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Abstract

I provide a conceptually-focused presentation of ‘low-energy quantum
gravity’ (LEQG), the effective quantum field theory obtained from general
relativity and which provides a well-defined theory of quantum gravity at
energies well below the Planck scale. I emphasize the extent to which
some such theory is required by the abundant observational evidence in
astrophysics and cosmology for situations which require a simultaneous
treatment of quantum-mechanical and gravitational effects, contra the
often-heard claim that all observed phenomena can be accounted for either
by classical gravity or by non-gravitational quantum mechanics, and I
give a detailed account of the way in which a treatment of the theory as
fluctuations on a classical background emerges as an approximation to
the underlying theory rather than being put in by hand. I discuss the
search for a Planck-scale quantum-gravity theory from the perspective of
LEQG and give an introduction to the Cosmological Constant problem as
it arises within LEQG.

1 Introduction

What is a theory of ‘quantum gravity’? It is widely described1 as any physical
theory which combines general relativity and quantum theory; or, alternatively,
as any physical theory that has classical general relativity and quantum theory
as limiting cases or partial approximations.

And here are some common claims about a quantum theory of gravity, un-
derstood in this sense:

1. We don’t have one.2

∗Department of Philosophy / Department of History and Philosophy of Science; email
david.wallace@pitt.edu

1See, e. g. , Butterfield and Isham (2001, p.33): “by ‘quantum gravity’ we mean any
approach to the problem of combining (or in some way ‘reconciling’) quantum theory
with general relativity”; Rovelli (2008):“Quantum Gravity is the name given to any the-
ory that describes gravity in the regimes where quantum effects cannot be disregarded”;
Rickles (2008, p.262):“Quantum gravity involves the unification of the principles of quantum
theory and general relativity”.

2“[t]here is still no satisfactory theory” (Butterfield and Isham 2001, p.33); “an established
theory of Quantum Gravity does not yet exist”(Rickles 2008, p.265).
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2. More specifically, we don’t have an acceptable quantum theory of gravity
in the sense that we have an acceptable quantum theory of the strong,
weak or electromagnetic interactions.3

3. Empirically we don’t really need one, because — outside exotica such as
Hawking radiation, the interior of black holes, and the very early Universe
— all known empirical phenomena are describable either within quan-
tum mechanics (more specifically: within the Standard Model of particle
physics) or within classical General Relativity. So any case for a quantum
theory of gravity will have to be based largely on theoretical considera-
tions.4

All of these claims are false. If ‘quantum gravity’ indeed just means a the-
ory that combines quantum mechanics with general relativity, then we have
a fairly satisfactory theory of quantum gravity; indeed, we have a theory of
quantum gravity that’s acceptable in pretty much exactly the sense that we
have an acceptable quantum theory of electrodynamics or of the strong or weak
interactions. And there is abundant observational evidence for this theory, be-
cause there are an abundance of observations that cannot be explained in their
entirety either by classical general relativity or by non-gravitational quantum
mechanics, but which this theory describes admirably. Indeed, an important
approximation regime for this theory — often called ‘semiclassical gravity’ —
is the (admittedly often tacit) foundation of most of contemporary astrophysics
and cosmology. Other regimes are less directly tested but are still have applica-
tions in physical situations much more amenable to direct observation than the
extremes usually associated with evidence for quantum gravity.

This theory is simply the quantum field theory (QFT) obtained when modern
quantum-field-theoretic methods (specifically, path-integral formulations and
the effective-field-theory approach) are applied to classical general relativity.
It has its share of conceptual puzzles and problems, to be sure — most se-
riously, it ceases to be well-defined when used to describe phenomena at ex-
tremely short distances, extremely high energies, and extremely high curva-
tures (more precisely, at lengths which are not large compared to the Planck
length, lP =

√
~G/c3 ≃ 10−35m, and similarly for other magnitudes). But

this deficiency, far from being unique to the theory, is actually shared by the
Standard Model and (arguably) by classical general relativity: both predict the
appearences of extremes in which they can be expected to break down.

In this paper I call it low-energy quantum gravity, or LEQG for short. (Ex-
tant names are either too clunky (‘effective-field-theory-general-relativity’) or
too ambiguous for my purposes (‘general relativity’, ‘quantum general relativ-
ity’)). It is worth emphasizing that ‘low energy’ here means ‘low energy relative

3“[C]urrently there is no quantum theory of gravity in the sense that there is, say, a
quantum theory of gauge fields” (Callender and Huggett 2001, p.3).

4“there are currently no observations demanding a quantum gravitational theory”
(Callender and Huggett 2001, p.3); “there are no phenomena that can be identified un-
equivocally as the result of an interplay between general relativity and quantum theory”
(Butterfield and Isham 2001, p.36); “If there is no empirical anomaly, then why bother with
quantum gravity: why do we need such a theory?” (Rickles 2008, p.268).
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to Planck scales’, which is an undemanding constraint: the heart of a supernova,
and the quark-gluon plasma of the early Universe, are both low-energy regimes.
The purpose of this paper is to give a presentation of LEQG and of the obser-
vational evidence that supports it, and to consider how the broader project of
quantum gravity should be understood in the light of LEQG. I intend the pa-
per as a conceptual presentation complementing more calculationally-oriented
discussions, and for the most part assume without proof (but with references)
the mathematical results I use. (The main exception is the somewhat-explicit
presentation I give of the background-field method in sections 7–8.)

The paper is structured as follows. In sections 2–3 I review a range of astro-
physical and cosmological applications which require simultaneous consideration
of quantum theory and gravity for their analysis. In section 4 I present ‘semi-
classical gravity’, a hybrid theory where the metric field couples to the expected
value of the stress-energy tensor, as a unifying framework for these applications,
and argue that the observational evidence for ‘classical’ general relativity mostly
supports either semiclassical gravity or phenomenological applications of gen-
eral relativity. In sections 5–6 I discuss the limitations of semiclassical gravity
and the observational evidence — both at laboratory scales and in cosmology
— that points beyond it, to a theory of quantized metric fluctuations.

In sections 7–8 I present LEQG in general, stressing its non-perturbative and
background-independent character and explaining how background-dependent
descriptions arise from it as contingent approximations. In section 9 I consider
to what extent LEQG can be seen as empirically confirmed, and identify those
regimes in which it is and is not supported by evidence. In section 10 I consider
the breakdown of LEQG at Planckian scales and the question of how to seek a
theory applicable at those scales. And in section 11 I give an introduction to
the notorious cosmological constant problem, which arises in LEQG simply as a
matter of calculation. Section 12 is the conclusion.

A note on level and rigor: I assume some background knowledge of general
relativity and of quantum field theory in the path-integral formulation. I have
aimed for about the level of mathematic rigor found in theoretical high-energy
physics, which of course is lower than that found in pure mathematics, in some
areas of general relativity, and in some parts of the foundational literature. For
those who find results stated at this level unconvincing, I hope the paper will
at least be illuminating as to how quantum gravity looks from the perspective
of mainstream theoretical physics.

A note on sources: the particular presentation of LEQG I give here is novel
in the minimal sense that I worked it out for my pedagogical purposes and have
not straightforwardly followed any single source, but I claim no originality in
the broader sense. Good general sources for effective-field-theory discussions
of gravity, from a perspective somewhat complementary to my own and pro-
viding more on the technical details, are (Burgess 2004, Donoghue 1997, 2012;
Kiefer 2007,ch.2).

Finally, a note on units: I take ~ = c = 1 except where explicitly noted
otherwise, so that mass has the dimensions of inverse length, and so I talk
interchangeably about physics at high energies and at short lengthscales. I do
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not take G = 1 (in low-energy quantum gravity this is often unhelpful). Note
that in these units G is simply related to the Planck length, G =

√
lP .

2 Observing quantum gravity: the Newtonian

regime

Take a rock, or any other solid object. Hold it in your hand, a few feet above
the floor, and let go. Observe its steady downward acceleration followed by a
sharp deceleration when it hits the floor.

Congratulations! You just carried out an experiment in quantum gravity.
(Who said fundamental physics experiments had to be expensive?) The rock ac-
celerated downwards because of gravity: if you ignore gravity and just treat the
reference frame of the room you’re standing in as inertial, you won’t predict that
acceleration. It stopped because it and the floor are made of non-interpenetrable
solid matter, and to explain that requires the Pauli exclusion principle (there is
no classical microscopic theory of stable solid matter).

That experiment only required Newtonian gravity and quantum theory. To
find an experiment that needs both general relativity and quantum theory, just
check the map app on your cellphone. Famously,5 the GPS network requires
general relativity for a full analysis; the processor in your phone needs quantum
theory for a full analysis; the covariation of your physical position with your
apparent position on the map cannot be fully analysed without both general
relativity and quantum theory. Nor can the various classic experiments that
use atomic clocks to measure general-relativistic time dilation.

This probably seems like cheating. In each case, there is a background classi-
cal gravitational field against which quantum phenomena played out. One might
imagine a division of labor: classical general relativity tells us the background
gravitational field (or the spacetime metric, if you prefer) and only then do we
apply quantum mechanics. But it at least makes the point that we have to be
a bit careful saying what we mean when we say that “there are no phenomena
that can be identified unequivocally as the result of an interplay between general
relativity and quantum theory” (Butterfield and Isham 2001, p.36).

Here is an attempt to be more careful: for an experiment or observation
to require a quantum-gravitational description, it must require a quantum-
mechanical description of self-gravitating matter. None of the experiments
above fit this description: in each, a quantum-mechanical system (the rock,
the satellite/cellphone system, the atomic clock) is moving in a gravitational
field, but is not being treated as the source of a gravitational field.

But it is also easy to find situations which are quantum-gravitational in this
more careful sense. Again: there is no classical microscopic account of solid
matter. So a full physical description of the structure of Earth, or any other
planet,6 requires quantum theory. But of course it also requires gravity: a

5For details, see (Ashby 2003).
6Even gas giants have solid cores; nor is this a contingent accident: self-gravitating gas
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physical analysis of the structure of a planet involves solving for its density and
pressure as a function of its radius, taking as input (a) the equation of state of
the matter forming the planet, which requires quantum theory to explain, and
(b) Newton’s law of gravity.

One might object that geologists do not in practice use quantum theory
to calculate the equation of state of the Earth’s matter: perhaps we should
understand that equation of state as phenomenological rather than quantum-
mechanical. Replying to that objection would take us deep into both the techni-
cal details of geology and the philosophical problems of reduction and emergence,
so I will bypass it by considering the technically simpler case of stars.7 Stars
like the Sun can be reasonably well modelled, at least in their broad-brush fea-
tures, as balls of dilute gas or plasma, both of which are pretty well understood
in microphysical terms (at least if we bracket philosophical problems in statis-
tical mechanics). Now granted, the equations of state for plasmas and gases
can be understood classically8 — but there is no classical account available of
nuclear fusion, the process by which a star’s temperature is maintained against
the constant loss of energy through radiation. Nor is there a classical account
available of how photons diffuse from the stellar core to the star’s atmosphere
and so are visible as sunlight. A proper microscopic understanding of fusion
requires a quantum-mechanical account of the nucleus and of the strong inter-
action; a proper microscopic understanding of stellar opacity requires quantum
electrodynamics. So a full account of a star requires both quantum theory and
gravity.

