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1 Introduction

Background independent approaches to the problem of quantum gravity postulate that, at
the fundamental level, the continuous spacetime geometry dissolves into a microstructure
of discrete, non-spatiotemporal entities. A central issue is then how a continuum space-
time emerges from the collective behaviour of the latter. A crucial role in this process
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seems to be played by the quantum phenomenon of entanglement. In fact several results,
in quantum gravity contexts and beyond, point out a relation between entanglement and
spacetime geometry and topology. We mention a few of them only, out of a very large
body of work. Within the AdS/CFT correspondence [1], the Ryu and Takayanagi for-
mula [2, 3] relates the entanglement entropy between subsets of degrees of freedom in the
boundary CFT associated to distinct regions to the area of minimal surfaces connected to
that boundary regions in the dual AdS spacetime. In [4], it was shown that entanglement
between two spacetime regions, as measured by the mutual information, is closely related
to the connectivity of spacetime, as indicated by the scaling of the correlation with dis-
tance. A relation between entanglement and geometry shows up also at a dynamical level:
via the holographic dictionary based on the Ryu-Takayanagi formula, the “entanglement
first law” [5] in CFT translates into Einstein’s equations linearized about pure AdS space-
time [6–8]. A different perspective on the subject is given in [9], where gravity emerges
from completely abstract quantum degrees of freedom: specifically, spatial geometries are
constructed out of the entanglement pattern of abstract quantum states in a Hilbert space.
This last work in fact hints at the same idea that we realize here concretely and in some
detail, and in the context of a well-established quantum gravity formalism.

The outlined scenario suggests that, in order to carry out the emergent spacetime pro-
gram, we need to efficiently describe entanglement in the states of a many-body system
(the collection of pre-geometric quanta) and concurrently relate such entanglement to ge-
ometric properties of a spatial or spatiotemporal structure that can be associated to the
same states. In this paper we detail a correspondence between the quantum states of the
quantum gravity formalism of group field theory (GFT) [10] and the quantum information
language of tensor networks (TN) [11–14], which defines a promising framework to per-
form both tasks, thanks to the importing of quantum information techniques in a proper
quantum gravity setting.

A TN is a collection of tensors contracted according to a certain pattern. A single
tensor is graphically represented as a node with open legs, one for each tensor index, and
interpreted as a map from the degrees of freedom attached to a set of (input) legs to
the complementary set of degrees of freedom on the remaining (output) legs. When only
outputs are present, the tensor can thus be regarded as the state of a quantum system (say
a “particle”) living in the Hilbert space associated to all tensor legs. In this picture, which
is the one we focus on, the tensor network describes the state of a many-body system,
with a node for each particle. As the contraction of tensors - the gluing of legs - generally
induces entanglement between the involved degrees of freedom, the tensor network is able
to encode, in its combinatorial and quantum information, the entanglement pattern of a
many-body state. As consequence, some TN satisfy entanglement area laws, a feature
that makes them promising candidates for modelling holographic states in the context of
the AdS/CFT correspondence, and more generally in a (quantum) gravitational context.
Among the large literature exploring this application of tensor networks, we cite [15, 16],
where it was showed that entanglement renormalization [17] on a certain class of many-
body states gives rise to a network in an emergent holographic dimension and that, at a
quantum critical point, such a network reproduces a discretized AdS space. More recently,
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tensor networks have proved to exhibit several other aspects of holographic duality [18–20],
and have been used indeed to reproduce states in the AdS/CFT context [21–28].

GFT is the theory of a (bosonic) field defined on a group manifold; the excitations of
the field, interpreted as quanta of space, are represented as fundamental simplices whose
geometric properties are encoded in the group-theoretic variables of the field domain. By
gluing the fundamental simplices to each other one can build up a discrete spatial mani-
fold of arbitrary topology. As we are going to make explicit in the following, the gluing
of different simplices is given by the entanglement between their degrees of freedom; the
resulting simplicial complexes thus correspond to entanglement patterns among quanta of
space. This is particularly evident when adopting a spin network representation: each sim-
plex is depicted as a vertex with attached open links (i.e. links whose other ends terminate
at univalent vertices); the links are dual to the faces of the simplex and carry the group
variables describing its geometry. In such a dual picture, the entanglement distribution
encoded in a generic GFT state is associated to a network (or, in a quantum gravity lan-
guage, to a graph). The interaction processes of the field quanta, governed by a quantum
dynamics whose elementary blocks are determined by the non-local interaction kernel of
GFT action, result in the combination of the simplices (the GFT quanta) into higher-
dimensional simplicial complexes, to be understood as discrete counterpart of spacetime
manifolds. The perturbative expansion of the GFT partition function thus returns a sum
over such complexes, with Feynman amplitudes being discrete gravity path integrals on the
simplicial lattices bounded by the gluings of simplices encoded in the GFT quantum states;
or, equivalently, spin foam models expressing the evolution of the dual spin network states.
In that sum we can find a combination of strategies for lattice quantum gravity: quantum
Regge calculus [29] and dynamical triangulations [30], and the spinfoam amplitudes [31],
for the spin network states of loop quantum gravity (LQG) [32]. In this perspective, GFT
can be seen as second-quantized many-body reformulation of LQG [33], in addition of be-
ing a direct group-theoretic enrichment of random tensor models [34, 35] (their common
framework being often referred to as “tensorial group field theories”).

Therefore, both formalisms of group field theory and tensor networks rely on graphical
structures built up from entanglement. In this work, we make this shared feature explicit
and more precise, at the same time strengthening and generalizing the correspondence
between quantum gravity states and tensor networks, building on previous work which
had already pointed out the relation between the LQG spin networks and particular TN
decompositions, for example [36, 37], and carried over a first-quantized version of the
GFT framework in [38]. On the one hand, our work advances the description of discrete
geometries in GFT and the understanding of the parallel relation between entanglement
and geometry; on the other, it enriches the TN language with insights from quantum
gravity, overall defining a precise mathematical setting to merge tensor network techniques
with that of a background-independent quantum gravity formalism. The benefits of the
improved correspondence go both ways.

From the perspective of GFT quantum gravity, we provide a rigorous mathematical
formulation of the presence, in the GFT Hilbert space, of states associated to arbitrarily
connected graphs, clarifying also the entanglement origin of the latter. From the per-
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spective of tensor network applications to quantum gravity (for example in the AdS/CFT
context) this also enable us to show how the idea of entanglement generating geometry
(area and volume realizations) and topology (the combinatorial structure of graphs), can
be made concrete and explicit, at least in a discrete geometric context, based on (and al-
ready suggested by) results in LQG, spin foam models and GFT itself. This is an immediate
improvement over existing applications of tensor network ideas in this direction. Indeed,
while an interpretation of networks/graphs as discrete geometries is already present in the
TN context, this is (severely) limited to simplicial complexes considered only in their combi-
natorial structure, with a geometric interpretation following from using the graph distance
as metric. GFT graphs, on the other hand, carry additional quantum geometric degrees
of freedom, and it is this additional structure that allows a richer entanglement/geometry
correspondence, as we are going to show.

As far as the correspondence between tensor networks and spin network graphs is con-
cerned, the main novelty of our work respect to the aforementioned literature, and other
applications of random tensor network ideas [19], is the generalization of such correspon-
dence to a second quantized setting, which provides the TN framework with a Fock space
structure and concurrently carries a strong physical implication: the attainment of (a dis-
crete version of) diffeomorphism invariance for the structures involved. Let us expand
on this key point. When moving to the proper second-quantized formulation of GFT, a
crucial difference with the quantum information language arises: while the GFT quanta
are indistinguishable, the nodes of a tensor network, as normally defined, are not. In a
quantum gravity model, the indistinguishability of the building blocks of space is a neces-
sary condition for background independence. In fact, it can be understood as a discrete
counterpart of invariance under diffeomorphisms, as vertex labels play the role analogous
to “coordinates” over an abstract combinatorial pattern. This is why our work offers a
further improvement compared to existing construction based on random tensor networks
in [19]: without a suitable invariance under relabelling of the random tensor networks,
their interpretation as geometries is probably incomplete. The possible way out would be
to give the labels associated to tensor network nodes some physical characterization, and
this is indeed another point for which we illustrate a suitable concrete realization.

In this paper, in fact, we show that GFT entanglement graphs are in fact generalised
(and second-quantized) tensor networks that, in addition to having a direct simplicial-
geometry interpretation, naturally satisfy (a discrete version of) invariance under rela-
belling/diffeomorphisms, as a consequence of the bosonic statistics of their nodes/vertices.
In particular, GFT entanglement graphs can be seen as generalised random tensor net-
works, whose probability distribution is determined by the GFT model governing their
dynamics. We also show how distinguishability of vertices can be recovered at a relational
and effective level, by coupling the GFT field to an additional degree of freedom playing
the role of a physical reference frame, in the spirit of the relational strategy typically em-
ployed in the quantum gravity context to define physical (thus, diffeomorphism invariant)
observables in absence of preferred notions of space, time and locality.

Let us finally remark that, beside its quantum information aspects, our work, clarifying
the way graph structures are encoded in the GFT formalism, and how the usual spin
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network states associated to connected graphs are embedded in the Fock space of GFT
(and thus, spin foam) models, will be a strong basis also for the definition and analysis
of combinatorially non-local observables (such as curvature operators) in this quantum
gravity formalism.

