parameterY aimed at encoding our lack of knowledge of scaling properties of the
gravitational degrees of freedom.
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I. INTRODUCTION

It is commonly accepted that quantum gravity should h
at scales near the Planck length,PªAGNewton\/c3

;10233 cm or, equivalently, Planck energyEPª\c/,P
;1019 GeV. Accordingly, neither astrophysical observatio
nor ground experiments were considered in the past a
means to directly reveal any quantum gravity effect but o
to test indirect consequences. In recent years however
attitude has changed on the basis of potentially testable
nomena probing quantum gravity scenarios in which sca
combine to lie not far from experimental resolution. Prom
nent among such phenomena we findin vacuo dispersion
relations for gamma ray astrophysics@1–6#, laser-
interferometric limits on distance fluctuations@7,8#, neutrino
oscillations@4,9#, threshold shift in certain high energy phy
ics processes@10–13#, CPT violation @14# and clock-
comparison experiments in atomic physics@15#. These are
the prototypes of the emergingquantum gravity phenomeno
ogy @16–20#.

The present work is aimed at elaborating on effective c
rections to propagationin vacuofor spin-1/2 particles in the
framework of loop quantum gravity as reported in@4#. This
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framework also has been used previously in studying li
propagation@3,5#.

In essence, the specific structure of spacetime for a gi
quantum gravity scenario can be probed by matter propa
ing and interacting there: what could be considered as
spacetime macroscopically, might produce microscopic
prints of its detailed structure on the interaction of particl
In particular, dispersion relations of propagating matter co
exhibit corrections due to such effects. For particles w
energy E!EP and momentumpW the following in vacuo
modified dispersion relations were proposed@2#:

c2pW 25E2S 11j
E

EQG
1OS E

EQG
D 2D , ~1!

where EQG&EP and j;1. In general, such correction
might behave as (E/EQG)Y11, where Y>0, namely not
necessarily an integer. This possibility has been conside
for photons@5,21# and spin zero particles@21#. In this work
we show it applies also to spin-1/2 particles.

According to Eq.~1! the corresponding particle’s spee
yields a retardation time

Dt'j
E

EQG

L

c
, ~2!

with respect to a speedc signal after traveling a distanceL.
Interestingly, for gamma ray bursts~GRB’s! with E
;0.20 MeV, L;1010 ly and settingEQG;EP , the naive

l
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estimation Eq.~2! givesDt;0.01 ms, barely two orders o
magnitude below the sensitivitydt for current observations
of GRB’s @22,23#. Moreover, it is expected to improve th
sensitivity in the foreseeable future@24#. Using an expression
analogous to Eq.~2! for the delay of two photons detecte
with an energy differenceDE, the observational bound
EQG /j>431016 GeV was established in Ref.@25# by iden-
tifying events havingDE51 TeV arriving to earth within
the time resolution of the measurementDt5280 s, from the
active galaxy Markarian 421.

Now, accompanying GRB’s there seems to be neutr
bursts ~NB! in the range 10521010 GeV according to the
so-called fireball model@26,27#. If detected they could pro
vide an excellent means to test quantum gravity effects of
type given by Eq.~2! above. Experiments like Neutrin
Burst Experiment~NuBE! might detect'20 events per yea
of ultrahigh energy neutrinos (E.TeV) coinciding with
GRB’s @28#. Among other experiments aimed at studyi
ultrahigh energy cosmic rays including neutrinos we find
OWL-Airwatch project which could detect;331032105

events (E.1020 eV) per year@29,30#. This experiment also
can look for time correlations between high energy neutri
and GRB’s. Complementary to the GRB effect, there is
possibility of looking for neutrino oscillation effect as in
duced by quantum gravity@4#. An analysis similar to that
performed in the case of atmospheric neutrino oscillati
@9,31#, can help to set bounds on the parameters entering
description as we will suggest below.

In summary, astrophysical observations of photons, n
trinos or cosmic rays could make it possible to test quan
gravity effects or at least to restrict quantum gravity theori

Indeed, an alternative approach to quantum gravity
based on string theory@32#. On such a basis modified dispe
sion relations of the type~1! have been regained@33#. The
main difference in the case of photons is the absence
helicity dependence that is present in the loop quantum g
ity approach. As for the case of spin-1/2 particles both
proaches seem to agree in its helicity independence to l
ing order of the corresponding effect@4,34,35#.

Further comments in order here are: delay time effects
traveling particles have also been considered on a diffe
basis, for example an open system approach@36#. Also, per-
turbative quantum gravity has been considered to obtain
fective dispersion relations@37#.

Noticeably, the effect considered thus far involves a L
entz symmetry violation@3,4,34,33#, which seems to be in
agreement with some astrophysical and cosmological
narios @11,13,38,39#. In this way, these studies natural
overlap with the systematic approach developed by Colla
and Kostelecky@40# which provides the most general pow
counting renormalizable extension of the standard model
incorporates both Lorentz andCPT violations. This frame-
work has been widely used to set experimental bounds u
the interactions that produce such violations and the ob
vations performed so far cover a wide range of experime
settings@41#. Additional progress in establishing bounds
such symmetry violation can be found in Refs.@6,15,42,43#.

Finally, it is interesting to emphasize that Planck sc
corrections to either particle propagation or interactions n
12400
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not necessarily imply violations of Lorentz covariance@44#.
Recently the use of non-linear representations of the Lore
group, leading to what has been called special relativity w
two invariant scales, allows for a systematic construction
theories exhibiting these features@45#.

The paper is organized as follows. In Sec. II we summ
rize the basics of loop quantum gravity in the case of ferm
ons plus gravity. Section III is devoted to reviewing the reg
larization of Thiemann for the corresponding Hamiltoni
constraint. Section IV explains general aspects of our
proximation scheme whereas Sec. V provides the detail
the calculations. In Sec. VI the effective Hamiltonian f
noninteracting spin-1/2 particles is obtained. In particular,in
vacuo dispersion relations are given. Section VII contai
some preliminary estimates of the parameterY. To conclude,
a summary and discussion of our results is presented in
VIII.

II. LOOP QUANTUM GRAVITY

This section provides the basic ingredients of this a
proach, also known as quantum geometry@46#, which we
shall use in the sequel. Among the main results along
approach one finds:~i! well defined geometric operators po
sessing a discrete spectrum, thus evidencing discretene
space@46#; ~ii ! a microscopic account for black hole entrop
@47# and, more recently, hints on quantum avoidance o
would be classical cosmological singularity@48#. ~For a re-
view on these topics see for example Ref.@49#.!

To begin with it is assumed that the spacetime manifoldM
has topologyS3R, with S a Riemannian 3-manifold. Here
a cotriadea

i is defined, witha,b,c, . . . being spatial tenso
indices andi , j ,k, . . . beingSU(2) indices. Thus the corre
sponding three-metric is given byqab5ea

i eb
i . In addition, a

field Ka
i is defined byKab5sgn@det(ec

j )#Ka
i eb

i , which is re-
lated to the extrinsic curvatureKab of S. A canonical pair for
the gravitational phase space is (Ka

i ,Ej
b/k), where Ei

a

5 1
2 eabce i jkeb

j ec
k andk is Newton’s constant. It turns out tha

such a canonical pair yields a complicated form for t
Hamiltonian constraint of general relativity. A convenient c
nonical pair, making this constraint polynomial, was intr
duced by Ashtekar@50#. Nevertheless, two severe difficultie
to proceed with the quantization remained:~i! the implemen-
tation of a diffeomorphism covariant regularization for th
density-weight two Hamiltonian constraint hereby obtain
and ~ii ! the extension to non-compact groups of the diffe
morphism covariant techniques already developed for ga
theories with compact groups@51#. In fact, the Ashtekar
variables~C” Aa

i 5Ga
i 2 iK a

i , iEi
a/k) @50#, with Ga

i being the
torsion free connection compatible withea

i , are complex val-
ued. Namely the gauge group isSL(2,C” ), which is noncom-
pact.

Some proposals to come to terms with difficulty~ii ! were:
to consider real connection variables@52#, to implement a
Wick transform @53# and to define tractable reality con
straints @54#. All of these left open~i!. Thiemann subse-
6-2
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QUANTUM GRAVITY AND SPIN-1/2 PARTICLE . . . PHYSICAL REVIEW D 66, 124006 ~2002!
quently proposed to solve~i! and ~ii ! by incorporating real
connection variables while keeping the density weight o
character of the Hamiltonian constraint. He further provid
a quantum version of the theory in the pure gravity case
well as in those cases including the coupling of matter
gravity @55#. His approach is next reviewed, since we re
upon it for our analysis of the fermionic case.