If we consider stars smaller than the sun, quantum mechanics enters even
into their equations of state. In smaller stars the core is maintained by elec-
tron degeneracy pressure: in semiclassical terms, the Pauli exclusion principle
permits only one electron of each spin in a phase-space region of size ~

3, so as
the spatial density of electrons becomes larger they are forced into higher-and-
higher-momentum states in order to conform to the exclusion principle. (This is
well-understood physics: the semiclassical and verbal gloss I give is replaceable
by sharp mathematics.) The same phenomenon occurs in white dwarf stars, the
corpses of stars like the Sun which have exhausted their fusion fuel. In either
case, the structure of the star is explained, and indeed calculated quantitatively
and checked against observational data, using a marriage of quantum theory
and Newtonian gravity.

clouds aren’t stable, because of the gravothermal catastrophe (cf (Binney and Tremaine 2008,
pp.567-572) and references therein).

7The physics I discuss here is well-understood; (Kippenhahn et al 2012) is a standard
reference.

8Or at least, let’s stipulate that they can; for some reasons for doubt, see (Wallace 2016b).
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3 Observing quantum gravity: relativistic mat-

ter and strong gravity

The examples I have given so far are largely nonrelativistic: we need to consider
relativistic physics to handle fusion reactions, and we need to consider elec-
tromagnetic effects to understand heat flow around stars, but the short-term
(hydrostatic) descriptions of planets, main-sequence stars, and white dwarfs
rely just on nonrelativistic quantum mechanics and on Newtonian gravity. But
it is not hard to find examples in astrophysics where Newtonian gravity is in-
sufficient and relativistic effects must be considered, but where quantum theory
remains essential.

The first class of examples arise where it matters that Einsteinian gravity
couples to the full stress-energy tensor of matter, and not just to its rest mass.
For instance, in cosmology we identify ‘radiation’ and ‘baryonic matter’ compo-
nents of the overall matter distribution (along with the more mysterious ‘dark
matter’ and ‘dark energy’ components). As a capsule summary of their physics:

• The radiation can basically be treated as black-body; its energy density
is proportional to the fourth power of its temperature.

• The baryonic matter can be treated initially as a relativistic plasma, with
appropriate equation of state; in due course it cools down to a nonrela-
tivistic gas, at which point its energy density is effectively independent
of its temperature, and inversely proportional to the Universe’s effective
volume.

• Initially the radiation and matter are in thermal equilibrium with one
another and so at the same temperature. Eventually (specifically, when
protons and electrons combine to form hydrogen, making the baryonic
matter transparent) the interaction between the two drops off too rapidly
to maintain equilibrium and they continue to evolve separately.

• After this stage, the temperature of the radiation is inversely proportional
to the universe’s effective radius, and so the energy density of the radiation
falls off more rapidly than that of the baryonic matter, and the latter
dominates the former gravitationally.

This is standard, well-understood cosmology9 — but it requires both quantum
theory and general relativity to understand. The energy density of black-body
radiation is, famously, a quantum-mechanical result that cannot be reproduced
classically — indeed, exactly this problem led Planck to the idea of the light
quantum. Similarly, the physics of how the radiation and matter move out of
equilibrium is quantum-mechanical, turning on the interaction of photons first
with plasma and then with atomic hydrogen. But that energy density is not
a nonrelativistic ‘mass’, and to properly couple it to gravity requires general
relativity. Ordinary cosmology is an application of relativistic quantum gravity.

9See (Weinberg 2008) or any other standard text for details.
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The second class of examples arise when the strong-gravity regime of general
relativity comes to the fore. For instance, consider neutron stars, white dwarfs’
more extreme cousins. In a neutron star, gravitation-induced pressure is so
high that protons and electrons are induced to combine into neutrons, and the
resultant neutron fluid then supports itself by neutron degeneracy pressure.
The basic physics is similar to white dwarfs, but the much higher densities
involved mean that a general-relativistic description of a neutron star’s gravity
is necessary to give an accurate analysis of its structure. The physics of neutron
matter is also more complicated by far than that of the degenerate matter in
white dwarfs; a full understanding remains elusive, but what understanding we
have relies on a combination of finite-temperature quantum field theory10 and
general relativity. (For details, see (Keller et al 2021) and references therein.)

For an example which combines both relativistic features of matter and the
strong-gravity regime of general relativity, consider gravitational supernovae,
the catastrophic explosion of (some) large stars when they exhaust their nu-
clear fuel. In outline, sufficiently large stars build up a core of degenerate iron
(iron cannot release further energy through nuclear fusion). When this core ex-
ceeds a certain mass it becomes unstable due to relativistic effects and collapses
very rapidly in on itself to form a neutron star. The remaining matter falls onto
the neutron core and ‘bounces’ (in a fashion which remains incompletely under-
stood), dispersing into a large cloud around the neutron star, accompanied by
a catastrophic release of energy, mostly in the form of neutrinos. The core of a
supernova is an extreme physical environment. As David Arnett puts it in his
widely-cited monograph on supernovae and nucleosynthesis,

The problem abounds with the extreme and the exotic. Neutrinos,
which eluded direct detection for decades because of the extreme
weakness of their interaction, are trapped in the collapse. The col-
lapse is so fast that a mass, more than half that of the sun, shrinks
in on itself at velocities approaching the speed of light. Einstein’s
general relativity theory becomes necessary to describe the event,
not merely a subtle correction to the gravitational theory of New-
ton. Perhaps nowhere else in the Universe does it matter so much
whether neutrinos obey Pauli’s exclusion principle. (Arnett 1996,
p.381)

(For further details of the physics here, see (Arnett ibid.) and references therein.)
To conclude this part of the discussion: it is flatly wrong that contemporary

physics provides few or no situations in which gravity and quantum theory
must be considered in parallel. Astrophysics and cosmology routinely give us
situations in which quantum-mechanical and self-gravitation effects must be
considered in parallel, and many of these situations involve core features of
relativistic gravitation and relativistic quantum theory.

10In a strict sense this is not a relativistic application of quantum field theory — the ‘finite
temperatures’ in question are much lower than the neutron rest mass — but it certainly lies
outside the domain of applicability of nonrelativistic particle mechanics.
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4 Semiclassical gravity and the observational ev-

idence for general relativity

If astrophysics and cosmology are routinely using both quantum-mechanics and
gravitational physics in the same problems, it ought to be possible to say —
at least in a rough-and-ready way — what the principles are that govern their
combination. And indeed, I think it is fairly straightforward to read off from
these applications how this goes. In each case, quantum mechanics is used to
give us appropriate dynamical equations for bulk matter, using the usual rules of
quantum statistical mechanics: work out the expected values of quantities like
fusion rates, pressures, and energy densities, and then treat these as the actual
values of those quantities under the assumption that quantum fluctuations in
their values are negligible (and if necessary check that assumption by calculat-
ing the variance in those values using the quantum formalism, though in most
cases it is obvious on physical grounds that they are negligible). Normally the
quantum calculations are carried out on flat spacetime, on the assumption that
the dynamically relevant scales for matter are much smaller than the relevant
spacetime curvature scales, and translated to general curved spacetimes via the
equivalence principle. Then the matter equations thus obtained are combined
with Einstein’s field equations and solved.

This approach, where quantum-mechanical matter is analysed on a classical
spacetime and the two are coupled by putting the expected value of the stress-
energy tensor into the Einstein field equations —

Gµν [g] + Λ0gµν = 8π〈Tµν〉|ψ〉 (1)

— is generally referred to as semiclassical gravity. It has been reasonably widely
discussed in the quantum-gravity literature (see, e. g. , Kiefer 2007, pp.15-21,
Wall 2012, p.8, and references therein), but it is not often recognized in that lit-
erature that — as the examples of sections 2–3 demonstrate — it has widespread
applications in extant physics, encompassing much of contemporary astrophysics
and cosmology.

Indeed, we can go further: in an important sense, semiclassical gravity is
more strongly supported by observational evidence than ‘classical’ general rela-
tivity. In the abstract, modelling a system via general relativity requires:

1. A class of models 〈M, g, φ〉, where M is a four-dimensional manifold, g is
a Lorentzian metric on that manifold, and φ is a placeholder for whatever
mathematical objects on the manifold represent the matter fields.

2. Some kind of dynamical equations for the matter fields φ, expressed on
the background metric g.

3. A dynamical equation of the form

Gµν [g] + Λgµν = 8πT [φ, g] (2)

where T [φ, g] is some kind of expression that determines the right-hand
side of the equation in terms of the matter fields and the metric.
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Together, this (at least formally) forms a closed dynamical system for g and φ,
which we can then solve to determine which of the triples 〈M, g, φ〉 represent
real dynamical possibilities.

There are essentially four concrete versions of this schema that are discussed
in physics. The first is vacuum general relativity, where there are no matter fields
at all and the right hand side of the Einstein field equation is set to zero. The
second is phenomenological general relativity, which eschews any microphysical
account of matter and uses ‘dust’, ‘perfect fluid’, ‘point particle’ and similar
models. The third is semiclassical gravity, which we have already discussed.
And the fourth is classical general relativity, where a classical matter field like
the Klein-Gordon field, Dirac field or electromagnetic field is coupled to gravity,
usually using an action principle to determine both the dynamical equations for
matter and the stress-energy tensor.

The first three of these find fairly widespread application in astrophysics.
Vacuum general relativity is applied to the study of black holes and gravity
waves; the calculations underpinning the LIGO gravity wave observatory’s fit
to predictions rely on it (cf. (Coleman Miller and Yunes 2019) and references
therein). Phenomenological general relativity (albeit often in a Newtonian ap-
proximation) is commonly applied in various pieces of galactic-dynamics and
cosmology, where the details of matter can be abstracted away, and also in solar-
system physics, where Birkhoff’s theorem11 allows us to disregard the details of
the Sun’s structure given that it is spherically symmetric. And we have seen
that semiclassical gravity is necessary whenever we need a non-phenomenological
description of quantum-mechanical matter. In practice the line between phe-
nomenological general relativity and semiclassical gravity is blurry: it is often
a matter of degree in astrophysics to what extent the dynamical equations of
matter are derived bottom-up and to what extent they are modelled phenomeno-
logically.

Classical general relativity, however — despite its undoubted mathematical
beauty — has no applications at all to observational data (except insofar as we
treat it as including vacuum general relativity as a special case). To the best
of my knowledge, all observationally-relevant treatments of matter coupled to
general relativity use some mix of phenomenological and quantum-mechanical
treatments: there are no observationally-relevant cases where a classical field, in
the usual sense of that term, is coupled to gravity. Nor should this be surprising:
the only classical fields seem to be12 gravity itself and the electromagnetic field,
with the other quantum fields of the Standard Model manifesting in the classical
regime, if at all, as particles. And while in principle a classical electromagnetic
field could generate a gravitational effect, in practice this does not seem to occur
in astrophysically-relevant situations.13 (Black-body electromagnetic radiation

11See, e. g. , (Wald 1984, p.125) or (Carroll 2003, p.197).
12There are some field-theoretic models of dark matter (see (Urena-Lopez 2019) for a re-

view), so it would be premature to absolutely rule out a third classical field.
13The nearest I can imagine to an exception might be the enormously strong magnetic

fields generated by neutron stars and by black hole accretion disks. But even there, a self-
contained account would require a quantum-mechanical and/or phenomenological description
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self-gravitates non-trivially in some circumstances, but as we have already noted,
this requires a quantum-mechanical treatment.)

