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1 Introduction

An increasing amount of evidence suggests that to couple a gauge theory to gravity, severe
constraints have to be fulfilled at the quantum level. For example, while in quantum
field theory, any anomaly free spectrum, no matter how contrived, leads to a consistent
quantum gauge theory, it is widely believed that in quantum gravity, the number of degrees
of freedom should remain finite. Determining more generally which constraints a quantum
gauge theory has to fulfill in presence of gravity is one of the objectives of the Swampland
program [1] as reviewed, for instance, in [2—4].

A particularly fruitful idea that has emerged is to derive consistency conditions on an
effective field theory by examining the inclusion of higher dimensional defects as probes in
the theory.! For instance, if a quantum gravity theory contains higher p-form gauge fields,
the Completeness Conjecture [7] implies that the theory must contain p-dimensional objects
charged under this symmetry. Consistency of the worldvolume theory of these objects
poses novel constraints on the bulk effective field theory which may go far beyond the usual
cancellation of gauge and gravitational anomalies. This approach has been successfully
applied to minimally supersymmetric gauge-gravity systems in ten [8], eight [9, 10], six [8, 11—
14], and five [15] dimensions, as well as to theories with sixteen supercharges in various
dimensions [16]. In this paper we will derive quantum gravity bounds in four-dimensional
theories with minimal A/ = 1 supersymmetry.

An N = 1 supergravity theory in four dimensions typically contains light complex
chiral scalar fields parametrizing the field space of the theory. In the weak coupling regime,
a shift symmetry arises in an emergent axionic sector of the theory, which is only broken by
non-perturbative effects. In the limit where the latter are sufficiently suppressed, the axions
can be dualized into two-form fields. By the Completeness Conjecture of quantum gravity,
these must couple to string-like objects, which in fact can be half-BPS in four dimensions.
This places the theory precisely into a context, similar to that of [8-13, 15, 16], in which

! As one of the earlier incarnations of this idea, [5] derived for instance the K-theory tadpole cancellation
conditions in D-brane models by requiring absence of Witten anomalies on probe branes. See furthermore [6]
and references therein for an analysis of the correspondence between spacetime and worldvolume physics.



consistency conditions of these axionic strings can be turned into new constraints on the
four-dimensional effective field theory.

As a complication specific to four dimensions, however, string-like objects induce a
non-negligible backreaction on the fields in the two directions normal to the string. This is
owed to the fact that the string worldsheet is of real codimension two in spacetime [17]. For
general strings, the backreaction questions the validity of applying the probe approximation
to the string and of viewing it as weakly coupled. Interestingly, in [18, 19] it was understood
that for a certain class of half-BPS strings a perturbative treatment of the string worldsheet
theory is nonetheless justified. The strings in question were called ‘EFT strings’ and
have the property that their backreaction on the moduli of the theory is precisely such
that close to the string core, the effective theory becomes weakly coupled: more precisely,
asymptotically close to the string core, the axionic shift symmetries which are needed to
dualize the axions to two-form fields become exact because the instantons dual to the string
become suppressed. As it turns out, the strings with this property are precisely of the form
that they cannot decouple from the gravitational sector, making them ideal candidates to
probe the quantum gravity nature of the theory. The original motivation in studying such
strings was the conjecture of [18, 19] that any infinite distance limit in four dimensions can
be obtained as the endpoint of an RG flow induced by the backreaction of an EFT string.
This idea has been investigated further in [20-22] from various perspectives.

In the present work, we will explore the role of EFT strings as weakly coupled probes
of the four-dimensional N/ = 1 supersymmetric gauge-gravity sector. In this way, we will be
able to constrain the input data of an N' = 1 supergravity theory beyond the consistency
conditions from anomaly cancellation in the bulk alone.

The constraints which we will find should be valid for all such theories with a standard
coupling to the axionic sector: by this we mean theories in which the gauge field strength
and the curvature two-form couple to the axions a’ via terms of the form?

SEFT D Ci/aitrF/\F—l—C’i/aitrR/\R. (1.1)

As we will see, such couplings induce an anomaly inflow from the four-dimensional bulk
to the string worldsheet. As in [23] and in the higher-dimensional gravitational theories
treated in [8, 11, 12, 15], this anomaly inflow must be cancelled by the two-dimensional
anomalies on the string worldsheet. Importantly, for EFT strings in the sense of [18, 19],
we can reliably compute this worldsheet anomaly in terms of the modes along the string
because the theory flows to weak coupling close to the core of the string. This eventually
leads to constraints on the four-dimensional bulk theory. A notable difference to the analysis
in [8, 11, 12, 15] is that we do not assume that the string worldsheet theory flows to a
conformal field theory in the infra-red. Indeed, in four dimensions this may a priori not be
justified due to the peculiarities of the string, but is also not required as long as the string
worldsheet is weakly coupled. The EFT strings are precisely of this type.

Our main results are two types of constraints: first, (4.3) and (4.4) constrain the
quantization and the signs of the axionic curvature couplings in (1.1). In particular, (4.3)

2The precise normalisation factors will be given in section 2.



fixes the saxionic Gauss-Bonnet term in a large class of gravitational N' = 1 supersymmetric
effective actions to be positive. Our EFT string analysis therefore complements previous
arguments for the positivity of these higher-derivative terms [24-28]. Second, (4.26) bounds
the possible ranks of the gauge groups which can be coupled to an axionic sector as in (1.1).

Our derivation of these bounds is subject to certain assumptions on the spectrum of
the worldsheet theory of the EFT strings, which we motivate in section 3.4. These are
manifestly realised in explicit string theoretic settings and moreover appear natural more
generally. Modulo these assumptions, whenever the EFT string derived constraints, in
particular the bounds (4.26) on the ranks of a gauge sector, are violated in a consistent
quantum gravity with minimal supersymmetry, our analysis implies that the theory cannot
exhibit standard axionic couplings of the form (1.1). This is a rather non-trivial prediction
from a purely effective field theoretic point of view.

Our results can be compared with the concrete constraints imposed on effective field
theories in string theory compactifications. In the context of F-theory compactifications, we
will confront the EFT string bounds (4.26) with the geometric bounds from the construction
of explicit Weierstrass models. The latter have been analysed in a series of works [29-32] in
various dimensions to constrain the ranks and matter content of gauge-gravity theories in
F-theory.? In fact, based on our knowledge of the worldsheet theory of the EFT strings
in F-theory following from [39], we propose (6.26) as a stronger bound on the rank of the
gauge group, which should be valid in geometric F-theory compactifications with a smooth
base (and minimal supersymmetry).

To test the EFT string bounds in the heterotic context, we will first have to extend the
analysis in [19] of EFT strings in such setups by including also higher curvature corrections
to the effective action. This part of our analysis is in fact interesting by itself and reveals
an intriguing modification of the structure of the cone of EFT strings due to said correction
terms. We will compare the structure of the heterotic cone of EFT strings with its F-theory
dual and discuss the bounds on the theory. Furthermore, we give a preliminary analysis of
the EFT string derived bounds in M-theory on G5 manifolds, which can serve as a starting
point for a more detailed investigation in the future.

The material of this work is organized according to the following structure: the analysis
of sections 2 to 5 is purely field theoretic in nature and requires no knowledge of string
theory. In section 2 we specify the structure of the four-dimensional A' = 1 supersymmetric
gauge-gravity theories for which we will derive quantum gravity constraints. In particular,
we will explain the assumption that the effective field theory enjoys axionic couplings of
the form (1.1). In section 3 we first review the main concepts underlying the ideas of
EFT strings from [18, 19]. We then derive the anomaly inflow from the bulk to the string
worldsheet induced solely by the axionic couplings (1.1), up to an interesting subtlety
discussed in section 3.3. Finally, we specify the main ingredients of the weakly coupled
non-linear sigma-model governing the N' = (0, 2) supersymmetry worldsheet theory. Of
key importance for us is a discussion of the worldsheet modes in section 3.4, including our

3More recent examples of the rich corpus of studies investigating the constraints on gauge data imposed
by string theory in various dimensions include [33-38].



assumptions on their charges. Section 4 contains our main results: we derive the EFT string
consistency conditions by demanding that the anomaly inflow be cancelled by the anomalies
(reviewed in appendix A) of the weakly coupled worldsheet spectrum. In section 5 we show
how these constraints rule out simple otherwise consistent supergravities as theories with a
quantum gravity completion.

In the second part of the article, we test and apply our general results in explicit string
theoretic frameworks. In section 6, we apply our bounds to F-theory compactifications to
four dimensions. We will illustrate the validity of the assumptions made in the general
setting in section 3.4, and in addition motivate a sharpened bound on the rank of the gauge
group, given by (6.26) in F-theory on smooth three-fold bases. As another application, we
will derive the constraint that in any Type IIB orientifold with O3-planes (and no O7-planes),
the number of O3-planes is quantized in units of 16, a physics post-diction of a mathematical
theorem. Section 7 analyses the intriguing structure of the cone of EFT strings in heterotic
string theory including higher derivative corrections. In the interest of readability, we have
relegated some of the technicalities to appendix C and D. In appendix B we corroborate
our claims that the EFT string can be described by a weakly coupled non-linear sigma
model, by analysing the EFT strings in F-theory and the heterotic theory in more detail. In
section 8 we apply our EFT string constraints in the context of M-theory compactifications
on G2 manifolds. Our conclusions and a list of open questions are presented in section 9.

2 Perturbative bulk EFT structure

In the standard Wilsonian interpretation, any effective field theory (EFT) is associated
with a given ultraviolet (UV) cut-off energy scale A. We will consider four-dimensional
EFTs which preserve minimal A/ = 1 supersymmetry for a sufficiently high cut-off energy
scale A. This minimal supersymmetry may be spontaneously broken at lower energy scales
Agp < A, but this will not affect our conclusions as these regard the structure of the EFT
defined at the scale A.

We will be particularly interested in extracting some general constraints on the (massless)
EFT gauge sector that is weakly coupled at the UV cut-off scale A. The gauge couplings
will be regarded as determined by the vacuum expectation values (VEVs) of the scalar
fields. This is common in string theory realizations and also expected from more general
quantum gravity principles, which forbid freely tunable parameters. It is then natural to
associate any weakly-coupled gauge sector with a certain region of the field space which
identifies a given perturbative EFT regime. In the sequel we will confirm this expectation
and make it more precise.

In order to identify the possible perturbative EFT regimes, we will adopt the general
prescription provided in [18, 19], which was proposed to be valid for any four-dimensional
N =1 EFT consistent with quantum gravity and tested in large classes of string theory
models. Some of its key ingredients will be reviewed below. Combined with additional
quantum gravity criteria, this framework will allow us to extract non-trivial information on
the gauge sector and on some higher curvature terms.



2.1 Gauge sector

Following [18, 19, 40], the perturbative regime of an N' = 1 supersymmetric EFT in four
dimensions is characterized by the presence of a set of axions a’, with fixed periodicity

at~ad 41, (2.1)
and a corresponding set of saxions s’. These pair up into a set of complex scalar fields
t'=a' +is’ (2.2)

forming the bosonic components of N/ = 1 chiral superfields. Together with additional
chiral fields ¢“, they parametrize the Kéhler field space M of the EFT.

The saxions in particular determine the exponential suppression factors of the BPS
instantons in the theory. In a more precise definition, a perturbative EFT regime is
associated with a set Cr of non-vanishing BPS instanton charge vectors m = {m;}, and a

saxionic cone

A = {s € R#*oms| (1 ) > 0 Vm € (). (2.3)

Here
(m, s) = m;s’ (2.4)

is the natural pairing between instanton charges and saxions. In terms of this pairing, a
BPS instanton with charge vector m € Cj is suppressed as |e~27(m8) |,

We then say that the EFT is in the perturbative regime associated with Ci, or equiva-
lently A, if the saxions lie sufficiently deep inside the saxionic cone A. In this regime the
axionic shift symmetries are broken only by exponentially suppressed non-perturbative correc-
tions dominated by the BPS instantons, which have the form ~ |e?H{mt)| = |¢=27(m.8)| « |
(with (m,t) = m;t"). This identifies the perturbative regime with a field space region
Mﬁert. Note that for increasing saxionic values inside the saxionic cone, the axionic shift
symmetries are better and better preserved. The expected absence of (non-accidental) global
symmetries in quantum gravity implies that Mﬁert can be identified with the neighborhood
of a field space boundary component OM% C dM which is at infinite distance. The by
now well-tested Swampland Distance Conjecture (SDC) [41] implies that one cannot really
reach (3MOAO within the four-dimensional EFT because of the appearance of infinite towers
of new microscopic states which become light exponentially fast in the field distance. This
causes the EFT to break down as soon as the corresponding tower mass scale m, becomes
smaller than the cutoff A. As we will recall in the sequel, [18, 19] identify a physically
distinguished way to reach the infinite distance points of 9MZ% and to realize the SDC.

Consider now the gauge theory sector, with gauge group

G=]Ju@)ax]]Gr, (2.5)
A I

where G denote simple group factors. In the superspace conventions of [42], the associated
terms in the two-derivative effective action are

% / d*2d20 26 FAB(t, $)Wa Wi + % / d'2d?02€ f1(t, ) trOVW); + cc.  (2.6)
Tl Tl



which includes the bosonic terms

—417r/(ImfABFA/\*FB—i—RefABFA/\FB) —817T/[Imfftr(FA*F)[JrRefftr(FAF)[} .

(2.7)
Here f45(t,¢) and f!(t,¢) are holomorphic functions and we denote chiral superfields and
their bottom scalar components by the same symbols. In (2.7), the trace tr on the algebra
g of a simple group G is defined by tr = %trr, where tr, is the standard trace in any
unitary representation r, and £(r) is the Dynkin index.*

In (2.7) we assume that
Imf48 > 1, Imfl>1, (2.8)

so that the gauge sectors can be considered weakly coupled at the cut-off scale A and the

EFT hence admits a sensible perturbative expansion in the gauge couplings. Since we would

A

pert defined above, we furthermore

like to focus on the asymptotic field space region M
assume that the holomorphic gauge functions fAZ, fI can be expanded as

FAP(t ) = (CAP ) + AfYP(9) +.... flt9) = (CLH+Af(9)+....  (29)
Here we are omitting exponentially suppressed non-perturbative terms ~ O(’62”i<m7t> ’) and
we are employing the same index-free notation as in (2.3) for ¢ = a’ +is’, e.g.

(CAB t) = CABt? (2.10)

From the expansion (2.9) we see that (2.7) contains in particular the (s)axionic couplings

1

. . 1 . .
47TC{4B/(SZFA/\*FB+CL1FA/\FB) —50{/[32 tr(FAxF); + a tr(F/\F)I},

(2.11)
from which one can extract C*® and C/. Note that the form (2.11) for the (s)axionic
couplings is a non-trivial assumption which need not hold for every gauge sector. We will
come back to this caveat in the paragraph after (3.4).

Assuming that the gauge instanton configurations are defined on a Fuclidean spin
manifold, as is natural in supergravity, the compatibility of the gauge instanton corrections
with the axion periodicity (2.1) requires the quantization conditions

cAB clen. (2.12)

In the following we will provide complementary evidence in favor of (2.12), which holds
directly in Lorentzian signature.

4We define the Dynkin index by tre taty = #8) tradj tats, where h(g) is the dual Coxeter number of g.
For instance, £(fund) = 1 and £(fund) = 2 if g = su(n)/sp(n) and g = so(n), respectively, or £(adj) = 60 for
g = es. In this paper we use hermitian gauge fields A = A%, and field strengths F' = F%,, so that AT = A
and F' = F. The hermitian generators t, of the gauge algebra g can be normalised so that trt.ty = 204s.
The instanton number can be identified with the integer n = — 5= [ tr(F A F) € Z, see for instance [43],
and n = 77— [ tr(F A *F) > 0 for (Euclidean) anti-self-dual (F = — % F) instanton configurations. Note
that in the literature characteristic classes and anomaly polynomials are often expressed in terms of the

anti-hermitian field strength Fapg = —iF.



For generic values of the fields ¢%, we expect AfAB(¢), Afl(¢) ~ O(1) in (2.9).
Hence (2.8) suggests that the constants (2.12) should obey the constraints

{(CAB s)} > 0, (Cl,s) >0 VseA. (2.13)

The first condition means that (CAB ,8) is a positive definite matrix, and we are again
using the index-free notation introduced above, e.g. (CAP s) = CABs! and ' = a' + is'.
In other words, it is natural to require that C! € Cj, where we recall from the discussion
before (2.3) that Cr is the cone of BPS instanton charges dual to the saxionic cone A,
and that {C4P} € C; in a matrix sense. This is also consistent with the requirement that
the perturbative gauge interactions preserve the axionic shift symmetries, while gauge
instantons break them by exponentially suppressed non-perturbative corrections. To our
knowledge the condition (2.13) is realised in all string theory models and in the following
we will assume that it should hold in any EFT compatible with quantum gravity.

2.2 Higher curvature terms

One can generically write down higher-derivative corrections to the leading two-derivative
supergravity. For our purposes it is sufficient to focus on the contribution

1
247i

/d4x d?02& f(t,9)Y +c.c., (2.14)
where f(t,$) is another holomorphic function of the chiral multiplets and
1 /- _
Y = W Weg, — 4 (D - 8R) (aRR + bG“Ga) (2.15)

is a composite chiral superfield [44-46] constructed out of the chiral superfields Wyz-,
R and the real superfield G, of minimal N/ = 1 supergravity [42]. The superspace
contribution (2.14) includes in particular the curvature-squared terms [45, 46]

1 . 1 .
—%—ﬂ_/lmftr(R/\*R)—%—W/Reftr(R/\R)—&-.... (2.16)

Here tr denotes the standard trace on the free indices of the Riemann two-form R™, =
TR™,pq dzP Ada? — see also [47] and [48] for some useful details on the necessary superspace
manipulations.® In (2.16) we have omitted R,,, R™" and R? terms, since their coefficients
depend on the constants a and b and then are not uniquely fixed by the Pontryagin term
containing tr(R A R). On the other hand, the arbitrariness is uniquely fixed to a = 2 and
b = 1 by requiring that the omitted R,,,R™" and R? terms combine with the first term
in (2.16) to give the Gauss-Bonnet term g5— [Im f Egp * 1, with

EcB = RunpgR™™? — 4Ry R™ + R? (2.17)

which is not affected by ghost issues [49].

5We thank Fotis Farakos for useful discussions about the necessary superspace gymnastics.



As for the gauge functions (2.9), under our general assumptions in the asymptotic field
space region Mﬁm the holomorphic function f necessarily takes the form

ft,p)=Cit' + Af(d) + ..., (2.18)

where again we are omitting exponentially suppressed non-perturbative terms. In particu-
lar, (2.16) contains the couplings

_ 961”(1/{8’ tr(R A *R) + a tr(R A R)] , (2.19)

from which one can extract Cj.
According to the normalization of (2.14), the axion periodicity (2.1) is not broken by
possible gravitational instantons if we require that

2C;, € 7. (2.20)

This can be understood by recalling that the integral of the first Pontryagin class p; (M) =
—#tr(R A R) over a Euclidean spin four-manifold M is always a multiple of 48. In the
sequel we will see that quantum gravity constraints require C; to be integral, rather than
half-integral as in (2.20).

Unlike for the analogous quantities discussed in the previous subsection, there is no
obvious reason to expect any definite sign of Im f and <C, s) = C;st. On the other hand,
various results suggest that the positivity of the coefficient of the Gauss-Bonnet term may
be a general feature of EFTs consistent with quantum gravity. For instance this is necessary
in order to suppress problematic wormhole effects [24]. More recently, [25] provides an
argument for positivity based on unitarity in pure in pure d > 4 gravity, [26] discusses the
implications of the sign on the non-perturbative (in)stability of simple dilatonic models, [27]
shows how Gauss-Bonnet positivity follows from the WGC for certain black holes and [28]
analyses constraints based on holography. In our context this would mean that Im f>0
and then, as for the gauge theory sector, it would be natural to require that

(C,s) >0, (2.21)

or equivalently C € (. (Here we are already using the integrality of C;, anticipated
above but not proven yet.) We will find that (2.21) follows, under certain additional mild
restrictions, from the quantum gravity arguments of the following sections.

3 EFT strings as quantum gravity probes

The perturbative EFT regimes of section 2 can be characterised in terms of a specific class
of BPS axionic strings, called EFT strings in [18, 19] — see also [40]. In this section, after
recalling the main properties of such EFT strings, we will describe the anomaly inflow
mechanism from the four-dimensional bulk theory to the string worldsheet. We will then
argue that the EFT string worldsheet theory can be treated as a weakly coupled non-linear
sigma model (NLSM) and characterise the spectrum of its massless fields. This will form
the basis for the derivation of quantum gravity constraints for the four-dimensional field
theory in section 4.



3.1 Perturbative EFT regimes and EFT strings

The presence of the perturbative axionic shift symmetries (2.1) naturally leads one to
consider axionic strings in four dimensions, around which the axions undergo integral shifts

at — a4 et (3.1)

In this paper we assume that the EFT U(1) gauge fields do not acquire a Stiickelberg
mass by gauging the axions a’. In this way we exclude axionic strings which can break by
nucleation of monopole pairs, leaving the investigation of this interesting generalization for
future work.

The integers e! € Z can be regarded as the magnetic axionic charges of the string,
or as the electric charges under the dual two-form potentials By ; — see [19, 50] for more
details on the dualization. In the dual formulation, the strings contribute to the EFT by a

ei/ 8272', (3.2)
w

where W denotes the string world-sheet. Furthermore, imposing that these strings are

localized term

compatible with the bulk supersymmetry completely fixes [50] the additional contribution
— fW Te volyy to the effective action: the tension 7¢ takes the form

Te = M3 ety (3.3)
in terms of the dual sazions ¢;. Together with Bs;, these form the bosonic components of
the linear multiplets dual [51] to the chiral multiplets ¢* and are defined by

10K

Here K is the EFT Kéhler potential K, which is assumed to be invariant under the axionic
shift symmetries. Note that the dual formulation in terms of B; . and ¢;, as well as the
localised terms (3.2) and (3.3), really make sense only if the axionic shift symmetries are
preserved at the perturbative level, as we are assuming.%

At this stage it is important to stress that we are excluding possible monodromy
transformations of the U(1) vectors under the axionic integral shifts (3.1). For instance, if
we focus on two U(1) field strengths and one chiral field ¢t = a + is, we could impose that
the discrete identification ¢ ~ t + 1 involves also a shift F} ~ F; + F5. F; can then enter the
effective Lagrangian only through the monodromy invariant combination By = Fy — ab,
which can be completed into the super-field strength Wf‘ = W — tWs'. These monodromy
effects can be immediately generalized to a larger number of U(1)s and axions, and allow
for the appearance of quadratic and cubic axion couplings to F4 A Fp, rather than the
standard linear coupling (2.11). As an example of such non-standard couplings to the axions,
Kaluza-Klein U(1)s have been discussed in [52]. Such couplings obstruct the dualization of
the axions to By, (as well as its supersymmetric completion). Then the EFT contribution

5Tn this dual formulation the non-perturbative corrections can be generated by the mechanism described
in [24].



of the corresponding axionic strings cannot be described as in (3.2) and (3.3). While these
monodromy effects naturally appear in extended four-dimensional supergravities, they look
more exotic in a minimally supersymmetric context, and we will henceforth only consider
effective theories not exhibiting such subtle effects.

Let us come back to the dualization (3.4) and the fact that this procedure is possible
only in presence of a perturbative shift symmetry. This becomes crucial once combined
with the observation that the strings coupling to the two-form, being codimension-two
objects, have a strong backreaction. The backreaction may force the surrounding bulk
scalar fields to flow away from the asymptotic region Mﬁert associated with the perturbative
regime. However, as emphasised in [18, 19], this does not pose any problem at the EFT
level: what one really needs for consistency of the dualization and the description of the
strings is that the bulk sector is in the weakly coupled region in a small neighborhood of
the string, of minimal radius of order 7y = A~'. It is then sufficient to require that the
string backreaction is under control in this neighborhood. At such short distances, the
string can be well approximated by a straight %—BPS string and its backreaction on the
saxions is given by

log —. (3.5)
Here 7 is the radial distance from the string and s = {s{} represents the initial saxionic

values at r = rg. Note that the additional chiral fields ¢“ do not flow. Hence, if the charge
vector e belongs to

s=58)teo, o=

CE'T = Alz = {e € Z#¥™™ | (m,e) >0, Vm € (1}, (3.6)

a flow (3.5) starting from any sy € A never exits the saxionic cone A as one approaches
the string. Actually, the scalars are driven more and more inside the asymptotic weakly
coupled region Mﬁert as 0 — 0o. This can be taken as the defining property of the EFT
strings, which hence admit a controlled weakly-coupled EFT description. Note that the
EFT strings must be considered as fundamental strings,” in the sense that they cannot be
completed into smooth solitonic objects within a four-dimensional EFT, say by adding a
finite number of new degrees of freedom.