Our work is organized as follows. After introducing, in section 2, the GFT formal-
ism, we present in section 3 the graph theory tools we will use throughout the paper:
the encoding of combinatorial patterns into matrices and the related notions of labelled-
and unlabelled-graphs, i.e. graphs made of distinguishable and indistinguishable vertices,
respectively. We then outline how to construct GFT states associated to graphs with arbi-
trary connectivity: we first provide, in section 4, a basis-independent prescription to define
states associated to labelled-graph, working in the pre-Fock space of the theory; in section 5
we then implement vertex-relabelling invariance, obtaining states of unlabelled-graphs in
the GFT Fock space. In section 6 we define a scalar product which compares graph states
independently of the vertex-labelling, with the criterion of maximising the overlap between
their combinatorial structures. We conclude the analysis on graph states with section 7,
where we show how an effective and relational notion of distinguishability of vertices can
be recovered by adding new degrees of freedom (with the interpretation of discrete matter
fields) to the GFT model. We then introduce, in section 8, the TN formalism and finally
present, in section 8, the dictionary between group field theory states and tensor networks,
explaining how GFT (labelled- and unlabelled-)graph states can be read as precise classes
of tensor network states (PEPS).

2 The GFT formalism

A GFT is a field theory whose domain is given by (d copies of) a group manifold and
characterized by combinatorially non-local interactions. Let us illustrate these points. The
GFT field φ is defined as follows:

φ : Gd → C
g1, . . . , gd φ(g1, . . . , gd)

An excitation of the field is interpreted as a (d − 1)-simplex, with the group vari-
ables g1, . . . , gd (together with their conjugate ones under various group-theoretic Fourier
transforms) associated to its faces and encoding its geometric properties. In order for
φ(g1, . . . , gd) to properly describe the geometry of a (d−1)-simplex, it must satisfy the clo-
sure condition φ(hg1, . . . , hgd) = φ(g1, . . . , gd), i.e. be invariant under the specified gauge
transformation. Additional conditions are imposed, normally at the level of the GFT dy-
namics, in 4d gravitational models, where the group is taken to be SU(2) or SL(2,C) or
Spin(4), to ensure the proper geometric interpretation of the GFT quanta and the discrete
structures they form. These geometric aspects, while of course crucial for the interpretation
of the formalism in a quantum gravity context, are not directly relevant for our present
purposes. As showed in figure 1, the fundamental simplex can also be represented as a
d-valent vertex, with an open line corresponding to each face; the latter is identified by a
colour i, with i = 1, . . . , d, and carries the group variable gi. Such a dual representation in
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Figure 1. Excitation of the field φ(g1, . . . , gd) ∈ L2(Gd/G) for the case d = 4. On the left, the
simplicial representation as a tetrahedron; on the right, the dual representation as a spin network
vertex.

terms of open vertices decorated by group variables makes explicit the correspondence of
these quanta with the spin networks of loop quantum gravity [32].

The GFT action for quantum gravity models in a simplicial context takes the gen-
eral form

Sd(φ) =
∫

dgdg′φ(g)K({gig′−1
i })φ(g’)

+ λ

d+ 1

∫ d+1∏
i=1

dgi
d+1∏
i 6=j=1

V(gij(g
′j
i )−1)φ(g1) . . . φ(gd+1), (2.1)

where the bold notation g refers to a collection of d group elements, g = g1, . . . , gd, and
dg := dg1 . . . dgd; K and V are the kinetic and the interaction kernel, respectively. The
non-local pairing of field arguments in the interaction-term determines the gluing of the
fundamental (d − 1)-simplices (in the dual picture, the linking of the corresponding ver-
tices) into d-cells (graphs made of d-valent vertices). The interaction processes of the space
quanta thus generate d-complexes of arbitrary topology, which are interpreted as discrete
substratum of the continuum spacetime that should emerge from them in some appro-
priate limit. In the perturbative expansion of the GFT partition function, they are dual
to the theory’s Feynman diagrams. The Feynman amplitudes, on the other hand, repro-
duce discrete gravity path integrals, and the entire expansion can be seen as the result of
merging the strategy of quantum Regge calculus [29] (sum over discrete geometric data
attached to a lattice) with that of dynamical triangulations [30] (for given geometric data,
sum over all possible lattices). The Feynman amplitudes also coincide with spinfoam am-
plitudes [31], as evident when expressing group functions in a group representation basis
(see section 2.2). Moreover, as mentioned before, the boundary states of the d-complexes
dual to the Feynman diagrams correspond to spin networks, the LQG candidates for the
fundamental degrees of freedom of quantum geometry. Let us finally mention that GFT
can be regarded as a generalization of random tensor models [34, 35], where the combina-
torial structures of the latter are enriched with group-theoretic data. As we will clarify in
the following, these additional data are responsible for the characterization of the graphs
associated to GFT states as patterns of entanglement among quanta.

The GFT ladder operators satisfy bosonic commutation relations:

[φ(gx), φ†(gy)] =
∫

dh
d∏
i=1

δ(hgxi g
y−1
i ), (2.2)
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where the r.h.s. is the gauge invariant Dirac delta distribution on Gd. The GFT Fock space
is constructed starting from a vacuum state |0〉 annihilated by φ(gx), with the fundamental
simplices created by the action of φ†(gx) on |0〉.

2.1 From the single-vertex Hilbert space to the Fock space

As we will make extensive use of the GFT formalism in its first-quantized form, we present
here the derivation of the GFT Fock space from the single-vertex Hilbert space, via the
construction of a pre-Fock space.

A GFT vertex of valence d is associated to the Hilbert space H = L2(Gd/G), as follows
by the definition of the field and the closure condition.

Starting from that, we can consider the Hilbert space associated to a set of V (distin-
guishable) vertices: HV := H1 ⊗ . . . ⊗ HV , where upper indices refer to vertex labels. A
generic “V -particle” state thus takes the form

|ψ〉 =
∫ ∏

x

dgxψ(g1, . . . ,gV )⊗x |gx〉 , (2.3)

where gx = gx1 , . . . , gxd , and |gx〉 provides a basis for the single-vertex Hilbert space Hx. By
taking the direct sum of the Hilbert spaces associated to all possible number of vertices V ,
we obtain the GFT pre-Fock space:

pre-F(H) = ⊕∞V=1HV (2.4)

By symmetrizing each HV = H1⊗ . . .⊗HV over the vertex labels, we then obtain the Fock
space of the theory:

F(H) = ⊕∞V=1sym
(
H1 ⊗ . . .⊗HV

)
. (2.5)

2.2 Spin-representation of the GFT wavefunctions

A function f ∈ L2(G), where G is a compact group, can be decomposed in terms of
irreducible representations of G as follows (Peter-Weyl decomposition):

f(g) =
∑
jmn

djf
j
mnD

j
mn(g), (2.6)

where j ∈ N/2 is the spin labelling the irreducible representations of G = SU(2); the
indices m,n refer to a basis in the vector space carrying the representation j; dj := 2j + 1
is the dimension of the latter and Dj

mn(g) is the matrix representing the group element g.
Starting from this, one can consider the spin decomposition of single-vertex wave-

functions f ∈ L2(Gd/G); for G = SU(2) (which is the usual choice for the gauge group
of gravity),

f(g) =
∑
jnι

f jι
n ψjnι(g), (2.7)

where j = j1, . . . , jd and n = n1, . . . , nd are spins and magnetic numbers associated to
the open links of the vertex, respectively, and ι is the intertwiner index deriving from the
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gauge invariance of the vertex wavefunction [39]. In particular, the basis functions ψjnι(g)
(called spin network functions) are given by

ψjnι(g) =
∑
m
Cjι

m
∏
i

√
djiD

ji
mini(gi), (2.8)

where Cjι
m is the normalized intertwiner.

The spin decomposition clearly applies to the field operators as well; the creation
operator, for example, can be written as follows:

φ†(g) =
∑
jnι

φ†jιn ψjnι(g). (2.9)

Note that φ†jιn is the operator generating the spin-network basis: 〈g|φ†jιn |0〉 = ψjnι(g).
For more details on these group-theoretic aspects of the group field theory formalism,

and of the related spin foam models and loop quantum gravity, we refer to the literature
(for example, see [39]).

3 Graphs and their adjacency matrix description

In this section we introduce the graph theory notions that we will use to differentiate be-
tween combinatorial patterns implemented on distinguishable and undistinguishable quanta
(and thus to proper define the GFT entanglement graphs in first- and second-quantization,
respectively). For these and other notions of graph theory, we refer to [40].

Definition 1 (Labelled graph). A labelled graph γ is an ordered set of vertices connected
according to a certain pattern.

We refer to the number of vertices in a graph as its size. A labelled graph of size V
can be described by a V × V matrix A, called adjacency matrix, whose entries encode the
adjacency relations among vertices: Axy takes value 1 if vertex x is connected to vertex y,
and 0 otherwise. Since A encodes all information about γ, we refer to a graph by using
both notations, i.e. γ = A.

Two graphs which differ only for the labelling of their vertices are said to be isomorphic.
Formally, two labelled graphs γ = A and γ′ = A′ of size V are isomorphic if there exist a
permutation π on V elements such that A′ = PπAP

−1
π , where Pπ is the matrix obtained

by permuting the columns of the identity matrix.
Given an adjacency matrix A, we denote by [A] the equivalence class of matrices

obtained by permuting rows and columns of A:

[A] = {A′|A′ = PπAP
−1
π , π ∈ SV }, (3.1)

where SV is the set of possible permutations on V elements. Note that two isomorphic
graphs belongs to the same equivalence class of adjacency matrices.