So: what is ‘general relativity’, if we mean the theory which is actually used
and applied in observational physics? It is not a self-contained classical theory
that could be thought of as fundamental were it not for the pesky quantum
effects in other regimes: it is in practice a higher-level effective theory, in which
matter is treated either phenomenologically or quantum-mechanically through
the methods of semiclassical gravity.14

5 The limitations of semiclassical gravity

Semiclassical equations like (1) are very common in physics. Known variously
as ‘Vlasov equations’, ‘mean-field approximations’, and ‘Hartree(-Fock) approx-
imations’, they have extremely wide applicability, from nuclear and atomic
physics through to galactic dynamics. The Hartree approximation to nonrela-
tivistic quantum electrostatics, for instance —

i~
∂ψ

∂t
(x, t) = − ~

2

2m
∇2ψ(x, t) − eV (|ψ|)(x, t)ψ(x, t) (3)

where

V (|ψ|)(x, t) =
∫

dx′ 3
e|ψ(x′, t)|2
|x− x′| (4)

— describes electrons moving in the mean electric field created by those same
electrons, and is the starting point for much of atomic physics and quantum
chemistry.15 But normally these equations are taken as approximations to the
underlying dynamics, approximations which hold only on the assumption that
multiparticle correlations, or their field-theoretic equivalents, are low. (The
Hartree equation, for instance, is derivable16 as a first-order approximation to
the N -particle Schrödinger equation under the approximation that the quantum
state remains approximately in product form). And there is a clear physical rea-
son why these approximations ought to fail in the presence of strong correlations:
if the quantum state of N electrons is a superposition of the electrons at X and
the electrons at Y , an N + 1th electron interacting with the first N would be

of the generation of the field, and could not be analyzed just using the classical theory of
electromagnetism coupled to gravity. A black hole with a significant electric charge would

be modelable in that classical theory, but such objects do not appear to occur in nature, for
physically obvious reasons.

14It is also non-fundamental for another reason lying somewhat outside the main scope of
this paper: in at least a large fraction of applications of general relativity, including almost
all applications at very large scales, the metric tensor g is not the ‘true’ metric (whatever
that means) but a highly coarse-grained approximation to that metric, smoothing out metric
inhomogeneities over macroscopically large regions. Cosmology often smooths out even the
structure of galaxies, let alone the structure of the matter within them. See (Wiltshire 2011)
and references therein for further discussion of this point.

15Strictly speaking, the equation used is the Hartree-Fock equation, which takes better
account of the antisymmetrisation properties of a multi-electron wavefunction.

16See, e. g. , (Bonitz 2016).
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expected to end up entangled with them, not feeling the electric field as if its
source was at (X + Y )/2. Adopting the language of decoherent histories,17 an
electron in a history h ought to feel the electric field of the other electrons at
their positions as described in h, not their expected position averaged over all
histories.

It is then natural to expect that semiclassical gravity is likewise an approxi-
mation to some more fully quantum theory, and that the equations of semiclas-
sical gravity would fail under the same circumstances that other semiclassical
methods fail: that is, when the quantum state is a superposition of substantially
different mass distributions (something that is not the case18 in any of the astro-
physical and cosmological examples we have considered so far). And it is fairly
straightforward to test this empirically: simply use a quantum-mechanically
random process (a spin measurement, say) to place a mass large enough to
generate a detectable gravitational field in one of two macroscopically distinct
locations in the lab; then measure the gravitational force. If semiclassical grav-
ity fully describes quantum gravity in this regime, the force should be detected
as directed towards an empty location intermediate between the two locations; if
semiclassical gravity is a mean-field approximation to something else, we would
expect the force to be detected as directed towards the observed location of
the mass. This experiment has actually been done (Page and Geilker 1981),
demonstrating (perhaps unsurprisingly) that semiclassical gravity indeed fails
in this situation.

Similarly, considerations of the long-term chaotic behavior of the solar sys-
tem, in which one would expect the locations of the planets to become macro-
scopically superposed on megayear timescales (Zurek and Paz 1999), might be
said to provide an observational version of the Page-Geilker experiment, as Page
and Geilker themselves note (ibid., p.980). On sufficiently long timescales, no
unitarily-evolving quantum state will remain macroscopically definite.19

The Page-Geilker experiment has received some pushback in the philosophy
literature, notably by Mattingly (2005, 2009). Mattingly’s objection is that Page
and Geilker assume the Everett interpretation of quantum mechanics (they do
indeed mention it explicitly in their paper) and that their experiment does not
have any implications for semiclassical gravity without this assumption.

I have no solution to the quantum measurement problem. Nor do I
find wholly satisfying any of the extant proposals for solving it. Yet
I cannot worry overmuch about a proposal for a gravitation theory
merely because it fails to solve the problem, or rather because it

17(Gell-Mann and Hartle 1989, 1993; Griffiths 1984, 1993; Omnes 1988, 1992); see also
reviews by Halliwell (1995) and Wallace (2012, ch.3).

18There is a caveat here: given unitary dynamics, the universal quantum state (insofar as
such a thing makes sense) is certainly in a superposition of different mass distributions. I
discuss this below.

19For that reason, at least on interpretations which treat the quantum state as observer-
independent, the empirical evidence for semiclassical gravity really supports what we might
call branch-relative semiclassical gravity : semiclassical gravity applied not to the universal
state but to the branch-relative state.
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undermines one or two of the proposed solutions. (Mattingly 2005,
pp.330-331).

But this understates the scope of the Page-Geilker result (and of similar, more
theoretical arguments; cf (Kiefer 2007, pp.15–22) and references therein). The
argument I sketched above does not rely on any interpretative assumptions,
but just on the mathematical assumption that the quantum state of the lab
in which the experiment is conducted evolves unitarily (or, more precisely, ac-
cording to the modified version of unitarity that incorporates the semiclassical
gravitational field). The Everett interpretation makes this assumption, but it is
not alone in doing so: the various consistent- and decoherent-history approaches
to quantum mechanics all assume unitary dynamics, as do the various hidden-
variable and modal ‘interpretations’.20 Even pragmatist or instrumentalist ap-
proaches such as QBism (Fuchs et al, 2014), Healey’s pragmatism (Healey 2012,
2017), Fuchs’ and Peres’ operationalism (Fuchs and Peres 2000), or most ver-
sions of the Copenhagen interpretation at least permit the lab to be analyzed
unitarily, since they all permit Wigner’s-friend scenarios where an external ob-
server considers the lab (experimenters and all) as a single quantum system.
This same move is permitted on at least some interpretations of Dirac and
von Neumann’s ‘measurement-collapse’ approach, since that approach is often
taken to allow us to put the transition between unitary and non-unitary dy-
namics (von Neumann’s ‘cut’) as close to the observer as we wish. It is per-
mitted, too, under Rovelli’s relationalist interpretation (Rovelli 1996). Of the
various interpretations of quantum mechanics, and proposals for modifications
of quantum mechanics, currently extant in the philosophy and physics litera-
ture, only dynamical-collapse theories clearly prohibit a unitary analysis of the
Page-Geilker experiment. And while the suggestion that dynamical collapse
might have some connection to gravity is certainly intriguing, and has been
the source of interesting theoretical speculations and experimental proposals
(to which I return in section 9), at this point we are well outside anything that
might be called an ‘interpretation’ of quantum mechanics. The mainstream use
of quantum theory in modern physics (cf Wallace 2019c, 2016a) assumes uni-
tary quantum dynamics, and that is all that is required for Page-Geilker-type
experiments to falsify semiclassical gravity.

Nonetheless, the Page-Geilker experiment — and Zurek and Paz’s theoreti-
cal models — have a pretty ‘foundational’ feel to them, concerning as they do
macroscopic superpositions which are implied by the equations but not in any
direct sense observable. There is, however, an important class of applications
of quantum gravity in mainstream cosmology where the presence of quantum

20Hidden-variable theories, to be sure, also allow for the possibility that the gravitational
field is sensitive to the hidden variables and not (or not just) to the physical features encoded
in the quantum state; see (Pinto-Neto and Struyve 2018, section 8) for further development
of this idea. However, theories of this kind take us beyond semiclassical gravity, in which
the right-hand-side of the Einstein equation is a quantum expectation, independent of the
hidden variables. (For that reason they also face a potentially severe observational challenge
in relativistic regimes, where a quantum calculation of the stress-energy tensor is used in
astrophysics and cosmology.)
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fluctuations in the gravitational field, and the responsiveness of matter to those
fluctuations and not just to their expected value, has direct observational con-
sequences. These applications — to the quantum origins of inhomogeneity in
the microwave background radiation and in the cosmological-scale distribution
of matter — will be of interest both because they further mark the limitations
of semiclassical gravity and because they provide further examples of the direct
use of quantm gravity in contemporary physics.

6 Quantum fluctuations in the inflaton field

A key feature of gravitational physics, owing its origin to the universally-attractive
nature of gravity, is that small fluctuations from isotropy and homogeneity in
the matter distribution will grow exponentially in size over time (rather than be
damped back to uniformity as in the case of, say, a non-self-gravitating dilute
gas or electromagnetic plasma). As such, even very small fluctuations away from
uniformity in the early Universe can suffice to generate the highly non-uniform
cosmos we observe today, in which typical matter densities in stars exceed the
average matter density of the Universe by around thirty orders of magnitude.
When in 1992 the COBE satellite detected relative fluctuations of 10−5 in the
observed cosmological microwave background (CMB), this began the modern
era of understanding in quantitative detail exactly how these small fluctuations
indeed seed the large-scale structure we observe today, and arguably can be seen
as the beginning of the current golden age of observational cosmology. (Here
and for the rest of this section, see (Weinberg 2008) for details and references.)

The origin of these fluctuations is another matter. As long as we assume
a classical, deterministic picture of cosmology, small fluctuations in the CMB
must have their origin in still-smaller — but still non-zero — fluctuations in the
still-earlier Universe. But the dominant view in modern cosmology is that ulti-
mately we should not assume that ‘classical, deterministic picture’, and instead
should look to understand these primordial fluctuations as the classical rem-
nants of quantum fluctuations in the early universe, even given an isotropic and
homogeneous quantum state for the early universe – and that concrete quan-
tum theories of those fluctuations can be used to calculate a predicted spectrum
of fluctuations, compared to observation, and thus tested. The dominant such
theory, inflation, has indeed been so tested, and while the ‘test’ in question is
scarcely precise, inflation does indeed correctly predict the form of the CMB
spectrum. This connection of inflation to the CMB and thus, indirectly, to
large-scale structure formation has probably now replaced older, more founda-
tional, motivations as the main reason for its popularity amongst cosmologists
(see (Smeenk 2017) for more discussion).

It should be clear on physical grounds that any such quantum analysis of
fluctuations cannot assume semiclassical gravity. If we begin with a homo-
geneous and isotropic quantum state describing matter on a homgeneous and
isotropic background, and allow it to evolve semiclassically, its expectation val-
ues will remain homogeneous and isotropic. From the quantum point of view,
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structure formation is a correlational phenomenon invisible to mean-field meth-
ods. And indeed, direct examination of the sorts of calculations used in this
field confirms that they are not made within semiclassical gravity. Instead, the
usual approach is to split the metric field g into a sum g = g0 + h, where g0 is
homogeneous and isotropic and h thus represents fluctuations around g0, and
then to quantize h and the matter field (say, an inflaton field φ) as quantum
fields interacting with one another on a background spacetime with metric g0.
Fluctuation information is then contained in expectation values like 〈ĥ(x)ĥ(y)〉,
which, given decoherence, can be interpreted as encoding correlations between
fluctuations at different points.