As for the fermionic sector a convenient canonical cho
is (j,p5 i j* ). Herej5(detq)1/4h is a half density andh is
a GrassmannSU(2) spinor. Half densities are convenie
because they do not lead to cumbersome reality condition
the quantum level and, furthermore, they do not requir
complex gravitational connection. However, problems w
diffeomorphism covariance can emerge. For this reaso
further canonical transformation in the fermionic sector
necessary in order to dedensitize the Grassmann fi
through: u(x)ª*Sd3yAd(x,y)j(y) and j(x)
ª(yPSAd(x,y)u(y).

The pieces of the gravity-spin-1/2 system Hamiltoni
constraint read

HEinstein@N#5E
S
d3xN

1

kAdetq
tr„~2@Ka ,Kb#2Fab!@Ea,Eb#…,

Hspin-1/2@N#5E
S
d3xNEi

a 1

2Adet~q!
S ipTt iDaj1Da~pTt ij!

1
i

2
Ka

ipTj1c.c.D1
m

2\
„jT~ is2!j

1pT~ is2!p…. ~3!

HeretW52( i /2)sW , wheresW 5$s i% are the standard Pauli ma
trices and we have included an explicit mass term. Only
chirality fermion is usedh5 1

2 (11g5)C, which is equiva-
lent to have a Dirac spinorCT5(hT,mT) satisfying the Ma-
jorana condition. The classical configuration space is t
A/G of connections modulo gauge transformations, toget
with that of the fermionic field.

The quantum arena is given as follows@51#. As in any
quantum field theory, because of the infinite number of
grees of freedom, an enlargement of the classical config
tion space is required. This is far from trivial since the me
sures defining the scalar product, which are required
provide a Hilbert space, get concentrated on distributio
fields and hence lie outside the classical configuration sp
The key idea to build up such an enlargement is to m
Wilson loop variables~traces of parallel transport operator!

well defined. The resulting spaceA/Ḡ can be thought of as
the limit of configuration spaces of lattice gauge theories
all possiblefloating ~i.e. not necessarily rectangular! lattices.
Hence, geometric structures on lattice configuration sp
are used to implement a geometric structure onA/Ḡ. This
enables us to define a background independent calculus
which, in turn, leads to the construction of the relevant m
sures, the Hilbert space and the regulated operators.
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It turns out that the Hilbert space of gauge invariant fun
tions of gravitational and spinor fields is given by@55#

Hinv5L2„@ĀSU(2)^ S̄#/Ḡ,dmAL~SU~2!! ^ dmF…. ~4!

Here Ḡ denotes the action ofSU(2) on all fields at every
point of S. S̄ denotes the infinite product measurable spa
^ xSx , Sx being the Grassmann space at the pointx. dmF is
the corresponding measure onS̄. An orthonormal basis using
mF can be built up. Let the spinor labels be orderedA
51,2. TakevW a finite set of mutually different points. Fo
each vPvW denote byI v the array@A1(v),•••,Ak(v)#,
with 0<k<2 and Aj (v)51,2 for each 1< j <k. Also set
uI vu5k. Thus fermionic vertex functionsFvW ,IW can be defined
as FvW ,IWªPvPvWFv,I , Fv,I v

ªP j 51
k uAj (v)(v) yielding the de-

sired orthonormal basis.
Gauge invariant objects are spin network states define

follows. Takeg as a piecewise analytic graph with edgese
and verticesv which are not necessarily closed. Every ed
can be read as outcoming from a vertex by suitably sub
viding edges into halves. Given a connectionAa we can
compute the holonomy along the edgee: he(A). To eache
we also associate a spinj e corresponding to an irreducibl
representation ofSU(2). In addition, we attach to each ve
tex an integer labelnv , 0<nv<2, and a projectorpv . For a
givennv , one considers the vector subspace ofQv @the vec-
tor space spanned by holomorphic functions ofuA(v),
spanned by those vectorsFI ,v such thatuI u5n(v)]. The pro-
jector pv is a certainSU(2) invariant matrix which projects
onto one of the linearly independent trivial representatio
contained in the decomposition into irreducible represen
tions of the tensor product consisting of~i! thenv-fold tensor
product of fundamental representations ofSU(2) associated
with the vector subspace ofQv spanned by theFI ,v ,uI u
5n(v) and ~ii ! the tensor product of irreducible represen
tions j e wheree runs through the subset of edges ofg start-
ing at v. The resulting gauge invariant states are denoted

Tg,[ jW,nW ,pW ] ~5!

which extend the definition of the matter free case. Th
form a basis ofHinv . Although not orthonormal it can be
transformed into one that is by suitably decomposing
fermionic dependence into an orthonormal basis of theQv .

To extract physical information we will further need
state describing a flat continuous spaceS at scales much
larger than the Planck length, but not necessarily so at
tances comparable to the Planck length itself. States of
kind were introduced under the name of weave@56# for pure
gravity. Flat weave statesuW&, having a characteristic lengt
L, were first constructed by considering collections
Planck scale circles randomly oriented. If one probes d
tancesd@L the continuous flat classical geometry is r
gained, while for distancesd!L the quantum loop structure
of space is manifest. In other words, one expects a beha
of the type^Wuq̂abuW&5dab1O(,P /L). It was soon real-
ized that such states could not yield a nontrivial volume d
to the lack of self-intersections@57#. Couples of circles, in-
tersecting at a point, were also considered as specific mo
of weaves to overcome this defect@58#. With the recent ad-
6-3
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vances on the kinematical Hilbert spaceHaux it became clear
that all proposed weaves were afflicted by two undesira
features. First, they are defined to be peaked at a specific~flat
or curved! metric, but not at a connection. This is in contra
with standard semiclassical states in terms of coherent st
for example. Second, the known weave states do not be
either toHaux or to a dense subspace of it@59#. It may be
possible to come to terms with such difficulties by defini
coherent states for diffeomorphism covariant gauge theo
@60# or by implementing a genuine statistical geometry@61#,
for instance. Both approaches have recently achieved
stantial progress.

Nonetheless, in order to extract physics, there is the a
native possibility of using just the main features that se
classical states should have. Namely, peakedness on bot
ometry and connection together with the property that th
yield well defined expectation values of physical operato
An advantage of this alternative is that one may elucid
some physical consequences before the full fledged semi
sical analysis is settled down. Indeed, such alternative m
be considered as complementary, in the sense of hintin
possible features of semiclassical states which could be
ther elaborated. After its completion, a rigorous semiclass
treatment should tell us whether the results arising from
alternative turn out to hold or not. The weakness of the tre
ment resides on its generality, since no detailed feature
the would be semiclassical states are used—as opposed
to the original weave states—and hence a set of nume
coefficients cannot be calculated. Evaluating them will be
task of the rigorous semiclassical treatment.

On top of the purely gravitational semiclassical states
generalization is required to include matter fields. For o
analysis it will just suffice to exploit the same aspects
peakedness and well defined expectation values, extend
include the case of the fermion field. The semiclassical st
here considered will describe flat space and a smooth s
1/2 field living in it. Such a state is denoted byuW,j& and has
a characteristic lengthL. Since no detailed information i
used on how the semiclassical state is constructed in te
of, say, a graph, as opposed to weave states, the pre
approach yields results relying only on the following a
sumptions:~i! peakedness of the states,~ii ! well defined ex-
pectation values and~iii ! existence of a coarse-grained e
pansion involving ratios of the relevant scales of t
problem: the Planck length,P , the characteristic lengthL
and the fermion wavelengthl. States satisfying such re
quirements are referred to aswould be semiclassical statesin
the sequel.

III. THE REGULARIZATION

We will use the regularization method of Thiemann@55#
in the following. We focus on the first term ofHspin-1/2@N#,
Eq. ~3!. The other terms can be dealt with similarly or, in t
case ofKa

i dependence, along the lines of the purely gra
tational sectorHEinstein@N# as shown in the sequel. The ide
tity (1/k)$Aa

i ,V%52sgn(deteb
j )ea

i yields
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Hspin1/2
(1) @N#52

i

2k2E d3xN~x!

3S e i jkeabc4
$Aa

i ~x!,V~x,d!%$Ab
j ~x!,V~x,d!%

Aq~x!
D

3@pTtkDcj2c.c.# ~6!

where d is small andV(x,d)5*d3yxd(x,y)Aq(x) is the
volume with respect to the metricqab of a box centered atx.
xd(x,y)5)a51

3 u(d/22uxa2yau) is the characteristic func
tion of the box. Next one changes fromj to u variables and
introduces

(
x

f i
a~x!~t iDau!A~x!ūA~x!, ~7!

which regularizes Eq.~6! as we show now. Heref i
a is a real

valued adSU(2) vector field. By defining (]auA)(x)
ª lime→0]xauA

e (x), and recalling

uA~x!5E d3yAd~x,y!jA~y!5 lim
e→0

uA
e ~8!

with uA
e 5*d3y@xe(x,y)/Ae3#jA , one gets

~]xauA!~x!5E d3y
xe~x,y!