In [19] it was shown how the validity of ‘weak gravity bounds’ [53] for instantons and

A

pert the Kéhler potential receives a leading saxionic contribution

strings requires that in M
of the form

K=—logP(s)+..., (3.7)

where P(s) is a homogeneous function of the saxions. This asymptotic structure of the
Kéhler potential is indeed universally realised in all string theory models, in which the
homogeneity degree of P(s) turns out to be integral. In the following, whenever we will
need it, we will implicitly assume this asymptotic form of the Kéahler potential. This in
particular implies that the EFT string flows (3.5) can be regarded as infinite field distance
limits, and the Distant Axionic String Conjecture (DASC) of [19] proposes that all infinite
distance points of IM%, can actually be reached by an EFT string flow.

"This notion is not to be confused with that of a critical string such as the heterotic or Type II string.
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Another important property of the EFT strings is the following. It is not difficult to
see that the field-dependent tension 7e of an EFT string decreases along its own saxionic
flow (3.5), as ¢ — oco. On the other hand, since this is an infinite field distance limit the
Swampland Distance Conjecture implies that along the flow an infinite tower of microscopic
massive modes appears, at a characteristic mass scale m,, which exponentially vanishes
with the field distance. By inspecting a large class of string theory models, in [19] it was
found that along the EFT flows m? scales to zero as an integral power of T, in Planck
units. This ‘experimental’ observation was promoted to a possible universal property of
EFT strings. In its stronger form proposed in [40], this is the content of the Integral Weight
Conjecture (IWC):

T w
m?2 ~ M3 (M‘?2> w e {1,2,3}, (3.8)
P
where w is the ‘scaling weight’ associated with the EFT string. Note also that, according
to the Emergent String Conjecture (ESC) [54], in some duality frame an EFT string with
w = 1 should coincide with a critical string, while EFT string flows with w = 2,3 should
correspond to decompactification limits, as further characterised in [22].

In order to motivate our definition of (3.6) we used purely EFT arguments. However,
as we already mentioned, EFT strings are ‘fundamental’ and their existence depends on the
UV completion of the theory. In the following discussion we will need to assume that the
EFT string lattice C§"" is actually fully populated. This non-trivial assumption is certainly
realized in the large classes of string theory models considered in [19], and can be more
generically motivated by invoking an EFT string version of the Completeness Conjecture [7],
which is one of the better tested quantum gravity criteria.®

Note that the EFT strings make sense only in a gravitational context. Indeed, the
analysis of [19] implies that the vanishing of an EFT string tension 7o = M2e'l; identifies a
component of the infinite field distance boundary M5 . Hence there is no (finite distance)
point in field space at which Te /MPQ) — 0 and one cannot decouple the string dynamics from
the gravitational sector. Furthermore, in all the string theory realizations considered so far,
the EFT strings uplift to brane configurations which can be continuously deformed through
the entire internal compactification space. In this sense, the EFT strings can ‘probe’ the
entire UV completion of the EFT. We will indeed see that their quantum consistency
provides additional non-trivial constraints on the EFT.

3.2 World-sheet anomaly from anomaly inflow

It is well known that axionic strings can support chiral fermions whose anomaly must be
cancelled by a bulk anomaly inflow [23]. As in this reference, the axion couplings appearing
in (2.7) and (2.16) produce an anomaly inflow to the EFT strings. Taking into account (2.9)

8Recently [55] has found examples of effective field theories in higher dimensions which violate the
Completeness Conjecture for BPS strings; at the same time, there always exists another theory differing only
at the massive level which does satisfy the BPS Completeness Conjecture. For our purpose of constraining
the massless EFT spectra this would in fact be sufficient. It would be interesting to elucidate whether all
counterexamples to the BPS string completeness conjecture have this property observed in [55].
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and (2.18), the four-dimensional couplings can be written in the form

2 / a'ly; = -2 / ALY (3.9)

Here we have introduced the one-forms hi{ = da’, which are globally defined even in presence
of axionic strings, and

1
1672

1 1 -
Ly;=dI) = —@c;“BFA AFg— Cltr(FAF); — 1oz Citt(RAR). (3.10)

The anomaly inflow is generated by the term (3.9) since, in presence of an axionic string of
charges e and world-sheet W, the one-forms h} are not closed, but rather satisfy

dht = €5, (W). (3.11)

Under general gauge transformations and local Lorentz transformations we can write §1. é?i) =

dlé}i), and then (3.9) produces the following localized contribution to the corresponding
variation of the bulk action:

5Spui = —2me / Y (3.12)
W b

The same result can be obtained in the dual formulation, by taking into account that the
couplings (3.9) modify the dual field strengths into Hsz; = dBa; + 27TI§?¢)' Since H3; must
be gauge invariant, under gauge and local Lorentz transformations By ; must transform
non-trivially:

6By = —2r1Y). (3.13)

Hence (3.2) produces precisely the same localized contribution to the gauge variation of the
action found above.

Since a consistent EFT must be anomaly free, the localized contribution (3.12) must
be cancelled by a string world-sheet anomaly 5S$antum = +2me! Jw Ié,li). Via the usual
descent equation, this worldsheet anomaly corresponds to the anomaly polynomial

(C48B e) (Cl,e) (C,e
O APy — FAF), —
g2 FaNEp = e s W AF) = 100

~

e'ly; = tr(RAR). (3.14)
The last term is proportional to the bulk first Pontryagin class p; (M) = — # tr(RAR). Since
TM|w = TW @ Ny, where Ny is the normal bundle of W, p1(M) can be decomposed into

1 1
pl(M) = pl(W) + Cl(Nw)2 = —@ tr(RW VAN Rw) + RFN A Fy, (3.15)

where FN = dAy is the field strength of the U(1)N connection Ay induced on the normal
bundle by the bulk Riemannian connection. The last term of (3.14) then democratically
contributes to the gravitational and U(1)x anomaly of the world-sheet theory.

There can occur an additional, and more subtle, contribution to the U(1)x anomaly
inflow. It is analogous to the additional contribution associated with the type ITA NS5-
brane normal bundle, discussed in [56]. Adapted to our context — see also [57] — the key
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observation is that the pull-back to the string world-sheet W of the singular right-hand
side of (3.11) gives a non-vanishing finite term. Indeed, in cohomology

S (W)lw = x(Nw), (3.16)

where x(Nyw) is the Euler class of the normal bundle Nyy. Since we have a distinguished
connection Ax on Ny, it is natural to promote (3.16) to an equation for (distributional)
differential forms, by identifying

1

X(Nw) = oI (3.17)

The restriction of (3.11) to W then contains a finite contribution coming from the delta-
source:

. @i
dhifw = 5 Fx. (3.18)

Topologically, this equation implies that the normal bundle Ny, must be trivial. Hence, we
know that we can globally write Fiy = dAn. Following [56] we will consider (3.18) as part
of the definition of our axionic strings.

By adopting the ‘magnetic’ axionic formulation, we can now write down the following
additional EFT term localised on the string:

SN = —161'(6)/ hzl N AN . (3.19)
24 w

Here the normalization is chosen for later convenience and we assume that the constants
Ci(e) necessarily depend on e since otherwise the term (3.19) would be independent of the
EFT string charge, which does not seem physically reasonable. By recalling (3.18) it is easy
to see that (3.19) is not invariant under U(1)nx a gauge transformations 0 Axy = dAn:

1 4 7
55y = —=Cile)e /W A Py (3.20)

Again, we may obtain this anomalous contribution in the dual description, in which the
term (3.19) does not appear and is encoded in a modification of the 3 ; Bianchi identities:

1 4
d’Hg}i = 27‘1’]472' + ﬂC’Z(e)FN A 52(W) . (3.21)
This can be solved by setting
1 A
Hs, = By, + 21 + 57 Ci(e)An N (W) (3.22)

It follows that, in addition to (3.13), under local Lorentz transformations the variation of
Ba,; receives also the localised contribution

ONBa; = _i/\N Ci(e)s (W), (3.23)

which, applied to (3.2), precisely reproduces (3.20).
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The anomalous contribution (3.20) must be cancelled by a contribution 27 [, fz(llzl to
the world-sheet anomaly, corresponding to the anomaly polynomial

(Cle).e)

9672 NNy, (3.24)

Iyn =

where as usual (C(e),e) = e'Ci(e). Hence, to sum up, the cancellation of the anomaly
inflow requires that the world-sheet anomaly polynomial must be given by

I's=e'ly; + Iux

(C1P,e) (C',e)

=g FaNFp— 16,2 tr(FAF)p (3.25)
(C,e) (C.e) + (C(e), e)
1922 tr(Rw A Rw) + 962 Ny AN Fy .

Note that this anomaly polynomial does not include possible mixed U(1)nx-U(1)4 anomalies.
Indeed, they can be assumed to be cancelled by terms of the form (3.19) involving the
U(1)4 gauge fields A4 instead of Ax and can then be ignored.

With the exception of the additional terms in (3.24), the anomalies encoded in (3.25)
are all proportional to the pairing of the couplings C’iAB , CiI and C; with the charges €’
characterising the EFT string. Recall that the presence of such a string induces a flow of
the form (3.5) in the saxionic moduli space. In view of the relations (2.9), we therefore
conclude that precisely those gauge sectors U(1)4 and Gy that become weakly coupled
as a consequence of the backreaction of an EFT string, as encoded in the flow (3.5), can
be detected by its world-sheet anomalies. Gauge sectors which stay strongly coupled in
presence of an EFT string, on the other hand, never induce an anomaly on its worldsheet,
and more generally the EFT string in question does not detect them via its world-sheet. In
particular this applies to gauge sectors with non-standard axionic monodromies of the form
mentioned after (3.4), which fall outside the class of theories which can be constrained by
the analysis of EFT string anomalies as studied in the present work.

The conditions (2.13) can be rewritten in terms of EFT string charges as

{(c4B e)} >0, (Cle)>0, Ve € CET (3.26)

where the first inequality means that the matrix (CAB, e) is positive semi-definite. This
implies that the coefficients of the gauge world-sheet anomaly polynomial (3.25) have
semi-definite sign.

3.3 UV origin of the additional world-sheet contribution

As will be made more explicit in the next subsection, the constants C;(e) introduced in (3.19)
must satisfy appropriate quantization conditions and should then be associated with some
additional discrete structure defining the EFT. In a generic N’ = 1 four-dimensional EF'T
there is no natural candidate, but the more constrained higher dimensional supersymmetric
theories can indeed be characterized by additional discrete data. This suggests that the
presence of a term (3.19) may be interpreted as the manifestation of some hidden higher
dimensional structure which can be detected by the EFT string.
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More concretely, consider a situation in which the axions a’ come from the dimensional
reduction of the U(1) vectors A’ of an N/ = 1 five-dimensional supergravity. The latter is
characterized by a set of quantized constants [58]

A

Cijk €L, (3.27)

which are totally symmetric in the indices and in particular define the five-dimensional

Chern-Simons term .

554 = 6(27)?

C’ijk/Ai ANFINFE, (3.28)
The four-dimensional axionic strings uplift to five-dimensional monopole strings. For such
monopole strings of charge vector e, the term (3.28) generates the inflow contribution [15,
57, 59, 60]

2T A L. N
—ﬁC’ijke’e]ek/ pgl)(NW) (3.29)
w

to the SO(3) normal bundle anomaly of the monopole, where pgl)(NW) is the descent

two-form associated with the first Pontryagin class of the normal bundle Ny. Under
dimensional reduction to four dimensions the normal bundle splits as Ny = Ny @ L, where
L is a trivial real line bundle, and then (3.29) precisely takes the form (3.20) with

CA'l(e) = C’ijkejek . (330)

Hence, with this choice, (3.19) encodes the information on a microscopic five-dimensional
structure that can be detected by the EFT strings. One can also more directly repro-
duce (3.19) from the dimensional reduction of (3.28), as in [57]. Since this effect is local,
all that is required is a five-dimensional EFT term of the form (3.28), without the need
to assume that the five-dimensional configuration globally preserves eight supercharges.”
Furthermore, the reduction from five to four dimensions would imply a leading contribu-
tion to the Kihler potential of the form (3.7) with P(s) = Cyjxs's’s*, inherited by the
five-dimensional supersymmetric structure, which would correlate a world-sheet term of the
form (3.29) to the bulk EFT structure. In the sequel we will more explicitly illustrate these
ideas in concrete string theory realizations.

Let us now investigate if the term (3.19) can instead detect a six-dimensional minimally
supersymmetric structure. As reviewed for instance in [8], in six dimensions the A" = (1,0)
tensor multiplet sector is characterized by a symmetric matrix C‘ij and the strings act as
both electric and magnetic sources for the By ; fields. The Green-Schwarz term produces an
anomaly inflow polynomial proportional to C’ijeiej X(NW), where X(NW> is the Euler class
of the string normal bundle Ny which has SO(4) ~ SU(2), x SU(2); structure group. It
would then be natural to guess that in four dimensions this effect can again be captured
by (3.19), by choosing Co C’ijej . However, this naive guess turns out to be wrong. Indeed,
consider a compactification from six to four dimensions. Since the string is point-like in

9Note that a simple circle compactification from five to four dimensions would preserve eight supercharges
and contain a KK U(1) field. This KK U(1) would be afflicted by monodromy effects of the kind discussed
in the paragraph after (3.4) — see for instance [52] — which are not covered by our analysis.
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the compact two dimensions, its normal bundle splits into Ny = Ny @ L & L where L is
again the trivial real line bundle. This implies that y(Nyw) = x(Nw)x(L @ L) = 0. Hence,
even though CA'Z-(e) o8 C’ijej has the right structure to be associated with a six-dimensional
supergravity, apparently no anomaly survives in the reduction to four dimensions. We are
then led to exclude this possibility as being physically irrelevant.

Supergravity theories in d > 6 dimensions are too rigid to allow for a choice of some
discrete data, which could then enter C’i(e). For these reasons, in the rest of this paper we
will assume (3.30) whenever we will need a more explicit form of C;(e), otherwise keeping
it generic.

3.4 EFT string as weakly coupled NLSM

The world-sheet anomaly polynomial (3.14) has been fixed by anomaly inflow arguments,
a procedure which basically uses only the axionic nature of the EFT strings. While EFT
strings naturally allow for a coupling to a weakly-coupled bulk sector at the EFT cut-off
scale A, they generically lead to infra-red divergences due to their large backreaction. In
particular, one cannot a priori assume that their world-sheet theory flows to a CFT, as was
for instance possible in the higher-dimensional context of [8, 15].

However, the analysis of explicit UV complete models carried out in appendix B provides
evidence that also the world-sheet sector supported by EFT strings can be considered weakly-
coupled at the EFT cut-off scale, and can then be described by a weakly-coupled non-linear
sigma model (NLSM). This can be understood as follows. In string theory models EFT
strings are microscopically associated to branes which can freely propagate in the internal
compactification space, which then determines the geometry of the effective two-dimensional
NLSM. One may be worried that the string backreaction could obstruct the possibility to
make its NLSM weakly coupled. The key point is that for EFT strings this does not occur,
and actually the EFT string flow tends to render the NLSM more weakly coupled.

Recall the observation made after (3.8) and suppose first that w = 2 or 3. The
Emergent String Conjecture [54] implies that in some duality frame the EFT flow involves
the decompactification of some internal direction, as has been made more precise for the
EFT string limits in [22]. The string theory models of appendix B clearly indicate that this
dynamical decompactification makes the effective two-dimensional NLSM more and more
weakly coupled.

If instead w = 1, then according to the Emergent String Conjecture there should
exist a duality frame in which the EFT string is a critical string whose flow drives the
dilaton to infinity (i.e. weak coupling) [19]. The remaining moduli do not flow and we
may rescale them in order to make the compactification space arbitrarily large, at least if
the dual description admits a geometric phase. In this regime the string certainly admits
a weakly-coupled NLSM description. In the non-generic cases in which the large volume
regime does not exist, as for instance the rigid Landau-Ginzberg-like theories of the type
considered in [61], the string is critical in the deep UV and then it should — and can —
instead be directly treated as a CFT.

Motivated by these observations, we propose that the world-sheet sector supported by
EFT strings generically admits a weakly-coupled NLSM description and we will proceed
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with this working assumption.'? Precisely in the non-generic cases in which this is not
possible, one can rephrase the following discussion in CFT terms (along the lines of [16]) and
arrive at the same results. Hence in the following we will focus on the NLSM description.

The NLSM includes the universal ‘center of mass’ sector, which is described by the
Green-Schwarz (GS) formulation of [50]. We can use this formulation to make it clear
why these strings locally preserve N’ = (0,2) supersymmetry. Besides the world-sheet
embedding coordinates, the GS-string [50] supports a GS fermion O%, transforming as
a four-dimensional chiral spinor. The preserved supersymmetry is determined by the
kappa-symmetry 00, = kq with rq = ['o? 3. Here we are using the index notation of [42]
and I',,” is the kappa symmetry operator, which can be identified with a two-dimensional
chiral operator. In a locally adapted reference frame in which the string is locally stretched
along the (2°,23)-directions, we have that I',® = (03),”. As in [62], we can relabel the
bulk spinor components as two-dimensional chiral components, e.g. ©, = (©_,0,) and
0% = (07,0%) = (04,—06_). The projection condition on ks = (k—, ) imposes that
k+ = 0 and the kappa-symmetry then implies that p; = ©, is the physical right-moving
component of O, while ©_ is pure gauge and can be set to zero. We can also use local
static gauge and combine the transversal embedding coordinates into u = z! + iz2. Then u
and py can be reorganized into the ‘universal’ N’ = (0, 2) two-dimensional chiral superfield

U=u+V20Tp, —2i07070, ,u. (3.31)

We follow the conventions of [62, 63] — see also [64] for an extensive introduction to
N = (0,2) two-dimensional models. The components u and p; have charges 1 and %,
respectively, under a U(1)y rotation. We can then interpret U(1)y as an R-symmetry which
acts also on 67 with charge Jx[07] = 3, so that Jx[U] = 1.

The N = (0,2) NLSM [65, 66] supported by an EFT string generically includes also
an ‘internal’ sector. In particular, it can include nc additional ‘non-universal’ scalar chiral
multiplets

D=p+V20Tx, —2i07010, Lo, (3.32)

where ¢ is a complex scalar and x4 is a right-moving fermion. (For simplicity, in (3.32) we
are suppressing indices running from 1 to nc, since we will not need them.) The bosonic
components ¢ parametrize the ‘internal’ NLSM target space Mypgy (while (3.31) has the
‘external’ four-dimensional spacetime as its target space), and the fermions x take values
in the corresponding tangent bundle T My sm. Representing internal degrees of freedom,
the chiral superfields ® are neutral under the normal U(1)y rotational symmetry: Jx[®] = 0.
Since JN[0T] = %, the right-moving fermions x therefore have U(1)y charge Jx[x+] = —%.

Due to the minimal amount of supersymmetry, some of the directions in the NLSM
moduli space may be obstructed at higher order.!! The obstructed directions should be

0More precisely, some EFT string may host a ‘spectator’ strongly coupled subsector, which does not
participate in the cancellation of the anomaly inflow and does not interfere with the weakly coupled NLSM
dynamics.

11n the presence of such obstructions, it is clear that only (some of) the unobstructed directions may
admit a gauged axionic shift symmetry, see again section 4.2 for details.
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specified by the vanishing of nx holomorphic superpotentials J,(¢) in the N' = (0, 2) theory.
In order to implement these constraints, we must include a corresponding number ny of
neutral Fermi multiplets A = A\* + ..., and add the superpotential term

/ A6+ A% T, (®) + c.c. . (3.33)

Here A%, the lowest component of the Fermi superfield A%, is a left-moving chiral fermion.
For such a superpotential to exist, the Fermi multiplets A* must carry U(1)N charge
JN[A?] = . Furthermore we require A% and J,(®) to be uncharged under the spacetime
gauge group. This requirement is motivated by our experience with explicit string theory
models — see in particular section 6 — and comes from the microscopic Green-Schwarz origin
of the fermions A\*. Indeed, EFT strings typically uplift to ‘movable’ brane configurations
supporting corresponding Green-Schwarz fermions, which are neutral under the bulk gauge
symmetries.

A priori, the number of U(1)N charged Fermi multiplets A® and the number of unob-
structed moduli of the NLSM might be uncorrelated. However, we propose that the NLSM
should obey a certain minimality principle: the number of Fermi multiplets A* , ny, should
be given by the minimal number needed in order to account for the potential higher order
obstructions in the target space of the NLSM. In other words, at the generic point of the
moduli space the number of unobstructed directions should correspond to

ndl :=ng —ny . (3.34)

In the sequel, we will assume this principle to hold at least for generators of the cone C§"" of
EFT strings. The intuition between this non-trivial assumption is that the U(1)N charged
Fermi multiplets A® pair up with obstructed gauge-neutral chiral multiplets to form the
analogue of a ‘vector-like pair’; i.e. an N/ = (2, 2) chiral multiplet, leaving behind a collection
of nc — ny genuinely chiral N' = (0,2) supermultiplets associated with the unobstructed
directions in the moduli space of the NLSM. The minimality principle then states that
there are no extra unpaired U(1)y Fermi multiplets left. The UV complete realizations
considered in sections 68 will provide further support to this minimality principle, but it
would certainly be important to find a general proof of it, which is however beyond the
scope of the present work.

In particular, the minimality principle implies that nc — ny > 0, at least for genuinely
(0,2) EFT strings.'® On the other hand, in some cases the EFT string may support an
enhanced UV N = (2,2) or higher non-chiral supersymmetry. For this to be possible, the
Fermi multiplets A® necessarily pair with all the ng + 1 chiral multiplets, including the
universal one (3.31). As a result, a minimal non-chiral V" = (2,2) symmetry requires that

121 the Green-Schwarz formulation, branes are described by their embedding in the bulk superspace,
whose odd coordinates correspond to the brane fermions.

13 Actually, we generically expect that nc —nx > 1, since generic EFT strings are associated with ‘movable’
internal configurations, whose deformations should be represented by unobstructed chiral multiplets. The
extreme case nc — nx = 0 should instead be associated with the non-generic purely stringy rigid w = 1 EFT
string flows mentioned above.
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ng —ny = —1 and ngp = 0. Hence, in general

where the bound is saturated in presence of enhanced non-chiral world-sheet supersymmetry,
while ng — nn > 0 for strictly chiral world-sheet supersymmetry.

The subset of the bosonic fields ¢ corresponding to the unobstructed moduli of the
NLSM can enjoy an axionic shift symmetry which can be gauged by the bulk gauge fields.
We will describe this effect in section 4.2. In principle, some of the chiral multiplets might
also carry a linear realization of the bulk gauge algebra.

Finally, the internal world-sheet sector can include also ng chiral Fermi multiplets
U_ =1_ + ... which are neutral under U(1)y, taking values in some vector bundle defined
on the NLSM target space [64—66]. This type of Fermi multiplets can be charged under the
four-dimensional gauge symmetry and couple to the corresponding gauge vectors.

To sum up, we will henceforth assume that an EFT string supports a weakly-coupled
N = (0,2) NLSM, described by nc + 1 chiral multiplets, nxy U(1)x charged Fermi multi-
plets as well as np U(1)x neutral Fermi multiplets. The relevant possible charges of the
corresponding world-sheet fermions are summarized in the following table:

Fermion | # | U(1)x charge | U(1)4 charge | Gy repr. | (0,2) multiplet
P+ 1 % 0 1 chiral U
Xt ne -1 * * chiral ® (3.36)
P_ ng 0 qa ry Fermi W_
A nN % 0 1 Fermi A_

4 Anomaly matching and quantum gravity constraints

We are now in a position to derive the main results of this work, the quantum gravity
bounds (4.4) and (4.26). The strategy is to use that the 't Hooft anomaly associated with
the world-sheet theory supported by the EFT string must match the expression (3.14),
which was obtained by requiring the cancellation of the anomaly inflow contribution from
the four-dimensional A/ = 1 supersymmetric theory.

4.1 Gravitational/U(1)n anomalies and curvature-squared bounds

Let us start with the gravitational and U(1)x anomalies. From the fermionic charges (3.36)
the corresponding anomaly polynomial is [67]

- ng —nc+ny—1 nc—ny+1
I4g‘grav+U(1)N = - 19972 tr(Rw A Rw) + BT

N APy (4.1)

Our conventions for the computation of the anomaly polynomial are summarised in
appendix A.
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The 't Hooft anomaly (4.1) must match the third line of (3.25). We then arrive at the
identifications

(C,e)=np—nc+ny—1, (4.2a)
(C,e) + (Cle),e) = 3(nc —nx +1). (4.2D)

Note that, according to the above characterization of the world-sheet spectrum, an enhanced
non-chiral world-sheet supersymmetry precisely corresponds to the separate vanishing of
(C,e) and (C(e), e).