In the most straightforward of these analyses, the radiational degrees of
freedom of h (i.e., the gravitons) are assumed neglectable, and so h is basically
a functional of the matter field, representing gravitational interactions between
matter fluctuations. In more detailed analyses (e.g., Bhattacharya et al, 2006)
gravitons are also present. But even when gravitons are frozen out, this is fairly
clearly a fully quantum theory of gravity, with the gravitational field being a
superposition of different classical values, and entangled with the matter field.

It is fair to say that the physics here is significantly more speculative and
significantly less observationally constrained than the very mature astrophysics
and cosmology that underlies applications of semiclassical gravity. But it is
also fair to say that it is much less speculative, and much more observation-
ally constrained, than proposals for Planck-scale quantum gravity. Inflationary
models do make predictions about the quantitative form of the CMB fluctua-
tions; those predictions are non-trivial; they have so far been confirmed. And
active efforts continue to further constrain inflationary models with observa-
tional data: notably, the BICEP and Keck arrays at the South Pole21 aim to
measure polarization in the CMB, which is an indirect measure of the graviton
background in the primordial Universe.

7 Background field methods

The applications I have so far discussed demonstrate fairly widespread appli-
cations of quantum gravity in contemporary astrophysics and cosmology, and
comparably widespread exposure of those applications to observational test.
But at first sight they also paint a rather messy disunified picture of quantum
gravity at low energies. Semiclassical quantum gravity has a fully dynamical
interaction between quantum matter and spacetime metric, but treats the lat-
ter as fully classical, and is for that reason (as we have seen) not satisfactory
except as some sort of approximation. But it is not obviously any kind of ap-
proximation to the essentially perturbative approach to quantum gravity used
in inflation, in which a classical background spacetime plays a central role and
in which quantization is apparently only defined relative to that background.

This perception is misleading. The methods of modern quantum field theory
— specifically, the ‘background field method’, developed by Goldstone, Salam

21See Ada et al (2018) and references therein.

14



and Weinberg in particle physics, and independently by de Witt in the con-
text of quantum gravity (see Weinberg (1995, ch.16) for a review and for orig-
inal sources) provide an elegant way to see both semiclassical methods and
quantize-on-a-background methods as different approximation schemes for the
same underlying theory. In this section I give a brief outline of the background
field method in the simpler context of scalar field theory; section 8 applies the
method to gravity.22

In contemporary QFT, the theory is normally specified by means of a path
integral, which for scalar field theory has the form

〈φf ; tf |φi; ti〉 =
∫ φ(tf )=φf

φ(ti)=φi

Dφ eiS[φ] (5)

where

• |φi; ti〉 is a quantum state in the Heisenberg representation of the theory,

defined by φ̂(x, ti) |φi; ti〉 = φi(x, ti) |φi; ti〉, and similarly for |φf ; tf 〉.

• S[φ], the action for the scalar field theory, is a quasi-local functional of
the classical scalar field φ, which we assume takes the general form

S[φ] =

∫
dx4

(
1

2
∂µφ(x)∂µφ(x) − V (φ(x))

)
. (6)

That is, the amplitude for transitions between configuration φi at time ti, and
configuration φf at time tf , is expressed as a path integral over all histories that
connect φi to φf , with each history weighted by a phase factor determined by
the action of the history. As stated this is all rather formal: the path integrals
here are divergent and the theory must be regularized through the addition
of some high-energy cutoff in order for the path integrals to be well-defined; I
postpone consideration of these issues to section 11.

Suppose we now fix a quantum state |in〉, which we choose to encode a known
state of the system at some early time. The physical features of this system at
all times are encoded in expectation values like

〈F [φ̂]〉in ≡ 〈in| φ̂(x1) · · · φ̂(xn) |in〉 (7)

and these can be expressed in terms of an appropriately manipulated path-
integral: schematically, as

〈F [φ̂]〉in ∝
∫

in

= DφF [φ]eiS[φ] (8)

where ‘in′ schematically indicates the boundary conditions on the integral re-
quired to enforce |in〉 as our choice of quantum state. The most common choices

22For calculational uses it is more convenient to develop the background field method using
the powerful and elegant quantum effective action (see (Peskin and Schroeder 1995, ch.11) for
an introduction and (e.g.) Weinberg (1995, ch.16) or Banks (2008, ch.2) for more advanced
treatments). But this is overkill for my purposes; here I adopt a more heuristic approach.
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of state are the vacuum state |Ω〉 and (through a generalisation to mixed states)

the thermal state ρ̂β = exp(−βĤ)/Tr exp(−βĤ) which describes a system at
equilibrium at temperature T = 1/kBβ, but we can in principle choose any
state we wish, including states which are not eigenstates of energy (or mixtures
of eigenstates) and so describe time-dependent phenomena. (In this latter case,
the integral is the so-called ‘in-in’ or ‘Schwinger-Keldysh’ path integral, where
the integral is taken on a double contour in time that extends into the far future
and then back again, effectively doubling the fields present; for the details, see
(e.g.) Berges (2004, section 3.1) or Calzetta and Hu (2008, ch.6).) From here
on, I will usually omit the ‘in’ subscripts, taking the specification of the state
as tacit.

If the expectation value φ0(x) = 〈in| φ̂(x) |in〉 is zero, and if a number of
other technical conditions hold, then we can evaluate these path integrals per-
turbatively and get increasingly good approximations for them. In these cases,
we can normally (at least approximately, at least on short timescales) interpret
the QFT in the standard way as a theory of spin-0 particles, and derive the
masses, decay rates, and scattering cross-sections for those particles from the
path integral. However, in many cases of interest φ0 is not zero, and these per-
turbative methods cannot straightforwardly be applied; this is the context for
the background field method.

To begin with, suppose we carry out an infinitesimal change of variables in
the path integral: φ(x) → φ(x) + ǫ(x). The value of an integral is invariant
under any such change, so

0 =

∫
DφeiS[φ+ǫ] −

∫
DφeiS[φ] =

∫
Dφ
∫

dx4 i
δS

δφ(x)
ǫ(x)eiS[φ]

= i

∫
dx4 ǫ(x)

∫
Dφ δS

δφ(x)
eiS[φ]

∝ i

∫
dx4 ǫ(x)

〈
δS

δφ̂(x)

〉
(9)

so that 〈
δS

δφ̂(x)

〉
= 0. (10)

(Since the variational derivative of S is just the Euler-Lagrange equation, i. e. the
classical field equation for the action S, this can be thought of as the path-
integral version of Ehrenfest’s theorem.)

Now we make a finite change of variables,

χ(x) = φ(x) − φ0(x). (11)

(Recall that φ0 is the expectation value of the field on our specified quantum
state |in〉.) We can now rewrite the action as

S[φ0 + χ] = S[φ0] +
δS

δφ

∣∣∣∣
φ0

· χ+ Σφ0
[χ] (12)
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where in the second term on the right I use the abbreviated notation

δS

δφ

∣∣∣∣
φ0

· χ ≡
∫

dx4
δS

δφ(x)

∣∣∣∣
φ0

χ(x). (13)

Plugging this into (10), we obtain

0 =
δS

δφ

∣∣∣∣
φ0

+
δ

δφ

∣∣∣∣
φ0

· δS
δφ

∣∣∣∣
φ0

〈χ(x)〉 +
〈
δΣφ
δφ

∣∣∣∣
φ0

〉
. (14)

The second of these terms vanishes exactly, because by construction the expec-
tation value of χ̂ is zero, so that this simplifies to

0 =
δS

δφ

∣∣∣∣
φ0

+

〈
δΣφ
δφ

∣∣∣∣
φ0

〉
. (15)

This is the sum of the classical Euler-Lagrange equation for the scalar field, and
a quantum expectation value that can be expressed as a path-integral,

〈
δΣφ
δφ

∣∣∣∣
φ0

〉
∝
∫

Dχ δΣφ[χ]

δφ

∣∣∣∣
φ0

exp i

(
χ · Σφ0

[χ] +
δS

δφ

∣∣∣∣
φ0

)
(16)

where I have just used the change of variables (11) in (8) and absorbed a constant
phase factor into the constant of proportionality.

We have now reexpressed the original quantum field theory as a theory of
two fields: a classical scalar field, and a quantum field whose action

S′
φ0
[χ] = Σφ0

[χ] + χ · δS
δφ

∣∣∣∣
φ0

(17)

depends on that classical field. (The second term in this expression can be
thought of as encoding quantum corrections to the classical expectation value
and can largely be ignored in calculations, serving only to cancel certain dia-
grams in a perturbative expansion; it is the first term Σφ0

that really defines the
interesting features of the quantum field.) The dynamics of the two fields have
the classic form of a self-consistency problem: the quantum field evolves against
a background defined by the classical field; the classical field responds to the
quantum field via equation (15). The expectation value of this new quantum
field is zero by construction, and so we can hope (though must check explicitly)
that we have a well-behaved perturbative description of that field.

The best-known uses of the background field method are in spontaneous
symmetry breaking (SSB), where (for the real field we are presently considering)
we begin with some potential like

V (φ) = −1

2
µ2φ2 +

λ

4!
φ4 (18)
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for the action (6). V has a maximum at φ = 0 and minima at φ = ±(6/λ)1/2µ;
in elementary treatments of SSB we pick one of these minima and quantize
around it (much as we considered quantizing around a particular solution of
the Einstein equations in section 6). But the background-field method lets us
give a fully quantum treatment, where we extremize not the classical action but
the quantum effective action. The latter is dominated by the classical action
but has quantum corrections which can be thought of as polarisations of the
vacuum. These do not change the qualitative form of the function23, so that
its extrema are homogeneous fields equal to 0 (a maximum) or ±α for some
nonzero α (a minimum). Calculating the two-point functions for the quantum
fields defined around these extrema reveals that the maximum corresponds to a
highly unstable quantum state and so does not describe a genuine vacuum, but
that the minima are the expectation values of well-behaved vacuum states. The
existence of multiple extrema tells us that the theory has multiple vacuum sec-
tors, with the actual vacuum fixed mathematically by the boundary conditions,
physically by contingent facts about the field-theoretic system being studied.
And crucially, we have obtained these sectors not by applying different quan-
tization procedures for fluctuations around a background, but by defining the
quantum theory once and for all by the path integral (5) and then exploring its
space of solutions.

If we analyze SSB for a finite-termperature state, the expectation value will
now contain thermal contributions as well as vacuum polarization. These gener-
ally have the effect of decreasing the expectation value φ0, until for sufficiently
high temperature Γ ceases to have symmetry-breaking minima and the symme-
try is restored (in particle-physics contexts, this is expected to happen in the
early universe).

A more complicated application of the background-field method is to sit-
uations where the quantum system starts in a strongly time-dependent state
(i. e. , not a vacuum state, a thermal state, or a state describable as a small
perturbation of either). As already noted, this requires the more-complicated
‘in-in’ path integral, which somewhat complicates the technical details of the
background-field formalism. But the basic structure remains: we can use equa-
tion (15) to express the dynamics of the system as a coupled interaction of a
classical field and the quantized fluctuations around that field. The underlying
theory remains fully quantum-mechanical, and this particular decomposition
into background and fluctuation is solution-relative.