Ae3
~]yauA!~y!. ~9!

Now let us divideS into boxes of Lebesgue measuree3

centered atxn and let Eq.~7! be the limite→0 of

(
n

f i
a~xn!~t iD aue!A~xn!ūA

e ~xn!, ~10!

which upon expressingue in terms ofj becomes

E d3xE d3yF(
n

f i
a~xn!

xe~x,xn!xe~y,xn!

e3 G
3@t i]aj~x!1„va~xn!j~x!…#Aj̄A . ~11!

Notice that in spite of the density weight ofj no Christoffel
connection is needed since it will drop after the H.c. par
considered. In the limite→0, xe(x,xn)/e3→d(x,xn) and
6-4
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xe(y,xn)→dy,xn
, so that afterx integration and sum overxn

the result is Eq.~6! where f i
a has to be properly identified.

To proceed with the quantization one keeps fermionic m

menta to the right and replacesû̄A by \(]/]uA) in Eq. ~7!.
By further multiplying and dividing by d3 the factor
d3Aq(x) in the denominator is changed toV(x,d). This can
be absorbed into the Poisson brackets already appearin
Eq. ~6!. When Poisson brackets are replaced by commuta
times 1/i\ one obtains an operator whose action on a cy
drical function f g associated to a graphg and containing
fermionic insertionsuA at the verticesvPV(g) gives

Ĥspin-1/2
(1) @N# f g52

\

2,P
4 (

vPV(g)
(

x
N~x!e i jkeabcd3

3@Aa
i ~x!,AV̂~x,d!#@Ab

j ~x!,AV̂~x,d!#

3F ~tkDcu!A~v !
]

]uA~v !
dx,v1H.c.G f g .

~12!

To complete the regularization an adapted triangulation tg
of S is introduced. Using hs(0,d)u„s(d)…2u„s(0)…
5d ṡa(0)(Da)u„s(0)… and replacing the connection oper
tors by holonomy operators allows one to absorb thed3 fac-
tor. Also one replacesV̂(v,d)→V̂v . Because of the presenc
of dx,v , (x becomes concentrated in the vertices(v(D)5v .
Hence we obtain

Ĥspin-1/2
(1) @N#52

mP

2,P
3 (

vPV(g)
Nv (

v(D)5v
e i jke IJK

3tr~t ihsI (D)@hsI (D)
21 ,AV̂v# !

3tr~t jhsJ(D)@hsJ(D)
21 ,AV̂v# !

3F @~tkhsK(d)u!~sK~D!~d!!2u~v !#A

3
]

]uA~v !
1H.c.G ~13!

which is the operator we shall use below.
At this stage we introduce the notation

ŵiI D5tr~t ihsI (D)@hsI (D)
21 ,AVv# !. ~14!

IV. GENERAL STRUCTURE OF THE CALCULATION

The effective Dirac Hamiltonian HF is obtained by con-
sidering the expectation value of the fermionic sector of
quantum Hamiltonian, with respect touW,j&. Inside this ex-
pectation value, operators are expanded around all rele
vertices of the triangulation in powers of the segme
sL

a(D), having lengths of the order,P . In this way, a sys-
tematic approximation is given involving the scales,P!L
12400
-

in
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-

e

nt
s

,l. Here l is the de Broglie wavelength of the neutrin
Corrections arise at this level. Let us start by taking t
would be semiclassical state~WBSC! expectation value of
Thiemann’s regularized Hamiltonian

HF5^W,juĤspin-1/2
(1) @N#uW,j&

51
\

4,P
4 (

vPV(g)
N~v !

8

E~v !
e i jke IJK

3H ^W,juF ]

]u~v !
tkhsK(D)û„v1sK„D……G

3ŵiI D~v !ŵjJD~v !uW,j&2^W,juF ]

]u~v !
tkû~v !G

3ŵiI D~v !ŵjJD~v !uW,j&2c.c.J ~15!

where]/]u(v) is the fermionic momentum operator.
Our strategy to use the proposed regularization as a c

putational tool will be to expand the expression~15! around
each vertex of the triangulation in powers of the vecto
sI(D). To proceed with the approximation we think of spa
as made up of boxes of volumeL 3, whose center is denote
by xW . Each box contains a large number of vertices of
graph associated with the WBSC, but is considered infi
tesimal in the scale where the space can be regarded as
tinuous, so that we takeL 3'd3x.

Next we discuss how to estimate the average contribu
in each box. To begin with we consider that the volume
the box is

d3xW' (
vPBox(xW )

,P
3 S 8

E~v ! D ~16!

and define the average^T(xW )& of the quantityT(v) defined
in each of the vertices contained in the box, as

d3xW ^T~xW !&5 (
vPBox(xW )

,P
3 S 8

E~v ! DT~v !. ~17!

The WBSC expectation value of the Hamiltonian~15! is of
the type

(
vPV(g)

8

E~v !
^W,juF̂~v !Ĝ~v !uW,j&

5 (
Box(xW )

F~xW ! (
vPBox(xW )

,P
3 8

E~v !

3^W,ju
1

,P
3
Ĝ~v !uW,j&

5E
S
F~xW !K 1

,P
3

G~xW !L d3x. ~18!
6-5
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Here, F̂(v) is a fermionic operator which produces th
slowly varying functionF(xW ) within the box; i.e.L!l. Fur-
thermore,^(1/,P

3 )G(xW )& is the box average of the rapidl
varying WBSC expectation values of the gravitational ope
tor (1/,P

3 )Ĝ(v) within the box, whose tensorial and Lie
algebra structure is determined by the tensors character
the continuum spacetime we are dealing with, i.e.

e
0

ia,tk,]b ,ecde,eklm,

where qab5e
0

iae
0

i
b is the corresponding classical 3-metri

The order of magnitude of these box averaged quantitie
estimated according to some prescriptions to be specifie
the sequel. The method does not provide exact nume
coefficients which can only be obtained from a detai
knowledge of the semiclassical state.

Since we assume the fermionic fields to be slowly-vary
functions inside each box, we demand the following beh
ior of the fermionic operators inside the WBSC:

^W,ju . . . ûB~v ! . . .
]

]uA~v !
. . . uW,j&

5QS . . . jB~v ! . . .
i

\
pA~v ! . . . D , ~19!

where the normalization constantQ is to be determined in
such a way that the zeroth order approximation reprodu
the corresponding classical kinetic energy term in the Ham
tonian. In this way we have

HF5^W,juĤspin-1/2
(1) @N#uW,j&

51
iQ

4,P
4 (

Box(xW )
(

vPBox(xW )

N~v !
8

E~v !
e i jke IJK

3H ^W,juF ]

]u~v !
tkhsK(D)u„v1sK~D!…G

3ŵiI D~v !ŵjJD~v !uW,j&2^W,juF ]

]u~v !
tku~v !G

3ŵiI D~v !ŵjJD~v !uW,j&2c.c.J . ~20!

In the above equation we have written only the fermions
its classical version and we have kept them inside the WB
expectation value just in order to be able to write the ab
expression in a more compact way. The holonomyhsK(D) still
contains the gravitational connection. In order to have a c
venient bookkeeping of the terms involved, we write E
~20! as
12400
-

ng
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in
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n
C
e

n-
.

HF51
iQ

4,P
4 (

Box(xW )
(

vPBox(xW )

N~v !
8

E~v !
e i jke IJK

3H ^W,juF ]

]u~v !
tkS ~sK

a ¹̂a~v !!

1
1

2
„sK

a ¹̂a~v !…„sK
b ¹̂b~v !…1••• D u~v !G

3ŵiI D~v !ŵjJD~v !uW,j&2c.c.J ~21!

where the derivative¹̂a includes the covariant derivativ

¹
0

a(xW ), which is compatible with the classical metric that w
are considering and a pieceÂa

i (v) producing the quantum
corrections associated with the beginning of the continu
at the scaleL . Upon taking WBSC expectation value we ca
make the following substitution:

¹̂a~v !u~v !→„¹
0

a~xW !1Âa
i ~v !t i…j~xW !. ~22!

From now on we restrict to a continuum flat metric, in su
a way that

¹
0

a~xW !5]a . ~23!