Definition 2 (Unlabelled graph). We define an unlabelled graph Γ as the combinatorial
pattern represented by [A].

– 8 –
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Two unlabelled graphs Γ and Γ′ are said to be isomorphic if and only if they have a
common adjacency matrix. Moreover, two isomorphic graphs have exactly the same set of
adjacency matrices.

We are interested in graphs constructed out of vertices having the same valence d,
whose open edges are identified by colours 1, . . . , d; moreover, we assume that two vertices
can be connected only trough edges of the same colour. To describe these structures, we
introduce generalised adjacency matrices having elements

Ax+i,y+j =

aixy i = j

0 i 6= j
(3.2)

where aixy = 1 if the vertices x and y are connected by a link of colour i, and aixy = 0
otherwise. Note that having additional data with respect to the vertex labels (i.e. the edge
colours) increases the size of the adjacency matrix encoding the graph, as expected. In such
a framework equivalence classes of matrices are still defined with respect to the relabelling
of vertices, and the notion of unlabelled graphs naturally follows.

4 GFT labelled-graph states

In GFT, gluing the “quanta of space” given by excitations of the field gives rise to (dis-
cretized) spatial manifolds. Such a simplicial construction corresponds, in the dual picture,
to a graph structure. As the gluing is defined by an entanglement relation, we refer to these
structures as entanglement graphs. In this section we outline a prescription to construct
labelled entanglement graphs in the pre-Fock space of the theory, where the “quanta of
space”/vertices are distinguishable. This is preparatory to the next section, in which we
provide a definition of entanglement graphs in the truly physical (although still kinemat-
ical, i.e. before taking into account the quantum dynamics of any specific model) space
of the theory, the Fock-space, where the vertices are indistinguishable and the graphs,
therefore, unlabelled.

4.1 Quantum geometry states associated to graphs: Hγ

Following the interpretation of graph structures in terms of discretized space, to each
labelled graph γ it is possible to associate an Hilbert space of states of quantum geometry,
Hγ , whose elements are functions of the variables associated to the links of the graph.
The kinematical Hilbert space of loop quantum gravity is also constructed out of these
graph-based Hilbert spaces, for all possible graphs and modulo some equivalence relations
(imposing cylindrical consistency conditions),1 locally gauge invariant; in particular, it can
be realized as Hγ = L2(GL/GV ), where L is the number of links and V the number of
vertices in γ. Note that the definition of Hγ is a priori independent from regarding the
graph as the result of gluing open vertices. However, by exploiting such point of view
it is possible to embed labelled-graph states Ψγ({g`}) ∈ Hγ into the Hilbert space HV
associated to a set of open vertices, introduced in section 2.1. The embedding of Hγ in HV

1For a discussion on the differences and similarities between the GFT and LQG Hilbert spaces, see [41].
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Figure 2. Example of the gluing of two “quanta of space” of the GFT model with d = 3, which
are triangles dual to trivalent vertices. The quanta are glued along the face/open-link of colour 2.
The resulting link carries the group variable g2g’−1

2 given by the product of the original open-link
variables g2 and g’2.

has been studied in [33]. We generalise that analysis and show how to construct in HV
graph states with arbitrary combinatorial pattern γ, in a basis-independent way.

4.1.1 Embedding Hγ into HV

Consider the multi-particle state of eq. (2.3), which generally describes a state for a set of
V open vertices. Starting from it, we can construct a special class of states in which the V
vertices are connected according to a certain pattern, thanks to the entanglement among
their degrees of freedom. We restrict the analysis to the case in which the connection
can be realized only between edges of the same colour i.2 By assigning an orientation
to the edges, with the group element gi associated to the outgoing direction, the gluing
of two vertices shows up as follows: the vertices x and y are connected along a link of
colour i if the multi-particle wave-function ψ(g1, . . . ,gV ) depends on the elements gxi and
gyi only through the product gxi g

y−1
i . The two vertices are then said to form an internal link

` = (x, y; i) (where i is the colour of the link, x and y are the source and target vertices,
respectively) which carries the group element g` = gxi g

y−1
i (see figure 2). Starting from

the generic multi-particle wave-function of eq. (2.3), such gluing is realized by averaging
through the right action of the group on the two open links carrying gxi and gyi :∫

dhψ(. . . , gxi h, . . . , g
y
i h, . . .) = ψ(. . . , gxi g

y−1
i , . . .). (4.1)

In fact, the convolution on the group element h forces the wave-function ψ to depend on
gxi and gyi through the product gxi g

y−1
i representing the group variable associated to the

internal link ` = (x, y; i). By using the gluing prescription defined in eq. (4.1), a generic
labelled-graph wave-function Ψγ({g`}) ∈ Hγ can thus be seen as the result of gluing the
arguments of a multi-particle wave-function ψ({gx}) ∈ HV according to the combinatorial
pattern of γ:

Ψγ({g` = gxi g
y−1
i }) =

∫ ∏
`∈γ

dh`

 ψ(. . . , gxi h`, . . . , g
y
i h`, . . .), (4.2)

2This restriction leads to d-colored graphs, as extensively studied in the random tensor models litera-
ture [34, 35].
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where ` = (x, y; i) refers to the links of γ. Eq. (4.2) represents the embedding of Ψγ({g`}) ∈
Hγ in HV , and shows that the Hilbert space HV contains, among its elements, states
associate to the labelled graph γ. This result was presented in [33] as part of a broader
analysis on the possibility to regard group field theory as a second quantization of loop
quantum gravity. In [33] it is also shown that the scalar product on Hγ is the one induced by
HV , therefore Hγ is an Hilbert subspace of HV : Hγ ⊂ HV . Moreover, this induced Hilbert
space coincides with the one used, for the same graph, in canonical loop quantum gravity.

4.2 Constructing graph states with arbitrary combinatorial pattern in HV

We generalise and make more detailed the result of [33] by providing a prescription to
construct, in HV , labelled-graph states with arbitrary combinatorial pattern, exploiting
the adjacency-matrix description of graphs. We start by defining a class of operators
P
x⊗y
i , called link maps, which glue different vertices by projecting open-link states of the

same colour into the internal-link subspace, i.e. the subspace invariant under the right
action of the group on the open links to be glued: InvR(Hxi ⊗H

y
i ).

Definition 3 (Link map). The gluing of two vertices x and y along their open links of
colour i is performed by the map P

x⊗y
i : Hxi ⊗H

y
i → InvR(Hxi ⊗H

y
i ) defined as follows:

P
x⊗y
i :=

∫
dhxyi dgxi dg

y
i |g

x
i 〉〈gxi h

xy
i | ⊗ |g

y
i 〉〈g

y
i h
xy
i | (4.3)

where hxyi = hyxi .

When acting on a multi-particle state |ψ〉 ∈ HV , the link map P
x⊗y
i realizes the convolution

of eq. (4.1):

P
x⊗y
i |ψ〉 =

∫ ∏
x

dgx
∫ ∏

`∈γ
dh`

 ψ(. . . , gxi h`, . . . , g
y
i h`, . . .)⊗x |gx〉 . (4.4)

We can then construct a graph state with arbitrary combinatorial structure γ by applying
to a multi-particle state |ψ〉 the link maps according to the adjacency matrix A of γ:

|ψγ〉 =
∏
x<y

∏
i:aixy=1

P
x⊗y
i |ψ〉

=
∫ ∏

x

dgx
∫ ∏

x<ti(x)
dhxt(x)ψ({gxi h

xti(x)
i })⊗x |gx〉 ,

(4.5)

with dhxt(x) := dhxt1(x)
1 . . . dhxtd(x)

d , where ti(x) is a tensor encoding the combinatorial
pattern of the graph: ti(x) = y if axyi = 1, and ti(x) = 0 if axyi = 0; the gluing elements
h
xti(x)
i are such that hxyi = hyxi , and hx0

i = e (where e is the identity element). The
wave-function of the resulting state |ψγ〉 is thus associated to a graph with internal links
` = (x, ti(x); i):

〈g1, . . . ,gV |ψγ〉 =
∫ ∏

x<ti(x)
dhxt(x)ψ({gxi h

xti(x)
i }) = Ψγ({g` = gxi g

ti(x)−1
i }) (4.6)
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Note that, since the gluing operation is a projection from HV to Hγ ⊂ HV , given a graph
state in Hγ , a corresponding multi-particle state in HV for the pre-gluing phase is not
uniquely defined. Let us finally remark that the provided prescription is basis-independent,
as it is defined through the action of projection operators on the Hilbert spaces associated to
the vertices. In the spin representation, the link maps are in fact a combination of Kronecker
deltas identifying spin labels and vector labels in the corresponding representation spaces,
for the open links that are being glued. This will be made explicit and exploited in the
next section.

4.2.1 Comparing graph states of equal size
As mentioned before, in [33] it was showed that the scalar product on Hγ is the one induced
by HV . Following our generalised construction of graph states in HV , we show that the
scalar product on HV allows also to compare graph states with the same number V of
vertices but possibly different combinatorial structure. Note that, two quantum states
associated to graphs with different number of vertices are necessarily orthogonal, due to
the structure of the GFT (pre-)Fock space.