Since by the assumed EFT string completeness the EFT string charges should generate
the entire lattice of string charges, (4.2a) implies that

(C,e) €Z VYecCET, (4.3)

which refines the EFT quantization condition (2.20). Furthermore, by combining the
matching condition (4.2b) with (3.35) we deduce the bound

(C,e) + (C(e),e) € 3Z> Ve € CE'™ (4.4)

which should be saturated for enhanced non-chiral world-sheet supersymmetry. The
equations (4.2) also imply that

4(C,e) + (C(e),e) = 3np, (4.5)

from which, since ng > 0, we can then extract another similar bound:

4(C,e) + (C(e),e) € 3Z> Ve € CE'T . (4.6)

We observe that (4.6) follows from (4.4) if (C,e) > 0, and vice versa if (C,e) < 0.

If C(e) is non-trivial, in principle (4.4) and (4.6) allow for negative (C, e), for some
e € C§"". On the other hand, in the explicit string theory models that we consider in this
paper, this does not occur. It is then tempting to promote this observation to a general
property of quantum gravity models and, in this sense, we can regard (4.4) as the strongest
bound. It would certainly be more satisfactory to derive this additional condition from a
self-contained quantum gravity argument, but we leave this interesting question to the future.

4.2 (Gauge anomalies and rank bound

We now turn to the world-sheet 't Hooft gauge anomalies, whose polynomial should match
the second line of (3.25). The positive semi-definite coefficients (C4Z, e) and (C!,e)
appearing in (3.25) — see (3.26) — identify the gauge sector that ‘interact’ with the EFT
string, in the sense that the corresponding (s)axionic couplings in (2.11) change along the
EFT string flow (3.5). In the sequel we will focus on the rank of this gauge sector, which is
identified as

r(e) =rank{(C*% e)} + > rk(ar), (4.7)
I|{CI,e)>0
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as one can easily realize by going to a basis of U(1) gauge fields in which the symmetric
matrix (CAB, e) is diagonalized.'* In particular, we aim at deriving an upper bound on
r(e) from the anomaly matching.

First of all, the Fermi multiplets in (3.36) yield the following contribution to the
anomaly polynomial I}'s|sauge:

1 1
— ——ki'B(e)FA N Fp — Wk{;(e)w(F ANF)p, (4.8)
T

with
kP = Y ¢*d”, kk(e)= Y ). (4.9)
q€Fermi r! cFermi
The anomaly matching condition implies that these coefficients provide positive semi-definite
contributions to the total anomaly coefficients (C45, e) and (C!,e) appearing in (3.25). In
particular
rp(e) = rank{kaZ(e)} + > rk(gr) (4.10)
I|kL(e)>0

can be regarded as the contribution of the Fermi multiplets to r(e).

Since we are interested in the rank of the gauge algebra, we can actually focus on
the Cartan sub-algebra h; C gr of each simple gauge factor. On each h; we can pick a
basis H., where a = 1,...,1k(gs), normalised so that tr(HéHé) = 2048 If we turn off

all the non-Cartan field strength components in (4.8), the remaining purely U(1) anomaly

polynomial is
1

82
where Fy = (Fy, Fr4) collectively represent the remaining U(1) field strengths, and the

k¢P(e) Fa A Fy, (4.11)

symmetric matrix k‘f‘B has block-diagonal entries given by kié‘B and ki (e)d Ia,18- The rank
of the matrix k'8 can be identified with rp(e) as defined in (4.10). On the other hand we
can still apply the first formula in (4.9) to this extended abelian sector and write

= > ¢P. (4.12)
q€Fermi
Hence, the matrix kf‘B is the sum of ny matrices of the form ¢¢?, which have either rank
0 or 1, if either all the ¢** charges are vanishing or not, respectively. We can now use the
general property

rank(M; + M) < rank(M;) + rank(Ma), (4.13)

which holds for any pair of matrices My, Ms. Repeatedly applied to (4.12) and combined

with (4.5), it leads to
4 - 1 4
rp(e) <np = g(C,e> + §<C(e),e> . (4.14)

“More explicitly, one can always diagonalize the matrix (C*Z, e) by means of an orthogonal matrix
O4ZB. Then AA = 04B Ap have diagonal (s)axionic contributions to the kinetic terms couplings, with
rank{(C*% e)} non-vanishing positive diagonal entries.

- 21 —



Consider next the anomaly contribution associated with the chiral multiplets ®. If some
of these multiplets carry a linear realisation of the gauge group, the charged chiral fermions x4
yield a negative definite contribution to the anomaly polynomial. One can convince oneself
that this cannot increase the bound on the total rank of the gauge algebra. We therefore turn
to the remaining possibility that some of the chiral fields ¢ corresponding to the unobstructed
moduli enjoy an axionic shift symmetry which is gauged by the four-dimensional gauge
symmetry. According to the minimality principle of the previous section, the number

of unobstructed directions is n%ﬁ := nc — nn. One can then introduce a set of ‘axionic’
N = (0,2) chiral multiplets 7 ~ 7. + 1, with r = 1,...,na < necff, which transform as
L ya
Tr — Tr + Z—Nr Aa (4.15)
T

under the bulk U(1) gauge transformations A4 — A4 + d\4. Note that the fermions in
the chiral multiplets 7, do not transform under (4.15) and then do not contribute to the
quantum anomaly. On the other hand, following [68, 69] one can write down the following
Green-Schwarz-like contributions to world-sheet effective action,

1
— M /W Rer Fa — Q7 /W AN A, (4.16)

with
QY = Q% = (MN)*® — (MN)PA, (4.17)

where (M N)AB = MA"N,B. Note that the term (4.16) admits a supersymmetric extension
in terms of N = (0, 2) world-sheet vector multiplets [68, 69], while it cannot be added to
an N = (2,2) theory [70].

From (4.15) we see that the variation of (4.16) under a gauge transformation A4 —

A g+ dry gives )
- —ké‘B(e)/ A4 Fg, (4.18)
47 w

where we have introduced the symmetric matrix
kiB(e) = (MN)AB + (MN)BA. (4.19)

This classical violation of the gauge symmetry has the form of an anomaly associated with
the polynomial

1
-~ 52 kiB(e) Fao A Fp. (4.20)

In particular, we can define a corresponding rank
ro(e) = rank{k&B(e)} . (4.21)

Note that the rank of the matrix (MN)48, as well as its transposed, cannot exceed
na < n&l = ne — ny. Hence applying the property (4.13) to (4.19) and the identity (4.2b),
we obtain the upper bound

rofe) < 2nef — §<c,e> +2i¢(e)e) - 2. (4.22)

W N
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By combining (4.11) and (4.20) we arrive at the maximally abelian anomaly polynomial

1
~ 53 kAB(e) Fy A Fy (4.23)

with
k4B (e) = kfB(e) + kZE(e). (4.24)

By anomaly matching, this matrix must be positive semi-definite and its rank provides an
upper bound for (4.7).'> Hence, by recalling (4.14) and (4.22) and applying again (4.13),
we can conclude that

r(e) < rp(e) + rc(e) < np + 2ngl . (4.25)

In view of (4.14) and (4.22), we can rewrite this in its final form
r(e) < r(€)max = 2(C,e) + (Cle),e) — 2 Ve € CEFT. (4.26)

The bounds (4.4), (4.6) and (4.26) are the main results of this paper. In particular, (4.26)
encodes a correlation between the ranks of the EFT gauge group and higher curvature
corrections which is completely unexpected from a purely low-energy EFT viewpoint. We
will illustrate the power of these bounds in section 5. We stress that the bounds only apply
to gauge sectors exhibiting a coupling of the form (2.11) and (2.19), from which they were
derived. Furthermore, the bound (4.26) (but not (4.4) and (4.6)) relies on our assumption
that the number of unobstructed moduli of the NLSM is given by (3.34).

We expect the bound (4.26) to be rather conservative because in many situations only
a subset n of the necﬂr unobstructed chiral multiplets enjoy gauged axionic shift symmetries
and hence participate in the anomaly matching. This will be elucidated further in concrete
F-theoretic realisations in section 6.3. Based on our explicit knowledge of the nature of the
chiral multiplets in the NLSM of the EFT strings in F-theory, we will in fact propose the
stronger bound (6.26) on the rank of the four-dimensional gauge group, which is expected
to hold in F-theory compactifications on smooth geometric backgrounds not admitting
extra isometries. In other cases, however, such as toroidal heterotic orbifolds commented
on after (7.38), the bound (4.26) can in fact be saturated. Hence, even though in many
instances the actual gauge group is of considerably smaller rank than the bound in (4.26),
we have to content ourselves with this constraint in a general setting.

4.3 Some comments

So far we have been agnostic about the contribution C’(e) to the anomaly inflow and
the resulting quantum gravity bounds. In order to extract more precise information
from (4.4), (4.6) and (4.26), we now analyse the possibilities identified in section 3.3 in
more detail, that is, either vanishing C(e) or a contribution of the form (3.30). Let us first
assume that C(e) = 0. In this case (4.4) and (4.6) reduce to

(C,e) € 3Z>g Ve e C§™". (4.27)

15Possible charged chiral multiplets would provide negative semi-definite contributions, which can only
lower this upper bound.
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This shows that not only are the constants C; integral, rather than half-integral as in (2.20),
but actually (C, e) should be a non-negative multiple of 3. Hence either C is vanishing or
it lies in the cone Ci. Recalling the definition (2.3) of the saxionic cone, we therefore see
that (4.27) implies (C,s) > 0 (with equality only for C = 0), which then follows from the
quantum consistency of EFT strings, at least if C (e) = 0. Note that the inequality (4.27)
should be saturated precisely by the EFT strings with enhanced non-chiral supersymmetry,
while for strict chiral world-sheet supersymmetry we should actually have (C, e) > 3.16
Consider next an anomaly contribution of the form (3.30). This implies that

<C(e),e> = C(e,e,e) = C’ijk elelek (4.28)

where éijk € Z are associated with some underlying five-dimensional N/ = 1 structure
which can be detected by the EFT string. Since the EFT string charges form the cone
C§"", if the condition (4.4) holds for a given string charge vector e € C§*", then it should
also hold for € = Ne, where N > 0 is any positive integer. If C(e, e,e) # 0, by imposing
the condition (4.4) for ¢ = Ne with N — 0o, we obtain N3 [C(e, e,e)+ 0(1/N2)} >0
and then

Cle,e,e) >0. (4.29)
We furthermore observe that the condition (4.29) follows also from the five-dimensional
arguments of [15], and should then hold for our setting as well.

Note that (3.30) and (4.29) also imply that (C(e),e) < (C(Ne), Ne) if N > 1. Since
the rank of the gauge group interacting with an EFT string does not change if we rescale
the string charge vector, that is r(Ne) = r(e), we deduce that the strongest bounds (4.26)
on the gauge group rank are obtained by using primitive EFT charge vectors. Of course
this is also true if C(e) = 0. Furthermore, applying (4.13) to the matrix (C45, e; + ep),
we obtain

r(e1 +ez) <r(er)+r(e2)
2(C,e1 +e2) + (C(e1),e1) + (Cler), e2) — 4 (4.30)
2 C

(C,e; +e3) + (Cler),e1) + (

IN

IN

(e1),ez) — 2

Now, a convexity property of the form
(Cler),e1) + (Clea), e2) < (Cler +€2), €1 + €2) (4.31)

would guarantee that, if e; and eq satisfy (4.26) then e; + eo satisfies (4.26) too. Hence,
in this case the strongest constraints would be obtained by considering the generators of
the cone C§"" of EFT string charges, that is, the elementary EFT string charges. This
property has a clear physical interpretation. One can think of any EFT string as a (possibly
threshold) bound state formed by recombining elementary EFT strings. According to this
property, if these elementary strings are separately consistent, then their bound state should
be consistent too.

181f one considers models admitting a geometric higher dimensional UV-completion, by recalling (4.2b)
and footnote 13 this bound could be further restricted to (C,e) > 6.
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The condition (4.31) is trivially satisfied if C(e) = 0. If instead (3.30) holds, (4.31) is
for instance guaranteed if

A

C(e1,e2,e3) >0 Vei,es,e3 € CEFT . 4.32
S

In [15] an analogous property has been proposed to hold for general N' = 1 five-dimensional
supergravities compatible with quantum gravity. This property would descend to (4.32) in
our four-dimensional EFTs. We will see that (4.32), and hence (4.31), indeed holds in the
explicit string models that we will consider.

Note also that these results trivialize in the case of enhanced non-chiral world-sheet
supersymmetry, since in this case (C45 e) = (C!,e) = (C,e) = (C(e),e) = 0.

We emphasize once more that the above discussion assumes the completeness of the
spectrum of possible EFT string charges C§"", or at most a mild violation of completeness
mentioned in footnote 8. However, it can be clearly adapted to cases in which only a strict
subset Cghys C CE"T of charges is actually populated, basically replacing C§*" with Cghys in
the above formulas. Generically this would give weaker bounds. Of course, knowing Cghys
constitutes an additional non-trivial piece of information which may not be obvious to the
EFT observer.

Finally, according to the general formulation with three-form potentials of [50], the
two-form potentials By ; could be gauged under some two-form gauge transformations.
This effect makes some axionic strings ‘anomalous’, forcing them to be the boundary of

membranes. It would be interesting to extend the above arguments to these kinds of strings.

5 Simple examples

In this section we illustrate the implications of the quantum gravity constraints found in
section 4 for simple EFT models.

Let us start with the most basic possible example: the gauge group G consists of a
simple gauge group factor and the perturbative EFT regime is associated with a single chiral
field t = a + is, whose saxion s parametrizes the one-dimensional saxionic cone A = R+,
plus possible additional chiral ‘spectators’ ¢. According to the general definition (3.6),
C§"™" = Z>( then represents a single tower of EFT strings, labeled by the charge e € Z>.

By supersymmetry, the relevant structure is specified by the saxionic couplings appearing
in (2.7) and (2.16). Let us assume that these take the form

1

_817T/(C’s+...)tr(F/\*F)—1927T/(C’s+...)EGB*1, (5.1)

where Fgp is the Gauss-Bonnet combination (2.17) and the ellipses represent possible
additional constant and ¢-dependent terms. As discussed in the previous sections, in general
this is a non-trivial assumption about the EFT.

Furthermore we first suppose that the coupling (3.19) is vanishing. According to the
discussion in section 3.3, this means that we are considering models which do not have a
hidden five-dimensional structure. At the low-energy EFT level the constants C' and C
should just satisfy the quantization conditions (2.12) and (2.20) and could otherwise be
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chosen quite arbitrarily. On the other hand, the constraints derived in section 4 imply that
this is not true for EFTs admitting a quantum gravity completion. First of all, by (4.3) we
must have C' € Z, rather than just 2C' € Z. Furthermore, since (3.19) is vanishing, (4.4)
and (4.6) reduce to (4.27) and then

C=3k>0 with ke ZZO . (52)

We could actually be more precise: either C' = 0, which means that the EFT strings should
support an enhanced non-chiral supersymmetry, or otherwise C' = 3k + 3 with k € Z>q.

Consider then the bound (4.26). In the present single saxion example, if C' > 0 we can
simply set r(e) = rk(g) and (4.26) reduces to the bound

rk(g) <2C —2=6k+4, k& Zsg (5.3)

on the rank of the Lie algebra associated with the gauge group G.
Let us now allow for a non-trivial coupling (3.19) which, in view of (3.30), takes the
form

L Ao
- = hiNA A4
52°¢ /2 1A AN, (5.4)
where C' € Z by (3.27). Now (4.4) and (4.6) require that
C~'€ + 063 € 3220 R 406 + 063 S 3220 Ve € Zzg . (55)

The conditions can be solved by setting

{

for all k, k € Zso. The bound (4.26) reduces to rk(g) < 2C+C—2 and from (5.6) we then get

6k — k — 2 (case I)
k(g) < - . .
tkig) < { 3k +2k—2 (case II) (5:7)

C=—k

k_/é::o,,,.,Bk (case I) or {é:3k+4l;: (case II), (5.6)

D
Il
> W

)

The above analysis can be immediately generalized to a non-simple gauge group, with
saxionic couplings

1 1
- E/(CABer ) FaAsFp— 87/<CIS+ ) te(F ASF);p (5.8)

where by (2.13) we must impose that C! € Zso and C4B

€ 7Z is a positive semi-definite
matrix. Now r(e) is the total rank of the linearly independent gauge fields which interact
with the saxion s, and it is bounded as in the case of a simple gauge group discussed above.

Note that the mere presence of some gauge sector coupling to the (s)axion as in (5.8)
implies that, necessarily, the higher derivative couplings appearing in (5.1) and (5.4) cannot
be both trivial and the EFT string cannot exhibit enhanced N = (2,2) supersymmetry.
Suppose for instance that, at the UV cut-off scale A, our EFT describes an G = SU(5).
Then in case I we must necessarily have either (k, k) = (1,0) and then (C,C) = (3,0), or

k > 2, with any k= 0,...,3k. In case II we must instead impose 3k + 2k > 6, which for
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instance implies C > 6. If we consider instead a G = SO(10) supersymmetric GUT model,
then in case I we must necessarily have either (C,C) = (6 — k, k) with k = 0,...,5 (and
k = 2), or the other values corresponding to k£ > 3. In case II one must impose 3k + 2% > 7,
which also implies that c>1. According to the proposal of section 3.3, the non-vanishing
of (5.4) should practically mean that the strict weak coupling limit of the gauge theory is
an at least partial decompactification limit to five dimensions.

Consider next a model with two saxions s!

, 52 with a general gauge group (2.5). One
can choose a basis in which (s!,s?) parametrize the saxionic cone A = R2>0. In this basis,
the EFT strings have charge vectors e = (el,e?) € CE'T = Z2,. By (3.26) the components of
CAB = (C{*B,C4PB) are positive semi-definite integral matrices, and C! = (C!,C1) € 72,
Imposing for simplicity that the coupling (3.19) vanishes, (4.4) and (4.6) require that
C= (Cy,Cy) = (3ky, 3ky), with ky, ko € Z>o. Hence the EFT contains the Gauss-Bonnet
term

1
— @ /(k‘lsl + k‘282 + .. ) Ecg *1. (5.9)

The values of ki, ko constrain the ranks of the gauge groups coupling to the axions as
in (2.11). The stricter bounds are obtained by setting e = e; = (1,0) and e = e3 = (0,1)
in (4.26), and read

r(el) S 6k‘1 — 2, T(eg) S 6k‘2 —2. (5.10)

Here r(e1) and r(ez) can be identified with the rank of the gauge sector which interact
with the saxions s' and s2, respectively, through couplings of the form (5.8). If for instance
all gauge group factors interact with both saxions, we get a bound on the total rank
rk(g) < min{6k; — 2,6ks — 2}. Otherwise, we can only say that rk(g) < 6(k; + k2) — 2,
which is what one gets by applying (4.26) to e = €1 + e2. In any event, a non-trivial gauge
group implies that k; 4+ ko cannot vanish, and hence C # 0 (where we recall that we have
assumed for simplicity that C' = 0).

We could systematically proceed by considering more complicated bottom-up EFTs.
Instead, we turn to analyzing how our quantum gravity bounds are realised in large classes
of N'= 1 compactifications of string or M-theory to four dimensions.

6 Microscopic checks in IIB/F-theory models

We begin our string theoretic tests of the quantum gravity bounds with IIB/F-theory
models. Not only will this provide a microscopic confirmation of the general bounds derived
so far, but we will also find a stronger version of these bounds which is valid for minimally

supersymmetric F-theory compactifications on a smooth three-fold base.

6.1 F-theory models

Let us first analyse the large volume perturbative regime of F-theory compactifications to
four dimensions. Our primary interest is in the part of the four-dimensional gauge theory
sector that is supported by 7-branes, postponing a discussion of the D3-brane sector to
section 6.6. The 7-brane gauge sector can be weakly coupled, for large volumes of the
wrapped four-cycles, even if we relax the ten-dimensional weak string coupling condition.
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In this way one can also obtain more general gauge groups, including exceptional ones —
see e.g. [31, 71] for reviews.

We then consider a generic F-theory compactification defined by an elliptically fibered
Calabi-Yau four-fold Y with three-fold base X. For the time being we assume that the
bulk and 7-brane gauge fluxes vanish and comment on the validity of this assumption in
section 6.4.

The type IIB axio-dilaton profile is geometrized into the non-trivial elliptic fibration
m:Y — X, described by the Weierstrass model

y? = a3 + fazt + g5, (6.1)
where [z :y: 2] € IP%27371) and
feT(Ky), gel(K%), A=4f3427%e(Ky). (6.2)

In our notation a line bundle — e.g. the anti-canonical bundle K x — and the corresponding
divisor are denoted by the same symbol. The anti-canonical class is required to admit an
effective representative in order for the Weierstrass model to exist. The non-abelian gauge
theory sectors are supported on irreducible effective components D! of the discriminant
locus A ~ 12K x. Hence, we can write

A=n/DI +D ~ 12Ky with n; = ord(A)|pr, (6.3)

where D’ is an effective divisor not supporting any gauge sector. According to Kodaira’s
classification [72-74] summarized in table 1, the non-abelian gauge algebra G along each
component D! is determined by the vanishing orders ord(f, g, A) on D!.'7

Abelian gauge algebra factors, on the other hand, are generated by rational sections
S of the elliptic fibration independent of the zero-section S°. As reviewed e.g. in [71, 75,
given a rational section S4, one defines the Shioda map

o(S*) =8 - S° — 77 (D(S?)) + ¢4} B, (6.4)

where the divisor class D(S4) on the base X is chosen such that ¢(S4) is orthogonal to the
push-forward of all curve classes on X to the total space Y.!® The U(1)4 gauge potential is
then obtained, in the dual M-theory, by expanding the M-theory three-form C5 in terms of
the two-forms dual to the classes o(S4).

The rank of the non-abelian subsector of the gauge group is constrained geometrically
by the so-called Kodaira bound analysed in [29-32], which study its consequences for the
effective theory that can be obtained from F-theory. From table 1, the rank r; = rank(Gy)
of the non-abelian gauge group G on divisor D! satisfies the bound

rr < ny = ord(A)|pr . (6.5)

"The actual gauge algebra in four dimensions may be even smaller due to gauge flux and monodromies
that would lead to non-simply laced algebras.

¥ Furthermore, the exceptional divisors EZ* are the blowup divisors associated with the resolution of the
singularities induced in the Weierstrass model of Y by the appearance of the non-abelian gauge algebra G;.
The coefficients E}qa € Q are determined by requiring that O'(SA) has vanishing intersection with the generic
rational fiber of each E'e.
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ordp(f) | ordp(g) | ordp(A) | singularity
Io >0 >0 0 none
I,,n>1 0 0 n A, 1
11 1 1 >2 none
I 1 > 9 3 A,
v > 2 2 4 Ay
15 >2 >3 6 Dy
L,n=>1 2 3 6+n Dyin
v >3 4 8 Es
I 3 >5 9 E;
I >4 5 10 Fy

Table 1. Kodaira’s classification of fiber degenerations.

This bound is an actual inequality which is never saturated. It can be translated into a
bound on the total rank of the non-abelian part of the gauge group as follows: consider a
curve Y on X with the property that - Deg > 1 for all effective divisors Deg. Then the
rank of the total non-abelian gauge sector is constrained by

rk(Ghon-ab) < Y _tk(G)(S-Dy) <> n(E-Dp)+%-D' =%-A. (6.6)
1 1

We will compare this geometrical Kodaira bound coming from the UV complete description
of the model with the EFT string bounds. The rank of the abelian sector, on the other hand,
is unconstrained by the Kodaira bound (6.6), while it also enters the EFT string constraints.
The latter therefore contain valuable new information which cannot immediately be deduced
from the Kodaira bound alone. This was already observed in F-theory compactifications to
six dimensions in [11] and translated into a bound on the rank of the Mordell-Weil group
on elliptic Calabi-Yau three-folds.