The partial derivative does not change inside each b
which is consistent with the idea that each box is suppose
represent a point of the continuum. In this way,

HF51
iQ

4,P
4 (

Box(xW )
(

vPBox(xW )

N~v !
8

E~v !
e i jke IJK

3H ^W,juF ]

]u~v !
tkS sK

a ¹̂a~v !1
1

2
sK

a sK
b ¹̂a~v !

3¹̂b~v !1••• D u~v !G
3ŵiI D~v !ŵjJD~v !uW,j&2c.c.J . ~24!

Our problem now is to parametrize and to estimate the g
eral spinor

Y(n)
k ~v !5e i jke IJK^W,jusK

a1sK
a2 . . . sK

an

3¹̂a1
~v !¹̂a2

~v ! . . . ¹̂an
~v !u~v !

3ŵiI D~v !ŵjJD~v !uW,j& ~25!

in a given box. Heren denotes the number of covariant d
rivatives in the expression. Using the above we can write
6-6
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HF51
iQ

4,P
4 (

n51,2, . . .
(

Box(xW )
(

vPBox(xW )
S N~v !

8

E~v ! D
3p~v !tkY(n)

k ~v !2c.c. ~26!

Before calculating the corresponding box averaged contr
tions let us obtain the expressions for some of the first qu
tities Y(n)

k (v). A direct calculation shows

Y(1)
k ~v !5sK

a ~v !„XkK~v !]aj~xW !1Xa
m kK~v !tm…j~xW !,

~27!

Y(2)
k ~v !5sK

a ~v !sK
b ~v !XkK~v !]a]bj~xW !

1sK
a ~v !sK

b ~v !Xa
m kK~v !tm2]bj~xW !

1sK
a ~v !sK

b ~v !Xab
mn kK~v !tmtnj~xW !, ~28!

Y(3)
k ~v !5sK

a sK
b sK

c
„XkK~v !]a]b]c13Xa

m kK~v !tm]b]c1…j~xW !

1sK
a sK

b sK
c
„3Xab

mn kK~v !tmtn]c

1Xabc
mnp kK~v !tmtntp…j~xW !,

where we have explicitly enforced the symmetry implied
the factorssK

a sK
b sK

c . . . in Eq.~25!. The gravitational quanti-
ties, which are rapidly varying inside the box are

XkK~v !5e i jke IJK^W,juŵiI D~v !ŵjJD~v !uW,j&

Xa
m kK~v !5e i jke IJK^W,juÂa

m~v !ŵiI D~v !ŵjJD~v !uW,j&

Xab
mn kK~v !5e i jke IJK^W,juÂa

m~v !

3Âb
n~v !ŵiI D~v !ŵjJD~v !uW,j&

Xabc
mnp kK~v !5e i jke IJK^W,juÂa

m~v !Âb
m~v !Âc

p~v !

3ŵiI D~v !ŵjJD~v !uW,j&.

Next we write the corresponding general expressions

Y(n)
k ~v !5~sK

a1sK
a2 . . . sK

al !~sK
al 11sK

al 12 . . . sK
an!

3 (
l 5n,n21, . . . 1,0

S n

l DXal 11al 12 . . . an

ml 11ml 12 . . . mn kK
~v !

3tml 11
tml 12

. . . tmn
]a1

]a1
. . . ]al

j~xW ! ~29!

with

Xal 11al 12 . . . an

ml 11ml 12 . . . mn kK
~v !5e i jke IJK^W,juÂal 11

ml 11~v !Âal 12

ml 12~v !

3 . . . Âan

mn~v !

3ŵiI D~v !ŵjJD~v !uW,j&. ~30!

In the above expressions the partition (1,2, . . . l ) and (l
11,l 12, . . .n) is made in such a way that the indices of t
12400
u-
n-

first set count the number of partial derivatives acting up
the fermion. The indices of the second set count the num
of t matrices involved which is equal to the number of a
ditional connections, i.e. besides those contained in the c
binationŵiI D(v)ŵjJD(v), appearing in Eq.~30!.

The box-averaged expression for the Hamiltonian redu
then to

HF5
iQ

4,P
7 (

n51,2, . . .
E d3xWp~xW !tk^Y(n)

k ~xW !&2c.c. ~31!

In more detail this is

HF51
iQ

4,P
7 (

n51,2, . . .
E d3xWp~xW !tkK ~sK

a1sK
a2 . . . sK

al !

3~sK
al 11sK

al 12 . . . sK
an!

3 (
l 5n,n21, . . . 1,0

S n

l DXal 11al 12 . . . an

ml 11ml 12 . . . mnkK
~v !L

3tml 11
tml 12

. . . tmn
]a1

]a1
. . . ]al

j~xW !. ~32!

Here it is convenient to define the auxiliary quantities

Ta1a2 . . . alml 11ml 12 . . . mn k

5
Q

4,P
7 ^~sK

a1sK
a2 . . . sK

al !~sK
al 11sK

al 12 . . . sK
an!

3Xal 11al 12 . . . an

ml 11ml 12 . . . mn kK
~v !& ~33!

in such a way that

HF5 (
n51,2, . . .

(
l 5n,n21, . . . 1,0

S n

l D E d3xW ip~xW !tk

3Ta1a2 . . . alml 11ml 12 . . . mntml 11
tml 12

. . . tmn

3]a1
]a1

. . . ]al
j~xW ! ~34!

HF5: (
n51,2, . . .

(
l 5n,n21, . . . 1,0

Hnl
F . ~35!

The box averageŝF(v)& are subsequently estimated usin
the corresponding dimensions in terms of the available t
sors in flat space

e
0

ia5d ia, tk, ]b , ecde, eklm,

qab5dab, d i j , db
a ~36!

in a manner described in the next section. In this way we
demanding covariance under rotations at the scaleL. As the
final input in our prescription we impose that when avera
6-7
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ing inside each box, the order of magnitude of the cor
sponding expectation values of the gravitational opera
are estimated according to

^W,ju . . . ,Aia , . . . ,AVv, . . . uW,j&

'•••

1

L S ,P

L D Y

e
0

ia , . . . ,,P
3/2 . . . , ~37!

respectively.
In previous work@4# we have setY50 on the basis tha

the coarse graining approximation does not allow for
continuum connection to be probed below 1/L. On the other
hand, by adopting say kinematical coherent states for re
senting semiclassical states, one would setY51 for two
reasons: first, in the limit\→0(,P→0) Eq. ~37! yields just
zero, in agreement with a flat connection, and, second, s
an scaling would saturate the Heisenberg uncertainty r
tion. Nonetheless, physical semiclassical states may lead
leading order contribution withYÞ0,1, thus we leave it
open here. Now we have all the ingredients to perform
expansion in powers ofs.

Let us consider now the contribution arising from t
gravitational operators contained inŵiI D(v) of Eq. ~30!. We
choose the parametrization

ŵiI D~v !5sI
awia1sI

asI
bwiab1••• ~38!

leading to

ŵiI D~v !ŵjJD~v !5sI
asJ

bwiawjb1sI
asJ

bsJ
cwiawjbc

1sI
asI

bsJ
cwiabwjc1O~s4!, ~39!

wherewia andwiab , which are independent ofs, need to be
calculated explicitly. The product ofŵ starts quadratically in
s.

To this end we will need thet algebra, recalling thattk
52( i /2)sk , with sk being the standard Pauli matrices. W
have

t it j52
1

4
d i j 1

1

2
e i jktk ,

t it jtk52
1

8
e i jk2

1

4
d i j tk1

1

4
d ikt j2

1

4
d jkt i ,

ecabtatb5
1

2
ecabeabmtm5tc

tktatk5
1

4
ta . ~40!

From the definition~14! we obtain

ŵiI D5Tr~„t i~AV2hsI
AVhsI

21!…. ~41!

Up to second order ins, we have
12400
-
rs

e

e-

ch
a-

a

e

ŵiI D52TrS t i S @AI ,AV#1
1

2
†AI ,@AI ,AV#‡1••• D D ,

AI5sI
aAiat i5sI

a 1

2
@Aia ,AV#

1sI
asI

b1

8
e ikl†Aka ,@Alb ,AV#‡1•••, ~42!

which finally allows us to identify

wia5
1

2
@Aia ,AV#, wiab5

1

8
e ikl†Aka ,@Alb ,AV#‡.

~43!

The scaling properties under the semiclassical expecta
value of the above gravitational operators is

^Wju . . . wi a1 . . . an
. . . uW j&→

,P
3/2

L n S ,P

L D nY

. ~44!

V. THE CALCULATION

The detailed calculation of the correction terms is p
formed according to the following prescription: first we s
Y50, then we consider an expansion to order,P

2 and finally
we reintroduce the non-zero value forY in the corresponding
terms.