We work in the spin network representation, and thus start by presenting the expansion
of a graph wave-function embedded inHV in such a basis. Bold symbols refers to collections
of edge variables, e.g. jx = jx1 . . . j

x
d , while a vector notation is used for sets of vertex

variables, e.g.~j = j1 . . . jV . We also recall that ` = (x, y; i) is the link of colour i connecting
x (source vertex) to y (target vertex) and carrying the variable g` = gxi g

y−1
i . The graph

wave-function Ψγ embedded in HV takes, in spin representation, the following form:

Ψγ({g`}) =
∫ ∏

x<y

dhxyi ψ({gxi h
xy
i })

=
∫ ∏

x<y

dhxyi
∑
~j~ι

ψ
~j
~p~n C

~j~ι
~pC

~j~ι
~m
∏
x,i

djxi D
jxi
mxi n

x
i
(gxi h

xti(x)
i )

=
∑

ψ
~j~ι
~n C

~j~ι
~m

∫ ∏
x<y

dhxyi
∏
x,i

√
djxi D

jxi
mxi n

x
i
(gxi h

xti(x)
i )

(4.7)

with C~j~ι~p :=
∏
xC

jxιx
px and

ψ
~j~ι
~n := ψ

~j
~p~nC

~j~ι
~p
∏
x,i

√
djxi , (4.8)

and the sum is over all repeated indices. By performing the integral over the gluing
elements3 we obtain

Ψγ({g`}) =
∑

Ψ{j
xti(x)
i }~ι

γ {nxi }open
C
{jxti(x)
i }~ι

~m

×
∏

x,i:x<ti(x)

√
d
j
xti(x)
i

D
j
xti(x)
i

mxim
ti(x)
i

(gxi g
ti(x)−1
i )

∏
x,i:ti(x)=0

√
djxi D

jxi
mxi n

x
i
(gxi )

(4.9)

3We use the relation ∫
dhDj′

m′n′ (h)Dj
mn(h) = 1

dj
δj′,jδm′,mδn′,n,

where dj := 2j + 1.
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where

Ψ{j
xti(x)
i }~ι

γ {nxi }open
:= Ψj

1t1(1)
1 ...j

V td(V )
d

i1...iV

γ {nxi }open
= ψ

~j~ι
~n

∏
x,i:x<ti(x)

1√
d
j
xti(x)
i

δ
jxi ,j

xti(x)
i

δ
j
ti(x)
i ,j

xti(x)
i

δ
nxi ,n

ti(x)
i

(4.10)
with the conventions jxyi = jyxi and jx0

i = jxi . In eq. (4.9) we can recognize basis wave-
functions for the labelled-graph state:

θ
{jxti(x)
i }~ι

γ{nxi }open
({g`}) =C

{jxti(x)
i }~ι

~m
∏

x,i:x<ti(x)

√
d
j
xti(x)
i

D
j
xti(x)
i

mxim
ti(x)
i

(gxi g
ti(x)−1
i )

×
∏

x,i:ti(x)=0

√
djxi D

jxi
mxi n

x
i
(gxi ).

(4.11)

In fact, eq. (4.9) can be rewritten as

Ψγ({g`}) =
∑
{j`}~ι

Ψ{j`}~ιγ{n`}open
θ
{j`}~ι
γ{n`}open

({g`}) (4.12)

To show that the natural scalar product in HV allows to compare states associated to
graphs of equal size V but possibly different connectivity, we can restrict the attention to
the basis states |θγ({j`, n`,~ι})〉. We obtain that (see appendix A for details)

〈θγ′({j′`, n′`, ~ι′})|θγ({j`, n`,~ι})〉 =
∏
x

δ
j
′xt′
i
(x)

i ,j
xti(x)
i

∏
x:ti(x)=0,t′i(x) 6=0

δ
n
t′
i
(x)

i ,nxi

×
∏

x:ti(x) 6=0,t′i(x)=0
δ
n′xi ,n

′ti(x)
i

∏
x:ti(x)=t′i(x)=0

δn′xi ,n
x
i
δ(~ι, ~ι′)

(4.13)

The above expression shows that graph states with different combinatorial structures are
not necessarily orthogonal. Such feature derives from the fact that, in our framework,
graphs do not underpin the definition of the kinematical Hilbert space, but arise as en-
tanglement patterns among quanta, defined in a larger (with respect to the degrees of
freedom associated to each graph) (pre-)Fock space. Let us also remark that, though given
a graph wave-function Ψγ ∈ Hγ the multi-particle one ψ ∈ HV of the pre-gluing phase is
not uniquely defined, such an ambiguity does not affect the result of the scalar product.

4.2.2 Labelled-graph states from individually weighted vertices

Here we consider a special class of GFT states constructed out of a set of individually
weighted vertices, namely a set where each vertex is dressed with a single-particle wave-
function f ∈ H. The interest in these states is multiple: in addition to be the simplest
generalization of condensate states used in cosmology, also encoding space-connectivity in-
formation [42, 43], they have been used in [44, 45] to model black hole geometries; moreover,
in their first-quantized expression they were put in relation to tensor networks in [38].

For this class of states, the multi-particle state of the pre-gluing phase is factorized
over the single-vertex Hilbert spaces:

|ψ ~f 〉 = ⊗x |fx〉x (4.14)
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where ~f denotes the set of single-vertex wave-functions: ~f = (f1, . . . , fV ). By applying to
this state the link maps according to the combinatorial structure γ = A we obtain

|ψ ~fγ 〉 :=
∏
x<y

∏
i:aixy=1

P
x⊗y
i ⊗x |fx〉x

=
∫ ∏

x

dgx
∫ ∏

x<ti(x)
dhxt(x)∏

x

fx(gxhxt(x))⊗x |gx〉x
(4.15)

This corresponds to a certain state |Ψγ〉 ∈ Hγ , with Ψγ({q` = qxi q
y−1
i }) = ψ

~f
γ ({qxi q

y−1
i }).

Note that, given a graph function Ψγ({q`}), it is always possible to identify a set of functions
f1, . . . , fV that glued according to the adjacency matrix of the graph γ give Ψγ({q`}).

5 GFT unlabelled-graph states

As we have shown, in GFT the simplicial complexes resulting from the gluing of the fun-
damental simplices (the “quanta of space”) are encoded in the entanglement structure of
multi-particle states, and represented by graphs, whose vertices are dual to the fundamen-
tal simplices. So far we considered the GFT vertices as distinguishable, i.e. we labelled
them and worked in the pre-Fock space of the theory. However, we know that vertex labels
are just an auxiliary structure, which does not possess any physical meaning. In the fol-
lowing, we show how to remove it from our labelled-graph states by symmetrizing over the
vertex labels, thereby obtaining states associated to unlabelled graphs. This also means
working in the true Hilbert space of the underlying GFT, i.e. the Fock space in which only
wavefunctions symmetric under permutations of the vertex set appear.

First-quantized unlabelled graph states. Given a state |ψγ〉 associated to a graph
γ = A, we turn it into a state invariant under vertex-relabelling by symmetrizing over the
vertex group variables:

|ψγ〉 =
∫ ∏

x

dgxψγ(g1 . . .gV )⊗x |gx〉x → |ψΓ〉 =
∫ ∏

x

dgxψΓ(g1 . . .gV )⊗x |gx〉x

(5.1)

where

ψΓ(g1 . . .gV ) = sym
x

(
ψγ({gxi g

ti(x)−1
i })

)
=
∑
π

∫ ∏
x<ti(x)

dhxt(x)ψ({gπ(x)
i h

xti(x)
i }), (5.2)

with π referring to a permutation over V elements. In |ψΓ〉, the vertex degrees of freedom
are still entangled according to the pattern of the original labelled-graph state, but the
vertices are indistinguishable; the state is thus associated to the unlabelled graph Γ = [A].

Denoting by Pπ the operator performing the relabelling x → π(x), i.e.
〈g1, . . . ,gV |Pπ |ψγ〉 = ψγ(gπ(1), . . . ,gπ(V )), we can write |ψΓ〉 as follows:

|ψΓ〉 =
∑
π∈SV

Pπ |ψγ〉 = Pinvπ |ψγ〉 (5.3)

where Pinvπ =
∑
π∈SV Pπ is the operator projecting the labelled-graph state into the sub-

space invariant under vertex re-labelling.
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Second-quantized unlabelled graph states. The unlabelled graph state |ψΓ〉 belongs,
by definition, to the Fock space F(H), and can be written in the second-quantized formalism
as follows:

|ψΓ〉 =
∫ ∏

x

dgxψγ(g1, . . . ,gV )
∏
x

φ†(gx) |0〉 (5.4)

In fact, the symmetry of the wavefunction is ensured by the commutativity of the field
operators, which “project” ψγ to the Fock space.