To complete the description of the EFT data, note that the relevant saxions s® coupling
to these gauge sectors can be defined as

=2 gar, (6.7)
2 Jpa

where J is the Einstein frame K&hler form on X in string units 5 = 1 and D is a basis of
divisors. In Type IIB language, the corresponding axions are then given by a® = — [ C{¥,
where C}'" is the R-R four-form potential. Let us also introduce a dual basis of two-cycles
Y4, such that D -3 = df. In the weak string coupling limit, the coupling to the non-
abelian gauge sector appearing in (2.7) can be obtained by expanding the D7-brane CS
term, leading to

cl=p'.%,. (6.8)

This result is usually extrapolated to configurations involving regions on X where the string
coupling is non-perturbative.
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Similarly the couplings C:AZ between the abelian field strengths and the (s)axions can
be identified geometrically as the intersection product

CAB = pAB .3, (6.9)

where

VAP = —,(0(S?) - 0(SP)) (6.10)

is known as the height-pairing associated with the rational sections underlying the definition
of the abelian gauge group factors U(1)4 and U(1)p, see (6.4). In particular, the (effective)
divisors 44 can be viewed as the analogue, for abelian gauge groups, of the divisor D!
wrapped by a stack of 7-branes supporting the non-abelian gauge group Gj.

It will be crucial for us that the anti-canonical divisor determines the couplings (2.19) [32].
By borrowing formula [39, eq. (5.15)], we obtain

Co=6[ c1(B)=6%, Kx. (6.11)
Za
The results of [32, 39] confirm that this formula (6.11) holds for general F-theory compacti-
fications even if it was identified starting from the weak string coupling limit.

6.2 EFT strings

The BPS instanton cone C characterizing the above perturbative regime can be identified
with the cone of effective divisors Dy, = m,D? € Eff'(X). Hence, the associated saxionic
cone A is defined by the conditions

smy=2 [ JAT>0. (6.12)
2 Jp,.

The physical interpretation of this condition is clear: any instanton charge vector m € Cy
corresponds to a Euclidean D3-brane wrapping an effective divisor Dy, and (6.12) just
requires that its volume is positive.

As discussed in [19], the corresponding EFT string charges e € C§"" can be identified
with (effective) movable curves 3o = ety € Movi(X). Indeed, movable curves are character-
ized by a non-negative intersection with effective divisors [76] and then (m,e) = Dy, e > 0.
The associated EFT strings are obtained from D3-branes wrapping these movable curves. A
refined classification of the types of movable curves and their associated EFT string limits
in F-theory has been obtained in [22].

By definition, a movable curve can sweep out the entire space X. The bosonic fields
of the associated NLSM therefore have a clear geometric interpretation: they parametrize
the moduli space M, of 3¢ inside X, including directions which are possibly obstructed
at higher order. Its tangent space T'M,e can be identified with the cohomology group
H°(NY,), where N, is the ¥¢ normal bundle. The metric on T M, is inherited from
the components of the metric on X which are orthogonal to ¥e. These are precisely the
directions which are stretched by the flow (3.5) generated by the EFT string, suggesting
that the EFT string NLSM can be assumed to be weakly coupled.

— 30 —



Indeed, the volume of any effective divisor Vol(Dy,) changes as follows under (3.5):

Vol(Dy) = % [T = (m.s0) + (m, e (6.13)
Hence we see that it increases precisely if (m,e) = Dy, - X > 0, i.e. if the effective divisor
Dy, transversely intersects the generic curve ¥e. In this case Vol(Dyy,) provides a measure
of the directions transversal to e, and then of the metric on the moduli space M. Hence
these directions are stretched as we approach the string. From the RG viewpoint, this
implies that the EFT string RG-flow scales up the NLSM metric as we move to the UV, in
agreement with our general expectation of a weakly-coupled NLSM. In the non generic case
in which (m,e) = Dy, - ¥e = 0, Vol(Dy,) remains constant but can anyway be assumed to
be large, hence justifying again the weakly-coupled world-sheet description. A more precise
justification of these claims is provided in appendix B.

This expectation is further supported by the anomaly and central charge computations
of [39]. Indeed, by using anomaly inflow arguments, it was found that the world-sheet
anomaly and central charges precisely match what one gets from a massless spectrum
obtained by geometrical arguments, combined with the topological duality twist of [77].1°
This is only possible if the world-sheet sector admits a weakly coupled NLSM description.
Furthermore, the anomaly matching of [39] uses only bulk terms of the form (3.10), while
it does not require any world-sheet term of the form (3.19). This further confirms that
for these EFT strings we can set C’i(e) = 0, as suggested by the absence of an apparent
five-dimensional bulk supersymmetric structure.

More precisely, by using the topological duality twist of [77], the spectrum of massless
fields of the N/ = (0,2) worldsheet theory was obtained by dimensional reduction of the
N = 4 Super-Yang-Mills theory of a single D3-brane wrapping the curve ¥e. Apart from
one universal chiral multiplet U associated with the center-of-mass motion of the string in
four dimensions, there are two types of extra chiral multiplets, ) and ®®, of respective

multiplicity
ng) =h(Se, Neyyx),  n& =Kx Tetg-1, (6.14)
ng = ng) + ng) ,

where ¢ denotes the genus of the curve Yo. These are accompanied by two types of Fermi
multiplets, A(_l) and A(_2), uncharged under the gauge group on the 7-branes, which are

likewise obtained from reduction of the fermionic fields on the D3-brane world-volume and
which come with multiplicities

nl(\ll) :hl(zeuNEe/X):ho(zevNEe/X)_FX'Eev nl(\12) =9,

(2)

(6.15)
nN = ”1(\%) +ny -

The uncharged (with respect to the 7-brane gauge group) Fermi multiplets A_ are to be
contrasted with the
np =8¢ - Kx (6.16)

9The analysis of [39] assumes that ¥ - K x > 0, which is indeed satisfied by our EFT strings since K x
is effective.
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charged Fermi multiplets W_ localised at the intersection points of ¥ with the divisors
wrapped by the 7-branes. According to the logic of section 4.2, only nc — ny many chiral
multiplets can potentially contribute to the gauge anomalies on the worldsheet via anomalous
couplings of the form (4.16). From the above multiplicities one finds that

ng) _ ”1(\}) =Ky Ye, (6.17a)

) nP =Ky D1, (6.17b)
and hence

ng—ny=2Kx -3e—1. (6.18)

Note that ng ) —nl(\} ) agrees with the number of unobstructed complex geometric deformation
moduli of the curve X, inside the Kéahler 3-fold X (see e.g. [78] for details on how to compute
these). In particular, the subtraction of ”1\% accounts for the obstructions of some of the
naive h%(Ze, Ny, /x) many geometric moduli. In this sector, therefore, the minimality
principle invoked in section 3.4 is manifestly realised.

The interpretation of the bosonic components of the chiral multiplets ®2), on the other
hand, is rather as a certain type of ‘twisted” Wilson line moduli of the topologically twisted
SYM theory reduced on 3. The nature of these fields becomes clearer by realising the
strings in the dual M-theory compactified on the elliptic Calabi-Yau four-fold Y [39]. In this
picture, the strings appear as MSW strings [79] obtained by wrapping an M5-brane on the
surface e which is given by the restriction of the elliptic fibration to ¥e. The expansion of
the chiral two-form on the M5-brane in terms of a basis of primitive (1, 1) closed forms leads
to left-moving chiral scalar fields on the string worldsheet. Of these, ng ) many combine
with the right-moving scalars obtained from the reduction of the chiral two-form in the
(0,2) and non-primitive (1,1) closed forms on the M5-brane into the bosonic components
of the chiral superfields ®) | while the remaining chiral scalars can be dualized into the
np Fermi multiplets charged under the bulk gauge group [39]. This suggests that it is the
left-moving scalars of the bosonic components of the fields $(2) which can enjoy an axionic
shift symmetry that can be gauged by the part of the four-dimensional gauge group from
the 7-brane sector in F-theory and which can participate in the anomaly cancellation. More
precisely, taking into account the potential obstructions, the number na of such axionic
moduli is bounded by

na <n? - =Kx S —1 (6.19)
rather than by ng — ny = 2K x - e — 1. Indeed, the unobstructed complex geometric
deformation moduli counted by ng ) ”1(\%) should not exhibit a gauged shift symmetry
as long as we are considering F-theory over a smooth three-fold base X with vanishing
isometries. By contrast, if the three-fold base X does admit isometries, these can manifest
themselves in additional contributions to the gauge anomaly also from the fields of type ®(1).
This, however, either requires that X is not smooth, for instance of toroidal orbifold type, or
that the theory exhibits enhanced supersymmetry. In both scenarios, the additional gauge
anomaly contributions from the ®®) sector correspond to Kaluza-Klein gauge symmetry
factors in F-theory rather than to the sector from 7-branes.
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6.3 Microscopic realization of EFT predictions

We are now ready to test our EF'T predictions.
Observe first that from (6.8) it obviously follows that

<CI>e> = DI <2e >0, (620)

for any e € CE'™, as in (3.26), because D! is effective. The second constraint in (3.26)

implies that
{{(C* &)} = {pF . %} > 0, (6.21)

in the sense of being a positive semi-definite symmetric matrix. As discussed in [80], it

follows from [81] that the diagonal components of the height-pairing 45

can in general
be written as the sum of effective divisors and hence the diagonal entries of the matrix in
question are guaranteed to be positive. More generally, (CAB, s) coincides with the kinetic
matrix for the abelian gauge sector (see e.g. [71]) and must therefore indeed be positive
definite, and hence (CA%, e) should be positive semi-definite.

The confirmation of the EFT string bounds on the curvature-squared couplings is

immediate. Indeed from (6.11) we obtain
(C,e) =6%-Kx >0 Ve € C5'T. (6.22)

This shows that (4.27), or equivalently (4.4) or (4.6) with C(e) = 0, is manifestly realized
in these F-theory models. Note also that, in fact, <C,e) is a multiple of 6, which is in
agreement with the refined bound which one would get from (4.2b) by imposing nc —ny > 1
rather than (3.35) — see footnote 13 — to strings with genuinely A = (0, 2) supersymmetry.
Indeed, the EFT strings with enhanced non-chiral spectrum correspond to D3-branes not
intersecting the bulk 7-branes, that is, for which ¥¢ - Kx = 0.

Turning to the bound (4.26) on gauge group ranks, we expect it to be related to the
Kodaira bound (6.5). To address this point, notice first that the rank of the part of the
gauge group which is probed by the EFT string of charge vector e takes the form

rie)= > rp+rank(d?? - Se). (6.23)
I|DI-$e#0

On the other hand, from (6.22) and (6.3) we see that (4.26) becomes
r(e) < r(e)max =2(C,e) —2=12%¢ - Kx —2=A %, — 2. (6.24)

Recall from the discussion in section 4.2 that this bound includes the contribution to the
anomaly polynomial both from the charged Fermi multiplets ¥_ and from the ng — ny
unobstructed chiral multiplets, whose bosonic components may in principle transform via a
shift under the four-dimensional gauge symmetry, i.e.

T(e)max = TF(e)maX +ro (e)max s (6.25&)
4 — 2
7F(€)max = g(C,e> =8Y. - Kx = §A Ve, (6.25b)
2 — 1
rc(e)maX:§<C,e>—2:4Ee-KX—2:§A—2. (6.25¢)
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As an important consistency check, note that the value 7p(€)max is given by np = %(C, e) =
8 Xe - K x identified by (4.5), which perfectly agrees with the microscopic counting (6.16) of
left-moving Fermi multiplets charged under the gauge group supported by 7-branes, while
rc(€)max agrees with 2(nc — ny) as computed in (6.18).

However, the discussion at the end of section 6.2 suggests that the conservative
bound (6.24) can in fact be sharpened in minimally supersymmetric F-theory models
over smooth threefold bases. The point is that at best the unobstructed scalars of type ®(2)
can contribute to the GS anomaly and hence to the bound on the rank. With this logic, we
arrive at a stricter bound in F-theory given by

. 5 . _
r(e)s’ = rr(@)max +7C (@)max = 5(Ci0) —2=10% Kx —2,  (6.26)

where 1
e (@)max = 2(ng) =) = 5(C,e) —2 =250 Ky —2 (6.27)

denotes the contribution to the anomaly polynomial from the unobstructed scalars of type
d?) see (6.17h).

Let us stress that the bound (6.26) refers to the gauge subsector which couples to the
EFT string of charge e. To bound the rank of the gauge group supported by all 7-branes,
we need to take X to lie strictly in the interior of the movable cone Mov;(X) so that it
has non-zero intersection with all non-abelian divisors D! and height-pairing divisors. The
strictest bound is then obtained as the minimal possible value r(e)Stict with e in the
interior of Mov(X).

With this understanding, we propose (6.26), rather than (6.24), as a bound on the
gauge group rank of minimally supersymmetric F-theory compactifications over smooth
threefold base spaces, as these do not admit isometries acting on the internal geometric
space. We now proceed to compare these quantum gravity bounds with the geometric
bounds on the gauge group rank in F-theory.

6.4 Example 1: X = P3

We begin with the simple choice X = P3. The one-dimensional group of effective divisors
Eff!(X) is spanned by the hyperplane class H, in terms of which K x = 4H. This implies
that the sections 6.2 defining the Weierstrass model correspond to the classes

A~48H, f~16H, g~24H. (6.28)

In this case the saxionic cone is one-dimensional and C§"" ~ Mov;(X)z = Eff1(X)z is
generated by the curve H - H = H?. To obtain the strongest quantum gravity bounds from
the EFT string, we can take ¥¢ = H?. Since this curve class intersects all possible divisor
classes D!, (6.24), and its proposed stronger version (6.26), constrains the total rank r
of abelian and non-abelian gauge algebra factors supported by all 7-branes, which can be
detected by the EFT string associated with Xe:

max = 1286 - Kx —2 =46 f 6.24) ,
{r@ o= = 127, K rom (624 69

r(e)strict — 108, - Kx —2 =238 from (6.26) .

max
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We can use (6.29) to bound the maximal possible SU(IV) gauge algebra supported on any
irreducible divisor DSUW) appearing in the decomposition (6.3) as

SU(47) from (6.24),

SU(NEFT) = SU (1 + 1) =
SU(39) from (6.26) .

max

(6.30)

The first line is only slightly stronger than the naive Kodaira bound in its simple form (6.5),
which together with table 1 would give SU(NKed) = SU(NEod) — 49  as pointed out already
in [30]. However, as stressed above, we in fact propose the stricter of the two bounds to
hold in F-theory on a smooth base threefold X.

To compare this to actual realisations in F-theory, note first that the Kodaira upper
bound cannot be saturated because this would require that all branes are mutually local. In
fact, by an explicit analysis of the Weierstrass model, [30] showed that the maximal possible

value which can be realised in F-theory on P3 corresponds to NE_ = 32. Consistently, this

max

is within the stricter of the two bounds in (6.30) based on (6.26).
The EFT string bounds are potentially very far-reaching when it comes to constraining

the maximal rank of abelian gauge group factors [11]. From (6.29) we immediately constrain

the maximal number of abelian gauge algebra factors as

Mnax (U(1)) =

{46 from (6.24), (6.31)

38 from (6.26) .

A comparable bound cannot be deduced in a straightforward manner from the Kodaira
bound since the abelian gauge group factors are generated by extra rational sections of the
elliptic fibration. While to each such section one can associate a divisor class on the base
via the height-pairing, there does not exist any obvious constraint that forces this divisor
class to be bounded by the class of the discriminant. Bounding the number of abelian gauge
group factors is equivalent to finding an upper bound for the rank of the Mordell-Weil
group of an elliptically fibered Calabi-Yau fourfold, which is an open problem in arithmetic
geometry.QO

For the special example of an SU(N) gauge group, an interesting phenomenon occurs:
the geometric bound NF

max
the EFT string bound which one would deduce by taking into account, in the computation

= 32 established in [30] is in fact only marginally stricter than

of the bound (6.25), only the contribution from the charged localised Fermi multiplets:
this would give r < rp(€)max = np = 8 Xe - Kx = 32. However, it would be incorrect to
conclude from this that 7p(€)max, rather than the weaker bound r(e)Stict represents the
upper bound on the rank of the gauge group more generally.

Indeed, it is certainly possible to violate the bound set by rp(€)max in explicit Weierstrass
models.?! For example, consider the maximal possible gauge group of type Eg' x EZ? by

engineering the various gauge group factors on separate divisors in class H. Compatibility

20The upper bound (6.31) is the analogue, on fourfolds, of the bound n(U(1)) < 32 for F-theory
compactifications to six dimensions on an elliptic three-fold over base P? [11]. The highest Mordell-Weil
rank obtained so far for elliptic threefolds is rmax = 10 [82].

21We thank Wati Taylor for pointing this out to us.
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with the (incorrect) bound rp would give that 6n; + 7Tng < 32, with maximal solutions
(n1,m2) € {(0,4),(1,3),(2,2),(3,2),(4,1),(5,0)}. In actuality, a Weierstrass model allows
for the construction of a gauge algebra Eg* x E7? with maximal values given by (ni,n2) €
{(0,4),(1,4),(2,3),(3,2),(4,1),(5,0)} (again on separate gauge divisors of class H). This
follows from the vanishing orders of table 1 that need to be engineered in the Weierstrass
model. The two configurations Eg x Ef and E3 x E3 hence overshoot the bound from
7F(€)max by 2 and 1, respectively, while they respect the weaker bound from r (€)% which

we propose as the correct bound.

Two warnings concerning the validity of these examples are in place: first, even if
all individual exceptional gauge groups are localised on 7-brane stacks wrapping separate
divisors in class H, every pair of them intersects in a curve of class H2. Along this curve,
non-Kodaira type singularities appear because the vanishing orders of (f,g) are equal to
or bigger than (4,6) and hence non-minimal. These non-minimalities in codimension-two
arise at finite distance in the complex structure moduli space. Extrapolating from the
analogous phenomenon in F-theory compactifications on elliptic Calabi-Yau threefolds [83],
one expects a genuinely strongly coupled sector localised at the non-minimal loci. To
reliably analyse the dynamics one must first remove the non-minimalities by blowing up
the intersection loci, thereby separating the exceptional brane stacks. However, this will
most likely not affect the original exceptional gauge group factors.

Another concern is pertinent, in fact, to all examples discussed in this section: since the
minimal gauge divisor of class H is non-spin, the Freed-Witten quantization condition [59]
requires a half-integer quantized gauge flux in order for the model to be consistent. De-
pending on the nature of the available flux, the gauge background may reduce the rank
of the four-dimensional gauge group or at least break the simple gauge group factors to a
group involving abelian factors. Even if the rank were not reduced in this way, the U(1)
may become massive via a Stiickelberg mechanism. If this is the case, the axion obtained by
reducing the RR four-form field on P would likewise acquire a mass — a scenario which we
excluded in our derivation of the quantum gravity bounds. To explicitly analyse the types
of fluxes available and whether or not they necessarily induce a Stiickelberg mass for the
axion, one must resolve the fibral singularities of the Weierstrass model?? and hence, in view
of the non-minimalities in codimension two, first blow up the base. This involved surgery is
beyond the scope of this paper, but we stress that from the Weierstrass model alone it not
yet clear which part of the gauge group survives in the four-dimensional effective theory
after taking the flux background into account.

Let us take the optimistic point of view and assume that none of these technicalities
undermines the validity of the models with a rank overshooting the stricter bound from

22In the dual M-theory description, the gauge fluxes are encapsulated in four-form fluxes on the resolved
four-fold ¥ which take values in the vertical component of H2‘2(§7) and must be quantized in such a way
that G4 + 3c2 (Y) € H*(Y,Z). For details we refer to [71] and references therein. Admissible fluxes in
F-theory are subject to two transversality conditions and after implementing these it remains to be seen
whether fluxes different from the so-called Cartan fluxes are available, which would break the simple gauge
group factor. Fluxes which leave the gauge group intact are dual to the matter surfaces [84], but their
explicit existence can only be determined after performing the resolution steps.
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7F(€)max- In this case, our analysis shows that some of the chiral multiplets, according to
our proposal in fact the ones of type ®?) | indeed contribute to the anomaly matching. We
will develop a better intuition behind this in the following section.

6.5 Example 2: P! < X — B

Consider next an F-theory model in which the base X is a P!-fibration over a complex
surface B. This example will be particularly illuminating for the interpretation of the scalar
field contributions to the anomaly matching on the worldsheet and hence to the bound on
the gauge group rank.

Quite generally, the twist of a rational fibration p : X — B is specified by a line bundle
T on the base B,** in terms of which the anti-canonical class of X can be written as [85]

Kx =2S_+p*ci(T) +p*ci(B). (6.32)
Here S_ denotes the exceptional section of the rational fibration with the property
S_-S_=-S_-p*er(T). (6.33)

The cone C; ~ Eff'(X) of effective divisors of X is generated by S_ together with the
pullback of the generators of the effective cone of B.

Another section, Sy, of the fibration is related to S_ as Sy = S_ +p*ci(T). It satisfies
the relations Sy - Sy =S4 - p*c1(T) and S— -S4 = 0. This section Sy generates the Kéhler
cone of X together with the pullback of the Kéhler cone generators of B to the rational
fibration.

Under F-theory/heterotic duality, this class of theories is dual to the heterotic string
compactified on an elliptic fibration over the same base B. The gauge groups from 7-branes
wrapped along the two sections S_ and S, map to perturbative heterotic gauge groups in
either of the two Eg factors, while gauge groups from 7-branes wrapping divisors pulled
back to X from B are of non-perturbative nature in the heterotic frame.

For definiteness, let us specify now to B = P? and adopt the notation of [19, p. 53],

D' =p*(H), D*=5,, (6.34)

where H is the hyperplane class of P?. Parametrizing furthermore the twist of the fibration
as ¢1(7T) = nH, the general formula (6.32) becomes

Kx =(3—n)D' +2D?. (6.35)

According to the above discussion, D' and D? generate the Kéahler cone of X. The dual
curves

Y1 =8_-p"(H)=(D*-nD"- D', %y=p*(H) p*(H)= D' D! (6.36)

(such that D® - ¥y, = §) are effective and generate the Mori cone. In particular, 3; can be
identified with a P! in the P? base, while ¥y can be regarded as the P! fibre of X.

23The threefold X is constructed as the projectivised bundle X = P(O & 7).
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The cone C; ~ Eff}(X) of effective divisors is generated by D' = p*(H) and S_ =
D? —nD". The dual cone CE'™ ~ Mov;(X) of movable curves ¥ = €Y, is given by

CE™™ = {e € (e, €?) € Z>ple? > ne'} (6.37)
and is generated by the charges
e1=(1,n), ex=(0,1). (6.38)

Note that C§"" is smaller than the cone of possible BPS strings, which can be identified
with the Mori cone of effective curves. In particular, the elementary BPS charge e = (1,0)
corresponding to a curve on the base alone does not give rise to an EFT string for n > 1,
but it must be combined with n copies of the charge of an EFT string associated with the
rational fiber.

To evaluate the bound (6.24), we compute the intersection number

Ye  Kx = (3—n)el +2¢% (6.39)

The bound (6.24) and the proposed stronger form (6.26) then become

r(e) <

{r(e)max —12(3 —n)e! +24¢2 — 2 from (6.24), (6.40)

T(e)strict =10(3 — n)el +20e2 -2 from (6.26),

max

which constrains the rank of the gauge group that can be detected by an EFT string with
charge e. The strongest constraints are obtained by applying this bound to e; and es.
Specifying directly to the proposed stronger bound, one finds

r(e;) <284 10n, r(e2) <18. (6.41)

Suppose first that the semi-simple gauge sector is supported on effective divisors
DI = mID' + mi(D? — nD') c {A = 0} with m{,mi > 0. In this case both 7(e;) and
r(e2) correspond to the rank of the total semi-simple gauge algebra, since it is entirely
detected by both elementary EFT strings. Since n > 0 we obtain the bound

1“k(Gsemi—simple) < 18. (6.42)

We could instead assume that the discriminant locus splits in disconnected effective
components

A =n D' +nyD* + D', (6.43)

where D! = D! and D? = D? — nD! support different semi-simple gauge groups, G1 and
G5 respectively. Then (e )5t hounds the rank of G and r(e2)5tt bounds the rank of

max max

G2 as detected by the EFT strings. In this case we obtain

rk(Gy) < 28 +10n, rk(G,) < 18. (6.44)
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We furthermore note that as in the case of P2, the contribution to the bound from the
axionic sector is indeed needed — taking into account only the charged Fermi multiplets
in (6.25) would lead to the (incorrect) bounds

rk(G1) <24+ 8n, 1k(Ga) <16 based on Fermi multiplets only, (6.45)

which are easily violated for instance in Weierstrass models with exceptional gauge group
factors.

Indeed, for simplicity take n = 0, so that X = P! x P2. One can overshoot the first
constraint in (6.45) for instance by realising a configuration with gauge group G1 = E§ x E7
and rtk(G1) = 25, or G1 = E3 x E2 and 1k(G}) = 26, where the simple gauge factors are
supported on four separate (but intersecting) divisors in class D'. These examples are
analogous to the ones discussed in the previous section for the base X = P3, and the same
remarks concerning the viability of these models apply.