Let us recall the general expressions from the last sect

Hnl
F 5 i S n

l D E d3xWp~xW !tk

3Ta1a2 . . . alml 11ml 12 . . . mn k

3tml 11
tml 12

. . . tmn
]a1

]a1
. . . ]al

j~xW ! ~45!

Ta1a2 . . . alml 11ml 12 . . . mn k

5
Q

4,P
7 ^~sK

a1sK
a2 . . . sK

al !~sK
al 11sK

al 12 . . . sK
an!

3Xal 11al 12 . . . an

ml 11ml 12 . . . mn kK
~v !& ~46!

Xal 11al 12 . . . an

ml 11ml 12 . . . mn kK
~v !

5e i jke IJK^W,juÂal 11

ml 11~v !Âal 12

ml 12~v !

3 . . . Âan

mn~v !ŵiI D~v !

3ŵjJD~v !uW,j&. ~47!

The partition is made of the numbern such that we have
l derivatives and (n2 l ) t-matrices, all arising from the pres
ence ofn covariant derivatives in Eq.~24!. We recall that
6-8
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ŵiI D~v !ŵjJD~v !5~sI
asJ

bwiawjb!1~sI
asJ

bsJ
cwiawjbc

1sI
asI

bsJ
cwiabwjc!1O~s4!,

5„ŵiI D~v !ŵjJD~v !…2

1„ŵiI D~v !ŵjJD~v !…3•••

1„ŵiI D~v !ŵjJD~v !…N1•••, ~48!

whereN counts the powers ofs in the termŵiI D(v)ŵjJD(v).
Under the semiclassical state we can estimate the cont
tion of each term in Eq.~48! as

^W,ju . . . „ŵiI D~v !ŵjJD~v !…N . . . uW,j&5,P
3 S ,P

L D N(11Y)

,

~49!

where we have used Eqs.~37! and ~44!.

A. The casenÄ1

Here we have two possibilities which we consider se
rately: (n51, l 51) and (n51, l 50).

1. Case nÄ1, lÄ1

H11
F 5 i E d3xWp~xW !tkT11

a k]aj~xW ! ~50!

T11
a k5

Q

4,P
7 ^sK

a XkK~v !& ~51!

XkK~v !5e i jke IJK^W,juŵiI D~v !ŵjJD~v !uW,j&. ~52!

We present this first calculation in some detail since it s
the stage for all the remaining estimates

T11
a k5

Q

4,P
7 ^sK

a e i jke IJK^W,juŵiI D~v !ŵjJD~v !uW,j&&

5dak
Q

4,P
7

,P (
N52,3,

q11N,P
3 S ,P

L D N(11Y)

5dak
Q

4,P
3 S q112S ,P

L D 2(11Y)

1q113S ,P

L D 3(11Y)

1••• D
T11

a k5dak
Q

4,P
3 S ,P

L D 2(11Y)S q1121q113S ,P

L D (11Y)

••• D .

~53!

The notation isqnlN and these numbers are assumed to be
order one. Choosingq11251 we are left with

T11
a k5dak

Q

4,P
3 S ,P

L D 2(11Y)

F11 ~54!
12400
u-

-

ts

f

where

F115S 11q113S ,P

L D (11Y)

••• D . ~55!

Our convention in the sequel is to writeFnl so that its first
term isqnl2, which is a pure number not depending either
,P or on L. In this way

H11
F 5

Q

4,P
3 S ,P

L D 2(11Y)

F 11E d3xW ip~xW !ta]aj~xW !. ~56!

In order to recover the standard kinetic term we have
choose

Q54,P
3 S L

,P
D 2(11Y)

, ~57!

which reduces to our choice in Ref.@4#, for Y50. We obtain

H11
F 5F 11E d3xWN~xW !ip~xW !ta]aj~xW ! ~58!

as the final result for the kinetic term piece of the Ham
tonian.

2. Case nÄ1, lÄ0

The basic quantities are

H10
F 5 i E d3xWp~xW !tktmT10

m kj~xW ! ~59!

T10
m k5

Q

4,P
7 ^sK

a e i jke IJK^W,juÂa
m~v !ŵiI D~v !ŵjJD~v !uW,j&&.

~60!

Under the scaling properties we obtain

T10
m k5dmk

1

L S ,P

L D Y

F10 ~61!

with

F105S q1021q103S ,P

L D (11Y)

1••• D ~62!

H10
F 52

3

4
F 10E d3xW ip~xW !j~xW !

1

L S ,P

L D Y

. ~63!

B. The casenÄ2

Here we have three possibilities: (n52, l 50),(n52, l
51) and (n52, l 52)
6-9
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1. Case„nÄ2, lÄ2…

H22
F 5 i E d3xWp~xW !tkT22

ab k]a]bj~xW ! ~64!

T22
ab k5

Q

4,P
7 ^sK

a sK
b e i jke IJK^W,juŵiI D~v !ŵjJD~v !uW,j&&.

~65!

From the above equation we see thatT22
abk must be symmetric

in the indicesa,b. Nevertheless, the only three index tens
at our disposal in flat space iseabk so we must conclude tha
this contribution is zero, that is to say H22

F 50.

2. Case„nÄ2, lÄ1…

H21
F 52i E d3xWp~xW !tktmT21

am k]aj~xW ! ~66!

T21
am k5

Q

4,P
7 ^sK

a sK
b e i jke IJK^W,juÂb

m~v !

3ŵiI D~v !ŵjJD~v !uW,j&&. ~67!

Here we have no symmetry requirement, so the antisymm
ric tensor is allowed and we have

T21
am k5eamkS ,P

L D 11Y

F21,

F215S q2121q213S ,P

L D 11Y

1••• D . ~68!

The final contribution is

H21
F 522F 21E d3xW ip~xW !ta]aj~xW !S ,P

L D 11Y

. ~69!

This is a correction of order (,P /L)11Y to the standard ki-
netic term.

3. Case nÄ2, lÄ0

H20
F 5 i E d3xWp~xW !tkT20

nmktntmj~xW ! ~70!

T20
nmk5

Q

4,P
7 ^sK

a sK
b e i jke IJK^W,juÂa

n~v !Âb
m~v !

3ŵiI D~v !ŵjJD~v !uW,j&&. ~71!

Here we do have symmetry requirements. Since the op
tors Âa

n(v) and Âb
m(v) commute, the above tensor must

symmetrical in the indicesn,m. Again, in flat space the only
three index tensor at our disposal is theenmk, which leads to
H20

F 50.
12400
r

t-

a-

C. The casenÄ3

Here we have four possibilities: (n53, l 50),(n53, l
51),(n53, l 52) and (n53, l 53).

1. Case„nÄ3, lÄ3…

H33
F 5 i E d3xWp~xW !tkT33

abck]a]b]cj~xW ! ~72!

T33
abc k5

Q

4,P
7 ^sK

a sK
b sK

c e i jke IJK^W,juŵiI D~v !ŵjJD~v !uW,j&&.

~73!

Here we have to impose the symmetry in the indicesa,b,c.
In flat space the required tensor is

t33
abck5

1

3
~dabdck1dbcdak1dcadbk! ~74!

which turns out to be symmetric in all four indices. Then

T33
abc k5t33

abck,P
2F33,

F335S q3321q333S ,P

L D 11Y

1••• D . ~75!

Combining the above results we obtain

H33
F 5F 33E d3xW ip~xW !ta]a]2j~xW !,P

2 , ~76!

the leading term of which is independent of the scaleL.

2. Case nÄ3, lÄ2

H32
F 53E d3xW ip~xW !tkT32

abmktm]a]bj~xW ! ~77!

T32
abm k5

Q

4,P
7 ^sK

a sK
b sK

c e i jke IJK^W,juÂc
m~v !

3ŵiI D~v !ŵjJD~v !uW,j&&. ~78!

The above tensor must be symmetrical in the indicesa,b
only. In flat space we can construct

t32
abmk5a32d

abdmk1b32~damdbk1dbmdak!. ~79!

Then we have

T32
abm k5t32

abmk,P
2 1

L S ,P

L D Y

F32,

F325S q3221q323S ,P

L D (11Y)

1••• D ~80!

which leads to
6-10
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H32
F 523S 3

4
a321

1

2
b32DF 32E d3xW ip~xW !,P

2]2j~xW !

3
1

L S ,P

L D Y

. ~81!

3. Case nÄ3, lÄ1

H31
F 53E d3xW ip~xW !tkT31

amnktmtn]aj~xW ! ~82!

T31
amn k5

Q

4,P
7 ^sK

a sK
b sK

c e i jke IJK^W,juÂb
m~v !Âc

n~v !