So far we constructed unlabelled-graph states starting from labelled-graph ones and
implementing invariance under vertex-relabelling. This is the most natural procedure as
vertex labels, despite lacking a physical interpretation, are needed to define a graph. How-
ever, we could be interested in implementing an entanglement pattern directly in the Fock
space. For this purpose, given an unlabelled graph Γ of size V , we introduce the following
V + V -body operator:

OΓ =
∫ ∏

x

dgx
∫ ∏

x<ti(x)
dhxt(x)∏

x

φ†(gxhxt(x))
∏
x

φ(gx), (5.5)

where ti(x) is the tensor encoding the connectivity of Γ. When acting on a V -particle basis
state, OΓ entangles the vertex degrees of freedom according to the pattern Γ:

OΓ
∏
x

φ(gx)† |0〉 =
∫ ∏

x

dhxt(x)φ†(gxhxt(x)) |0〉 (5.6)

Note that, though the operator OΓ generates an entanglement pattern directly in the Fock
space, it is still dependent from the possibility to distinguish vertices; in fact, defining the
tensor t(x) requires assigning a vertex labelling to Γ. Note also that OΓ can be thought
of as a second-quantized version of the link maps introduced in section 4.2. However, it is
not a projection operator, as further applications of OΓ on the state of eq. (5.6) leaves the
latter unchanged only if the pattern Γ is symmetric (completely connected/disconnected
unlabelled-graph). In fact we have that

O2
Γ
∏
x

φ(gx)† |0〉 =
∫ ∏

x<ti(x)
dh’xt(x) ∏

x<ti(x)
dhxt(x)∑

π

∏
x

φ†(gπ(x)hπ(x)t(π(x))h’xt(x)) |0〉

=
∫ ∏

x<ti(x)
dh’xt(x) ∏

x<ti(x)
dhxt(x)∑

π

∏
x

φ†(gxhxt(x)h’π−1(x)t(π−1(x))) |0〉 ,

(5.7)

and, in order for the r.h.s. of eq. (5.7) to be proportional to the r.h.s. of eq. (5.6), all links
in Γ must be glued (case ti(x) 6= 0 ∀i, x) or open (case ti(x) = 0 ∀i, x).

5.1 Unlabelled-graph states from individually weighted vertices

Here we introduce the unlabelled version of the graph states constructed out of individually
weighted vertices, defined in section 4.2.2. Consider the labelled-graph state |ψ ~fγ 〉 defined
in eq. (4.15); its unlabelled counterpart is given by

|ψ ~fΓ=[A]〉 =
∫ ∏

x

dgxψ ~fΓ=[A](g
1 . . .gV )⊗x |gx〉x (5.8)
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where

ψ
~f
Γ=[A](g

1 . . .gV ) = sym
x

(
ψ
~f
γ=A({gxi g

ti(x)−1
i })

)

=
∑
π

∫ ∏
x<ti(x)

dhxt(x)∏
x

fx(gπ(x)hxt(x))

 (5.9)

In this formula, the notation Γ = [A] is used to specify that the vector ~f refers to the
adjacency matrix A. Note that

ψ
~f
γ (gπ(1), . . . ,gπ(V )) =

∫
dhxti(x)

i

∏
x

fx(gπ(x)hxt(x))

=
∫

dhxti(x)
i

∏
x

fπ−1(x)(gxhπ
−1(x)t(π−1(x)))

=
∫

dh’xt
′
i(x)

i

∏
x

fπ−1(x)(gxh’xt’(x))

= ψ
~f ′

γ′ (g
1, . . . ,gV ),

(5.10)

where f ′x := fπ−1(x) and h’xt’(x) := hπ−1(x)t(π−1(x)). That is, Pπ |ψ
~f
γ 〉 = |ψ ~f

′

γ′ 〉 where A′ =
Pπ−1AP−1

π−1 and ~f ′ = Pπ−1 ~f = (fπ−1(1), . . . , fπ−1(V )).

6 Combinatorial scalar product

An unlabelled-graph state is defined by a combinatorial pattern [A] and a symmetrized
wavefunction depending on the variables attached to the graph elements (vertices and
links). As showed in the previous section, such a state can be thought of as built up from a
set of labelled-graph states related to each other by vertex-relabelling. We have emphasized
that quantum states associated to different graphs are not orthogonal, as to be expected
since they simply correspond to different entanglement patterns of the same number of
quanta. At the same time, we are interested in the possibility of comparing such states
and defining a precise measure of their overlap that depends directly on the underlying
combinatorial pattern.

Consider the scalar product between two unlabelled-graph states, written (in the pre-
Fock space) as the result of summing over labelled-graph ones:

〈ϕΓ′ |ψΓ〉 =〈ϕγ′ |PinvπPinvπ |ψγ〉 = 〈ϕγ′ |Pinvπ |ψγ〉 =
∑
π∈SV

〈ϕγ′ |Pπ |ψγ〉 (6.1)

On the basis of this expression, we define a “combinatorial scalar product” which compares
labelled-graph states giving relevance to the combinatorial aspect, independently on the
specific vertex-labelling. It amounts to select, among all the possible relabelled versions
of the states, the ones which maximise the superposition of their combinatorial structures.
Equivalently, it selects the vertex-labellings corresponding to the closest adjacency matri-
ces. Such a scalar product can be seen as a prescription to align graphs in order to maximise
their overlap, and then compute the (standard) scalar product between the corresponding
wave-functions.
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Definition 4 (Combinatorial scalar product). Given two graph states |ψγ〉 and |ϕγ′〉 we
define their combinatorial scalar product as follows:

〈ϕγ′ |ψγ〉comb :=〈ϕγ′ |Pπ̄ |ψγ〉 (6.2)

where the permutation π̄ is such that

|〈ϕγ′ |Pπ̄ |ψγ〉 | = max
π∈Smin

|〈ϕγ′ |Pπ |ψγ〉 | (6.3)

with
Smin := {π ∈ SV : d

(
Pπ−1AP−1

π−1 , B
)

= min
C∈[A]

d (C,B)} (6.4)

where A = γ and B = γ′, and d(·, ·) is a notion of distance between matrices.

Note that 〈ϕγ′ |ψγ〉comb = 1 if the states |ψγ〉 and |ϕγ′〉 differ only for the labelling of their
vertices, as expected in a setting where such a labelling is deprived of any physical meaning.

At this point, a question naturally arises: can we provide a similar prescription in the
Fock space, i.e. define a scalar product which emphasizes the combinatorial structure of
the states? Note that, when considering symmetric states, all permutations of the vertex
labels produce the same value on the right hand side of eq. (6.2). Therefore, selecting a
particular alignment of vertices does not affect the result. Moreover, to define such a scalar
product in the Fock space is simply not possible: aligning graphs as we have done requires
vertex labels, and thus to break the symmetry which underpins the very definition of the
Fock space. To clarify this point, in the following we translate the combinatorial scalar
product in the second-quantized formalism. We work with unlabelled-graph states written
as in eq. (5.4) in order to recover, when breaking the Fock space symmetry, the labelled-
graph wavefunctions from which they were defined.4 We start by rewriting eq. (6.1) in a
second-quantized formalism:

〈ϕΓ′ |ψΓ〉 =
∫ ∏

x

dgxdqxϕ∗γ′({qx})ψγ({gx}) 〈0|
∏
x

φ(qx)
∏
x

φ†(gx) |0〉

=
∫ ∏

x

dgxdqxϕ∗γ′({qx})ψγ({gx})
∑
π∈SV

Cπ(~q, ~g),
(6.5)

with

Cπ(~q, ~g) := 〈0|
∏
x

[φ(qx), φ†(gπ(x))] |0〉 , (6.6)

where the vector notation ~g refers to a set of vertex variables: ~g = g1 . . .gV . This formula
makes explicit how the commutation properties of the field operators ensure that all the
contributions coming from the various possible vertex-labellings are taken into account in

4In doing this, we make a slight abuse of notation: in eq. (5.4) the unlabelled-graph state |ψΓ〉 is written
in terms of the labelled-graph wave-function ψγ , but the only readable information about the latter is
its symmetrized version, namely ψΓ; in fact, the commutativity of the creation operators φ† hides any
information content about ψγ which is not symmetric under vertex relabelling. Note also that, given ψΓ,
the choice of ψγ is not unique; however, this feature is not relevant for the present purpose.
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the computation of the scalar product. At a combinatorial level, this means that every
vertex x of one (labelled) graph overlaps with any vertex π(x) of the other. In other words,
each term Cπ(~q, ~g) corresponds to a possible overlap configuration between two labelled
versions of Γ and Γ′.

We note that Cπ(~q, ~g) corresponds to a particular ordering of the ladder operators,
and exploit this observation to write the combinatorial scalar product of Definition 4 in a
second-quantized form. We start by defining the following ordering prescription:

:
∏
x

φ(qx)
∏
x

φ†(gx) :π:=
∏
x

φ(qx)φ†(gπ(x)) (6.7)

We then point out that the unlabelled-graph state of eq. (5.4) can be seen as the result of
acting on the vacuum state with the operator

OψΓ =
∫ ∏

x

dgxψγ(g1, . . . ,gV )
∏
x

φ†(gx) (6.8)

In other terms, the information about the unlabelled-graph state can be equivalently en-
coded in an operator. By this line of reasoning, the Fock space scalar product can be
seen as the vacuum expectation value of an observable constructed out of the states to be
compared:

〈ϕΓ′ |ψΓ〉 = 〈0|O†ϕΓ′
OψΓ |0〉 . (6.9)

We might thus be tempted to define the combinatorial scalar product between two
unlabelled-graph states as the vacuum expectation value of an ordered version of that
observable, using the prescription introduced in eq. (6.7):

〈ϕΓ′ |ψΓ〉comb
?:= 〈0| : O†ϕΓ′

OψΓ :π̄ |0〉 (6.10)

where the permutation π̄ is such that

| 〈0| : O†ϕΓ′
OψΓ :π̄ |0〉 | = max

π∈Smin
| 〈0| : O†ϕΓ′

OψΓ :π |0〉 | (6.11)

with Smin defined in eq. (6.4). A first drawback of eq. (6.10) is that it crucially depends
on the form in which the unlabelled graph states (and so the corresponding observables)
are expressed. But, more importantly, it selects a “preferred” vertex-labelling and thus
leads out of the Fock space; therefore, it cannot be the scalar product induced by the Fock
space on a given subset of states. These considerations makes it clear that an alignment
prescription between graphs in the Fock space is prevented by the very definition of this
space, i.e. by the vertex-label symmetry underlying it. Let us stress that we do not see
this as a shortcoming, but as a feature of the formalism, which correctly indicates that the
only physical information is to be label-independent, and that there is no special physical
reason, in this context, to partition the Hilbert space into sectors associated to different
combinatorial patterns. The situation changes if new physical ingredients are introduced,
leading to a meaningful, i.e. physically characterized, labelling of the vertex set. We outline
a situation in which this is the case, in the following section.