As a final observation before we turn to gravity: formally the semiclassical
equation (15) is exact. But it gets its practical power from the ability to calculate
a good approximation to the expectation-value term, and this in turn requires
(among other things) that the strength of the fluctuations (expressed by the two-
point function 〈χ̂(x)χ̂(y)〉) are not too large compared to other relevant scales
(the so-called ’mean-field’ regime). If this assumption is violated, equation (15)
becomes intractable, and physically the system may be better described as a

23This need not be the case. There are well-known examples (notably the Coleman-
Weinberg model (Coleman and Weinberg 1973) where the classical action has a minimum
with unbroken symmetry and the symmetry breaking has an entirely quantum origin.
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superposition of macroscopically different backgrounds with fluctuations around
each. In the nonequilibrium case this can happen dynamically if initially small
fluctuations can grow over time, causing a breakdown over time of the mean-
field assumption. Exploring the physics here beyond the mean-field regime is the
domain of the comparatively new field of non-equilibrium quantum field theory
(see, e. g. , (Berges 2004; Calzetta and Hu 2008) for details).

8 Low-energy quantum gravity

Formally speaking, we can define a quantum theory of gravity using path in-
tegrals, just as we defined a scalar field theory above. We want a theory of
the gravitational metric g and some matter fields which we write schematically
as φ (read φ as a scalar field if you like, though I intend it as a more general
placeholder), and we assume an action of the form

S[g, φ] =
1

8πG
SV [g] + SM [φ, g]. (19)

Here SV [g], the vacuum action, has form

SV [g] =

∫
dx4 (R(x) + Λ0)

√
−g(x) + higher -order terms in g (20)

— that is, it is the sum of the standard Einstein-Hilbert action, a cosmological-
constant term, and unspecified higher-order terms in g. SM is a matter action,
depending on both matter and metric: for a real scalar field it would have form24

SM [φ, g] =

∫
dx4

(
1

2
gµν(x)∂µφ(x)∂νφ(x) − V (φ(x))

)√
−g(x). (21)

The field theory is then specified by the path integral

〈hf , φf |hi, φi〉 =
∫ (g,φ)|Sf

=(hf ,φf )

(g,φ)|Si
=(hi,φi)

DgDeiS[g,φ] (22)

where the boundary conditions indicate that we are integrating over fields be-
tween some initial and final 3-surfaces Si, Sf , and that the fields on Si must
equal (hi, φi) and similarly for Sf .

This simple formal expression hides a host of conceptual and technical com-
plications, of course, among them:

1. The path integral again requires regularization to be well-defined, and
that regularization becomes more complex technically and conceptually
due to the non-renormalizability of the gravitational action (see section
11 for further discussion of this point).

24Arguably a non-minimally-coupled term Rφ
√
−g should also be included: it violates no

symmetry, and will be reintroduced by renormalization if not added initially.
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2. The diffeomorphism invariance of S means that a naive attempt to calcu-
late the path-integral will overcount and integrate over fields that are re-
lated by a (small) diffeomorphism. That is conceptually undesirable (small
diffeomorphisms are normally interpreted as purely redescriptive25) and
leads to a pathological theory. The formal path integralDgDφmust be de-
fined so as to integrate over only one element of each gauge orbit, which in
actual calculations normally requires Faddeev-Popov ghosts, BRST meth-
ods, or other such heavy machinery (see (Weinberg 1995, ch.15-17) and
references therein).

3. Strictly speaking, the action must be supplemented by a boundary term to
get a well-defined theory, due to the presence of second derivatives of the
metric in the Einstein-Hilbert action; this has no classical consequences
but can lead to non-perturbative quantum effects (see (Hawking 1979,
pp.749-751) or (Padmanabhan 2014) for a discussion).

4. On a more conceptual level, diffeomorphism invariance leads to the no-
torious ’problem of time’ (see (Butterfield and Isham 1999; Rickles 2008)
for discussion and further references), which can make it difficult even to
interpret the formalism (at least in the cosmological case; for applications
of quantum gravity to isolated systems like stars or black holes, asymp-
totically flat boundary conditions simplify matters). This shows up in the
path integral in the fact that —unlike in the scalar case — I have not ex-
plicitly specified initial and final times. In isolated-system applications, we
do actually need to specify those conditions, since the asymptotic bound-
ary conditions make them well-defined; in the cosmological case, things
are more complicated.

But notwithstanding these subtleties and open questions, the theory is suffi-
ciently well-defined that many calculations can be done in it, and we will see that
it offers a unified starting point from which can be derived the various approx-
imations discussed previously. In particular, we can apply the background-field
method of the previous section, to express the metric as the sum of its expecta-
tion value g0 and a new field h which tracks fluctuations around that expectation
value:

g(x) = g0(x) +
√
8πGh(x) (23)

(the reason for the
√
8πG factor will be apparent shortly). Expanding the action

around g0 in this way, we get

S[g0 +
√
8πGh, φ] ≡ 1

8πG
SV [g0] +

1√
8πG

δSV

δgµν

∣∣∣∣
g0

· hµν + SM [g0, φ] + Σg0 [h, φ]

(24)

25High-energy physics does not treat large diffeomorphisms — those that are non-vanishing
at infinity — as redescriptive, and there is no requirement to avoid integrating over fields
related by large diffeomorphisms; see Belot (2018), Wallace (2019a) for discussion of the con-
ceptual issues here.
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and can then obtain a semiclassical analogue of (15) for g0:

0 =
1

8πG

δSV

δg(x)

∣∣∣∣
g0(x)

+

〈
δ(SM [g0, ·] + Σg0)

δg0(x)

〉
(25)

where the expectation value on the right hand side is calculated for a field theory
with fields h, φ, defined on a spacetime background g0 and with action

S′
g0 [h, φ] = SM [g0, φ] + Σg0 [h] + (linear term in h) (26)

where, as before, the linear term can mostly be neglected. Since the stress-
energy tensor in classical general relativity is defined as the variational derivative
of the action with respect to the metric, we can interpret the second term in
(25) as the expectation value of the stress-energy tensor for the h and φ fields.
Since the first, classical, term is the sum of the Einstein tensor, the cosmological-
constant term, and higher-derivative terms, we can recognize (25) as a form of
the semiclassical Einstein field equation.

It is instructive to explicitly expand S[g0 + h, φ] in powers of
√
8πG.26 We

obtain

S[g0 +
√
8πGh, φ] =

1

8πG
SV [g0]

+
1√
8πG

δSV

δgµν

∣∣∣∣
g0

· hµν

+
(
SM [g0, φ] + SGRAVg0 [h]

)

+
√
8πG

(
TMµν,g0 [φ]h

µν +
1

3
TGRAVµν,g0 [h]hµν

)

+ O(8πG). (27)

The first term here is the classical vacuum action, evaluated for the background
field. Passing over the second term for the moment, the third term is the sum of
the classical action defined on the background g0, and the (free) graviton action
on that background:

SGRAVg0 [h] ≡ 1

2

δ2SV

δg2c

∣∣∣∣
g0

(h, h)

=
1

4

∫
dx4

√−g0∇αhµν∇βhρσ[g
αβ
0 gµν0 gρσ0 + 2gασ0 gµρ0 gνσ0 − (ν ↔ ρ)]

+ cosmological-constant term

+ higher terms. (28)

26The attentive reader will observe that G is dimensionful, which calls into doubt the in-
terpretation of any such expansion. A more careful treatment (which I assume tacitly) would
expand in powers of (

√
8πG/L), where L is the typical scale of the physical processes being an-

alyzed (e.g., the inverse momenta of the particles). Since in our units
√
G is the Planck length,

this will be extremely small for low-energy phenomena and defines a meaningful expansion.
The failure of this process when L approaches Planck scales points to the nonrenormalizability
of the theory and its consequent failure at those scales, discussed further in section 10.

21



Physical fields in QFT are normalized so as to avoid scale factors in front of the
kinetic term for those fields, so this term is the reason for the

√
8πG term in

the definition of h.
Returning to the second term, we can now interpret it as a source term for

the creation of single gravitons. Since such a process would shift the expected
value of ĥ away from zero, we can now see that the effects of this term will be
exactly cancelled by other terms, and indeed this can be easily shown. At the
technical level, the term just serves to cancel so-called ‘tadpole diagrams’ in the
evaluation of the path integral; interpretatively, it can be seen as compensating
for quantum corrections to 〈h〉.

The fourth term is the lowest-order coupling of gravitons to matter and
to each other. In each case, the gravitons couple linearly to the stress-energy
tensor of the respective excitations: TM is defined in the standard way as the
variational derivative of the matter action with respect to the (background)
metric, and TGRAV is likewise the variational derivative of the free-graviton
action. (The latter term is actually nonlinear because TGRAV itself depends on
h, which also accounts for the 1/3 term in that term: the variational derivative
of TGRAV [h]µνh

µν is 3TGRAV [h], not TGRAV [h].) Higher-order terms encode
higher-order couplings.

If we now evaluate the effective action to lowest order, dropping all positive
powers of 8πG, the semiclassical equation for g0 becomes

0 =
1

8πG

δSV

δgc(x)

∣∣∣∣
g0(x)

+
〈
(TM + TGRAV )

〉
(29)

where the expectation value is calculated for a QFT consisting of the matter
field φ on the background g0 along with a field of free gravitons on that same
background. We can recognize this as semiclassical gravity: a theory of quantum
matter evolving on a classical spacetime background, with the backreaction of
the quantum matter on the background given by Einstein’s equation with the
expected value of the stress-energy tensor as source term. (The graviton term is
often omitted from presentations of semiclassical gravity, but — at least in high-
energy physics — it is generally understood to be present in a careful formulation
of the theory, and one periodically sees it mentioned explicitly (see, e. g. , (Hu et
al 2004) or (Wall 2012, p.8)). It is normally negligible; an important, though
theoretical, exception is black hole evaporation, where the presence of gravitons
means that black holes evaporate by Hawking radiation even in pure (vacuum)
quantum gravity.)

If we go to higher order, we include matter-graviton interactions, and hence
indirectly self-gravitational effects of fluctuations in the matter field. It is at
this level (again, often disregarding gravitons) that we can derive the linearized
accounts of fluctuations which we have seen in inflation, and which also suffice to
describe more homely fluctuation phenomena like the Page-Geilker experiment.
As those fluctuations grow, the background field approach (whilst remaining
formally exact) may become more and more calculationally intractable, and
less and less useful as a description of the physics. Eventually one might need
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to abandon it and apply the more general methods of non-equilibrium quantum
field theory; in the context of quantum gravity, these methods are known as
stochastic gravity27 (see (Hu and Verdaguer 2008) for a review of this relatively
new, and growing, subject). But even in doing so, we are simply applying
a different and more powerful set of approximation techniques to the same
quantum field theory.

To conclude this section: we can define quantum gravity non-perturbatively
as a quantum field theory, and extract both semiclassical gravity and linearized
quantum gravity as approximations to that theory valid in certain regimes, using
(at least at the broad schematic level) essentially the same techniques as we use
in non-gravitational QFT. The path-integral formulation of low-energy quantum
gravity provides a framework that unifies the various apparently-disconnected
fragments of quantum gravity we have discussed so far and puts them under a
single, albeit non-fundamental, theory.

9 The scope of low-energy quantum gravity

For a theory as complicated as a quantum field theory (like QED, for instance),
it rarely makes sense to say that any given experiment confirms the theory as a
whole.28 Rather, what we test in applications of these theories is invariably some
particular approximation, regime of application, or limiting case to the theory.
Some parts of the evidence for QED consist of evidence for its nonrelativistic
electrostatic approximation; others support the existence of the photon; still
others provide evidence for coherent interference between those photons. Col-
lectively, the evidence for these various applications of QED provide very strong
support for the theory as a whole, while always permitting the logical possibility
that some different theory could underpin the selfsame class of approximations
and idealizations that we actually test.