3ŵiI D~v !ŵjJD~v !uW,j&&. ~83!

The above tensor must be symmetrical inm,n. We have

t31
amnk5a31d

mndak1b31~dmadnk1dnadmk!. ~84!

Then

T31
amnk5t31

amnkS ,P

L D 2(11Y)

F31,

F315S q3121q313S ,P

L D (11Y)

1••• D ~85!

which produces

H31
F 52

1

4
F31~9a3116b31!E d3xW ip~xW !ta]aj~xW !

3S ,P

L D 2(11Y)

. ~86!

4. Case nÄ3, lÄ0

H30
F 5E d3xW ip~xW !T30

mnpktktmtntpj~xW ! ~87!

T30
mnp k5

Q

4,P
7 ^sK

a sK
b sK

c e i jke IJK^W,juÂa
m~v !Âb

n~v !

3Âc
p~v !ŵiI D~v !ŵjJD~v !uW,j&&. ~88!

The above tensor is symmetrical with respect to the indi
m,n,p. This means that we need

t30
mnpk5

1

3
~dmndpk1dnpdmk1dpmdnk! ~89!

so that

T30
mnp k5t30

mnpk
,P

2

L 3 S ,P

L D 3Y

F30,
12400
s

F305S q3021q303S ,P

L D (11Y)

1••• D , ~90!

which produces

H30
F 5

15

48
F 30E d3xW ip~xW !j~xW !

,P
2

L 3 S ,P

L D 3Y

. ~91!

D. The full contribution H F

It is given by

HF5(
n,l

Hnl
F , ~92!

where the different pieces were calculated in the previ
subsection. Next we make a clear separation among te
containing either,P or L and those purely numerical factor
not including these quantities, through the following series
redefinitions. First we changeFnl into Gnl , where

Gnl5S ¸nl21¸nl3S ,P

L D (11Y)

1••• D , ~93!

by absorbing all numerical factors in the latter coefficien
in such a way that the Hamiltonian is written as

HF5E d3xWN~xW !ip~xW !S G111G21S ,P

L D 11Y

1G31S ,P

L D 2(11Y)

1G33,P
2¹21••• D ta]aj~xW !

1E d3xW
i

4
p~xW !

1

L S ,P

L D YS G101G30S ,P

L D 2(11Y)

1G32,P
2¹21••• D j~xW !.

In particular we haveG11[F11 and what we have done
amounts effectively to a numerical redefinition of eachqnlN
into ¸nlN . Finally we factor out the contributions arisin
from different powers of (,P /L) and,P . To the order con-
sidered we have

G111G21S ,P

L D 11Y

1G31S ,P

L D 2(11Y)

1•••

511k1S ,P

L D 11Y

1k2S ,P

L D 2(11Y)

1•••

G335
k3

2
~94!

wherekP are numbers not containing either,P or L. The
factor one in the right-hand side~RHS! of the first equation
arises from the condition that in the limit,P→0 we recover
the standard fermionic Hamiltonian. Analogously we red
fine
6-11
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G101G30S ,P

L D 2(11Y)

5k41k5S ,P

L D 11Y

1k6S ,P

L D 2(11Y)

1•••

G325
k7

2
~95!

where the remainingk ’s satisfy the same condition as th
previous ones. The above leads to

HF5E d3xWN~xW !ip~xW !S 11k1S ,P

L D 11Y

1k2S ,P

L D 2(11Y)

1
k3

2
,P

2¹21••• D ta]aj~xW !

1E d3xW
i

4
p~xW !

1

L S ,P

L D YS k41k5S ,P

L D 11Y

1k6S ,P

L D 2(11Y)

1
k7

2
,P

2¹21••• D j~xW ! ~96!
m
io

to

12400
which is our final expression for this piece of the effecti
Hamiltonian.

E. The mass term

Since the spinorsj,p are half-densities regularization o
the mass term requires a treatment along the lines of@55# that
effectively dedensitizes them. For our purposes, howeve
is enough to determine the leading contribution and this
be done consistently with our strategy above. Namely, us
the triangulation again,

Hm5
m

2\E d3xNjT~ is2!j1c.c.

5(
D

N„v~D!…
8

3!E~v !
e IJKeabcsI

a~D!sJ
b~D!

3sK
c ~D!jT

„s~D!…~ is2!hs(D)j„v~D!…1c.c. ~97!

and in the quantum theory, by adapting the triangulation
the flat WBSC state with fermions, we get
Hm5^W,juĤmuW,j&5(
D

N„v~D!…
8

3!E~v !
e IJKeabcsI

a~D!sJ
b~D!sK

c ~D!^W,juuT
„s~D!…~ is2!hs(D)u„v~D!…uW,j&1c.c.

5 (
vPV(g)

N„v~D!…
8

3!E~v !
e IJKeabcsI

a~D!sJ
b~D!sK

c ~D!„^W,juuT~v !~ is2!u~v !uW,j&1^W,jusa]auT~v !~ is2!u~v !uW,j&

1^W,juuT~v !~ is2!saAa~v !u~v !uW,j&1^W,jusa]auT~v !~ is2!saAa~v !u~v !uW,j&1•••…1c.c. ~98!
Hence, to leading order, the modifications coming fro
Planck scale to standard flat space mass term for ferm
are just

Hm5
m

2\E d3xS jT~ is2!j1k9,PjT~ is2!ta]aj

1k8S ,P

L D Y11

jT~ is2!j1k11,PS ,P

L D Y11

3jT~ is2!ta]aj1c.c.D , ~99!

where we have setN51.

F. The extra contributions

Here we study the second term of Eq.~3!

Hspin21/2
(2)

ªE
S
d3x

Ei
a

2Aq
@Da~pTt ij!1c.c.#. ~100!

Repeating the procedure applied toHspin21/2
(1) step by step

with the pertinent modification in the fermionic term leads
ns Ĥspin21/2
(2) @N#52

mP

2,P
3 (

vPV(g)
Nv (

v(D)5v
e i jke IJK

3tr~t ihsI (D)@hsI (D)
21 ,AV̂v# !

3tr~t jhsJ(D)@hsJ(D)
21 ,AV̂v# !

3F @~hsK(D)
21 tkhsK(D)u!„sK~D!~d!…#A

3
]

]uA„sK~D!~d!…
2@tku~v !#A

3
]

]uA~v !
1H.c.G . ~101!

The corresponding expectation value behaves as

^Ĥspin21/2
(2) &5E

S
d3x@Z1]aBa1Z2]a]bBab1•••#

~102!
6-12
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where theZi ’s represent the estimate of the nonfermion
factors in Eq.~101! and theB’s represent the fermionic bi
linears. Clearly everyB term, being a boundary term, wi
not affect the effective dynamics of the spin-1

2 particle.
We proceed to describe the third term in Eq.~3!

Hspin-1/2
(3)

ªE
S
d3x

Ei
a

2Aq

1

2
@ iK a

i pTj1c.c.#. ~103!

To regularize it we can treat theEi
a/2Aq factor similarly as

with Hspin-1/2
(1) term. As for theKa

i factor we recall@55#

Ka
j 52

1

k
$Aa

j ,$V,HE%% ~104!

HE5
2

kES
d3xeabctr~Fab$Ac ,V%!. ~105!

Upon regularization of the quantumHE one gets

HE5(
D

HD
E , ~106!

HD
E52

2Nv

3ik,P
2

e i jk tr~ha i j (D)
hsk(D)@hsk(D)

21 ,Vv# !.

~107!

Following the standard procedure to incorporate holonom
and fermions one arrives at the quantum version of Eq.~103!
as

H (
vPV(g)

\

,P
10 (

v(D)5v
(

v(D8)5v
e IJKeLMNe i jkwiI DwjJD

3tr„tkhsK
†hsK

21,$Vv ,tr~haLM (D8)
hsN(D8)

3@hsN(D8)
21 ,Vv# !%‡…jA„v~D!…

]

]jA„v~D!…
1H.c.J f g

~108!

where the prefactor\/,P
10 was obtained from (1/k2)(\)(1/

\2)(1/k2\2,P
2 ) with thek factors coming from the differen

Poisson brackets identities, the\ factors from the quantiza
tion procedure and the,P

2 factor arises similarly as in previ
ous steps. We want to estimate the leading order contribu
of Eq. ~103! to the effective dynamics of the spin-1

2 particle.
For simplicity in the discussion we setY50, but an exten-
sion can be given forY.0. The leading order is estimate
by noticing that under̂ ^•••&& the contribution of an ho-
lonomyh is 1 if it is not an entry of a commutator, otherwis
it scales like,P /L. Such a leading order contribution be
haves then like (\/,P

10)„,P
3/2(,P /L)…2(,P /L)2,P

6 5(\/,P)
3(,P /L)45mP(,P /L)4, which is highly suppressed give
the quartic order and,P!L.
12400
s

n

VI. EFFECTIVE DYNAMICS FOR SPIN- 1
2 PARTICLES

The total effective Hamiltonian HT for our spin-12 particle
is then

HT5HF1Hm

5E d3xF ip~xW !td]d Âj~xW !1c.c.1
i

4\

1

Lp~xW !Ĉj~xW !