– 18 –



J
H
E
P
0
7
(
2
0
2
1
)
0
5
2

7 Effective distinguishability of vertices

In a fundamental quantum gravity theory that possesses the same symmetries of classical
General Relativity (even when not arising from its straightforward quantization), the only
allowed reference frames are “physical rods and clocks”; in other words, the presence of
a background structure respect to which define a notion of space/time locality is a priori
excluded. This has led to the formulation of the relational strategy for the construction of
diffeomorphism invariant observables in quantum gravity [46–52].5 In the same spirit, here
we show how to attain an effective distinguishability of vertices by introducing in the theory
additional degrees of freedom, interpreted as discretized (scalar) matter, and to be used as a
“physical reference frame”, without breaking the fundamental symmetries of the formalism;
in particular, the symmetry under permutations of vertex labels that we suggested as a
discrete analogue of diffeomorphism invariance. Operationally, we use these additional
degrees of freedom to break the symmetry over the vertex-labels at an effective level only,
achieving distinguishability only for a special class of quantum states and in a physically
motivated approximation. For simplicity we consider, as additional degrees of freedom, a
minimally coupled free massless scalar field λ discretized along the geometric data on the
graphs (and simplicial complexes) associated to GFT quantum states, in analogy with the
approach of [43, 56] for defining a relational dynamics in the GFT condensate cosmology,
and based on the analysis of scalar matter coupled to quantum gravity in GFT [57] and
canonical LQG and spin foam models [58, 59].

The GFT field thus turns into φ(g, λ) ∈ L2(Gd/G×R), and the canonical commutation
relations of eq. (2.2) are modified as follows:

[φ(gx;λx), φ†(gy;λy)] =
∫

dh
d∏
i=1

δ(hgxi g
y−1
i )δ(λx − λy) (7.1)

For simplicity, we consider the simpler case of graph states with individually weighted ver-
tices (the generalization to a non-separable graph wavefunction is straightforward). With
the new dynamical variables given by the values of the scalar field λ, the unlabelled-graph
state takes the following form:

|ψ ~fΓ〉 =
∫ ∏

x

dλxdgx
∫ ∏

x<ti(x)
dhxt(x)∏

x

fx(gxhπ(x)t(π(x));λx)
∏
x

φ†(gx;λx) |0〉 (7.2)

The scalar product between two graph states of this type is thus given by

〈ψ
~f ′

Γ′ |ψ
~f
Γ〉 =

∑
π∈SV

∫ ∏
x

f ′x(gxh’xt’(x);λ′x)fπ(x)(gxhπ(x)t(π(x));λ′x), (7.3)

where we used the commutation relations of eq. (7.1).
We then make the following assumption: in a partial semiclassical limit of the theory,

the vertex wavefunctions are peaked on non-equal values of the scalar field λ taken from
5The issue of defining and formulating physics in terms of quantum reference frames defined by suitable

matter systems is also an important topic in the foundations of quantum mechanics, beside quantum gravity
applications [53–55].
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the set {λ0
1, . . . , λ

0
V }. Then the scalar field labels can be interpreted as defining an effec-

tive embedding of the abstract graphs to which the quantum states are associated (more
precisely, of their vertices) into an auxiliary manifold; but more generally, they provide
a physical (i.e. in terms of measurable quantities) way to distinguish the vertices in the
associated graphs. As an example, consider the case in which fx, f ′x are picked on λ0

x; the
main contribution to the scalar product then comes from the trivial permutation π(x) = x:

〈ψ
~f ′

Γ′ |ψ
~f
Γ〉 ≈

∫ ∏
x

f ′x(gxh’xt’(x);λ0
x)fx(gxhxt(x);λ0

x) (7.4)

More generally, if f ′x is peaked on λ0
ω′(x) and fx is peaked on λ0

ω(x), where ω, ω
′ ∈ SV ,

the permutation π providing the main contribution to the scalar product is the one which
satisfies the condition ω′(x) = ω(π(x)). We therefore see that, if the vertex wavefunctions
are peaked on values of the field taken from a discrete set {λ0

1, . . . , λ
0
V }, the scalar product

is effectively performed on two labelled versions of the original unlabelled graph states,
and the set {λ0

1, . . . , λ
0
V } represents the effective vertex-labelling. As we noted already,

peaking the wave-functions on {λ0
1, . . . , λ

0
V } can be interpreted as embedding the graph in

an auxiliary manifold but in terms of physically measurable quantities, thus justifying the
resulting distinguishability.

It is important to stress that the recovered distinguishability is effective, obtained
through a suitable choice of states and only, therefore, in a suitable approximation of the
fundamental theory, and relational, since it allows to align graph structures with respect to
each other, as desired. In fact, we remark again that we cannot restore distinguishability
of vertices at a structural level, as this is prevented from the very symmetry structure of
the Fock space, and this impossibility is well grounded in the requirement of background
independence of the fundamental theory.

8 The quantum information tool of Tensor Networks

A tensor Tn1...nN is an array of complex numbers: the indices ni take values in a discrete
set, whose dimension Di is usually called bond dimension; the number N of indices is called
rank of the tensor. Each index ni can be thought of as labelling a basis in a Hilbert space
HDi , and the tensor can then be regarded as a map between the Hilbert spaces associated
to complementary set of indices. As an example, consider the rank-two tensor Tab with
input index a and output index b; denoting by Hin and Hout the corresponding input and
output Hilbert spaces, we can interpret the tensor as the following map [21]:

T : Hin → Hout

|a〉 →
∑
b

Tab |b〉 (8.1)

When regarding all the indices of a tensor Tn1...nN as output indices, that tensor accounts
for the state of a quantum system described by the Hilbert space HD1 ⊗ . . .⊗HDN :

|T 〉 =
∑

n1...nN

Tn1...nN |n1 . . . nN 〉 (8.2)
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A tensor network is a set of tensors connected according to a certain pattern, where the
connection is realized by the contraction of their indices. By representing a tensor as a
node with open links, one for each index, the tensor network acquires the structure of a
graph. In the following, we present two of the most common tensor network structures:
matrix product states (MPS) and projected entangled-pair states (PEPS).

8.1 Matrix product states

The matrix product state for a system of spins s can be constructed by applying the Wilson
renormalization group method [60, 61], as we are going to explain (see [62] for a detailed
presentation of the topic). Let H1 be the single spin Hilbert space, having dimension
d1 = 2s+ 1. Given two spins s1 and s2, consider a subspace H2 ⊂ H1 ⊗H1 with d2 ≤ d2

1.
Proceed iteratively by adding spins and taking the subspace Hi ⊂ Hi−1 ⊗ H1 such that
di ≤ di−1d1. A state of N spins in the subspace HN can then be written as follows:

|ψ〉 =
∑

s1,...,sN

As11 A
s2
2 . . . AsNN |s1, s2, . . . , sN 〉 (8.3)

where Asi ∈Mdi−1×di for i = 2, . . . , N−1, As1 is a row vector of rank d1 and AsN is a column
vector of rank dN . Explicitly:

|ψ〉 =
∑

s1,...,sN

(As11 )α(As22 )αβ . . . (A
sN−1
N−1 )µν(AsNN )ν |s1, s2, . . . , sN 〉 , (8.4)

where α, β, . . . , ν are the matrix indices. To each site i we thus associated a tensor (Asi )αβ
that, in addition to the physical index si, has left and right virtual indices α and β con-
necting it with sites i− 1 and i+ 1, respectively. The virtual indices can be thought of as
describing the states of auxiliary systems added to each site.