More illuminating for us is the second bound in (6.45) compared to (6.44). It is
violated (again for n = 0) for instance by a configuration of three simple gauge group
factors along three separate divisors in class D? such that Gy = E§ or G2 = E2 x SO(8)
or Go = Eg x Eg x SO(8). The non-abelian gauge divisors can be separated along their
common normal direction on the P'-fiber; nonetheless, there appear non-minimal Kodaira
type fibers in codimension two or three, or both.? For example, the most general way to
engineer the model with gauge group Go = E} is to set, in the Weierstrass equation,

f=0, g= p‘ll(u, v) q%(u,v) r%(u,v) sig(u1, ug, us), (6.46)

where [u1 : ug : ug) and [u : v] denote homogeneous coordinates on P? and P!, respectively,
and p1,q1,71, S18 represent generic homogeneous polynomials of indicated degrees in the
coordinates in brackets. Note that A = 4f3 4 27¢g? = 27¢? because we were forced to
set f = 0 to accommodate the Eg factor. As a result, over the divisor s1g = 0, the fiber
enhances to Kodaira Type II with ord(f, g, A) = (00, 1,2). At the intersection locus of
s18 = 0 with any of the three Fg divisors p; = 0 or g1 = 0 or 1 = 0, the fiber enhances to
Kodaira Type II*, but at the s5 - s13 = 182 points on P? given by the self-intersection of
s1s = 0, there occurs a non-minimal fiber with vanishing orders ord(f, g, A) = (00, 6, 12).
To reliably analyse the model, this non-minimal singularity would first have to be removed
via a blowup in the base.

Interestingly, however, the codimension-three non-minimalities can be avoided by
replacing the base P? by a rational elliptic surface dPg, which is an elliptic fibration over
P; with generically 12 singular fibers. In this case, the section s1g(u1,u2,us3) in (6.46) is
replaced by a general section s € F(6I_(dp9). The anti-canonical class of dPg coincides with
the class of the elliptic fiber and hence has vanishing self-intersection, I_(dpg . deg =0. As
a result, there appear no codimension-three non-minimal fibers since s - s = 0. For the sake
of simplicity we will focus on this geometric example in the sequel. Clearly, the change

24 Also the second complication encountered already on P? persists, namely that the gauge divisor D? is
non-spin and gauge flux must be included to cancel the Freed-Witten anomaly; however we expect that this
is possible without affecting the rank of the gauge group.
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of basis from P? to dPg does not affect the second bound in (6.44) or (6.45), which only
involves the EFT string with charge ey associated with the P!-fiber of X (while the first
bound in both equations changes).

Focusing on this second bound, to understand why (6.44), rather than (6.45), gives
the correct bound, recall that the EFT string with charge e, is the critical heterotic
string of the dual compactification of the heterotic theory on an elliptic fibration over
the base B of X. As discussed at the end of section 6.2, there are two types of chiral
scalar fields, @) and ®®, in the NLSM of this string. Since the genus of e, = P!

(1) _ (2)

vanishes, ny’ = 0 = ny’ and hence both types of scalars correspond to unobstructed

moduli directions. The n(cl ) ”1(\% ) = n(cl ) K X - Ye, = 2 complex moduli of the first type
parametrize the motion of the heterotic string along the base of the dual elliptic fibration,
while n(c2 ) ”1(\? ) — n(c2 ) — K- Ye, —1 =1 counts the complex modulus of the dual heterotic
string along the heterotic torus fiber. As long as the base of X admits no isometries —
as is the case whenever X is smooth and the theory minimally supersymmetric — the
scalars encoded in the chiral fields of type ®(!) cannot participate in the gauge anomaly
cancellation in F-theory. Indeed, they are geometric moduli in a geometry without extra
shift symmetries. By contrast, the two real scalars encoded in ®@ can enjoy a gauged
shift symmetry: they parametrize the motion of the heterotic string along the torus fiber
of the dual heterotic geometry, which is responsible for the difference between the two

bounds (6.44) compared to (6.45).

The rationale behind this claim is completely analogous to the simpler setup of F-theory
compactified on an elliptic K3 surface to eight dimensions.?® In such models, a D3-brane
wrapped along the P! base of the K3 surface is known to be dual to a heterotic F1 string in
8d. The zero mode spectrum of the N = (0, 8) supersymmetric worldsheet theory can be
derived by dimensional reduction, as e.g. in [39]. It consists of one N' = (0, 8) hypermultiplet
(8 real scalars in the 6 of SO(6)r and two SO(6)T singlets accompanied by 8 fermions in the
4+4) as well as 16 left-moving fermions transforming as SO(6)r singlets and organising into
Fermi multiplets. The scalars in the 6 of SO(6)1 parametrize the center-of-mass motion of
the string in eight dimensions and must therefore be uncharged under the gauge group. The
only charged fermions are then the 16 = 8deg(Kp1) unpaired left-moving fermions. Taking
only these into account would suggest a maximal rank for the gauge group of ry.x = 16,
while in fact the maximal rank is known to be 7X3 = 18. This of course matches the
counting in the dual heterotic theory compactified on a torus T2, where the gauge group
comprises the ten-dimensional rank 16 gauge group together with 2 Kaluza-Klein U(1)
factors. The Fermi multiplets are charged under the part of the gauge group inherited from
the ten-dimensional gauge group (in fact, the left-moving fermions generate the rank 16
current algebra present already in ten dimensions), but do not detect the KK U(1)s. To
see these, one must allow for the two left-moving scalars in the A/ = (0, 8) hypermultiplet
to shift under the associated gauge transformation and in this way to contribute to the
worldsheet anomalies. At special points in moduli space, the KK U(1)s are indistinguishable

Z5Recall that D? is a copy of P? and intersects the P! fiber of X in a point; similarly, in F-theory on K3,
the 7-branes are points on the base of the K3.
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from the Cartan U(1)s inherited from ten dimensions and combine with part of them into
higher rank non-abelian group factors. Examples include the rank 18 exceptional gauge
group configurations of the form E3, E2 x SO(8) or Eg x Eg x SO(8) studied in F-theory on
K3 in [86]. More generally, the classification of maximal non-abelian gauge enhancements
for the heterotic string on 72 in [34] includes many configurations with rank 17 or 18 for
the non-abelian sector.

Coming back to the bounds for the four-dimensional F-theory model on X, we see that
the contribution to the anomaly from the chiral multiplets of type ®® is analogous to the
way how the heterotic string detects the two KK U(1)s in eight dimensions. However, in
order for such an interpretation to be possible, the dual heterotic compactification space,
which is the target space of the NLSM, must be degenerate such as to admit isometries in
two directions while at the same time preserving minimal supersymmetry. In general the
dual heterotic string is compactified on an elliptic fibration over the base B. If this elliptic
three-fold were smooth, there would be no room for an interpretation in terms of geometric
KK U(1)s, not even from the elliptic fiber.? The way out is that whenever the bound on
r(e2) < 18 is saturated, the dual elliptic fibration must degenerate to an orbifold such that
the two KK U(1)s from the elliptic fiber can survive the projection. In the present example
with base B = dPy, the dual heterotic elliptic fibration is a Schoen manifold [87], which
can be viewed as a fiber product dPg xp1 dPg. Schoen manifolds admit degenerations to
toroidal orbifolds [88] (see also [89]). We propose such orbifolds as the heterotic duals of
the F-theory models with r(e2) = 18. The orbifold must act in such a way that only two of
the generally possible six KK U(1)s survive the projection.?

It would be desirable to explicitly construct the heterotic duals, also for the blowups of
the F-theory models with base B different from dPg, whenever the rank bound r(e2) < 18
is saturated. More ambitiously, we leave it for future work to determine the structure of the
NSLM target space for non-heterotic EFT strings in models saturating the bounds (6.26)
and to check it for isometries.

6.6 Perturbative IIB models with O3-planes

The EFT strings considered in section 6.1 do not detect possible gauge sectors supported
by D3-branes. The corresponding complexified gauge coupling can be identified with the
type IIB axio-dilaton. Hence this gauge sector is fully perturbative in the ten-dimensional
weak coupling limit, in which the compactification space is well described by a Calabi-Yau
orientifold.

26While the generic elliptic fiber contains two 1-cycles, these do not survive as 1-cycles of the elliptic
threefold due to monodromies, as required by the (strict) Calabi-Yau condition.

*THeterotic orbifolds with 2 +n KK U(1)s cannot be dual to elliptic fibrations over a smooth base X in
F-theory. The additional n KK U(1)s must correspond to KK U(1)s, rather than 7-brane U(1)s, also on the
F-theory side and be encoded in gauged shift symmetries of the scalars of type ®*). Our assumption of a
smooth base B of the rational fibration X excludes such situations in the minimally supersymmetric case. If
for instance X = T* x P!, the bulk theory preserves sixteen supercharges and the n(cl> = 2 unobstructed &)
scalars describing the position of ¥, = P! in the T* direction enjoy shift symmetries. The corresponding
contribution to the anomaly raises the rank bound from r(ez)fﬁgft = 18 to r(e2)max = 22, matching the
bound found in [16].
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For simplicity, we will focus on the simpler compactifications with O3-planes only,
but more general configurations with O3/0O7 planes can be discussed along the same
lines. The relevant chiral field associated with this regime is the type IIB axio-dilaton:
t=a+is =71 = CF® 4 ie~?. The saxionic cone is one-dimensional and CE'" = Z>(. An
EFT string of charge e € Z>g corresponds to e D7-branes wrapping the internal space.
Note that the associated EFT string flow drives the bulk sector to a strongly non-geometric
regime in which the string frame volume of the compactification space naively goes to
zero [19]. On the other hand, according to the estimate of [19] the scaling weight is w = 1
and then the Emergent String Conjecture suggests the existence of a weakly coupled dual
description in terms of F1 strings.?

Without any additional assumption on the Kéhler moduli, in this limit the only weakly
coupled gauge sector is the one supported by D3-branes, and the total rank of the gauge
group is simply given by the number nps of D3-branes. Taking the gauge group to be
completely higgsed to U(1)™P3, corresponding to non-coinciding D3-branes, one can expand
the standard DBI action and identify the terms

1 nps3
_IZ/SFA/\*FA' (6.47)
T a1

By comparison with (2.11), we see that
CAB = 548 (6.48)

and C! = 0.
The higher curvature terms (2.19) come from both the D3-brane and O3-plane higher
curvature couplings. The D3-brane contribution stems from the action [90-92]

~ 2
S — /D AR = o / CE py (M) + ... (6.49)

where A is the A-roof genus and we are simplifying the formulas by setting ¢; = 27va/ = 1.2
The O3-planes instead contribute the terms [93]

2mno3 / RR ( 1 > 2mno3 RR
- = M .

where L is the Hirzebruch L-polynomial. By using the identification C(I)D“R = a and the D3

tadpole cancellation condition

nos = 4nps, (6.51)
we then obtain the total contribution
27‘((871])3 + nog) / 3 nos3 /
M)=—-———"22 tr(RAR). 6.52
496 ant(M) = —J556, | ABENE) (6:52)

Z8For example, D7 strings in the toroidal models — see for instance [5] for a discussion in a similar spirit
— can be T-dualized to a D1-string and S-dualized to an F1-string.

29Note that the sign is fixed by requiring that the internal cycles wrapped by mutually supersymmetric
D-branes are calibrated by —e!” so that, for instance, D7-branes would be calibrated by %J A J and then
would wrap internal holomorphic cycles. With this choice supersymmetric space-filling D3-branes must be
calibrated by —1 and may be considered as anti D3-branes.
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By matching with (2.19) we conclude that

C = %7103. (6.53)

Note that these models do not encode any five-dimensional structure and indeed the D7-brane

string does not give rise to effective couplings of the form (3.19). Hence we can set C=o.

We can now compare these results with our quantum gravity constraints. Note that

the positivity constraints (3.26) are obviously satisfied. On the other hand, (4.3) requires
that C' € Z. This is possible only if

nos € 16N. (6.54)

This non-trivial prediction in fact agrees with Theorem 1.5 of [94], which implies that
nos = 16 for all (strict) Calabi-Yau covering spaces. This mathematical result can also be
explicitly checked in all the models of the database of [95].

The bound (4.26) on the rank of the gauge group detected by the EFT strings becomes
3
r(e) < gnos — 2, (6.55)

where we used (6.53) and C' = 0 and the r.h.s. is integral by (6.54).

From the explicit string theory model, however, we know that the gauge group probed
by the EFT strings in question comes from the perturbative D3-brane sector and its rank
is therefore bounded by npz = %nog. Interestingly, this actual bound coincides with the
stronger bound obtained by taking into account only the contribution (4.14) from the
charged localised Fermi multiplets in (4.25), i.e.

TF(e) < %CN' = }nog . (656)
3 4
This match seems to be characteristic of the perturbative (with respect to the SL(2,Z)
duality group of Type IIB string theory) nature of the D3-brane sector.

In these models the stricter bound set by (4.25) is always saturated, see (6.51). However,
it is microscopically clear that it remains valid even in presence of internal supersymmetric
three-form fluxes, which contribute positively to the D3 tadpole condition and then reduce
the number of D3-branes. From the four-dimensional viewpoint, the introduction of these
fluxes makes the EFT string ‘anomalous’: the string is forced to be the boundary of a
membrane, which microscopically corresponds to a D5-brane ending on the D7 string. We
leave for future work the extension of our four-dimensional quantum gravity arguments to
these kinds of anomalous strings.

3%We thank X. Gao and in particular F. Carta and R. Valandro for discussions on the available examples
of Calabi-Yau orientifolds with just O3 planes. We also thank F. Carta for helping us in checking (6.54) by
scanning the database [95], and for pointing out to us reference [94].
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6.7 Complex structure EFT strings

The third qualitatively different gauge sector in F-theory is associated with the R-R four-
form CP? expanded in terms of non-trivial elements of H3(X,Z). The gauge kinetic
function and hence also the characteristic couplings (2.7) in this sector depend on the
complex structure moduli of the four-fold Y [96]. Correspondingly, the weak coupling limits
are attained in large complex structure limits on Y. An explicit description of the EFT
strings associated with this sector is an interesting challenge for future work.

Suffice it here to mention that under heterotic/F-theory duality the R-R gauge sector
is expected to map to the abelian gauge sector from heterotic 5-branes wrapped along curve
classes of genus g > 1 [56] in the base of the dual heterotic elliptic fibration [97, 98]. This
implies a duality between the EFT strings associated with this heterotic 5-brane sector and
the complex structure EFT strings in F-theory.

7 Microscopic checks in heterotic models

We now turn to compactifications of the heterotic theory on Calabi-Yau three-folds X, and
their M-theory uplift. If not specified, we will implicitly be considering the Eg x Eg theory,
while we will discuss the SO(32) case only in section 7.5.

In order to understand how our quantum gravity bounds on the gauge sector and the
curvature-squared terms are realized, we need to revisit and complete the discussion pre-
sented in [19], which neglects corrections coming from higher derivative terms in ten/eleven
dimensions. Indeed, we will see that these corrections modify the structure of the saxionic
cone and of the corresponding EFT string spectrum in a non-trivial manner. We will also
allow for possible background NS5/M5-branes, not considered in [19], which significantly
broaden this class of vacua and enrich the structure of their EFT in an interesting way:.

In the heterotic picture, we focus on the chiral fields (f, t*) where t* = a® + is® appear
in the expansion

t*D, =a"D, +1is*D, = By +1iJ (7.1)

and
t=a+is= / Bg +ie 2Vy . (7.2)
X

Here D, is Poincaré dual to a basis of Hy(X,Z), Bg is the electromagnetic dual of the
NS-NS B and

1 1
Vx =5 /X JNTNAJ = gﬂabcsasbsa kabe = Do - Dy - D, (7.3)

is the string frame volume of X measured in string units £5 = 27v/a/ = 1.

If we neglect higher derivative corrections as in [19], the saxionic cone described by
(8,5%) can simply be identified with Rso @ KC(X), where IC(X) is the Kéhler cone of X. It
will be important for us to understand how the higher derivative corrections affect this
naive result. To this end we will collect the relevant threshold corrections to the gauge
couplings of the four-dimensional EFT, and then argue how these corrections are compatible
with a corresponding modification of the relevant sets of BPS instanton and EFT string
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charges. As we will see, the saxionic cone will also be enlarged into directions corresponding
to the moduli of the possible background NS5/M5-branes. We will then check that the
curvature-squared terms obey the expected quantum gravity constraints and microscopically
verify the corresponding upper bounds on the ranks of the gauge group.

7.1 The EFT terms

As a first step, we need to identify the couplings (2.11), including possible contributions
coming from heterotic higher derivative corrections. All the relevant complexified gauge
couplings may be extracted directly from [99], and from various previous partial results cited
therein such as [100-102]. However, in order to render the discussion more self-contained
and to carefully pin down the possible convention ambiguities, in appendix C we will briefly
go through the main steps of the derivation. Furthermore, we will similarly derive also the
curvature-squared terms, which were not explicitly considered in [99].

The two heterotic Eg sectors can have a non-trivial bundle structure along the internal
space. Let us denote by Fy and Fy the corresponding fields strength. For simplicity, we
assume that FLQ take values in semi-simple sub-algebras of eg. This in particular allows
us to avoid possible Stiickelberg masses and non-trivial kinetic mixing between the U(1)
factors.?! We also allow for possible NS5-branes wrapping irreducible holomorphic curves
CF k=0,..., Nyss. The internal gauge bundles and the curves C* enter the cohomological
tadpole condition

AMEL) + AME2) + [C] = e2(X), (7.4)

where [C] is the Poincaré dual of the two-cycle C = 3, C*¥ and

ME) = — tr(F A F), (7.5)

with the trace defined as in section 2.1.

The background NS5-branes support additional (s)axionic fields. These can be more
easily identified by considering the Horava-Witten (HW) M-theory uplift of the heterotic
theory [103, 104], compactified over I x X, where I = S1/Z; is the HW interval. In the
upstairs picture, we parametrize the M-theory circle by the coordinate y ~ y + 2, on
which we impose the Z, identification y ~ —y. The Eg sectors are then supported on the
walls {y = 0} and {y = 1 ~ —1}, and we can parametrize I = S'/Zy by y € [0,1]. The
background NS5-branes uplift to M5-branes sitting at points §* along the HW interval 1.
Their worldvolume supports a self-dual two-form B§ . This sector hence gives rise to Nygs
additional axions

a*= | Bk, (7.6)
Cck

By supersymmetry the axions pair up with the saxions [99]

1 1
3k = (gk — 2) / J = (gjk - )mlgs“, (no sum over k), (7.7)
Ck 2

31 A (partial) verification of our quantum gravity constraints in presence of kinetic mixing of U(1) factors

can be obtained by duality to other corners of the string landscape considered in this paper.
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where
mF =D, -Ck. (7.8)

By dimensionally reducing the bulk action, including the Green-Schwarz anomaly
cancelling term as well as certain terms supported on the Mb5-branes, one obtains the
following contribution to the four-dimensional axionic couplings:

1 .1 3
- & <a+2pa 8qaa —Za)trFl/\Fl)

1 1 1
_87r/< §paa +8qaa 4 = Za)tng/\Fg)

Here F7 2 denote the field strengths of the four-dimensional gauge sectors coming from the

(7.9)

two heterotic Eg sectors, respectively, and

1
Pa=— /D {A(EQ) - 2@2()()} . Ge=D,-C=Ymk. (7.10)
a k
We furthermore recall the definition of the axions in (7.2), (7.1) and (7.6). The corresponding
saxionic couplings are fixed by supersymmetry.
As discussed in detail in appendix C, one can similarly compute the relevant curvature-
squared terms. By focusing again on the axionic couplings, the final result is

1 3
— [ (124 4 nga® = 2qua® , 11
9677/( a + nqa 2qa)tr(R/\R) (7.11)
where 1
Ng = — ca(X). (7.12)
2 Jp,

By applying the Hirzebruch-Riemann-Roch theorem to a line bundle Ox (D,) one can easily
conclude that n, € Z. Since [, A(E2) is an instanton number, p, € Z as well.

Note that the constants appearing in both (7.9) and (7.11) do not satisfy the naively
expected quantization conditions (2.12) and (2.20), respectively. This signals the presence
of a rational mixing of the axionic periodicities induced by the higher derivative corrections.
In other words, the axions (a,a®,a") defined in (7.2), (7.1) and (7.6) do not satisfy the
integral periodicity a’ ~ a’ + 1 assumed in this paper. This issue can be solved by passing
to a better axionic basis, obtained from a rational linear redefinition of the axions. For

instance, we can replace the axions @ and @* with the linear combinations

1 3 1
0_ » ~k k ~k k
a —a+§paa“—§qaa“—§g a®, a"=a"+ -mgja". (7.13)

In this way the sum of (7.9) and (7.11) can be rewritten as

1 1
87r/a tr(Fl/\Fl)—S— (a — paa® —i—Za)tr Fy N\ F)

1 (7.14)

_967r/<12a — 6pga® + nqa® +6Za>tr (RAR).
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In the axionic basis a* = (a°,a?, ak), these terms indeed have the form of the axionic terms
appearing in (2.11) and (2.19) and then determine the corresponding constants

C'=(cj,cl,cl)=(1,0,0), C?*=(C}C3CEH =(1,—pa,1),

- -~ o~ o~ o (7.15)
C = (C(), Ca, Ck) = (12, —6pa + na,ﬁ) .

The saxionic couplings appearing in (2.11) and (2.19) are completely fixed by supersymmetry
and involve the saxions s’ = (s°, 5%, s*), with

L1 3 I .
=5+ ipas“ gqas“ ~3 ;gk , (7.16a)
1
sF =358 + imfjsa = ¢*mkFs®  (no sum over k). (7.16b)

Note that s* = 0 if the k-th M5-brane sits on the HW wall y = 0 and s* = mFs® if the
k-th Mb5-brane sits on the HW wall y = 1. We also observe that the microscopic symmetry
under the exchange of the two HW walls, together with the coordinate change y <> 1 — y,
descends to the invariance of the four-dimensional action under exchange of the two gauge
sectors F] <> F5, together with

Pat Ga—pa, o —past+Y ", L eombst -, (7.17)

k
plus similar transformations for the axions. This may be regarded as a discrete Zy gauge
symmetry of the theory, since it describes the same microscopic configuration.
From (7.15) we note that the saxions s* enter the EFT terms (2.11) and (2.19) in the
combination

Pas® — Z sk (7.18)
k

Interestingly, this combination is continuous under ‘small instanton transitions’ [105] in
which some Mb5-brane is absorbed or emitted by the HW walls. As an example, take the
limit §¥ — 1 in which all M5-branes are moved on top of the second HW wall, and are
then absorbed by a small instanton transition in which A(E2) — A\(E}) = A(E2) + [C] and
then p, — pl, = pa — > m¥ = py — qo. Along this process, p,s® — 3 s* first becomes
Pas® — >, mks® which is indeed equal to p/,s?. The combination (7.18) is also continuous
under a small instanton transition in which all M5-branes are absorbed by the first HW
wall, which is simply described by the limit s* — 0. Clearly (7.18) is also continuous under
more general small instanton transitions.

Note that the M5-branes can provide an additional gauge sector, coming from the
expansion of the M5 self-dual two-form potentials in harmonic one-forms of C*, as in [106].
However, the corresponding gauge couplings are controlled by the complex structure of the
curves C*, rather than by their volume. Hence, this sector is generically strongly coupled
in the perturbative regime considered here, and one should consider some large complex
structure limit in order to identify corresponding axionic strings. The F-theory dual sector
was briefly mentioned in section 6.7.
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7.2 Saxionic cone

The saxionic cone is determined by the set of possible BPS instantons, as in (2.3). In order
to clarify its global structure, it is convenient to work in the M-theory frame. There are three
types of BPS instantons to consider for us: heterotic worldsheet instantons, open membrane
instantons ending with one or both ends on an M5-brane, or M5-brane instantons.

Consider first the heterotic world-sheet instantons, which in M-theory are represented
by Euclidean open M2-brane wrapping some effective curve > C X and stretching between
the two HW walls. Their action is given by 27mm(2)s?, with m4(X) = D, -X. The condition
mq(X)s* > 0 defines the standard Kéhler cone C(X).

If in particular we choose ¥ = C¥, we obtain the condition m”s® > 0. Hence, by using
the restriction y € (0,1) in (7.16b) we deduce that s* must satisfy the condition

0< s® < mbs®. (7.19)

This condition guarantees the exponential suppression of instanton contributions coming
from the second type of instantons, Euclidean open M2-branes stretched between the
background Mb5-branes and the HW walls [107-109]. For instance, consider an M2-brane
along the curve C* wrapped by the k-th M5-brane and connecting the HW wall at y = 0
with the k-th M5-brane. Its action is given precisely by 2mws®, which is indeed positive
by (7.19). If instead the M2-brane connects the k-th M5-brane to the HW wall at y = 1,
then its action is given by 27(1—7*)m¥s® = 27(mks® —s*), which is again positive by (7.19).
One can similarly consider an open Euclidean M2-brane stretching between two background
Mb5-branes.