1
m

2\
jT~xW !~ is2!~a12\bta]a!j~xW !

1
m

2\
pT~xW !~a12\bta]a!~ is2!p~xW !G , ~109!

where

Â5S 11k1S ,P

L D Y11

1k2S ,P

L D 2Y12

1
k3

2
,P

2¹2D ,

Ĉ5\S k4S ,P

L D Y

1k5S ,P

L D 2Y11

1k6S ,P

L D 3Y12

1
k7

2 S ,P

L D Y

,P
2¹2D ,

a5S 11k8S ,P

L D Y11D ,

b5
k9

2\
,P1

k11

2\
,PS ,P

L D Y11

. ~110!

It can be seen that the terms proportional tok4 ,k5 andk6
correspond to a renormalization of the fermion mass. Th
will not be considered in the sequel, although they wou
give rise to standard neutrino oscillations even if the neutr
bare mass is zero.

The wave equation becomes

F i\
]

]t
2 i\ÂsW •¹1

Ĉ

2LGj~ t,xW !1m~a2b i\sW •¹!x~ t,xW !

50, ~111!

F i\
]

]t
1 i\ÂsW •¹2

Ĉ

2LGx~ t,xW !1m~a2b i\sW •¹!j~ t,xW !

50, ~112!

with x(t,xW )5 is2j* (t,xW ). Following the standard steps on
can verify the consistency of the above equations.

Eliminating x from Eq. ~111! we obtain

x52
1

m

1

a2b i\sW •¹
F i\

]

]t
2 i\ÂsW •¹1

Ĉ

2LGj.

~113!

Substituting in Eq.~112! we obtain the second order equatio
6-13
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S F i\
]

]t
1 i\ÂsW •¹2

Ĉ

2LGF i\
]

]t
2 i\ÂsW •¹1

Ĉ

2LG
2m2~a2b i\sW •¹!2D j~ t,xW !50. ~114!

The above equation has positive and negative energy s
tions

W~pW ,h!e2( i /\)Et1( i /\)pW •xW, W~pW ,h!e( i /\)Et2( i /\)pW •xW,

~115!

where it is convenient to take the spinorial partW(pW ,h) as
helicity (sW • p̂) eigenstates, withh561, so that

W~pW ,1!5S cosS u

2D
eifsinS u

2D D ,

W~pW ,21!5S 2e2 ifsinS u

2D
cosS u

2D D . ~116!

The dispersion relation has the following form:

E65A~A21m2b2!upW u 21m2a21S C

2LD 2

6BupW u,

~117!

with

A5S 11k1S ,P

L D Y11

1k2S ,P

L D 2Y12

2
k3

2
,P

2 p2D ,

B5AS C

L 12abm2D ,

C52
\k7

2 S ,P

L D Y

,P
2 p2,

a5S 11k8S ,P

L D Y11D ,

b5
k9

2\
,P1

k11

2\
,PS ,P

L D Y11

. ~118!

The 6 in Eq. ~117! refers to the dispersion relation of th
helicities6 respectively. Let us emphasize that the solut
j(t,xW ) to either Eq.~111! or Eq. ~112! is given by an appro-
priate linear combination of plane waves and helicity eig
states. This is not unexpected since we are dealing with m
sive particles.

In the sequel we write down the dispersion relation
terms of an expansion up to second order in (,P /L)Y. The
12400
lu-

n

-
s-

coefficient of each power is subsequently expanded in p
ers ofm in the combinations either (m/p) or (m,P). In this
way we obtain

E6~p,L!5Fp1
m2

2p
6,PS 1

2
m2k9D1,P

2 S 2
1

2
k3p31

1

8

3~2k31k9
2!m2pD G1S ,P

L D Y11F S k1p2
Q11m

2

4p D
6,PS 2k7

p2

4
1Q12

m2

16D G1S ,P

L D 2Y12

3S k2p2
m2

64p
Q22D ~119!

where the previous coefficients denoted byk appear in the
following combinations:

Q115~2k124k8!, Q125~8k1112k718k8k9!,
~120!

Q225232k1
2132k2164k1k8. ~121!

The velocity is defined as

v6~p,L!5
]E6~p,L!

]p
~122!

and is

v6~p,L!5F S 12
m2

2p2D 1,P
2 S 2

3

2
k3p21

1

8
~2k31k9

2!m2D G
1S ,P

L D Y11F S k11
Q11m

2

4p2 D 7
k7

2
~,Pp!G

1S ,P

L D 2Y12S k21
m2

64p2
Q22D , ~123!

within the same approximation.
We will be mainly interested in the case of ultrarelativis

cosmological neutrinos, whose mass we take to bem
51029 GeV, in the range of momenta 105<p<1010 GeV,
where

p@m ⇒ ~p,P!@~m ,P!
m

p
, ~p,P!2@~m,P!2.

~124!

Such a regime allows us to introduce some simplifications
the coefficients of (,P /L)Y. The results are
6-14
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,PE6~p,L!5~p,P!1~,Pm!
m

2p
6S 1

2
~,Pm!2k9D

2
1

2
k3~,Pp!31S ,P

L D Y11

3Fk1~p,P!7k7

~,Pp!2

4 G
1S ,P

L D 2Y12

k2~p,P!, ~125!

together with

v6~p,L!512
m2

2p2
2

3

2
k3~,Pp!21S ,P

L D Y11

3Fk17
k7

2
~,Pp!G1S ,P

L D 2Y12

k2 . ~126!

VII. PARAMETER ESTIMATES

A. The scaleL
In order to estimate some numerical values for the mo

fications to the velocity of propagation we must further
the value of the scaleL. Two distinguished cases arise.

1. The mobile scaleLÄlÄ
1
p

Recall thatL is a macroscopic length scale, being defin
by the given geometry which indicates where the nonper
bative states of the spin network can be approximated by
classical flat metric. The neutrino is characterized by en
gies which probe to distances of orderl. To be described by
a classical continuous flat geometry equation, as the fo
Dirac equation, it is necessary that one remains in the cor
range with respect toL, i.e. L,l. We take the margina
choice of the equality in order to be able to make so
further estimates. Previous expressions reduce to

,PE6~p,L!uL51/p

5~p,P!1~,Pm!
m

2p
6

1

2
~,Pm!2k9

2
1

2
k3~,Pp!31~p,P!Y11

3Fk1~p,P!7k7

~,Pp!2

4 G1~p,P!2Y12k2~p,P!

~127!

and
12400
i-

d
r-
e

r-

d
ct

e

v6~p,L!uL51/p512
m2

2p2
2

3

2
k3~,Pp!21~,Pp!Y11

3Fk17
k7

2
~,Pp!G1~,Pp!2Y12k2 .

~128!

In the caseY50 we recover the expressions~9! and~10! of
Ref. @4#.

2. A universal scale forL
Recently, in@13# a universal value forL was considered

in the context of the GZK anomaly. The study of the diffe
ent reactions involved produces a preferred bound onL:4.6
31028 GeV21>L>8.331029 GeV21. Actually, in this
case the general expressions~125! and ~126! are valid.

B. The exponentY

In this section we follow the conclusion derived fom th
Super-Kamiokande atmospheric neutrino experiment
neutrino oscillations are well described by the mass diff
ences contribution to the energy (n520.960.4 at 90%
C.L., in the standard notation@62#! @9#. That is to say, any
additional contribution to the oscillation length must b
highly suppressed. This condition will set a lower bound
Y which we will use in further estimates.

The oscillation lengthL52p/uDEu is

1

L
5

1

Lm
1

1

LQG
, L5Lm

1

11
Lm

LQG

, Lm5
4pE

~Dm!2
,

~129!

where we have usedp'E, ,P51/M P andLQG is calculated
according to each specific additional term inuDEu. Since the
dominant contribution to the oscillation arises form the ma
term, i.e.L'Lm , we must have the condition

LQG.Lm'X, ~130!

where X is the distance travelled by the neutrinos in ea
experiment. Let us observe that the energy range for cur
neutrino observatories lies between 1022 GeV and
1012 GeV, which amply satisfies the condition (pL)<1. In
particular we will consider the case of the SNO experim
characterized by the following parameters@63#:

E51022 GeV, X5108 km51027 GeV21. ~131!