As an inevitably-partial classification of these approximation schemes for
QED, we can consider asking two questions of the regime we want to analyze:

1. Is it relativistic? In the nonrelativistic regime, radiation can be neglected,
long-range interactions can be treated as instantaneous, and particle cre-
ation and annihilation does not occur. In the relativistic regime, all these
phenomena must be allowed for to varying degrees.

2. How quantum-mechanically does it treat the electromagnetic field? We
can distinguish (i) a semiclassical regime, where the field is treated as

27The term ‘stochastic gravity’ is actually used both for the constructive approximation to
an underlying QFT that I sketch here, and to more explicitly phenomenological approaches
that seek to generalise the semiclassical equation by adding noise terms without requiring
any principled microtheory. The two approaches are used concurrently by the same authors
and I don’t myself see any real conflict between them (they mirror the way phenomenological
physics is developed in other areas). However, see (Mattingly 2014) for discussion of stochastic
gravity specifically from the phenomenological perspective.

28See Cartwright (1983) for further development of this point (though she draws more
sweeping conclusions about the evidence for theories than I would want to endorse).
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sourced by the average charge distribution; (ii) a perturbative regime,
where we need to treat the electromagnetic field as a superposition of
field values but where the different terms in the superposition may be
regarded as small fluctuations around a fixed background (normally the
zero field); (iii) a macroscopic-superposition regime,29 where we need to
allow the quantum state to evolve into a superposition of macroscopi-
cally distinct backgrounds. In case (ii) we can further distinguish (iia) a
perturbative/incoherent regime, where interference between terms in the
superposition can be neglected and the state behaves like a classical mix-
ture; (iib) a perturbative/coherent regime, where interference cannot be
so neglected. (In principle we could make the same distinction for (iii); in
practice, decoherence normally means that we cannot expect to observe
interference between macroscopically distinct terms in a superposition.)

One way to see the strength of the evidence for QED is to note that there is
extensive empirical support for all eight regimes derived from the various combi-
nations of answers to these questions. (I don’t intend the following list to be re-
motely exhaustive.) The semiclassical regime for QED leads to the Hartree-Fock
approximation, very extensively applied to relativistic and nonrelativistic atoms
and molecules. The perturbative/incoherent regime includes Coulombic scat-
tering theory at nonrelativistic energies, and the standard photon/electron scat-
tering theory of QED at relativistic energies. The perturbative/coherent regime
includes multi-atom and multi-ion entanglement in nonrelativistic physics, and
the classic photon two-slit experiment and its many generalizations in rela-
tivistic physics. And spontaneous breaking of symmetry , and its spontaneous
onset as systems are cooled below their critical temperature (in, e. g. , supercon-
ductors or Bose-Einstein condensates) requires the macroscopic-superposition
regime, including (when we want to consider electromagnetic radiation incident
on a superconductor, for instance) relativistic applications of that regime. (See
Table 1 for a summary.)

Performing the same exercise for low-energy quantum gravity (table 2) shows,
unsurprisingly, that it is less well confirmed empirically than QED. (See Table
2 for a summary.) We have really abundant evidence from astrophysics and
cosmology for the semiclassical regime both at nonrelativistic (section 2) and
relativistic (section 3) energies, pretty good evidence (section 5) for the non-
relativistic part of the perturbative/incoherent regime from the Page-Geilker
experiment and more general considerations of Solar-system-scale physics, and
some evidence (section 6) for the relativistic part of that regime from primor-
dial cosmology. Stochastic gravity methods allow us to probe the macroscopic
regime, mostly in the context of early-universe structure formation (and the
boundary between those methods and perturbative treatments of fluctuation

29I don’t intend to require any particular stance on the quantum measurement problem here.
These macroscopic superpositions, at least for the purposes of this paper, can be interpreted
a la Everett, but can also be thought of as probability distributions over actually-occuring
macroscopic outcomes, where those probability distributions are interpreted via some un-
specified hidden-variable theory or dynamical collapse mechanism or as part of a broader
Copenhagen-style reading of quantum mechanics.
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Table 1: Evidence for QED in various regimes

Quantum
superpositions

Non-relativistic Relativistic

Semiclassical Hartree-Fock
methods
(nonrelativistic
atoms)

Hartree-Fock
methods
(relativistic
atoms)

Perturbative /
Incoherent

non-relativistic
(Coulomb)
scattering

electron-photon
scattering

Perturbative /
Coherent

multi-atom and
multi-ion
entangled states

photon two-slit
experiment

Macroscopic symmetry
breaking on
cooling:
Bose-Einstein
condensates

symmetry
breaking on
cooling:
superconductors

formation is not completely sharp) but to my knowledge have not yet produced
really robust predictions. (This regime only really makes sense relativistically:
in the domain of nonrelativistic gravity, perturbative methods seem likely to
capture the full content of the theory.)

At present, we have little evidence supporting applications of LEQG in the
perturbative/coherent regime, which is significant because it is this regime which
distinguishes unitary quantum gravity from variants in which superpositions
of mass distributions cause wavefunction collapse, as has been advocated by
Dı́osi (1987, 2014), Penrose (1969, 1996, 2014), Stamp (2015) and others. For
that very reason there has been considerable interest in probing that regime, at
least nonrelativistically, by attempting to place a relatively-massive object in a
superposition and to test the coherence of that superposition via interference ex-
periments. Those experiments are challenging, but not impossible with current
technology: recent experimental work by Donadi et al (2021) appears to rule
out at least the simplest form of the Diósi-Penrose model of gravitational col-
lapse, and in doing so to corrobate at least a part of the perturbative/coherent
nonrelativistic regime. We can optimistically hope for LEQG to be more sys-
tematically confirmed — or falsified — in that regime in the comparatively
near future, with recent proposals for experiments on self-gravitating entangled
systems (Marletto and Vedral 2017; Christodoulou and Rovelli 2018). Probing
more strongly relativistic aspects of the perturbative/incoherent regime looks
far more challenging (performing the two-slit experiment with gravitons, for in-
stance, is ridiculously beyond any current or foreseeable gravity-wave-detection
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Table 2: In which regimes is low-energy quantum gravity observationally sup-
ported?

Quantum
superpositions

Non-relativistic Relativistic

Semiclassical strongly

supported

(planets, white
dwarfs)

strongly

supported

(stars, neutron
stars, supernovae,
early-universe
cosmology)

Perturbative /
Incoherent

strongly

supported

(Page-Geilker,
general
considerations of
solar-system
physics)

some support

(quantum-
fluctuation
models of the
CMB)

Perturbative /
Coherent

limited support

so far but
experiments are
ongoing

no support and
little prospect of
direct testing

Macroscopic not applicable

(this regime can
be analyzed
perturbatively
without loss)

developing

(stochastic-
gravity methods
probe this regime
but no decisive
confirmed
predictions)
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technology) so that it seems likely any tests of this regime will have to be in-
direct, probably via cosmology.And no breakdown of this kind can hope to be
exhaustive: no doubt the theory will sooner or later be put to the test in regimes
that defeat my categorization.

In summary: we know how to apply LEQG in a fairly wide, and growing,
range of physical situations. In some of those situations there is extremely good
evidence for its accuracy; in others there is some evidence; in others there is
the prospect of getting evidence in the near future; in others still, there is little
prospect. Certainly it would be premature to treat it as confirmed to anything
like the degree of QED; certainly, it is well worth striving to confirm it further
observationally or experimentally, in novel regimes. And the very concrete-
ness of the predictions that the theory makes serve to sharpen the task of any
such observation or experiment. Low-energy quantum gravity shows us that
it is too pessimistic to suppose that quantum gravity must remain a theoret-
ical endeavour: if the predictions of LEQG are often hard to test, still they
are made at energy scales far more accessible than the Planck scale. Still, the
theory provides a reasonably satisfactory unifying basis for all those quantum-
gravitational applications we currently have and in doing so is reasonably well
confirmed by experiment. And — perhaps with the exception of the various
gravitational-induced collapse models — it is difficult readily to see what alter-
native could provide a unified underpinning for those parts of LEQG which are
strongly supported by evidence.

For all that, it is not fundamental. We have strong reasons to believe that
the theory will fail at sufficiently high energies, and that it has other issues
— notably the infamous Cosmological Constant Problem — that may point
to problems over and above that failure. I discuss the latter in section 11;
before that, I discuss the limitations on LEQG that arise from its nature as a
nonrenormalizable effective field theory.

10 Quantum gravity at high energies

Any quantum field theory is defined with an (implicit or explicit) high-energy
cutoff. At the formal level, the cutoff serves to make the path integral (tolerably)
well-defined, and to regulate the divergences in perturbative calculations. At the
physical level, the cutoff represents a division between those degrees of freedom
that the QFT explicitly models and those which it does not. There is in general
no requirement that the cutoff represents a physical scale at which the physics
fundamentally changes: given a QFT with a cutoff at some energy E, we can
always integrate out degrees of freedom between λE and E and obtain a new
QFT with a cutoff at energy λE. But if we ask the inverse question — how high
can the cutoff be set before the QFT breaks down? — then we get different
answers for different QFTs.

The best behaved cases are asymptotically safe QFTs, of which the physically
most significant examples are pure non-Abelian gauge theories like QCD. Here
the cutoff can be set arbitrarily high, and the interaction strengths in the theory
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become lower as particle energies increase, tending to zero or to some finite
value. For these QFTs it is at least a live possibility to suppose that there
is a well-defined continuum limit of the theory which could be defined in a
mathematically rigorous way (though the physical significance of doing so can
be questioned; cf (Wallace 2011)).

Next there are renormalizable but non-asymptotically-free theories; here
some interactions actually increase in strength at higher energies, and there
is good reason to suspect that very high values of the cutoff eventually cause
the interaction strengths to diverge and the theory to become ill-defined. How-
ever, the energy scales on which these ‘Landau poles’ occur are higher by far
than any physcially relevant energy scales (higher by far than the Planck scale,
for instance). QED and (the U(1) and Higgs sectors of) the Standard Model
are of this form: we have reason to doubt that they have a genuine continuum
limit, but they can be well defined at energy levels far beyond those for which
external reasons tell us to expect them to lose empirical validity.

The least well behaved cases are nonrenormalizable theories. Here the theory
imposes a much lower and sharper bound on the value of the cutoff. In a
nonrenormalizable theory, if we try do to calculations that approach that bound,
we will first lose predictive power (each new order of perturbative calculation
will involve new constants, knowable only from experiment, whose effects are
not sharply suppressed unless we calculate at energies far below the bound). If
we persist, unitarity itself will break down. For theories of this kind, the bound
on the cutoff represents a directly physical, internal-to-the-theory constraint on
the energies at which it is applicable. Various low-energy sectors of the Standard
Model — notably weak-interaction-induced lepton scattering and pion theory,
as well as the electroweak sector as a whole without the Higgs boson — are
well described by nonrenormalizable QFTs; more importantly for our purposes,
low-energy quantum gravity is non-renormalizable.

In the days before the effective-field-theory paradigm, the cutoff was widely
regarded as a purely formal device, ideally to be set to infinity at the end of
a calculation. From this perspective,30 the only really satisfactory QFTs are
the aymptotically-free ones. Renormalizable theories with Landau poles can be
tolerated but induce unease. And non-renormalizable theories are pathological
and must be disregarded.