It remains to discuss the more subtle BPS instantons corresponding to Euclidean
Mb5-branes wrapping the entire Calabi-Yau X. A crucial role will be played by the internal
M-theory G4 flux, which is generically non-vanishing. In the downstairs picture of the HW
orbifold, the internal G4 flux must satisfy specific boundary conditions [103, 104]. In our
setting, these read

. 1

Tim Galpor = 6 [MED = 5ea(X)] (7.200)
. 1

Tim Gl = ~4 [ ME2) — jea(X)] (7.200)

where £, is the M-theory Planck length, which we choose to coincide with ¢; under
dimensional reduction.
Inside the HW interval G4 must satisfy the Bianchi identity

dGy = €3> " 6(y — §")dy A 55 (CF). (7.21)
k

This implies that the cohomology of G4 jumps by £3,[C*] as one crosses the k-th M5-brane.
The combination of (7.20) and (7.21) indeed implies the consistency condition (7.4).

As first discussed in [110], this non-trivial flux and the HW walls induce a non-trivial
deformation of the internal geometry. Furthermore, the presence of a non-trivial G4 implies
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Figure 1. BPS instantons in Eg X Eg heterotic models. The internal seven-dimensional space is a
fibration of the Calabi-Yau X over the horizontal M-theory interval I = {0 <y < 1}. The vertical
brown and blue lines denote the HW walls and a background M5-brane wrapping the internal curve
Cwus, respectively. The picture includes a Euclidean M5/M2-instanton: the light blue Euclidean
M5-brane (E5) sits at a given position ygs along I and wraps the entire internal Calabi-Yau space.
It is connected to the left HW wall by two purple Euclidean M2-branes (E2) wrapping Cg, and Cj,,
respectively, such that Cf, ~ Cgs + Cys, which reconnect on the bulk M5-brane. See also appendix D
for further explanations.

that a Euclidean M5 wrapping the entire Calabi-Yau X and sitting at an intermediate
position 0 < ygs < 1 is not consistent by itself, because of the world-volume tadpole
condition. Rather, one must add Euclidean open M2-branes ending on the M5-brane and
must then consider a composite M5/M2-instanton — see figure 1. All this complicates the
direct computation of the instanton Euclidean action and of the corresponding saxionic
conditions. However, we can deduce this information by indirect arguments, exploiting the
holomorphy of the BPS instanton corrections.

We devote appendix D to a detailed discussion of these arguments and here present
only the final result. Namely, the positivity of the action of any possible BPS M5 instanton
(including possible open M2-brane insertions) is guaranteed if we impose the conditions
s9 > 0 and s° — p,s® + 3, s¥ > 0. This allows us to complete our identification of the

saxionic cone:

A:{s:(so,s“,sk) | saDQEIC(X),so>O,SOpasa+Zsk>0,O<sk<m§sa}.
k

(7.22)
Note that this saxionic cone is indeed invariant under (7.17).
Recalling (7.15), one immediately checks that the combinations (C!, s) and (C?,s),
which define the gauge couplings, are positive within the saxionic cone, as expected.
Furthermore, a theorem [111] guarantees that

1
Nas® = = / T Aea(X) >0 (7.23)
2 Jx
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if J = 5D, belongs to the Kihler cone. Recalling (7.15), it follows that (C,s) > 0 within
the saxionic cone.

7.3 EFT strings

We now come to specifying the cone of EFT strings. There are three types of BPS strings
dual to the three types of BPS instantons discussed in the previous section: the critical
heterotic string, i.e. an F1 string, corresponding to an open M2-brane stretched between
the two HW walls, furthermore the strings obtained by wrapping an M5-brane along an
effective divisor on X, and finally open M2-branes stretched between two M5-branes or
between an M5-brane and an HW wall. The cone of EFT string charges, (3.6), can be
identified with the help of the saxionic cone (7.22) as follows:

C%}FT :{e = (eojea’ek‘) | _De = e(lDa 6 Nefl(X),

} (7.24)

>0, eo—pae“—i-E:elc >0, 0<ée” gm’;ea
k

Recalling (7.8) and (7.10), we note that mFe® = C* . D, > 0 if D, is nef, and then
qae® =Y, C* - De > 0 as well. CE'T has a richer structure than the cone identified in [19],
not only because of the additional charges e* associated with the presence of background
Mb5-branes, but also because of the additional condition involving the background constants
Pa, Which come from 10d/11d higher derivative corrections. As a result, the analysis of
section 6.1 of [19] must be updated.

A charge vector e = (€, 0, 6) corresponds to €’ F1 strings and, as in [19], is associated
with an EFT string flow along which the ten-dimensional string coupling vanishes, e? — 0,
while the string frame Kéhler moduli and the M5 positions §* remain fixed. As noted
already, from the M-theory viewpoint, these EFT strings correspond to M2-branes stretching
between the two HW walls.

A choice e = (0, 0, k) corresponds to e M2-branes filling two external directions and
stretching between the k-th background M5 and the second HW wall (at y = 1). From
the ten-dimensional viewpoint, they appear as ‘fractional’ F1 strings bound to the NS5.
However the condition 0 < ¥ < mFe? appearing in (7.24) excludes a charge vector of the
form e = (0, 0, k) from C&*™", and hence these strings are not EFT strings. Note that indeed
such strings cannot explore the entire internal space, as would be characteristic for an EFT
string. Rather, such BPS strings can become classically tensionless [112] at finite distance
in the moduli space, where the theory develops a strongly coupled sector in which the open
M2-brane instantons discussed in the previous section become unsuppressed.

In order to interpret the condition 0 < ek < m’;e“, we must then turn on the charges
e, associated with a string obtained from an Mb5-brane along a nef divisor e*D,. Assume
first that e*(ps — qa) > 0 (and thus e®p, > 0 as well) and suppose that the M5-string
wrapping De sits on top of the second HW wall at y = 1. From (7.10) and (7.20b) we
know that p,e® = % limy, 1 . {ye}x De G4. In order to move the M5 string away from the
HW wall, there must therefore be p,e® M2-branes ending on it from the left (to solve
the world-volume tadpole condition along the M5-brane). If e = 0 for any k, all these
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0 Ye Y 1

Figure 2. EFT strings in Eg x Eg heterotic models. The bulk sector is as in figure 1, but now the
picture includes two EFT strings: an orange M2-brane stretching between the HW walls, which
descends to the critical heterotic string in ten dimensions; a bound state of (p, — m,)e® = 2 green
open M2-branes and a purple M5-brane wrapping the nef divisor De C X and sitting at y = ye.
There also appear mye® = C - De = 3 green open M2-branes, connecting the left HW wall with the
background Mb5-brane, which tie to the purple M5-brane if we move it to ye > ¢.

M2-branes must originate on the firss HW wall, and hence initially there must be e > p,e®
M2-branes connecting the two HW walls, which is precisely the content of (7.24). Now
start moving the Mb string to the left, along the y direction. When it crosses the k-th bulk
M5, the G4-flux across De jumps by —m¥e?. Hence, at a more general point ye the number
of M2 strings ending on the M5 string from the left is given by

1

— Gy = pae” — mFed 7.25
& oY 2 (7:29)

kl?ﬁk>ye

while the remaining mFe® M2 strings stretch between the first HW wall and the k-th
background M5-brane with §* > y — see figure 2 for an example with one background
Mb5-brane.

More generically, if e* # 0, then initially, when the M5 string is at ye = 1, there are e
open M2-branes connecting the second HW wall to the k-th background M5-brane. This
implies that in order to allow the M5 string to move away from ye = 1 it is sufficient to take

k

€9 > pae® — Y, €F, which is indeed one of the conditions appearing in (7.24). Moreover, the
last condition 0 < eF < mFe® appearing in (7.24) implies that, after the M5 string crosses
a background M5-brane, there remain no open M2-brane ending on it from the right. In
the extreme case in which e* = m’;e“ and €® = (p, — qq)e®, when the M5 string arrives at
Ye = 0, no M2 strings are left in the bulk.

The case p,e® < 0 can be treated in complete analogy, being related to the case
(Pa — ga)e® > 0 by the Zy symmetry (7.17) which swaps the role of two HW walls. One may
similarly discuss some intermediate case with p,e® > 0 and (g, — pq)e® > 0.
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As reviewed in section 3, the EFT strings are associated to an infinite distance limit.
In the present model, the physical properties can be analysed by slightly adapting the
discussion of [19], taking into account two important differences. First, as highlighted by the
above discussion, the flows corresponding to NS5/MS5 strings can generically involve also the
dilaton s® and the 5-brane moduli s*, in addition to the Kéhler moduli s*. Furthermore, the
identifications (7.16) complicate the microscopic interpretation of the various EFT string
flows and in general affect also the value of the corresponding scaling weight. However, a
conclusion of [19] still holds: the EFT string flows such that

r(e,e,e) = kapee?e’e® = D3 >0 (7.26)

lead to a rapid growth of the HW interval, so that we have a dynamically generated sharp
hierarchy between its length and the length scale of the internal Calabi-Yau. Hence, close to
the string, one internal direction opens up, and the 4d string uplifts to a string/membrane
bound state in an HW-like 5d theory on My x I, where I = S'/Z. In particular, the string
probes a local N'= 1 5d supergravity, whose 8 supercharges are spontaneously broken to
4 by the presence of the HW walls. These types of EFT have been studied for instance
in [113] but the relevant term can be quite easily obtained by reducing on the Calabi-Yau
X the M-theory CS term (in upstairs picture). By using the decomposition

£3
C3 = A" A Dy (7.27)
one obtains the five-dimensional CS term
5d m a b c . _
SCS = Wﬁabc /M s A*NF°NF with Rabe = -Da . Db . Dc7 (728)
4

in the upstairs picture, in which y € [—1,1]. Note that C3 is odd under parity. Hence the
five-dimensional U(1) gauge fields A are odd under the Zs parity ¢ : y — —y. The S'/Zs
orbifold projection then imposes that t* A% = — A%, If we restrict to zero modes along S,
we are then forced to set A* = 2wa®dy, where a® are our 4d axions. This in particular
implies that, from the 4d viewpoint, the 5d gauge fields A® contain a finite number of
massless axions plus an infinite tower of massive vectors and pseudoscalars. Furthermore,
the restriction of (7.28) to the zero modes identically vanishes.

On the other hand, as in section 3.3 this additional CS term produces an extra
world-sheet term of the from (3.19), with

Ci(e) = 0% Kapeele’ . (7.29)

This provides an explicit microscopic realization of effect described in section 3.3, with

(7.30)

oo ) rana 3 (2,5, k) = (a,b,¢)
Wk 7Y 0 otherwise )
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7.4 Microscopic check of quantum gravity bounds

We are now ready to test our EFT quantum gravity constraints. From (7.15) we obtain the
relations

(Clie) =€, (C%e)=e"—pue’ + Zek,
p (7.31)
(C,e) =6(Cl,e) + 6(C? e) + nge.

First of all, the positivity bounds (3.26) are satisfied by definition of (7.24). It follows
that not only is (4.3) obeyed, but actually (C,e) € Zso, since (7.23) implies that

neet = f/ ca(X) >0 (7.32)

for any nef divisor De. In turn, this guarantees that the combinations appearing in (4.4)
and (4.6) are non-negative, since

(Cle),e) = Cle, e e) = k(e e, e) = D? (7.33)

e

and the triple self-intersection of a nef divisor is non-negative.

On the other hand (4.4) makes the stronger prediction that (C,e) + (C(e), e) should
actually be a (positive) integral multiple of 3. The contributions to (C,e) + (C(e), e)
coming from the first two terms appearing in the second line of (7.31) clearly satisfy this
property, being positive multiples of 6. It then remains to check that

nge® + (C(e), e) c2(X) + Dg € 3Z>p - (7.34)

= 5 De
In order to prove it, it is sufficient to prove that D3 — [ Do €2(X) is a multiple of 3. The
latter statement follows from the index theorem applied to the signature complex twisted
by the line bundle Ox (Do) — see for instance [114] — which implies that3?

4
3

4

/XL(X)A%(OX(De)) pr(X) 4+ =D3 = 3(1)2—/1)6 cz(X)> €z.  (1.35)

= g ~
Since D3 — | D, €2(X) is guaranteed to be integral, this result confirms the quantization
condition (4.4) (and then (4.6)).

Let us now test (4.26), which bounds the rank of the gauge group detected by an EFT
string of charge e and presently takes the form

r(e) < 2(C,e) + D3 —2. (7.36)

As explained in section 4, the strongest bounds are obtained by picking the generators of
Cg"™". First of all, we can consider

—,

e=(1,0,0), (7.37)

32Here L(X) is the Hirzebruch L-polynomial and (:jl(V) is the Chern character in which one replaces the
curvature F' of V by 2F in all expressions.
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which corresponds to the saxionic direction s” and ‘detects’ all perturbative gauge groups.
With such a choice D2 = 0 and (C,e) = 12 and then the bound (7.36) gives

r(e) <22. (7.38)

Here r(e) includes the rank of the perturbative Eg x Eg gauge group present already in ten
dimensions plus a maximal extra contribution of six to the total rank as encoded in the chiral
superfields. In the following we will refer to this gauge sector as the ‘perturbative’ one. As we
will see more explicitly at the end of section 7.4.2, compactifications on singular Calabi-Yau
three-folds can host also ‘non-perturbative’ gauge sectors, which are not accounted for
by (7.38). The bound (7.38) agrees with expectations from heterotic compactifications for
instance on toroidal orbifolds, which can admit a maximum of six additional U(1) group
factors associated with the six KK U(1) gauge fields [115].%3

On the other hand, the bound (7.38) does not include possible U(1)s coming from the
M5-branes, whose gauge coupling is of order one for generic complex structure, or more
generally any other gauge factors which avoid a coupling of the form (2.11) to the axion
associated with the fundamental heterotic string.

Assume next that there exists a nef divisor De = €®D, such that p,e® = 0 and g,e® = 0,
so that e = (0, €%, 0) belongs to the cone CE'™. In this case (C!,e) = (C?e) = 0.3 The
corresponding EFT string does not interact with the heterotic gauge bundles and does not
provide any bound on their rank.3?

More generally, let us assume that (p, — ¢,)e® > 0. Then we can pick

e = ((pa — ga)e”, €%, mge”) . (7.39)

In this case (C!,e) = (ps — qa)e® and (C?, e) = 0, where we recall (7.31) and (7.10). Hence,
as far as the perturbative gauge group is concerned, r(e) is sensitive to the rank of the
gauge sector coming only from the first HW wall. Since (C,e) = 6(p, — ¢a)e® + nqe®, with
nge’ = %fDe c2(X), (7.36) yields the bound

r(e) < 12(py — qq)e® + /D co(X)+ D2 —2. (7.40)

This bound is clearly satisfied by the pertubative gauge sector supported on the first
HW wall, since we know from the microscopic uplift that its rank is at most 8, and can
provide a non-trivial bound on the non-perturbative gauge sector. By applying the Zo
symmetry (7.17), we obtain an analogous bound for the second gauge sector if p,e® < 0.
If we specialise to models with standard embedding A(E;) = A(X), from (7.10)
and (7.12) we read off that p, = n, and g, = 0 (i.e. there are no background Mb5s).?% Noting

33In such situations, all of the chiral superfields can contribute in the anomaly cancellation, showing that
the bound (4.26) can indeed be saturated.

34These strings are related to the (0,4) supergravity strings in five dimensions discussed in [15] by
dimensional reduction on the HW interval. If in addition D2 = 0 and nge® = 0, then they support an
enhanced (4,4) or (8,8) non-chiral supersymmetric spectrum.

35By contrast, based on duality with F-theory, we will argue at the end of this section that EFT strings
with e” # 0 detect a certain non-perturbative gauge sector of the heterotic compactification.

36The case A(E2) = A(X) can again be obtained by applying (7.17).
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that in this case p,e® > 0, we could pick e as in (7.39) and the bound (7.40) becomes

re) <7 [ c(X)+DE-2. (7.41)
De
We now turn to discuss some concrete models. As we will see, at least in these models,

the bounds on the perturbative gauge sector coming from M5 strings are always weaker

than (7.38).

7.4.1 Example 1: the quintic

The quintic three-fold X is defined as the vanishing locus of a section of Ops(5) inside P?.
In this case the effective divisor De generating the (1-dimensional) nef cone is obtained by
restricting the hyperplane H C P* to the hypersurface. Hence D2 = 5H* = 5, and by using
the adjunction formula one obtains cy(X) = 10[H?]|x and then [, ca(X) = 50. Hence, if
we consider a standard embedding, the bound (7.40) becomes r(e) < 353 which, if applied
to the perturbative gauge sector, is clearly much weaker than (7.38).

7.4.2 Example 2: elliptically fibered CYs and duality with F-theory

Consider a smooth CY three-fold X which is given by an elliptic fibration 7 : X — B over

some weak-Fano two-fold B and which is described by a smooth Weierstrass model. The

weak Fano condition implies that c¢;(B) = ¢;(K ) is Poincaré dual to an effective nef divisor.
One can compute the second Chern class of X as

eo(X) =7"cy(B) + 128 - 7K + 117" K 5, (7.42)

where Poincaré duality is implicit, K is identified with its divisor and S denotes the
divisor associated with the global section of the Weierstrass model. The effective curves are
generated by the elliptic 72 fibre and the push forward o, (c) of the base effective curves
¢ C B. The nef cone is generated by the vertical divisors V = 7*j which project to a nef

divisor j of the base and the ‘horizontal’ divisor H = S + 7*K p.

Notice that, if we pick an EFT charge vector e = (e, ¢e? e*) with e® such that
De = e*D, =V, then C(e) = D3 =0 and — see (7.31) —

(C,e) =6(C',e) +6(C%*e)+6j Kp. (7.43)

Heterotic compactifications on such threefolds are dual to F-theory compactified on an
elliptic four-fold whose base is a P!-fibration over the same weak-Fano two-fold B, blown
up in the fiber over curves on B wrapped by heterotic 5-branes. To avoid confusion we
call this F-theory threefold base X in this section. In the notation of section 6.5, the

anti-canonical class of Xp is37

Kx, =25 +p*c(T)+p*ci(B) = ) Ey. (7.44)
k

37For simplicity we are considering single blowups over separate curves.
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Here the twist bundle T characterising the rational fibration is related to the heterotic
invariants p, as

Pa = /d ) ci(T), (7.45)

with d, a basis of divisors on B. In particular, for a positive bundle, i.e. ¢1(7T) effective,
the gauge sector on the second HW wall maps to the gauge theory on a stack of 7-branes
wrapping the exceptional section S_ in the F-theory base X.?® Furthermore Ej, denotes a
blowup divisor on X over the curve C* wrapped by the k-th M5-brane. Under the duality,
an EFT string with charges e = (e, e?, €*) in the heterotic theory maps to an EFT string
obtained by wrapping a D3-brane along the curve

Ye = " Fy 4 €%S_ - p*(dy) + " Fy, (7.46)

where Fy denotes the generic rational fiber of X, d, continues to denote a basis of divisors
on B and F}, is the rational fiber of the exceptional divisor Ej, with E; - F; = —d;;. The
inequalities (7.24) translate into the condition for the curve 3¢ to lie inside the movable
cone. For instance, in the simple example discussed in section 6.5 (with all e = 0), the EFT
string condition (6.37) maps to the condition (7.24) once we identify p, with the positive
integer n defining the twist. With these identifications, one can convince oneself that (7.43)
agrees with the dual expression (6.11), more precisely with 6K Xp * Ze, in F-theory.

Let us now turn to the bounds: by assuming for instance a standard embedding,
the bound (7.41) resulting from a charge (7.39) with ¢, = 0 and p, = n, and with
D¢ =V = 7*(j) becomes

r(e) <Tcy(X) De—2=284j-Kp—2. (7.47)

This bound does not contain any new information. If j- K5 = 0 then (C!,e) = (C?,e) = 0,
because in the charge vector (7.39) the F1 component vanishes for the standard embedding;:
Pa€? = nged = %fﬂ*(j) c2(X) = 0; in this case we already know that r(e) = 0. If
j-Kp > 1 and we focus just on the perturbative gauge sector, we arrive at a bound
much weaker than (7.38). As another example, pick a charge of the form (7.39) but with
De = H = S + m*(Kp), still assuming a standard embedding. Then the bound (7.40)
becomes

r(e) <7x(B)+78Kp -Kp—2. (7.48)

For B a weak-Fano space, Kp - Kp > 1, and then again this bound does not improve the
bound (7.38) for the perturbative gauge sector.

We have emphasized that these bounds test the perturbative part of the heterotic gauge
group probed by the EFT string with charge e as given. In F-theory this gauge sector
corresponds to gauge symmetry from 7-branes on the two sections S_ and Sy of Xg. On
the other hand, on the F-theory side there can also be non-abelian gauge groups supported

38Consistently, for bigger and bigger effective twist class ¢;(7), or larger positive values of p,, the gauge
flux on the second HW wall becomes smaller and smaller, as follows from the definition (7.10). This
eventually results in a non-Higgsable remnant gauge group, which in F-theory must be localised on the rigid
section S_, with negative self-intersection (6.33), rather than on Sy.
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on a vertical divisor Dy = p*d with d an effective divisor on the base B of Xp. Note that
such gauge sectors are independent of the existence of blowup divisors in F-theory, which
map to the background M5-branes in heterotic M-theory whose gauge coupling is controlled
by the complex structure of the heterotic theory. An example of such a vertical gauge
sector was discussed in section 6.5 by taking the 7-branes in class D'. The vertical gauge
sector in F-theory must be dual to a non-perturbative gauge sector in the heterotic theory
which arises when the elliptic fibration becomes singular over the divisor d C B. The EFT
strings detecting the vertical part of the gauge group in F-theory map to heterotic EFT
strings with non-vanishing charges e®. By duality, therefore, such heterotic EFT strings
must contain information about the non-perturbative sectors in question. It would be very
interesting to study this effect further from the heterotic point of view.

7.5 SO(32) heterotic/Type I models

The SO(32) heterotic models can be discussed in a similar manner, but are somewhat
simpler and so we will be brief. We first assume that there are no background NS5-branes.
The relevant EFT terms can be derived as in the Eg x Eg case. The details are provided in
appendix C.2. Assume an internal gauge bundle and suppose for simplicity that it takes
values in a semi-simple sub-algebra g C s0(32) with vanishing forth order Casimir. Then
the four-dimensional EFT contains the terms

1 1
-3 / sOtr(F A *F) — 9n /(12s° + 3n4s%) tr(R A xR) (7.49)
where F' takes values in the commutant of g C s0(32), n, is defined as in (7.12), and
0 a 1 a
s’ =8 — —ngs, (7.50)
6
with § as in (7.2). Hence
C=(C"C"=(1,0), C=(C"C=(12,3n,). (7.51)

One can also discuss the instanton corrections and the saxionic cone as in section 7.2.
In this case the ten-dimensional curvature corrections do not affect the form of the saxionic
cone, but only the microscopic definition (7.50) of s°. The saxionic cone is simply given by
R~ @ K(X), where R+ is parametrized by s”. Correspondingly the EFT string charges
are given by CE'T = {e = (e, e%)|e” > 0, D¢ = €%[D,] € Nef'(X)}. It is then easy to see
that (3.26) and our quantum gravity constraints (4.4) and (4.6) are satisfied.

In particular, by picking eg, = (1,0) € C§™" in (4.26) we obtain r(er;) < 22, correctly
reproducing the rank of the ‘perturbative’ gauge sector detected by the perturbative heterotic
string: the s0(32) sector explicitly appearing in (7.49), plus the up to six possible additional
KK U(1)s, depending on the type of background. (As before, potential gauge group factors
whose axionic couplings are not of the form (2.11) cannot be detected in this manner.)

One may equivalently start from the S-dual Type I description of these backgrounds.
In particular, the EFT string charge ex, = (1, 6) corresponds to a D1-brane. However, as
discussed in [19], the D1-brane string flow drives the Type I dilaton to +o00, and then the
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heterotic formulation is better suited for describing the UV completion of the corresponding
perturbative regime.

We next consider EFT strings of charges eyg; = (0,e%), which correspond to NS5-
branes wrapping internal nef divisors D = e?[D,] € Nef!(X). These EFT strings can
detect the ‘non-perturbative’ gauge sector supported by bulk NS5-branes, which is not
included in (7.49). These NS5-branes can appear through small instanton transitions [116]
and correspond to D5-branes in the dual Type I description. In fact, as in the Eg x Eg case,
the heterotic dilaton e2?het = 6(k4p.5%s"5%) /8 generically diverges along the flows of these
EFT strings. Hence the type I description is better suited.?’