The estimates proceed by considering first the separate
tribution of each arbitrary parameterDk and subsequently
the case where we have more than one non-zero contribu
to the oscillation.

1. The caseLÄlÄ
1
p

~i! Dk3Þ0, Dk15Dk750.
6-15
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The quantum gravity contribution to the oscillation leng
is

LQG5
4p

Dk3
S M

E D 2 1

E
, ~132!

from which we get that

Dk3,6.2831017,

which is a very weak bound on the variable. The reaso
that this term corresponds to a second order correction inl P .

~ii ! Dk1Þ0, Dk35Dk750.
Here we have

LQG5
2p

Dk1
S M

E D Y11 1

E
. ~133!

Using Dk1;1, we obtain

Y.0.152. ~134!

~iii ! Dk7Þ0, Dk15Dk350.
Here we have

LQG5
8p

Dk7
S M

E D Y12 1

E
. ~135!

Using Dk7;1, we obtain

Y.20.87. ~136!

~iv! When two of theDk i do not simultaneously vanish
we get the following situations:

~iv-1! D k1Þ0.
In this case the term proportional toDk7 is suppressed

with respect to the one proportional toDk1. The comparison
among the terms proportional toDk1 andDk3 leads to the
thresholdY51. WhenY.1 the term proportional toDk3
dominates, while the term proportional toDk1 dominates in
the other situation.

~iv-2! Dk150.
In this case the competition is among the terms prop

tional to Dk3 andDk7. The threshold here isY50, so that
we consider only the caseY.0, where the term proportiona
to Dk3 dominates.

2. A universal scale forL
In this estimate we will assume thatL51028 GeV21

@13#.
~i! Dk3Þ0, Dk15Dk750.
Since this contribution does not depend uponL, we ob-

tain the same result as the corresponding case in the m
scale.

~ii ! Dk1Þ0, Dk35Dk750.
Here we have

LQG5
2p

Dk1
S L

,P
D Y11 1

E
. ~137!
12400
is

r-

ile

Using Dk1;1, we obtain

Y.1.2. ~138!

~iii ! Dk7Þ0, Dk15Dk350.
Here we have

LQG5
8p

Dk7
S L

,P
D Y11 M P

E

1

E
. ~139!

AssumingDk7;1, we get a bound onY:

Y.20.764, ~140!

which is also a weak bound on the variable.
~iv! When two of theDk i do not simultaneously vanish

we get the following situations:
~iv-1! Dk1Þ0, which leads to the thresholdY. 17

11 .
WhenY.17/11 the termDk3 dominates and we are back t
the case~i!. On the other hand, whenY, 17

11 we obtain the
interval 17

11 .Y.1.2. It should be stressed that the latt
bound onY is also compatible with the bound on the max
mum speed of Ref.@64#, which in our case reads

DvQG5Uv6~p,L!2S 12
m2

2p2D U5uk1uS ,P

L D Y11

,10222.

~141!

~iv-2! Dk150.
The threshold here isY53/11. WhenY.3/11 the term

proportional toDk3 dominates over the one proportional
Dk7.

So, the present data on neutrino oscillations do not p
scribe the theory considered in this work with a univer
scaleL;1028 GeV21.

VIII. SUMMARY AND DISCUSSION

In this work we have derived an effective Hamiltonia
exhibiting Planck scale corrections with respect to stand
propagation for the theory describing spin-1/2 fermions,
ing an heuristical approach based upon Thiemann’s regu
ization within the framework of loop quantum gravity. Co
rections arise as a consequence of the discrete natur
space which are manifest at Planck scale. The effective s
1/2 particle Hamiltonian given in Eqs.~109!,~110! was ob-
tained by taking the expectation value of the regularized v
sion of the quantum operator corresponding to Eq.~3! with
respect to awould be semiclassical stateuW,j& describing a
large scale flat metric together with a slowly varying clas
cal spinor field. Only the basic properties of such a state w
used:~i! peakedness both in a flat space metric together w
a flat connection for large distancesd@L@,P , whereL can
be thought of as the scale that settles the transition betwe
discrete and a continuous description of space,~ii ! well de-
fined expectation values,~iii ! existence of a coarse-graine
expansion involving ratios of the relevant scales of the pr
lem: the Planck length,P , the characteristic lengthL of the
state and the de Broglie wavelengthl of the spin-1/2 particle
and ~iv! invariance under rotations at scales larger thanL,
6-16
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which amounts to expressing the box-averaged values in
duced after Eq.~18! only in terms of flat space tensors.

The effective theory violates Lorentz invariance and,
analogy with the photon case@5#, we assume that the effec
tive Hamiltonian so found corresponds to that in the parti
lar frame of reference where the cosmic radiation ba
ground looks isotropic.

Some improvements with respect to our original pres
tation @4# are the following:~i! in Sec. V F we have eluci-
dated the contribution of the derivative term and the extrin
curvature dependent term in Eq.~3! by showing that they are
highly suppressed in powers of,P . ~ii ! We have extended
the corrections to the scaling of the connection by includ
the new parameterY, already considered in our discussio
of photons@5#, in the form

^W,juAiauW,j&501
1

L S ,P

L D Y

, ~142!

whereY.0 can be any real number.
In Sec. VIII we have estimated some bounds forY, based

on the observation that atmospheric neutrino oscillation
average energies of the order 10222102 GeV are dominated
by the corresponding mass differences via the oscilla
lengthLm in Eq. ~129!. This means that additional contribu
tions to the oscillation length, in particular the quantum gra
ity correctionLQG , should satisfyLQG.Lm , which is used
to set a lower bound uponY. Within the proposed two dif-
ferent ways of estimating the scaleL of the process we ob
tain: ~i! Y.0.15 whenL is considered as a mobile scale a
it is estimated by 1/E and~ii ! 1.2,Y when the scaleL takes
the universal valueL51028 GeV21, according to Ref.@13#.
In the above estimates we have satisfied the condi
(pL)<1.

Let us observe that according to Eq.~127! the mass-
difference contribution to the neutrino oscillation proce
will be highly suppressed at high energies while oth
mechanisms, like those arising in the quantum gravity fram
work, could be the dominant ones@31#. It is an experimental
issue to settle this question. Since the bound uponY strongly
depends on the dominant mechanism there is the possib
that the exponentY be energy-dependent. This situation
not considered in the present approach. Nevertheless, in
der to make some numerical estimates related to cosmo
cal neutrinos we will make the extrapolation of our boun
in Y, which have been obtained in the range of a few G
to energies of the order of 105 GeV, corresponding to typica
neutrinos arising from gamma ray bursts. Let us consi
specifically ultrarelativistic neutrinos of massm
51029 GeV, energyp'E5105 GeV, traveling a cosmo-
logical distance L51010 light years50.531042 GeV21,
where pL<1. Next we give an estimate of two types
delay times~for a more realistic calculation including th
effect of the expanding universe see Refs.@5,13,31#!.
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~i! Dtn'(L/c2)(v2v0), which measures the time dela
of the arrival of the neutrino coming from a distanceL, fly-
ing with velocity v5]E/]p, with respect to the time of
flight corresponding to a particle of massm with velocity
v05p/Ap21m2'1.

~ii ! Dt6'(L/c2)(v22v1), which is a measure of the
birrefringence effects and it is defined by the difference
the arrival time of two neutrinos with opposite polarization

In the range 0.6,Y,2.0 and within the two scenario
presented here for dealing with the scaleL, we obtain the
estimates

10210 s,Dtn,1024 s, ~143!

Dt6,10217 s. ~144!

To conclude we point out that an effective dynamics a
dispersion relations for gravity plus matter were thoroug
studied recently by Thiemann and Sahlmann@21#, where the
semiclassical states were taken as coherent states. The
cluded photons and scalar particles and their results for
dispersion relations essentially agree with what we obt
here for fermions, even the possibility of having noninteg
powers in,P for the correcting terms, which is encoded
our parameterY. Besides they provide a detailed classific
tion of the quantum geometry aspects required in defin
the semiclassical regime yielding the effective dynamics.
another avenue to tackle the problem of defining semicla
cal states in quantum geometry is currently under invest
tion that establishes a relation between Fock space and
kinematical Hilbert space for diffeomorphism covariant the
ries of connections such as quantum geometry~loop quan-
tum gravity! @65,66# ~see also@67#!. It will be interesting to
compare all of the above proposed semiclassical states in
context of the quantum gravity phenomenology.
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