8.2 Projected entangled-pair states

The MPS of eq. (8.3) can be expressed as another type of tensor network decomposition,
called projected entangled-pair states (PEPS). Let |εi〉 ∈ Hi⊗Hi be a maximally entangled
state between the right ancilla of site i and the left ancilla of site i+1. Consider the operator
Pi : Hi−1 ⊗Hi → H1 projecting the ancilla states to the s-spin state:

Pi =
∑
s

∑
αβ

(Asi )αβ |s〉 〈αβ| (8.5)

The matrix product state of eq. (8.3) can then be written as follows:

|ψ〉 =
∑

s1,...,sN

As11 A
s2
2 . . . AsNN |s1, s2, . . . , sN 〉 = P1 ⊗ . . . PN |ε1〉 ⊗ . . . |εN−1〉 (8.6)

Such a tensor network decomposition is thus built up from maximally entangle ancilla
pairs (making up the links of the network) which are projected to physical spins (the
network sites). Here we considered a one-dimensional system, a spin chain, but the PEPS
decomposition can be easily generalised to higher dimensional systems. Before illustrating
this point, we show that in a simple one-dimensional PEPS, specifically the state of a
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transitionally invariant system, entanglement entropy is bounded by an area law. To start
note that, since the reduced density matrix ρ1,2,...,M for the firstM spins has rank bounded
by dM , the entanglement entropy S(ρ1,2,...,M ) satisfies

S(ρ1,2,...,M ) ≤ log dM . (8.7)

We assume that all the auxiliary systems have dimension D, and site N is connected to
site 1, i.e. Asi ∈MD×D ∀i. The state of the translationally invariant spin chain thus takes
the following form:

|ψ〉 =
∑

s1,...,sN

Tr (As11 A
s2
2 . . . AsNN ) |s1, s2, . . . , sN 〉 . (8.8)

Given an interval A of the spin chain, the entanglement entropy SA therefore satisfies

SA ≤ 2 logD, (8.9)

which is an area law. In fact, denoting by cA the curve bounding A, we have that

SA ≤ min
cA
{cA ∩ network} logD, (8.10)

where {cA∩network} is the number of intersections between the curve cA and the spin chain.
We can introduce PEPS in dimension higher than one by considering network sites that,

in addition to the physical spin s, have an arbitrary number of auxiliary spins which are
maximally entangled with their neighbours. For simplicity we assume that each auxiliary
spin has dimension D. The PEPS is then constructed by projecting the entangled auxiliary-
spin pairs onto the physical spins with the following operators:

Pi =
∑
s

D∑
αβγ...=1

(Asi )αβγ... |s〉 〈αβγ . . . |, (8.11)

where αβγ . . . are the virtual indices referring to the auxiliary spins. Consider now a PEPS
in which all auxiliary spins have the same dimension D; let A be a region of the network
and cA its boundary. Since every maximally entangled state between an auxiliary spin and
its neighbour has dimension D, we have that

SA ≤ min
cA
{cA ∩ network} logD, (8.12)

where {cA ∩ network} corresponds to the number of entangled pairs across the boundary
cA of region A. Therefore, also in this case the entanglement entropy turns out to be
bounded by an area law. Note that an area law bound for the entanglement entropy arises
in tensor network directly from their definition, as the contraction of indices generally
induces entanglement between the corresponding degrees of freedom. However, only some
tensor networks saturate this bound, thus exhibiting an holographic behaviour; among
them, we can find tensor networks built up from perfect tensors (a special class of isometric
tensors) [21] or random tensor network in the limit of large bond dimensions [18].
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It is possible to construct PEPS with completely arbitrary network geometries by
varying the number of auxiliary spins of each site, and defining their entanglement relations
by choosing appropriate ancilla-pair states. See [19] for an example of such construction:
the vertices possess the highest possible valence for a completely connected graph (namely
V − 1 for a graph of size V ), and separable ancilla states are introduced to account for the
absence of links between vertices.

PEPS are used for the study of lattice gauge theories (LGT) through tensor networks
techniques [63, 64]. In particular, in the LGT context they are provided with a gauge-
invariance symmetry at each node, thus resembling also in this aspect the structure of
GFT graphs. The second-quantized tensor networks that we are going to define in the
GFT context can indeed be seen as a generalization of such construction.

9 A dictionary between Group Field Theory states and (generalised)
Tensor Networks

9.1 GFT and TN: a simple realization of entanglement/topology and entan-
glement/geometry correspondences

Before presenting the map between group field theory states and tensor networks, we
highlight some features which are highly relevant from a quantum gravity perspective.

Entanglement/connectivity correspondence. A first one is the relation between en-
tanglement and connectivity of the network/graph. As previously explained, both frame-
works employ entanglement as the glue of these structures. In the GFT context, due to the
simplicial interpretation of the graph, this feature implies a relation between entanglement
and connectivity of space; in fact, links made of entangled vertex-lines correspond to adja-
cency relations of the cells dual to the involved vertices. To make clearer the role played by
entanglement in the connectivity of a GFT graph structure, let us focus on a very simple
example: two vertices connected by a link, where the latter is made of vertex-lines of differ-
ent colours, say a and b. In spin representation, the gluing of two vertex-lines corresponds
to the contraction of the labels at their endpoints, here indicated by n1

a and n2
b :∫

dhφ†(g1; g1
ah)φ†(g2; g2

bh) |0〉

=
∑(∑

n

φ†j
1jι1

n1;n1
a=nφ

†j2jι2
n2;n2

b
=n

)
Cj1jι1

m1;m1
a
Cj2jι2

m2;m2
b

×
∏
i 6=a

dj1i
D
j1i
m1
in

1
i
(g1
i )
∏
i 6=b

dj2i
D
j2i
m2
in

2
i
(g2
i ) dj1aD

j
m1
am

2
b
(g1
ag

2−1
b ) |0〉

where we made explicit the sum regarding the open ends to be glued (also called “semi-
links” in the following), while we grouped in the first summation-sign that over all the
other repeated indices. The expression inside the round brackets clearly shows that the
gluing process corresponds to the formation of an entangled state of the degrees of freedom
associated to the semi-links involved. Every link in the GFT graph is therefore an “en-
tanglement link”; in particular, a link ` carrying the spin j corresponds to the maximally
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entangled state of the semi-links forming it:

|`〉 = 1√
dj

∑
n

|j;n〉 ⊗ |j;n〉 (9.1)

This means that, since entanglement controls the connectivity of a graph, it determines
the topology of the simplicial complex dual to it. We have, therefore, an explicit example
of an entanglement/topology correspondence.

In the tensor network context, a simplicial-geometry interpretation of the network is
possible when the latter is proved to reproduce a discretized manifold, as it happens for
tensor networks modelling AdS/CFT states [18, 19]. There is however a crucial difference
respect to the GFT case: in the mentioned tensor network constructions, the geometric in-
terpretation is induced “at a later stage”, by defining a metric through the graph distance.
We showed that for GFT graphs, instead, the geometric characterization arises naturally
thanks to the presence, on top of the combinatorial structure, of additional quantum geo-
metric degrees of freedom.

In quantum gravity, a link between entanglement and space(time) connectivity has
been clearly pointed out, for example, in the cited work [4], where it was shown, by a
thought experiment in the AdS/CFT context, that disentangling two sets of degrees of
freedom in the CFT corresponds to increasing the proper distance between the dual space-
time regions, while the area separating them decreases.

This is the combinatorial and topological side of the story. In fact, there is an ad-
ditional geometric side of the same story, which is particularly interesting from the point
of view of quantum gravity (including the GFT formalism and beyond it, in AdS/CFT
applications, LQG etc.): the entanglement so established carries a straighforward geomet-
ric interpretation, and corresponding entanglement measures can be seen to be measuring
geometric observables.

Primitive entanglement/area correspondence. In the geometric interpretation of
spin network graphs in the context of GFT (and LQG), a link of the graph is dual to a
surface, i.e. a portion of surface on the shared boundary of the two polyhedra (simplices, in
the case we considered) dual to the two vertices sharing the link, and the spin attached to it
labels the eigenvectors of the area operator associated to that surface. The spectrum of the
area operator for such dual surface is (using symmetric ordering)

√
j(j + 1) in Planck units,

and thus it scales like j for largish eigenvalues. This is also the scaling of the dimension of
the Hilbert space of states associated to each link labeled by a given spin, i.e. a maximally
entangled state, which is dim(j) = 2j + 1. In turn, this dimension gives a simple measure
of the entanglement that we have seen being associated to the same link, thus establishing
a sort of “primitive entanglement/area correspondence” in our quantum gravity states.

Primitive entanglement/volume correspondence. An entanglement process can be
identified as lying also at the origin of the intertwiner degrees of freedom, which are attached
to the vertices of the graph associated to GFT states (and thus to the tensors of the
corresponding tensor networks). In fact, the intertwiner arises from the “gluing” of open
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lines into a vertex, by means of the requirement of local gauge invariance. The spin network
wave-function (defined in eq. (2.8)) can indeed be decomposed as follows:

ψjnι(g) =
∑
p1...pd

Cj1...jdιp1...pd

∏
i

√
djiD

ji
pini(gi)

= 〈g|
∑
p1...pd

(⊗
i

√
dji |ji;ni〉 〈ji; pi|

) ∑
p′1...p

′
d

Cj1...jdιp′1...p
′
d
|ji; p′1〉 ⊗ . . .⊗ |jd; p′d〉

 (9.2)

The second line of eq. (9.2) shows that ψjnι(g) can be seen as the result of contracting
line states (round brackets on the left) with an entangled state of (equal-side) open ends
of that lines (round brackets on the right). This is one more instance of a straightforward
entanglement/geometry correspondence at the discrete (simplicial) geometry level. In fact,
the entanglement structure is controlled by the degree of freedom ι, the intertwiner quantum
number. This, in turn, can be shown (in both simplicial quantum geometry, GFT and LQG)
to label eigenvalues of the operator measuring the volume of the polyhedron dual to the
spin network vertex. Thus, also volume information is a measure of the entanglement of
quantum gravity degrees of freedom.