The bound (4.26) now takes the form

r(exss) < 3 co(X) —2 (7.52)

In order to show that this bound is indeed satisfied, recall the SO(32) counterpart of the
tadpole condition (7.4):

AME) + [C] = ea(X). (7.53)
Here A(F) is defined as in (7.5) and
C = NaCH, (7.54)

where N4 > 0 counts the NS5-branes wrapping the irreducible curve C#. The supersymmetry
condition on the internal bundle implies that [, A(E) > 0. Hence from (7.53) we get

C- Do < /D eo(X) . (7.55)

We can now use the dual type I description to compute the rank of r(eygs), which just
counts the bulk D5-branes which intersect the nef divisor Deg:

rlenss) = Y. Na. (7.56)
A|CA-De#0

Since De is nef, we know that C4 - De > 0 and then

Flenss) < S NA(CA - Do) = C - D < / ea(X) (7.57)
A

e

where in the last step we have used (7.55). The microscopic bound (7.57) implies our
quantum gravity bound (7.52) (in the non-trivial case (C,eys;) = 3 Ip, c2(X) > 0), which
is then always satisfied.

39The microscopic description of these infinite distance limits can be done as in [19], but should be revised
by taking into account the curvature correction entering (7.50).
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8 Microscopic checks in G, M-theory models

As a last class of models, we consider M-theory compactified on a Go-manifold X. In this
case, the 4d U(1) gauge sector comes from the expansion of the M-theory three-form C3
into a basis of integral harmonic two-forms [['4)pam € H%(X,Z), where T4 € H5(X,Z)
denotes the Poincaré dual basis:

3
C3 = giMAA A [FA]harm . (8'1)
m
One can also have non-abelian gauge sectors localised at singularities, whose U(1) Cartan
sector can be identified by resolving the singularity. Our EFT constraints should also hold
in the singular case, but in order to check them we will assume that all these singularities
have been resolved.
The (s)axions are obtained from the expansion

C3 +1® = £3 (a’ + is") [T harm » (8.2)

where II; € Hy(X,Z) is a basis of 4-cycles, [II;]harm € H>(X,Z) is the Poincaré dual basis
of harmonic representatives, and ® is the associative three-form. As a key property of Gs
manifolds, any harmonic two-form w satisfies the relation [117]

xyw=—-PAw, (8.3)

where *x is the Hodge star associated with the internal G metric. By expanding the
eleven-dimensional terms

T 2m
— = | GuN*Gs+ — [ C3 NGy NG 8.4
@ / 4 N*Gy + @ / 3 4 4 (8.4)
one obtains the four-dimensional terms of the form (2.7), with CAP = —1I; - T4 - T'B and

C! = 0. Note that (8.3) implies that the matrix
Kﬁ%$:—A§AWﬂAEﬁ (8.5)

is positive definite.
Consider now the eleven-dimensional term

1

1
W /03 AN [tr R4 — Z(tr R2)2 N (86)
M

where R is the eleven-dimensional curvature two-form. By splitting R = R + R according
to the 4 + 7 split, one finds an axionic coupling of the form appearing in (2.19), with

C; = —i p1(X). (8.7)
11;

A four-dimensional BPS axionic string of charges ¢’ is obtained by wrapping an M5-
brane along a coassociative 4-cycle IT = ¢'Il;. Imposing that this string is EFT, e € CE'™,
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corresponds to requiring that the Poincaré dual three-cocycle [II] can be represented by
an associative three-form ®, or a limit thereof reached by approaching the boundary of
the corresponding saxionic cone [19]. From the positive-definiteness of (8.5), we conclude
that (C45 e) is positive semi-definite, hence realizing (3.26). Furthermore an argument of
footnote 2 of [118] and Lemma 1.1.2 of [119] implies that

(€, e) —i /X o A p1(X) € Zso. (8.9)

By splitting TX |y = T1I & NII and using the identifications NII ~ A2 II (the bundle
of self-dual two-forms) and py(A2II) = p; () + 2¢(IT) [120],° we can rewrite (C,e) =
—1 Jup1(X) in the form

(C,e) = by (1) — 2b3 (T1) + by (T1) — 1. (8.9)

By the anomaly matching argument, this formula should agree with (4.2a). We can indeed
check this result microscopically, following [121]. More precisely, the numbers of massless
fields on the string are counted by

ng = by (1), np =>by () — b3 (1), nx=b1(I). (8.10)

To see this, note first that the world-sheet theory contains b;(l‘[) massless real scalars, which
parametrize the geometric deformations of IT [120]. Furthermore, by dimensionally reducing
the self-dual M5 two-form on II one obtains b3 (IT) right-moving plus by (IT) left-moving real
chiral scalars. Supersymmetry then fixes the orientation of II so that b, (IT) — b3 (II) > 0
and we can combine the above modes into the b3 (IT) complex scalars. These form the scalar
components of ng = b3 (IT) chiral multiplets, whose b3 (II) right-moving fermions should
come from the reduction of the M5 fermions. The remaining b, (IT) — b3 (IT) > 0 left moving
real chiral bosons can be fermionized and, completed by b, (IT) — b3 (II) left-moving fermions
coming from the M5-brane fermions, form ngp = by (IT) — b3 (I) > 0 Fermi multiplets.
Furthermore, reducing the M5 self-dual two-form on the harmonic one-forms yields b; (IT)
U(1) vectors, which are completed into vector multiplets by a corresponding number of left-
moving fermions A_ with charges as in table (3.36). The corresponding nx = b1 (II) Fermi
superfields A_ can be identified with the super field strengths of the vector multiplets, which
contribute to our anomaly matching in the same way as fundamental Fermi multiplets.*!
Altogether, we have therefore derived the values of nc, np and ny in (8.10), which together
with (4.2a) reproduce the geometric prediction (8.9).

“00ur self-dual forms corresponds to the anti-self-dual ones of [120], and viceversa.

“In two dimensions a U(1) gauge field does not carry propagating degrees of freedom and, in absence
of charged matter, its field strength can be traded for the auxiliary field of the Fermi multiplet. This is
the two-dimensional counterpart of the relation between three-form multiplets and chiral multiplets in
four-dimensions discussed in [50, 122].
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From (4.25) and with the help of (8.10), the bound on the rank of the gauge group
detected by the EFT string is given by?*?

r(e) < np +2(nc — nx) = ba(II) — 201 (II). (8.11)
On the other hand, (4.26) and (8.9) give
r(e) < 2(C,e) + (Cle),e) — 2 = 2by(IT) — 6b5 (IT) + 20, (IT) — 4 + (C(e), €) . (8.12)

These two bounds must coincide and their difference can therefore be read as an equation
for (C(e),e).

As an example, we may assume that II has trivial normal bundle NII ~ AiH as
in [123]. In this case p;(/NII) = 0 and then II is spin [123]. Hence by Rochlin’s theorem
Japi(Il) € 48Z and (C,e) = —1 [;p1(X) € 12Z. For instance, one can consider a so called
‘Twisted Connected Sum’ G2 manifold [124], which can be viewed as a coassociative K3-
fibration over an S%. By fiber-wise duality it should be dual to a heterotic compactification
on a Calabi-Yau three-fold — see for instance [125]. More precisely, the M5-brane wrapping
the K3 fiber is the dual heterotic fundamental string and our quantum gravity bounds
derived from this string must therefore coincide with the bounds obtained in the heterotic
case. Indeed, [;;p1(X) = —48 and then (C,e) = 12, as found for the heterotic fundamental
string in section 7.4. Furthermore, by comparing the bounds (8.11) and (8.12) and using
the K3 Betti numbers by (IT) = 3, by (IT) = 19 and by (IT) = 0, one gets (C(e),e) = 0 as
expected. The bound (8.12) — or equivalently (8.11) — then gives

r(e) < 2(C,e) — 2 =22, (8.13)

which reproduces the general bound (7.38) on the rank of a heterotic perturbative gauge
group in four dimensions.

In the large volume heterotic regime, we have encountered EFT strings corresponding
to NS5-branes wrapping nef divisors. These should also correspond to M5 EFT strings
in the M-theory picture. This in particular implies that there should exist EFT strings
with non-vanishing C’i(e) = C’ijkej ef. At a first sight, this may appear in contradiction
with our general expectation that such a CA'i(e) should be associated with some hidden
five-dimensional structure, since apparently no such structure is present. However, the
strings with non-trivial Cj(e) may dynamically generate a preferred fifth direction along
their flow.

In order to support this proposal, let us consider an M-theory compactification admitting
a weakly-coupled type ITA limit, in which the G2 manifold X becomes the orbifold [126]

X, = (Y xSY/(o,-1). (8.14)

Here Y represents a Calabi-Yau three-fold admitting an O6-plane involution o : Y — Y. In
this limit, each irreducible component of the fixed locus of ¢ is occupied by one O6-plane and

42Recall that the subtraction of the nx Fermi multiplets accounts for potential obstructions of the scalar
moduli. In the present situation, these would have to be due to non-perturbative effects from M2-brane
instantons ending on the Mb-brane, since the b;’ massless modes describing the geometric deformations of a
coassociative cycle are classically unobstructed [120].
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four D6-planes. Furthermore the associative three-form becomes ® = Re{2 4+ dy A J, where
J and {2 are respectively the Kéhler form and (appropriately normalized) holomorphic (3, 0)
form of Y. Then the coassociative four-cycles are calibrated by xx ,® = %J AJ +dy AlmQ.
Note that (J,€) must satisfy the orientifold projection o*J = —J and c*Re) = Re{D.

Let us then focus on those coassociative four-cycles I in X, which are calibrated by
%J A J. These can be regarded as orientifold-even effective divisors D in Y. In this case, an
Mb5-brane wrapping II reduces to an NS5-brane wrapping D and represents an EFT string
if D is a nef divisor. The analysis of these EFT strings is completely analogous, mutatis
mutandis, to the analysis carried for the Fg x Eg models in section 7 (and in [19]), without
the complications due to the higher derivative corrections discussed therein. In particular,
the EFT strings should support a term of the form (3.19) with C;(e) as in (7.29), where
Kabe NOW denotes the triple intersection number defined on H? (Y, Z).

Now the key point is that, along the string flows associated with the EFT strings with
non-vanishing é’i(e), the M-theory circle decompactifies much faster than the Calabi-Yau
Y. So, even if one starts from a more generic field space point, in which the factorized
geometry of the form (8.14) is not manifest, a preferred fifth direction would dynamically
emerge.

In type ITA language, up to U(1) mixing effects [127], these EFT strings more naturally
detect the R-R U(1) gauge sectors, while the EFT strings corresponding to D4-branes on
appropriate special Langrangian three-cycles detect the D6 gauge sectors. The M-theory
analysis nicely unifies these sectors. The corresponding EFT constraints may be tested as
already done above in other models but, since X, is not complex, in this case it is harder
to both extract further general results or perform a case by case analysis. We leave this
interesting task for future explorations.

9 Conclusions

In this article we have derived a number of quantum gravity constraints on the effective
action of an N’ = 1 supergravity theory in four dimensions. The constraints arise, modulo
certain assumptions, by demanding the consistent cancellation of the gauge and gravitational
anomalies induced by inflow from the bulk on the worldsheet of certain axionic, or EFT
strings, introduced in [18, 19]. This logic is generally in the spirit of the analysis of [8-13, 15]
treating effective theories with more supersymmetry or in a larger number of dimensions.

Our derivation of the anomaly inflow and hence the quantum gravity bounds is valid for
theories in which the gauge and gravity sector couple in a standard way to the axionic sector
of the supergravity as in (2.11) and (2.19). For theories with this property, we have derived
the positivity bounds and quantization conditions (4.3), (4.4) and (4.6) on the axionic
couplings and furthermore argued for the bound (4.26) on the rank of the gauge sector
coupling to the EFT strings. These bounds indeed rule out many supergravity theories
as quantum gravity theories which would otherwise seem perfectly consistent, as we have
demonstrated in simple settings in section 5.

At a technical level the derivation of the bounds rests on the fact that the worldsheet
theory of the EFT strings can be assumed to be weakly coupled. This is a consequence of
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the backreaction of the strings on the supergravity background in four dimensions [18, 19]
and distinguishes EFT strings from intrinsically strongly coupled strings. At the same time,
the class of EFT strings cannot be decoupled from the gravitational sector, and in this
sense are similar to the supergravity strings in higher dimensions [8, 15]. This makes them
ideal candidates to constrain the quantum gravity effective action.

Our derivations furthermore rest on the assumption, specified around (3.34), that the
spectrum of the weakly coupled NLSM obeys a certain minimality principle: the ny Fermi
multiplets charged under the group of transverse rotations, U(1)y, are all assumed to
participate in the lifting of a subset of the n¢ chiral multiplets in such a way that at best
the difference nc — ny of remaining unobstructed chiral multiplets can contribute to the
worldsheet anomalies via a Green-Schwarz type coupling. This assumption is natural in
concrete string theory realizations of the effective theory. As one of the classes studied in
more detail in this paper, we have analyzed EFT strings in F-theory compactifications by
wrapping D3-branes on movable curves on the base of the elliptic Calabi-Yau four-fold. In
this context, we have seen that the difference nc —ny is a topological index; in the geometric
subsector it corresponds precisely to the number of unobstructed geometric moduli which
enter the NLSM. In fact, the minimality principle is manifestly satisfied for EFT strings
obtained from D3-branes wrapping movable curves of genus g = 0, as in this case ny = 0.
If the cone of movable curves is generated by rational curves, our assumptions are thus
indeed realised. Incidentally, for Fano 3-folds this is the case (see e.g. [128] and references
therein), and it is tempting to speculate if this pattern generalises to non-Fano base spaces
of Calabi-Yau fourfolds with minimal holonomy. More generally, it would be important to
better understand the validity of our working assumption (3.34) independently of concrete
realizations in string theory.

In full generality, the quantum gravity bounds depend not only on the axionic couplings
C and C appearing in the four-dimensional effective field theory, (2.11) and (2.19), but
also on a contribution to the worldsheet anomalies encoded in the quantity C as defined
in (3.19). We propose that such contributions should be present only for EFT strings whose
backreaction probes a five-dimensional substructure of the theory. Examples of such EFT
strings can arise in the heterotic theory, for strings obtained by dimensional reduction
of heterotic 5-branes along nef divisors with non-vanishing triple self-intersection on the
Calabi-Yau threefold. In a general setting, the coupling C can be regarded as part of
the data defining the EFT and captures information on the Chern-Simons coupling of an
underlying five-dimensional theory. Its appearance could therefore be used to deduce an
underlying five-dimensional structure of the four-dimensional effective theory whenever a
comparison of our bounds with the four-dimensional effective action implies that ¢ # 0. We
believe that this interesting effect, together with more general implications of our quantum
gravity bounds in presence C = 0, deserves further investigation.

The bounds on the rank of the gauge algebra in their general form (4.26) are oftentimes
rather conservative. In the context of minimally supersymmetric F-theory on elliptic
fibrations with a smooth base, we have proposed a sharper bound, (6.26), based on a
detailed understanding of the NLSM massless fields in this case. On the other hand, the
more general bound (4.26) can in fact be saturated for instance in heterotic orbifolds (and
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therefore also their F-theory duals, which necessarily involve a non-smooth base) and is hence
to be regarded as the more general bound. Irrespective of this, it would be very important
to verify if the sharper bound (6.26) indeed withstands scrutiny in F-theory on smooth
three-fold bases, as our preliminary analysis in a handful of examples is currently suggesting.
We believe that the analysis of EFT strings adds a fruitful new line of investigation to the
active program [29-38] of constraining the possible effective field theories which can be
obtained in F-theory. An important achievement would be to establish a universal bound
on the rank of the gauge group in this class of minimally supersymmetric compactifications,
as was possible for the abelian subsector in six dimensions in [11]. In view of (6.26), this
challenge can be re-phrased as the task of finding a universal bound for the intersection
product between a curve in the interior of the movable cone Mov (X) and the anti-canonical
class Ky on all possible three-fold base spaces X over which an elliptic Calabi-Yau can be
constructed.

Finally our focus in concrete string realizations has been on strings probing the Kéahler
sector e.g. of F-theory or heterotic compactifications. By contrast, the sector of EFT strings
probing the complex structure sector of these theories is far less understood. We leave an
investigation of this sector of EFT strings as a challenge for future work.
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A Conventions for 2d anomalies

In this appendix we summarise our conventions for the computation of the two-dimensional
gauge and gravitational anomalies — see for instance [129] for a review and references to
the original literature.

The notion of positive and negative chirality fermions along the two-dimensional
worldsheet of the string is induced from the four-dimensional bulk theory by identifying the
two-dimensional chirality matrix v, with —I',® = —(03)?, using the notation introduced in

v (‘01 (1’) (A1)
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and a two-dimensional Dirac spinor decomposes as

(v
- (). "

In order to be compatible with the terminology adopted in several related works, we will

refer to the negative (positive) chirality spinors ¢_ (¢4) as left-moving (right-moving).

(Admittedly, this may be confusing, since on-shell ¥+ depends only on y7F = ¢ F y1.)
The variation of the quantum effective action can be written as

or = (5gauge + 5L0rentz)r = 27[‘/]2(1) ; (A3)

(1)

where the polynomial I, obeys the descent relations

L=dr”, s1” =arfV, (A.4)

In 2n dimensions, the anomaly polynomial Io,, associated with a complex positive-chirality
Weyl fermion transforming in a representation r of the gauge group is given by the following
general formula:

Lo = [A(M) chy(— )], (A5)
where A(M) is the Dirac genus of the manifold M and ch(—F') the Chern character:
1
M)=1+ - trR’ R+ o (tr R?
AM) =1+ ot (4m)’ {360 +ogg (B’

(A.6)

1 1 1
chr(—F):trrexp<—27rF):dimr o —trp F + ——— (27r) trp F2 +

In two dimensions, the gauge and gravitational anomaly generated by a single complex

Weyl fermion with positive chirality (i.e. a right-moving fermion) is therefore encoded in

dimr
trp F2 +
g2 T 10272

Notice that in this form the possibility of mixed abelian anomalies is automatically

Iy =

tr R?. (A.7)

taken into consideration. In fact, if the gauge group G can be written as a direct product
as in (2.5), the field strength has the form F =3 4, F4 + Y ; Fr and we obtain

dimr
19272

1
142@‘61}}724- trR2

dimr
rr<ZFA—|—ZFI> <ZFB+ FJ> 92 5 tr R? (A.8)
A I B
1 A B (rl) dlmr 9
i Ik

where qZA denotes the U(1) 4 charge of the i-th component of the representation r and we
have decomposed r = @, ri of r into G representations rl. In the second line we have
used the trace tr = % try introduced in section 2.1. A negative chirality (i.e. left-moving)
complex fermion contributes with the opposite sign. Taking this into account and summing
over all the possible contributions of (0,2) scalar and Fermi chiral multiplets, one gets (4.1)
and (4.8).
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B Weakly coupled NLSMs on EFT strings

In this appendix we provide some non-trivial evidence that the NLSM supported on EFT
strings can be treated as weakly coupled.

B.1 EFT strings in F-theory models

Consider an F-theory model of the type described in section 6 and focus on the EFT
strings corresponding to D3-branes wrapping movable curves. Note that by the EFT
Completeness Conjecture the movable curves should admit an effective representative,
which is furthermore expected to be generically smooth. The geometric moduli space
Mgeom of such a movable curve ¥ C X should provide part of the target space Mgy of
the NLSM model supported by the EFT string. Other possible directions along Mypsy are
represented by SL(2,Z)-twisted ‘Wilson lines’, which are part of the chiral fields o2 in
the language of section 6.2. By appropriately tuning the initial value of the moduli, the
NLSM should remain weakly coupled along the EFT string flow. In this appendix we more
explicitly check these expectations.

If we introduce some complex coordinates Z¢ on X, ! on Mgeom and ¢ along 3, then
the moduli space corresponds to a family of local embeddings ¢ + Z*({; ). A first-order
infinitesimal deformation of ¥ corresponds to an element of TMgeom|s, ~ H O(NY), where
NY. = TX|g/T¥. By introducing a basis w; of H?(NY) we can regard these elements as
vectors wy = w}@i describing the deformations of the local embedding;:

67 = wi(G; )0 (B.1)

The IIB Einstein frame spacetime metric takes the form

ds? = e*ds? + (2d5% (B.2)
2 p2
with €24 = i\:ﬁf;, where the dimensionless quantity Vy is the volume of X in string units

(i.e. measured by dég(, which we also take to be dimensionless).

Along the D3-brane world-volume W x ¥, where W is a two-dimensional world-sheet in
the external directions, we can use coordinates ¢4 = (0@, u®), where u® = u®((, () are real
coordinates along Y. The complete embedding is then defined by X* (o), Z*(; ¢(o)), and
we can consider ¢! (o) as NLSM fields. The metric h4p induced on W x ¥ splits as follows:

ds?|w s = hapdeAde? = hapdo®do?® + 2haado®dul + 2heydudu®
= [emhag + 202652, Z)w}@jj@aaplalg@j} do“do” (B.3)
+ 202 [f]ij—(Z, Z) w0l 0,27 + c.c.] do®dub + £2 hapdu®du®
where hog = g (X)0,.X"03X" is the pull—]oack to the EFT string world-sheet of the
four-dimensional Einstein frame metric, and hqp = §i5(Z, Z )0uZ'0yZ7 4 c.c.. Then
det(hap) = £3 det {eQAhag + 2 (g%(Z, Z) w}wjjaawlﬁgcﬁj + c.c.)] det(hap) , (B.4)

where

'_

95 = Giy — G G 0280 2" (B.5)

<
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is the projection of the metric in the orthogonal directions, in the sense that g%Vi = gi#f/j =

0if V'9; € TD and Q%V’Vj = gijvif/i if Vi0; € T3. Neglecting the flux contributions, the
D3-action becomes

2 =
SD3:——Z/ d*¢\/—dethap+...
ES Wx%
Ts: 2nVs /. S g = N
= /W d20d2u\/— det {hag—l—TE (gfj(Z, Z) w[wjj@agolaﬂgof—kc.c.)} det(hap)+- .. -
(B.6)
Here we have introduced the volume Vx of 3 in string units, and the string tension
27T€2AVE
Ts = T (B.7)

We could now tune the bulk moduli so that, at energies £ < A < m,, we can expand
the square root appearing in the second line of (B.6). We now argue that the validity of
this property is preserved, or even improved, along the flow (3.5) generated by the EFT
string. Indeed, we can make the identifications

) 62A

= 2IZ and giJ]: = Li g(J)_ij’ (B.8)
s+

m
where L is a length scale (in string units) associated with the directions orthogonal to X.
For instance, we may identify L‘i ~ Vp, where D is some effective divisor with D - ¥ > 1.
This implies that L? scales as /o along the EFT string flow (3.5) and m. can be identified
with the lightest KK scale. Hence

27TVZ ~l 1 Al
e 9i7 = —5 Y90i3 -
P e

(B.9)

If we pick local inertial coordinates ¢ in which hog >~ 1,3, at energy scales of order E the
second term under the square root in the second line of (B.6) is of order E?/m? < 1.
We can then expand the square root, getting

5 :—T/ A2\ /= det —/ A20\ /= det hug G, (0, G)h*P0,0 0557 + ... (B.10
D3 b)) w 8 - B IJ(‘P <P) @ ogp ( )

The first term is the standard contribution of the universal sector. The leading correction
to takes the form of an NLSM, with target space metric

G5 = 27T/Ed2ux/det hs, giJj:(Z, Z) w}w}. (B.11)

It remains to investigate the scaling of this target space metric along the EFT flow,
which depends also on the scaling of hs. This can be understood by using the classification
of possible EFT string flows provided in [22]. By adopting the terminology of this reference,
one can distinguish three main cases labelled by an integer ¢ = 0, 1, 2. These are associated
with so-called quasi-primitive EFT strings, which form the building blocks of EFT string
limits; generalisations beyond these quasi-primitive limits are then possible along the lines
of [22].
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In limits of type ¢ = 0, X can be regarded as a P! fibration over a base two-fold B, and
Y. can be identified with the P! fiber. This EFT string is dual to a heterotic fundamental
string moving in a Calabi-Yau which is elliptically fibered over B. In the dual heterotic
description it is clear that an EFT string flow is compatible with a weakly coupled regime
— see section 3.4. This can also be understood from the F-theory viewpoint, at least if we
focus on the geometric moduli space Mgeom. Indeed, any vertical divisor in X has vanishing
intersection with ¥ and then, asymptotically, does not scale with o. On the other hand,
the base volume scales like o. This implies that hs; scales like %, and then that G; 7 does
not scale. This is consistent with the identification of G;; with the string frame metric of
base B in the dual heterotic description.