But if a quantum theory is thought of as an effective field theory, nonrenor-
malizable theories lose their stigma; instead, they convey valuable information
about the energy levels at which new physics can be expected. The four-fermion
theory of weak lepton scattering must be cut off at energies of ∼ 100GeV, point-
ing to new physics at around that scale; that ‘new physics’ turns out to be the
W and Z bosons which mediate the weak interaction, with masses of 80GeV
and 92 GeV respectively. (And the creation of these particles in high-energy
scattering of leptons provides a directly physical explanation of unitarity viola-

30It is probably fair to say that ‘this perspective’ is a little over-simplified as a description of
the actual history: physicists in the pre-effective-field-theory era had more subtle and nuanced
views of the high-energy cutoff than modern physics textbooks might suggest. See (Li 2013)
for further discussion.
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tion in the lepton sector). The Higgs-free part of the Standard Model must be
cut off at energies of a few hundred GeV to be well-behaved; hence, whether or
not the Higgs boson was found in the LHC, physicists could be confident that
some new physics would be found.31 And LEQG must be cut off at the Planck
length (and is calculationally reliable only for energies well below the Planck
length), which tells us that new physics will be needed to describe systems at
Planckian energy scales.32

There is also a more directly physical argument why LEQG, and the methods
of QFT in general, ought to fail at around the Planck length. (Here I follow
Susskind and Lindesay (2005, pp.95-6).) In QFT, the effective minimum size
r(m) of an quantum excitation of mass m is set by its Compton wavelength
— r(m) ≥ 1/m, in the units we are using. But in general relativity, there is
another constraint on the minimum size of a particle: it must lie outside its
own Schwarzschild radius, or else an event horizon will form around it and (at
least as regards external physics) it will behave as a black hole of that radius.
This constraint imposes r(m) ≥ 2Gm ∼ (lP /mP )m, where lP and mP are the
Planck length and mass, respectively (note that as we should expect from this
classical calculation, their ratio does not depend on ~, ).

These constraints cross over at the Planck scale: a particle with a mass
greater than∼ mP has a Compton wavelength contained within its own Schwarzschild
radius. The Planck length is thus a cutoff on the energies of elementary (i. e. ,
non-compound) excitations of quantum fields. If a spacetime description is ap-
plicable at all at scales below the Planck length, it cannot be a description in
terms of excitations of quantum fields, of the kind we are used to from QFT.

We can see this in another way by considering scattering theory. In QFT,
the energies of the products of a collision with center-of-mass energym also have
energy ∼ m. But if we collide elementary particles with a center-of-mass energy
> mP , they will form a black hole, which will decay by emitting Hawking quanta
of energy ∼ mP /m. In other words, above the Planck length the energy of
collision products actually begins to decrease again. As Susskind and Lindesay
put it (pp.95-6):

Thus we see that a giant “Super Plancktron Collider” (SPC) would
fail to discover fundamental length scales smaller than the Planck
scale lP , no matter how high the energy. In fact, as the energy
increased we would be probing still larger scales. . .

What can we say about quantum gravity at Planckian scales, given this failure
of LEQG at those scales? Let’s distinguish two sorts of theory:

31For a review of the physics here, see (Weinberg 1995, chs.19,21) or (Donoghue et al 2014).
32This is the standard view in physics on renormalizability of LEQG; there is, however,

a longstanding research program (‘asymptotic safety’) to explore whether non-perturbative
methods might after all make the theory definable at all scales. (The original idea is due to
Weinberg (1979); see (Niedermaier 2007; Reuter and Saueressig 2012) for reviews). For my
purposes this caveat doesn’t matter much: as I explain below, even if there is an extension of
LEQG in this way, its interpretation at Planckian scales will deviate wildly from the relatively-
tame QFT interpretation of LEQG.
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1. An ultraviolet quantum gravity theory (UVQG) is any theory from which
LEQG can be derived as an effective field theory valid in some limited
regime of the UVQG.

2. A correct quantum gravity theory is any theory which actually gets the
physics right in some regime which includes (i) the domain of empirical
validation of LEQG and (ii) at least some part of the Planckian regime.

The two are not logically equivalent. Empirical adequacy for a quantum theory
of gravity, at present, only requires it to reproduce the predictions of LEQG in
certain domains: the semiclassical domain, the perturbative/incoherent domain;
soon, perhaps, the nonrelativistic part of the perturbative/coherent domain.
(One sometimes hears it said that the theory need only reproduce the predic-
tions of non-gravitational QFT and classical GR; sections 2–6 should make clear
why this is far too weak a demand to make.) Most physicists working on quan-
tum gravity set themselves the more demanding task of reproducing most or all
of LEQG, notably including its predictions of black hole evaporation, which are
unsupported by any observational evidence to date: that is, they are searching
for a UVQG theory. In doing so, they go beyond what evidence requires of
them. That said, their strategy seems well-motivated pending a low-energy al-
ternative to LEQG. The problem of reproducing those fragments of LEQG that
are directly supported by evidence is just too open to provide much guidance,
whereas reproducing all of LEQG is a very strong constraint on theorizing.

Conversely, there is no obvious reason why a UVQG need be a (let alone
the) correct quantum gravity theory. If we had two inequivalent ultraviolet
completions of LEQG, nothing in LEQG would allow us to distinguish them.
And since we have virtually no observational access to regimes in which LEQG
is not valid, prospects would be dim for any means of distinguishing the two.
However concerning this might be, however, it is a rather theoretical problem
at the current state of development of quantum gravity, where our problem is
not that we have two or more UVQGs but that we do not have even one that
is generally accepted to be successful in reproducing LEQG in all the domains
in which it can be applied.

As a consequence, and notwithstanding these constraints, when physicists
speak of a ‘quantum theory of gravity’ they normally mean an ultraviolet com-
pletion of LEQG (when they do not mean LEQG itself). And the basic require-
ment that the theory is an ultraviolet completion of LEQG does tell us at least
a little about it.

Firstly, it is not a QFT, or at any rate not a QFT interpretable in anything
like the way we normally interpret QFTs (including LEQG). The ‘excitations
on a background spacetime’ picture of QFTs, as we have seen, breaks down
at Planckian scales; well below those scales, LEQG works fine and there is no
obvious extra work for a UVQG to do. If QFT methods remain applicable
for Planck-scale physics, they must be applicable in a radically different way.
(The AdS/CFT correspondence, arguably our best candidate so far for UVQG,
illustrates how this might happen: quantum-gravity phenomena in the interior
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of asymptotically-AdS spacetime are describable indirectly via a QFT on the
conformal boundary of that spacetime.)

Secondly, by the same token a UVQG will be ultraviolet complete, and not
just another effective field theory. The reason is not that we hubristically ex-
pect our theory to apply at arbitrarily high energy scales, but that the idea of
an energy scale in the normal way we use it loses meaning beyond the Planck
scale. To say that a QFT is ultraviolet-complete, mathematically, is to say
(among other things) that the Fourier-transformed four-point function remains
well-behaved at arbitrarily large values of input wavenumber. But the normal
physical interpretation of that four-point function as encoding particle scattering
cross-sections at successively higher energies becomes meaningless at Planckian
scales. If our UVQG is restricted in its domain of application, that restriction
will need to be statable in novel ways and not by our usual considerations of
energy scale.33 (Again, AdS/CFT correspondence offers an illustration of how
this could occur: the ‘asymptotically AdS’ boundary conditions are normally
interpreted as a way of putting a system in a box, so that AdS/CFT gives a
quantum-gravity description of isolated systems but is inadequate for cosmol-
ogy.)

Thirdly, it will need to be a ‘theory of everything’ in the sense that it will
need to incorporate the non-gravitational degrees of freedom described by the
Standard Model, not just purely-gravitational degrees of freedom. The reason
is comparatively mundane: there is just no clean separation of these degrees
of freedom at Planckian scales. The annihilation of two gravitons to produce
leptons and antileptons, for instance, is a risibly unimportant process in LEQG,
but becomes significant as we approach the Planck scale. There is no reason
to expect a quantum theory that reproduces just the vacuum sector of LEQG
to be empirically adequate. This is, however, neutral as to whether a UVQG
includes a more thoroughgoing unification of fundamental forces (as string the-
ory attempts to do) or more conservatively maintains the gauge structure of the
Standard Model (as loop quantum gravity does).

Finally, and most importantly, it will be highly underconstrained by obser-
vational evidence except insofar as that evidence is evidence for LEQG. This is
what is meant when experts talk about the near-absence of evidence for quantum
gravity: it is not that they are ignorant of LEQG but that they mean ultraviolet
quantum gravity, and are speaking of evidence that goes beyond evidence for
LEQG. And that is, indeed, difficult in the extreme to obtain, requiring energy
levels which seem to occur in our Universe only behind the screen of the plasma
of the very-early Universe or the still more opaque screen of a black hole’s event
horizon. From this point of view, the success of LEQG stands to the search for
UVQG much as the success of the Standard model stands to the search for post-
Standard-Model physics: we have excellent grounds to think that the theory is
not the last word, but nonetheless it is so successful as to make it difficult to go
beyond it.

So it is exciting as well as puzzling that LEQG appears to contain a severe

33Though see (Crowther and Linnemann 2017) for a dissenting view.
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anomaly that might point towards new physics: the mysteriously low value of
the observed cosmological constant.

11 The cosmological constant problem

Suppose that we want to apply low energy quantum gravity in the background-
field regime and for some comparatively tame region of the background space-
time. Specifically, let’s suppose that the scale of spacetime curvature in this
region is ≫ 10−15m, that the matter field can be described in this region as
a small perturbation away from some thermal-equilibrium state, and that that
state is either the vacuum or at any rate is at a temperature ≪ 1014K. (These
are not unduly demanding constraints. The curvature scale near the event hori-
zon of an astrophysical black hole is ∼ 104m; the temperature in the core of a
supergiant star just before becoming a supernova is ∼ 1012K.) A particle of en-
ergy > 100MeV in this region will effectively behave as if in the Minkowski vac-
uum (the Compton wavelength of a 100-MeV particle is ∼ 10−15m; the typical
energy of a particle in an equilibrium state at temperature 1014K is ∼ 100MeV).
Or put another way, at least for excitations on scales of ∼ 100MeV or higher,
we should be able to make local calculations as if in the Minkowski vacuum.34

Let’s now try to apply the rules of the background-field method: for self-
consistency (and ignoring higher-order terms in the gravitational action), we
need

1

8πG
(Gµν + gµνΛ0) =

〈
T̂µν

〉
(30)

where the expectation value is calculated for the quantum state of the mat-
ter fields (and, in principle, the gravitons) on the background. What we would
hope to find is that there are two contributions to that stress-energy expectation
value: one due to the thermal energy of the finite-temperature local equilibrium
state (if we are indeed at finite temperature) and one due to quantum excita-
tions. The latter term should be treatable as a sum of particle energies if the
excitations are on lengthscales short compared to the curvature.

We do indeed find that, but we also find something much less welcome. For
the moment, let’s suppose that the calculation is carried out on a Minkowski
background. We then get a series of very large terms proportional to the
Minkowski metric. By far the largest of these terms, is of order (Ecutoff)

4,
where Ecutoff is the cutoff energy scale we are using to regularize LEQG (nor-
mally assumed to be around the Planck scale, ∼ 1019GeV); this term can be
understood as the zero-point energy density of the vacuum. The second term is
of order (EEW )4, where EEW ∼ 100GeV is the scale of electroweak symmetry
breaking; it can be understood as the energy density of the Higgs condensate,

34Why not the de Sitter vacuum, given the positive observed cosmological constant? You
can use that if you like, but it doesn’t matter (and is mildly more annoying technically). The
observed value of the cosmological constant corresponds to a curvature scale of ∼ 1026m,
or 1038× the Compton wavelength of our 100-MeV particle. The local physics just doesn’t
care about the difference between this level of curvature and exact flatness, not unless we’re
looking at cosmological-wavelength excitations.