In the case ¢ = 1, X can be identified with the fibration of a surface S over a P! base,
and ¥ is a movable curve inside the S fibre with (X - 3)g > 1. In this case S - ¥ = 0 and
then the volume of S does not scale. Consider now the effective divisor Ds: of X obtained
by fibering > — or in fact any curve in the fiber S with non-vanishing intersection with
Y — over the base P'. Hence ¥ - Dy, = (X-X)s > 1 and the volume of Dy scales as o
along the EFT string flow. The analysis of [22] shows that Vi is constant and the base P*
volume scales as 0. From (B.11) we see that in this case G, ; scales as 0. Note that this
case corresponds to w = 2.

Finally, consider the case ¢ = 2. This case describes a homogeneous decompactification.
Hence, Vy ~ /o and gfj ~ /o and then G, scales as 0. Also in this case the scaling
weight is w = 2.

In summary, we have found that
Gy~ oG (B.12)

Hence, if w = 1 we can either choose the NLSM to be weakly coupled or even exactly
quantize it, as in perturbative superstring theory, since gs = e? is automatically driven to
zero. If w > 1, the EFT string does not uplift to a critical string but the corresponding flow
automatically drives the bulk moduli to a large distance limit in which the Mgeom sector
of the NLSM is weakly coupled. By applying similar scaling arguments to the complete
DBI-action, one can extend these conclusions to the twisted Wilson-line sector as well.

B.2 EFT strings in heterotic models

We now consider the EFT strings of the heterotic models discussed in section 7.

Take first an EFT string that uplifts to a heterotic F1 string. Its flow is compatible
with a weak coupling regime, since along it the (string frame) Kéahler moduli do not change,
while the ten-dimensional string coupling goes to zero [19]. Hence one may even exactly
quantize it in superstring perturbation theory.

Let us then turn to an EFT string corresponding to an NS5-brane wrapping a nef
divisor D C X. In this case gs can increase along the EFT string flow — see [19] and below
— and then it is convenient to uplift the model to an HW M-theory compactification on
I x X, with I = S'/Zy. The NS5-brane uplifts to an M5-brane wrapping {§} x D C I x X
and, as discussed in section 7.3, may require the insertion of open M2-branes. The M5’s
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geometric moduli space can be identified with I x Mp, where Mp is the moduli space of
D c X. Any nef divisor D is expected to be automatically effective, as conjectured in [15].
One can more precisely describe Mp as in [15, 79], but we will not need such a description.
We will focus on the NLSM description of the M5’s geometric moduli space I x Mp,
proceeding as for the D3-branes discussed in appendix B.1. We introduce some complex
coordinates z* on X, ¢! on Mp and ¢Z along D. Mp describes a family of local embeddings
¢t = ZY((; ) and a first-order infinitesimal deformation of D corresponds to an element
of TM|p ~ H°(ND), where ND = TX|p/TD ~ Ox(D)|p. The elements of a basis
wr = wtd; of HY(N D) describe the deformations of the local embedding as in (B.1).
As in section 7, we set the M-theory Planck length £y = {5 and parametrize I = S*/Z
by a coordinate y ~ y + 2, with y ~ —y. We can then restrict to y € [0,1] with y = 0,1
hosting the ten-dimensional Eg gauge sectors. The eleven dimensional M-theory metric
takes the form
ds?, = e?Ads? + 2, (d§§( + s dy2) (B.13)

with
_2¢
on 2 M2e
e =

- (B.14)
4V

where Vy is the volume of X in eleven-dimensional Planck units. We can identify e? with
the heterotic string coupling and e% with the length of the HW interval. Here we are
neglecting subleading backreaction effects due to non-trivial gauge bundles or G4 field
strength, and to bulk M5-branes, since they will not be relevant in the following.

An M5-brane has world-volume T' = W x {y = Y} x D, on which we introduce
adapted real coordinates ¢4 = (0%, u®) (where u® = u%((,¢)). The embedding is defined
by X*(0),Y (0), Z'(¢; (o)), and we can consider X#(0),Y (0), ¢! () as NLSM fields. By
repeating the same steps followed in appendix B.1, the geometrical sector supported by the
Mb5-brane is described by the effective action

2
SM5:——7T/d6§ —det g|x+ (flux terms)
05, Jr
__Tp 6 27Vp [ ae ) oo o L7 AN A8 p LT
__VD/l“d §\J—det{ha5+7b[e 3 GQYOBY—&—(giJ-(Z,Z)w[wj&Y@ Opp —G—C.C.”

-\/det hgp+ (flux terms).
(B.15)

Here we have introduced the projection of the Calabi-Yau metric to the orthogonal directions
al oA . A 2TT73 Sk
5 = 9i7 — 9 907 02952 (B.16)

the world-sheet metric hag = gu (X)0a X*05X", the induced metric hay = 0i5(2, 2)

0aZ'0yZ7 + c.c. along D, the volume Vp of D in eleven-dimensional Planck units, and the

EFT string tension:

2 62AVD
Gy

Tp = (B.17)
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We now note that the combination appearing in front of (9Y)? in (B.15) is given by

27rVDe% 9 46 o4 1
— =/
Tp

g (B.18)

where m, is the KK mass along I. As in the D3 case of appendix B.1, we can write
95 = L% 903z (B.19)

where L is identified with the length scale (in eleven dimensional Planck units) of the
directions in X transversal to D, and gOLij is at most of order O(1). By introducing the
corresponding KK scale myx = e /(¢yL, ), we obtain the relation

27TVD Al 1 ~l
T 9i7 = m%KQOij' (B.20)

We can then expand the square root appearing in (B.15), since the second term appearing

therein is at most of order (9(%, %), which is small in the EFT regime F < A <
* KK

min{m., mgx }.
Hence, the leading contribution to the world-sheet action splits into a standard universal
term and a NLSM term:

- TD/de /= det huy — me /de [~ det hag h*°0,Y 957
- /d%,/—det has hPG, 10, 3) 0 0557 + ...

Gri= 27r/Dd4u\/det hp 552, Z) i (B.22)

Note also that G; 7 approximately scales like Vx under a deformation of the internal space.

(B.21)

with

We can now discuss the scaling behaviour of the NLSM terms along the possible EF'T
string flows, following the classification of [19]. In order to lighten the discussion, we will
assume that there are no background Mb5-branes. Their inclusion can be treated similarly.

As a preliminary step, we observe that combining (7.2) and (7.16a) (plus the absence
of background Mb5s) we get

1 1

¥ = 56_2(1)/{(8, s,8) + ipasa, (B.23)

and then )
e = H(S’—?S) and Vyx = 8" — Zpast. (B.24)

6(80 _ §pasa) 2
Furthermore, recalling (B.14) we can rewrite the microscopic mass scales m, and myx as

follows:
M3e™2% 33 M3e 5% 63 M2

e P e L A P (B.25)

4nVyx  27k(s,s,s)’ B 47TL%_VX a 47TL3_[H(8,8,S)]1/3V)2(/3 .
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Consider now an EFT string with charge vector e = (e, e%). Without loss of generality,
we can assume that p,e® > 0, since the case p,e® < 0 can be recovered by applying the
symmetry (7.17). We will actually restrict to the case pge® > 0, in which the EFT string
detects the perturbative gauge sector.

From (7.24) we see that De = €*D, must be nef and furthermore we must impose
that €% > p,e®. We will then make the minimal choice e = p,e?, since the extension of

a

the following discussion to the case € > pye® is immediate. Note in particular that the

condition e = p,e® forces the internal volume Vy to asymptotically scale like
N 1
Vx ~ §paeaa, (B.26)

under any EFT string flow of this class. This implies that G;; asymptotically scales like
o too, guaranteeing the weak-coupling description of the corresponding NLSM sector.
These effects are induced by the inclusion of the higher derivative corrections and of the
corresponding deformation (7.24) of the saxionic cone identified in [19], which was not taken
into account in that paper. Hence, the discussion of [19] actually holds only if p,e® = 0,
and we now revisit the three cases considered therein in the more general case p,e® > 0.

Case 1: k(e,e,e) > 0. The first of (B.24) implies that > ~ '{é;ee)a asymptotically
along the EFT string flow (3.5). We then see that the two NLSM terms appearing
n (B.21) scale like o%/3 and o respectively, hence naturally guaranteeing the weakly-coupled
description. Furthermore, note that the length of the HW interval scales like o3, while
the Calabi-Yau characteristic length scales like 5. Hence the EFT string backreaction
generates a hierarchy and induces an intermediate decompactification to five dimensions.

1/3

Furthermore Lﬁ_ ~ o'/3 and from (B.25) we get the asymptotic scalings m?2 ~ Mio 2073 and

m2, ~ M3o~2, hence confirming the scaling weight w = 3 found in [19], but microscopically

realizing it in a different way.

Case 2: k(e,e,e) = 0 but k(e,e,e’) > 0 for some e € Nefz(X). In this case X
can be realised as the T2 fibration over a two-fold B and the divisor De is ‘vertical’. Along
the flow both €2? and G 17 scale like 0. This implies that the two NLSM terms appearing
n (B.21) scale like 02/3 and o respectively, again justifying the weak-coupling assumption.

Note also that the effective curve C = D2 is a multiple of the T2 fibre and has
constant string frame volume vol(C) = k(e,e,s) = k(e,e,sp). In the M-theory frame,
;51(0) = e_%ﬁ(e,e, s9) and then C shrinks to zero-size as e 2%/3 ~ ¢~1/3. This implies
that the M-theory base volume \7(;1(3) should diverge like 6%/3. Hence, the corresponding
length goes like o/3, as the length of the HW interval. This means that the EFT string
flow induces again a hierarchy of compactification scales, so that the configuration could
be described by first reducing M-theory to nine dimensions along a 72 fibre, and then by

further compactifying along B x I. Furthermore Li ~ 2/3

2

and (B.25) gives the asymptotic
scalings m? ~ MI%O'_2 and m2, ~ Mlga_ , confirming the scaling weight w = 2 found

n [19], but again microscopically realizing it in a different way.

Case 3: k(e,e,e’) = 0 for any ¢ € Nefz(X). In this case ¢** does not scale
asymptotically along the EFT string flow, while as in the above cases G; 5 scales like o, again
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allowing for a weakly-coupled NLSM description. The internal space X can be regarded
as a T* or K3-fibration over P!. The divisor D is a multiple of the fibre and has constant
string-frame volume 3£ (e, s, so). Hence Vp, = %ef%ﬁ(e,so, so) is also constant. Since
Vx diverges as o, the volume of the P! base should also diverge like o, so that Li ~ o. We
then see that the EFT string flow induces a decompactification along the P! base, while the
other directions do not decompactify. In this case we get a scaling weight which is different
from the one obtained in [19]. Indeed (B.25) now gives m? ~ M3o~! and m2, ~ MZo =2,
corresponding to a scaling weight w = 2, which is different from the value w = 1 found in [19].

In conclusion, in all cases a weakly-coupled NLSM description is allowed, if not even

favored, by the EFT string flow.

C Derivation of heterotic (s)axionic couplings

In this section, we recall the derivation of the threshold corrections to the (s)axionic
couplings in both the Eg x Eg and the SO(32) heterotic string models in order to obtain the
expression that we used in this paper to check the validity of the EFT string constraints.

C.1 Eg X Eg models

We begin by reviewing the derivation of the threshold corrections to the (s)axionic couplings
in heterotic Fg x Eg string models, referring to [99] and references therein for further
details. Let us denote the two heterotic Fg field strengths by F; and F, respectively. Our
conventions for the traces are the same ones as described after (2.7) and in footnote 4.
Similarly, we denote the ten-dimensional curvature two-form by R.

These objects enter the Bianchi identity

2
dHs3 = €S [tr(F1 A Fl) + tl“(FQ A FQ) + tl“(R/\ R)] + ES&;(F) , (Cl)

1672
where I' = R* x C with C = |J,, C* denotes the overall world-volume of a set of NS5-branes,
labelled by k, wrapped on irreducible internal curves C*¥ C X.

We can now split Fj 2 and R into external and internal contributions: Fy o = F} o +F172
and R = R+ R. For simplicity, we assume that the possible non-trivial internal gauge
bundles associated with FLQ correspond to semi-simple sub-algebras of egs. This leads to
the following cohomological condition for the tadpole of the internal contribution,

AMEL) + AM(E2) = o X) — [C], (C.2)
where we have defined )
ME) = =1 tr(FAF). (C.3)

We are interested in the higher curvature terms originating from the 10-dimensional Green-
Schwarz counterterm [130, 131]

1
ASas = 5 /32 A, (C.4)

79 -



written in terms of the anomaly polynomial

1

Iy= To2(an)? 2(tr F2)2+2(tr FY)? —2tr FE tr F 4 (tr F3 +tr FY) tr R? +-tr R + 4(trR2)2 :
(C.5)

and from the following two terms associated with the background NS5-branes,

1
s — 7%/ aa(trFl2 +tr F2 + trRQ) )
19277 1y

(C.6)

2 ~
S():167-(—Z/M4a trFl —tng)

Here we are using a compact notation in which the wedge product is implicit, which we will
often adopt also in the following. Furthermore we have introduced the intersection numbers

QaE/Wa:Da'Ca (C?)
C

and the NS5 axions defined as
a*= | BY, (C.8)

where 312“ is the self-dual gauge two-form living on the k-th NS5-brane wrapping the curve
C*. The derivation of the corrections to the heterotic action from the 5-branes is particularly
elegant in the framework of heterotic M-theory, where they can be attributed to the
Mb5-brane sector. For further details on the derivation, we refer to [99].

Under our assumptions on the internal bundles, we can split the field strengths as

trFf:trF12+trF12, tngztngthrﬁg,

R C.9
tr R? = tr R + tr R?, trR*=0. (C9)

Taking this into account and expanding the perturbative heterotic B-field as By = £2a%w,,,
we arrive at the total threshold corrections for the gauge sector,

1 .1 3
-5 <a+2pa 8qaa —Za)trFl/\Fl)

. . . (C.10)
~ % /(a— §paa + 8qaa 4 = Za )tr Fy ANFy).
and the gravitational sector,
1 R -
- —/ 124 4 nga® — —qqa® | tr(R A R). (C.11)
967 2
Here we have introduced the quantized constants
1
Do = — /Xwa A l:/\(EQ) — 2CQ(X):| , (C.12a)
1
Ng = 7/ wa A c2(X). (C.12b)
2 Jx
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After replacing @ with a® defined as

1 3 1
~ 0 ~k
a=a — ipaa“ + gqaaa + 3 Ek a, (C.13)

we can rewrite (C.10) and (C.11) in the form

1 0 1 0 a 1 a ~k
o /a w(FiAF) - o /<a paa® + 500" + §kja ) (P AF),  (C.14)
and
1
- o6 <12aO — 6pga® + nga® + 3gq.a® + 6 Ek dk> tr(RAR), (C.15)

respectively. We finally perform another shift, this time of the M5-brane axions, redefining
it =dk — 1/ By =d — lmkaa with mF =D, c* (C.16)
= 2€g ok 2 92 a a = a . .

Note that, taking into account that
Ga = Zmlg, (C.17)
k

(C.16) implies that

. 1
Zak = Zak - iqaa“ : (C.18)
k k
The saxionic counterpart of this redefinition reads
1
§F =gk — imlgs“. (C.19)

To understand the meaning of this linear redefinition, we may observe that it can be
interpreted as a shift of what we mean by ‘zero-position’ of the background Mb5-branes on
the HW interval and that the chiral fields t* that contain the axions and saxions correspond
to the chiral fields —27iA, in [99]. Hence, by adapting their (41) we identify

§F =P - J = MmFs®  (no sum over k), (C.20)
where \F represents the position of the M5 along the HW interval — denoted as A, in [99].
Now, as illustrated in figure 2 therein, the values \*¥ = —% and \F = % correspond to
placing the k-th M5 on the left and right HW wall, respectively. That is, we can identify
e =gk — %, where ¥ is the coordinate we used on the orbifold circle, with the property
of being 0 on the left HW wall and 1 on the right one. In combination with (C.20), this

implies that s* introduced in (C.19) corresponds microscopically to

sk = A’f/ J=9*mks®  (no sum over k). (C.21)



In terms of new M5 axions a* introduced in (C.16), the axionic couplings take their
final form

1 1
87r/a tr(Fl/\Fl)—S— (a — paa® —i—Za)tr Fy AN Fy),

) (C.22)
_ 967r/(12a — 6pga® + nga® +62a )tr RAR).
The corresponding saxionic couplings then follow by supersymmetry:
1 1
- g/so tr(Fy A xFp) — 87r/<80 — pas® + zk: Sk> tr(Fy A\ xFy),
(C.23)

1
_967r/<128 — 6pas® + ngs® —1—623 )tr R A xR).

C.2 SO(32) models

The SO(32) heterotic string models can be treated in a similar way to the Eg x Fg string.
First, recall the form of the Ig polynomial in the Green-Schwarz term needed for anomaly
cancellation in this setting [130, 131]. Adapting it to our conventions, this is given by

1 1
Is=—— _|8tr F* + tr F2tr R?> + tr R* + = (tr R%)?|. 24
5= 19200 8tr F* + tr F* tr R* + tr +4(r ) (C.24)

We proceed by splitting F' and R in their internal and external components, according to
the KK ansatz. This gives us

tr F? :trF2+trF2,

N C.25
trR?=trR>+trR?>, trR'=0. ( )

In general, contrary to the Fg x Eg case, different breaking patterns for SO(32) will result in
different corrections to the 4d kinetic terms (see e.g. [132]). Here, for simplicity we assume
an internal gauge bundle such that tr F* = 0. This choice leads to

~ A 1 ~
Iy = tr 2 + tr ) (tr R? 4 tr R?) + L (o R? 4 tr RQ)Z}

1
192(27)3 [(

1 - A 1 .
~—— _tr F?tr R — ¢ R2<—t F?2— Rzﬂ
192(277)3[1" g g ' 2

= gz | FealX) — R (\(E) = ea())

|:tI'F202(X) — %tr R2C2(X)] )

(C.26)

96

where we ignored the terms that will not contribute to the 4d couplings we are interested
in and the last steps are to be meant cohomologically and in absence of NS5-branes, having
taken into account the tadpole condition A(E) = co(X).
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Expanding the By gauge two-form in the Green-Schwarz counterterm (C.4), we obtain
the corrections to the axion couplings in absence of NS5-branes

1 1 1
~ % /(d - 6naa“> tr(FAF) — 96 /(12& + nga®)tr(RAR). (C.27)
If we now replace @ with
1
=a— gnaa“, (C.28)
we obtain the contribution
1/, 1 0
- — FAF)— — 12 wa® . 2
SF/a t(F A F) 9677/( a® + 3nqa%) tr(R A R) (C.29)

By supersymmetry, the saxionic couplings are then given by

- 8i7r / s%tr(F A *F) — 96% /(1250 + 3ngs®) tr(R A *R) . (C.30)
We expect the gravitational couplings to be invariant under a transition that replaces
some of gauge bundle by NS5-branes; the changes in the above computation due to the
modification of the Bianchi identify should be counter-balanced by additional terms from
NS5-branes. These are hard to compute directly in the heterotic frame, but are S-dual to
curvature terms in the Chern-Simons actions of D5-branes in Type I string theory [133].

D M5 instantons in Eg X Eg heterotic models

In this appendix we discuss the structure of the saxionic cone (7.22) in terms of the Euclidean
M5-brane instantons.

We start by considering a process in which the first four-dimensional gauge sector forms
an elementary anti-self-dual BPS instanton of unit charge, —# Jtr(Fy AN Fy) =1 — see

footnote 4. This instanton contributes to the amplitudes by an exponential factor 2mit® —

e 2ms’ g2mia’ By a small instanton transition, this gauge instanton can be continuously
deformed into an M5-brane instanton wrapping X at § = 0. Hence, by holomorphy, the
Mb5-instanton contribution to the amplitudes should still be weighted by 2mit? — g—2ms" o2mia”
and then its Euclidean action should be given by 27s". By repeating the same argument
with the second HW wall and taking into account (7.14), we conclude that an M5-brane
instanton at § = 1 should have Euclidean action 27(s? — p,s® + ¢45%). At first sight, these
results may be puzzling, and one may naively be worried that if (pg, — ¢q)s* > 0 the M5
instanton on the first HW wall could slip to the second wall, and vice versa if (pg —gq)s* < 0.
But this would clearly appear in tension with the assumed BPS-ness of the M5 instanton,
as we would expect that either the Mb5-instantons are stuck at the HW walls, or that their
on-shell action should not change as we move them along the y direction.

The key point is that in presence of a non-vanishing G4 flux along X, the Euclidean
Mb5-branes sitting at intermediate positions ygs € (0, 1) are not isolated but must be rather
connected to one of the HW walls by open Euclidean M2-branes. Indeed recall that, in
general, if the boundary of one or more open M2-branes contains a two-cycle ¥ supported on
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the M5 world-volume, they contribute as follows to the Bianchi identity of the M5 self-dual
three-form Hs:
dHz = 1,2 Gylvs — 64(D). (D.1)

This implies the cohomological constraint
60 1Gallvs = (3. (D.2)

In other words, if [G4]ms is non-trivial in cohomology, then the M5-brane must host a
homologically non-trivial component > of the M2 boundary, fixed by (D.2).

In the present setting, (7.20b) implies that the constants p, defined in (7.10) can be
alternatively identified with

1
= — lim Gy, D.3
DPa €§4 1= iy Da 4 ( )
and then measure the flux quanta of G4 close to the second HW wall. As we move to the

left and we cross a given subset of background Mb5-branes, the G4 flux quanta change to

1 / N 1
— G4 =ps — m, = — lim G4 =1Da—qa- (D.4)
6 J{yyxDa ' klﬂz’fiy ’ B v=0+ JyyxDa o

Combined with (D.2), this implies that

/J:gl3 J NGy = pgs® — Z mPs®. (D.5)
> M Hyms X klg*>yms

In our setting, BPS Euclidean M2-branes extend along the HW interval and wrap
an effective (possibly reducible) curve C C X. Considering BPS Euclidean M2-branes
ending on the M5-instanton from the left or from the right (in the y direction), we can
then identify their boundary with > = C or ¥ = —C, respectively. Since we necessarily have
JoJ >0, (D.2) and (D.5) imply that these open M2-branes should end on the M5-instanton
from the left if p,s* — Zk@k>yE5 m];s“ is positive, and from the right if it is negative. Note
that mFs® = Jor J > 0 and then the combination p,s® — D k|gF >yes mks® increases as the
M5 instanton crosses the background Mb5-branes from the left.

Consider for example the case in which (p, — ¢,)s* > 0. In this case an isolated M5
instanton sitting on the first HW wall can be moved away from it to a more general position
yrs > 0, but this process will generate Euclidean M2-branes stretching between the HW
wall, the M5 instanton and the intermediate background M5-branes. Figure 1 in section 7.2
illustrates the case with a single background M5-brane wrapping the curve Cys >~ q,2¢
(where X% - Dy = 6f) at § < ygs, and the open Euclidean M2-branes wrapping the curves
Ciz =~ (Pg — )2 and CL, ~ p, X% respectively. The total action does not change from the
initial value 27s°, but is the sum of the contributions of the different Euclidean branes.

Let us order the background M5-branes so that §* < §**1. We can write the contribution
to the total instanton action coming from the open M2-branes as

Sinst — on [yE5 (pa — Z m];) st — Z sk} . (D.6)

|9k >yps kg% <yes
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Hence, the contribution to the instanton action coming from the M5 at yg; must be given by

st st st 0 . .
Siie = 5™ — S\ =27 | 8" —yes | pa— D mg |0+ D s"|. (D.7)
|9k >yps klg* <yes

It is easy to check that Sif5! and Sifs' are continuous in yg; and that, as expected, the
latter reduces to 27(s® — pas® + 3 s%) in the limit yg; — 1.

Note that, on the other hand, if (p, — g)s® > 0 an isolated M5 instanton sitting on
the second HW cannot move from it, since it would require the presence of open M2-branes
ending on it from the left. If instead pas® < 0 the role of the two HW walls is inverted:
an isolated M5 instanton on the first HW will remain stuck on it, while an isolated M5
instanton on the second HW will be free to move away from it, forming a composite M5 /M2
instanton. Indeed, this is expected from the Zy symmetry (7.17).

There could also be intermediate cases in which p,s* > 0 and (p, — g4)s® < 0. In these
cases the isolated M5 instantons sitting in both HW walls should be trapped, while there
could be composite mobile M5/M2 instantons. It would be interesting to study better
the transitions between these various possibilities as we move in the Kahler cone, and
in particular the connection with the bundle stability walls. But for the purposes of the
present paper, we just need to observe that the positivity of the M5-brane action (D.7) is
guaranteed if we impose the conditions s° > 0 and s° — p,s® + 3, s* > 0.
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