32



due to the spontaneous breaking of electroweak symmetry. The third term is
of order (ECH)4 where ECH ∼ 1GeV is the scale of approximate chiral sym-
metry breaking in the QCD sector of the Standard Model. (Our stricture that
T ≪ 1014K ensures that these broken symmetries remain broken for our quan-
tum state.)

(As a calculational matter, the two condensate terms occur at tree order
in the calculation, and the zero-point term occurs at one-loop order. There
will be one-loop quantum corrections to the condensate terms, and higher-order
corrections to all the terms, but they do not change the basic magnitudes of
the terms. They do somewhat blur the clean distinction between the three
contributions, but not in a way that really matters for the argument here.)

The zero-point term arises due to fluctuations on scales far smaller than
the assumed curvature of our local region, and the other two terms are due
to potential effects insensitive to curvature, so we can take our Minkowskian
calculation over to that region just by replacing the Minkowski metric with the
local background metric. The semiclassical equation can then be written as

1

8πG
(Gµν + gµνΛ0) =

〈
T̂
IR
µν

〉
+

1

8πG
gµν(ΛZP + ΛEW + ΛCH) (31)

or (rearranging)

1

8πG
(Gµν + gµν(Λ0 − ΛZP − ΛEW − ΛCH)) =

〈
T̂
IR
µν

〉
(32)

where ΛZP /8πG, ΛEW /8πG, and ΛCH/8πG are respectively the zero-point,
Higgs condensate, and chiral condensate contributions to the stress-energy den-
sity, and where (translating into SI units for clarity),

ΛZP ∼ 1097kgm−3

ΛEW ∼ 1029kgm−3

ΛCH ∼ 1021kgm−3. (33)

The first term on the right-hand-side of equation (31), the ‘infrared’ part of the
stress-energy tensor, encodes contributions from the finite-temperature back-
ground, from particle excitations on scales small compared to the curvature,
and potentially from other excitations on longer scales to which the particle
concept cannot be applied; however, on basic dimensional-analysis grounds it
will be far smaller than any of the other three terms.

Now, the observationally-supported version of the semiclassical equation is

1

8πG
(Gµν + gµνΛobs) =

〈
T̂
IR
µν

〉
(34)

where Λobs is the observed cosmological constant. Comparing equations (32)
and (34), we get

Λobs = Λ0 − (ΛZP + ΛEW + ΛCH). (35)

33



In one sense, there is no difficulty solving this equation. Λ0 — the bare
cosmological constant, in particle-physics terminology — influences observable
quantities only through equation (35), and so we can take (35) simply as fixing
the bare cosmological constant as a function of the observable parameters and
the high-energy cutoff, as usual in QFT.

On the other hand,
Λobs ∼ 10−26kgm−3, (36)

which is about 120 orders of magnitude smaller than the zero-point energy den-
sity and about 50 orders of magnitude smaller even than the chiral-condensate
energy density. So the small value of the observed cosmological constant we ob-
serve today requires the bare cosmological constant — or, equivalently, the bare
parameters of the theory as a whole — to be fine-tuned to an extraordinarily
precise value, to one part in 10120 or more.35 This is the cosmological constant
problem (CCP).36

Whether fine-tuning to this degree is a problem at all, and if so how it might
be resolved, lies beyond the scope of this article. Maybe we should be relaxed
about it, since after all Λ0 is unobservable; maybe we can solve it with sub-
tle short-distance/long-distance effects which correct the effective-field-theory
framework; maybe a resolution needs to draw on anthropic arguments or some-
thing still more radical.37 But the fine-tuning arises as a direct result of com-
paratively simple calculations within LEQG.

Recent critical discussions of the CCP (e. g. , Saunders 2002; Koberinski 2017,
2021; Schneider 2020) have generally presented the problem quite differently,
as relying on multiple conceptual assumptions and speculations about as-yet-
undeveloped physics. On this approach, we first have to establish that the
zero-point energy is real at all, perhaps by consideration of the Casimir effect;
then we have to argue that it gravitates; then we have to argue that the way
it gravitates is via the semiclassical equation. At each step, it is suggested, the
problem turns on some specific conceptual choices, and by the end of the story
one is left with the impression that the existence of the CCP is speculative at
best. But if the CCP is thought of as a problem inside LEQG, no conceptual
steps are required. All one has to do is derive the semiclassical equation via the
background-field method and then calculate the terms in it.

(That calculation can itself be challenged. Koberinski (2021) argues that the
calculated value of the zero-point energy, depending sensitively on the cutoff as
it does, cannot be treated as a physical prediction of the theory; Koberinski
and Smeenk (in forthcoming work) also raise concerns about the applicability

35The relationships between bare and observed parameters in particle physics are not gen-
erally fine-tuned in this way; the exception is the Higgs mass, where fine-tuning concerns
constitute the closely-related hierarchy problem of the Standard model.

36The literature on the CCP is too vast to systematically reference here. The classic state-
ment of the problem remains (Weinberg 1989); more recent introductions/reviews include
(Carroll 2001; Polchinski 2006; Burgess 2013; Padilla 2015); (Rugh and Zinkernagel 2002) is
a good non-technical introduction.

37For scepticism about the significance of the fine-tuning see (Bianchi and Rovelli 2010;
Hossenfelder 2018); for anthropic considerations see (Polchinski 2006); see also
(Wallace 2019b) and references therein.
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of the ‘Minkowskian approximation’ which I appealed to above when applied to
even gently curved spacetimes. I find both objections unpersuasive. As to the
first: the fact that the zero-point energy is extremely large is not sensitive to
the cutoff; nor is the fact that the bare cosmological constant requires extreme
fine-tuning. And we cannot simply drop a term in a calculation because we
find it unreliable, not least because we need to extract a finite, physically-
significant temperature-dependent component from the zero-point term. As to
the second: while it is certainly worth being concerned about various ways in
which QFT calculations might subtly fail, the Minkowskian method is used
pretty widely in calculating equations of state in astrophysics and cosmology,
and more generally, the basic idea of the separation-of-scales approach which lets
us treat short-wavelength phenomena as insensitive to long-distance features of
the background is totally ubiquitous in physics. But in any case, we can sidestep
these concerns entirely just by appealing to the Higgs-condensate and chiral-
condensate contributions to the stress-energy density, which are insensitive to
the high-energy cutoff and can be calculated at tree level without needing to
appeal to any Minkowskian approximation to the field modes.)

If the CCP is a consequence of low energy quantum gravity, doesn’t it give
us reason to worry that something is wrong with that theory? And couldn’t we
avoid the CCP just by abandoning LEQG? Yes, and yes. The latter is trivial:
of course we can solve a deep conceptual problem in our best current theory,
whatever it is, by discarding it. (Throw away quantum theory and voila, no
quantum measurement problem!) The former is pretty much universally recog-
nized in the physics community: Weinberg’s famous paper on the cosmological
constant problem (Weinberg 1989) begins “physics thrives on crisis” and analo-
gizes the CCP to other historical crises that have led to new physics. But a
successful resolution of the CCP requires not just the bare observation that a
theory other than LEQG might not have a CCP, but an actual construction
of such a theory so as to preserve the observational successes of LEQG. And
the challenge is all the more stark because the problem arises already in the
semiclassical regime of LEQG, which is exactly the regime where observational
evidence is strongest.

We can state the CCP as a simple challenge. Suppose that you are tasked
with studying astrophysics or cosmology in a regime where a quantum-field-
theoretic description of matter is needed (but where fluctuations in the matter
distribution are not significant): perhaps the regime is the interior of neutron
stars; perhaps the core of a supernova; perhaps the quark/gluon plasma of the
reasonably-early Universe. To make any progress you will need to calculate
an equation of state for the matter. If you calculate the equation of state
using the methods of quantum field theory to derive the expected stress-energy
tensor, you will immediately encounter very large contributions proportional
to the metric from the Higgs and chiral condensates, and will encounter even
larger contributions once you proceed beyond leading order, and you will need
to cancel them out using a very precisely tuned bare cosmological constant in
order to match observed results; in other words, you will be confronted with the
CCP. If you plan to perform your calculation without using QFT in this way,
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then you had better be able to say what your plan is.
Kuhn (1962) famously argued that scientific theories are replaced not be-

cause clear experiments falsify them, but through the slow build-up of ‘anoma-
lies’ in our extant theories — theoretical or empirical problems in the theory.
Confronted with an anomaly, practicing scientists do not simply abandon an
otherwise-successful theory; they note the anomaly and work around it. Some-
times anomalies are resolved through deeper understanding of the theory, but at
other times, they point the way to an eventual replacement of the theory. The
CCP is a Kuhnian anomaly in low-energy quantum gravity: absent some better
theory, it is no reason to abandon LEQG, but it points to deficiencies either in
LEQG or in our understanding of it, and may help us obtain that better theory.

12 Conclusion

If ‘quantum gravity’ means ‘a physical theory which combines general relativity
and quantum theory’, or ‘a physical theory which has classical general relativity
and non-gravitational QFT as limiting cases or partial approximations’ then
we have such a theory, and have had it for decades. It is the straightforward,
conservative theory one obtains by treating GR as an effective field theory,
quantized through path-integral means. There is much we do not understand
about even this theory, but we understand enough to know that it is applicable
to a wide variety of observational contexts, many of which are accessible with
current observational and experimental methods. Indeed, the theory has been
widely applied in many such contexts, and those applications match the observa-
tional data; those applications are invariably through one or more approximation
schemes, but that is true of virtually any application of a complicated physical
theory to concrete examples. Much (most?) of contemporary astrophysics and
cosmology relies on our ability to synthesise quantum-mechanical and gravita-
tional phenomena, and low-energy quantum gravity provides such a synthesis
which seems fairly satisfactory in its own terms; its nonrenormalizability, and
its inevitable failure at Planckian scales, is unexceptional in the era of effective
field theories. And since it includes as limiting cases both (semi)classical and
phenomenological general relativity, and the Standard Model of particle physics,
it has a reasonable claim to be the most widely applicable physics theory ever
obtained, with a scope covering almost every experiment and observation we
could hope to make. But by the same token, the theory makes many predic-
tions which have yet to be tested but which lie well below the nigh-inaccessible
Planck scale.

If ‘quantum gravity’ means instead ‘an ultraviolet completion of low-energy
quantum gravity’, or ‘a theory of gravity that applies at Planckian scales’, then it
is true that we do not have such a theory, and also true that very little empirical
evidence bears on such a theory — except insofar as it also bears on low-energy
quantum gravity. As such, reproducing low-energy quantum gravity — and not
simply non-gravitational QFT and classical general relativity — is generally
taken as the success condition for any such theory. That does not, and should
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not, rule out attempts to construct a Planck-scale quantum gravity theory which
differs from low-energy quantum gravity in a yet-unexplored regime. But any
such attempts still have large fragments of low-energy quantum gravity, going
well beyond non-gravitational QFT and classical general relativity — that they
need to reproduce to match observations.

The Cosmological Constant Problem arises within low-energy quantum grav-
ity via straightforward calculation: the parameters in the theory need to be
tuned to a precision of one part in 10120 to reproduce the observed cosmological
constant. This does not falsify low-energy quantum gravity, but it is hard to
explain that fine-tuning within the established paradigm of effective field the-
ory. The cosmological constant problem is thus one of the few clues we have
as to what might lie beyond this extraordinarily powerful and successful, yet
ultimately limited, theory.
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