Entanglement/area laws. A well known consequence of the entanglement origin of
tensor networks is the fact that, as showed for the translationally invariant examples pre-
sented in the previous section, the entanglement entropy is bounded by an area law: given
a region A of the network bounded by the curve cA, and denoted by D the dimension of
the Hilbert space associated to the links, we have that

SA ≤ min
cA
{cA ∩ network} logD (9.3)

When interpreting logD as the area of an elementary surface dual to the network link,
eq. (9.3) turns into an area law for the upper bound to the entanglement entropy. In
fact, {cA ∩ network} counts the number of intersections between the boundary cA and the
network, i.e. the number of surface units in cA, and {cA ∩network} logD thus provides the
area of the boundary surface cA. Entanglement area laws are of great interest in quantum
gravity, since the latter is expected to exhibit an holographic behaviour, as suggested by the
scaling of black hole entropy with the horizon area and the Ryu-Takayanagi formula [2, 3],
which relates the entanglement entropy in CFTd+1 to the area of d-dimensional minimal
surfaces in the dual AdSd+2. For tensor networks modelling holographic states in the
AdS/CFT correspondence (as in [16], where the tensor network arises by entanglement
renormalization, and in [28], where it is constructed by entanglement distillation) eq. (9.3)
acquires precisely the connotation of an area law for the entanglement entropy. Since
in GFT states the spins carried by a link are eigenvalues of an area operator associated
to the surface dual to it, as we mentioned, the bound to the entanglement entropy of
a link, and hence of an extended region of a GFT graph, naturally have an area law
interpretation.6 GFT states therefore share with general tensor networks the feature of

6We are considering the simplest case of a graph with fixed spins, and ignoring for simplicity the contri-
bution to the entropy deriving from the intertwiner degrees of freedom.
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having an entanglement entropy bounded according to eq. (9.3); just as there are classes
of tensor networks that saturate the bound (and thus have an holographic nature), certain
GFT states have proved to satisfy an entanglement area law: in [38], for example, the Ryu-
Takayanagi formula was derived for a GFT graph in first-quantization. Let us finally point
out that the area bounding a region of the GFT complex depends on the entanglement
entropy of the links crossing it, whose total number is determined by the combinatorial
structure of the graph. That general area law is thus the result of the graph connectivity
and of the local contributions to the entanglement entropy, in turn carrying a primitive
entanglement/area correspondence.

9.2 GFT graph states as PEPS

We are going to show that GFT labelled-graph states can be understood as generalised
PEPS and that, consequently, unlabelled ones realize an analogous correspondence in a
second-quantization setting, leading to the definition of second-quantized tensor networks.

As explained in section 8, PEPS are constructed by projecting maximally-entangled
ancilla-pairs indices onto “physical” indices (attached to the nodes of the network). In
the GFT context, the role of ancilla-pair states is played by link states, i.e. maximally
entangled states of edge spins, and node degrees of freedom translate into open-vertex
ones. We clarify that with an example, and then present the more general case. Given a
completely connected graph γ, for each link ` = (x, y; i) consider the following maximally
entangled state in the Hilbert space Hjxi =j ⊗Hj

y
i =j :

|` = (x, y; i)〉 = 1√
dj

∑
m

|j;m〉 ⊗ |j;m〉 , (9.4)

and for each vertex a generic state

|vx〉 =
∑
jnι

T jι
x;n |j;n; ι〉 (9.5)

where |j;n; ι〉 is the spin network basis: 〈g|j;n; ι〉 = ψjnι(g), with ψjnι(g) the spin network
wavefunction defined in eq. (2.8). Then perform the contraction⊗

`∈A
〈`|
⊗
x

|vx〉 =
∑

ι1,...,ιN

TrA
(
T j1ι1

1 . . . T jN ιN
N

)
|ι1, . . . , ιN 〉, (9.6)

where jxi = j ∀x, i, A is the adjacency matrix which encodes the combinatorial pattern of
γ and TrA is the tensorial trace contracting the vertex tensors according to it:

TrA
(
T j1ι1

1 . . . T jN ιN
N

)
= T j1ι1

1;n1 . . . T
jN ιN
N ;nN

∏
aixy=1

δnxi ,n
y
i

(9.7)

The state defined by eq. (9.6), associated by construction to the graph γ, is a tensor network
of the form of eq. (8.6), where the intertwiners ιx play the role of “physical” indices, and
nxi that of “virtual” indices, with fixed bond dimension dj ; in fact, in this simple example
all links carry the same spin j. A more general setting can be considered by taking, as
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GFT counterparts of the TN ancilla-pair states, link states in the direct sum of the Hilbert
spaces associated to all group representations:

|` = (x, y; i)〉 =
⊕
j

1√
dj

∑
m

|j;m〉 ⊗ |j;m〉 . (9.8)

The tensor network resulting from the contraction defined in eq. (9.6) is then the following:

TrA
(
T j1ι1

1 . . . T jN ιN
N

)
= T j1ι1

1;n1 . . . T
jN ιN
N ;nN

∏
aixy=1

δjxi ,j
y
i
δnxi ,n

y
i

(9.9)

Let us now move the second-quantization framework. In particular, consider a GFT
unlabelled-graph state constructed out of individually-weighted vertices, where the latter
are given by eq. (9.5):

|ψ ~TΓ 〉 =
∑
~j,~n,~ι

( ∑
A′∈[A]

∏
x

T jπ(x)ιπ(x)

x;nπ(x)

∏
a′ixy=1

δjxi ,j
y
i
δnxi ,n

y
i

)
V∏
x=1

φjxιx†
nx |0〉 (9.10)

We recognize within the round brackets a tensor network which is the symmetrized version
of that in eq. (9.9), and can be understood as a second-quantized tensor network. The
argument can be extended to arbitrary GFT unlabelled-graph states, which take the form

|ψΓ〉 =
∑
~j,~n,~ι

( ∑
A′∈[A]

ψjπ(1)...jπ(N)ιπ(1)...ιπ(N)

nπ(1)...nπ(N)

∏
a′ixy=1

δjxi ,j
y
i
δnxi ,n

y
i

)
V∏
x=1

φjxιx†
nx |0〉 (9.11)

Note that this expression reduces to eq. (9.10) for

ψjπ(1)...jπ(N)ιπ(1)...ιπ(N)

nπ(1)...nπ(N) =
∏
x

T jπ(x)ιπ(x)

x;nπ(x) (9.12)

Let us finally remark the features of GFT graph states which characterize them as
generalised tensor networks. Some of them are already present at the first-quantized level.
The bond dimensions of tensor indices, i.e. the spins associated to the links, are not fixed
parameters, but truly dynamical variables; in fact, strictly speaking each Hilbert space
associated to a link (before additional conditions are taken into account) is infinite dimen-
sional, being isomorphic to L2(G). Moreover, the “physical” indices are not, in general,
independent from the “virtual” ones. Note also that, as pointed out in [38], already the
first-quantized GFT graph states can be seen as random tensor networks, where the ran-
domness is defined over a probability distribution set by the GFT dynamics; this remains
true at the second-quantized level. A feature which instead pertains more naturally to
the second-quantization framework is the dynamical nature of the combinatorial structure:
since the network arises from the dynamics of a field, vertices can be created or destroyed,
and graph connectivity (deriving from the entanglement properties of the field excitations)
can vary. We also point out that, as we noted in quantum gravity applications with a
simplicial-geometry interpretation, the GFT quanta are endowed with a local gauge sym-
metry (invariance under the diagonal action of a Lie group), which makes their quantum
states corresponding to symmetric tensor networks, of the type employed in applications
to gauge theories.
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10 Discussion

The GFT formalism describes entanglement graphs representing simplicial complexes which
are understood as spatial portions of a quantum spacetime (or, more generally, codimension
one submanifolds). These structures naturally satisfy a discrete version of diffeomorphism
invariance, as they are symmetric respect to permutations of the vertex-labelling used to
define them.7 In fact, a given vertex-labelling for an entanglement graph can be under-
stood as a choice of coordinate system on the (discretized) spatial manifold it describes.
Invariance under vertex-relabelling can thus be regarded as the discrete analogue of diffeo-
morphism invariance.

Entanglement graphs have been first defined in the pre-Fock space, where distinguisha-
bility of vertices enables to define a combinatorial pattern among them, then constrained
with the aforementioned symmetry. The pre-Fock and Fock spaces of the theory allow (in
fact, make mandatory) to consider also superpositions of labelled and unlabelled entangle-
ment graphs, respectively. The two are conceptually quite different.

In the pre-Fock space of distinguishable vertices, graphs in quantum superposition can
be aligned according to the given vertex labelling. In a discrete-gravity perspective, we
could say that superposing labelled entanglement graphs amounts to superposing discrete
metrics (to the extent in which they are encoded in the combinatorial pattern only). A
notion of graph superposition has recently been provided in [65] through the definition of
an Hilbert space for coloured graphs, where colours are generic field data. When the latter
have a geometric interpretation, that coloured graphs coincide, at a formal/descriptive level,
with our labelled entanglement graphs. At a structural level, the difference is in taking
graphs as basic structures, decorated with some data “at a later stage” (case of [65]), or
having them emergent from the quantum behaviour of a many-body system (GFT case).
The first setting naturally implies an orthogonality relation among different graphs, which,
instead, is not necessarily satisfied in the second: the scalar product between labelled-graph
states in the GFT pre-Fock space can be non vanishing even for non equal graphs, precisely
because the latter are just features of the many-body states and, specifically, manifestations
of their entanglement content. Note that, though the Hilbert spaces describing graphs in
the two contexts have a different structure, a robust notion of graph superposition naturally
derives from both of them.

Once it has been established that vertex labelling does not possess any physical mean-
ing, comparing graphs independently on it becomes particularly relevant. In [65] Arrighi
et al. stress that, if vertex labels were a priori not observable, the scalar product between
coloured graphs differing only for that labels would be 1; as it is not the case (the result
is actually zero) invariance under vertex relabelling must be enforced. In the GFT pre-
Fock space the scalar product between isomorphic entanglement graphs, though a priori
not zero, is not necessarily equal to 1. We defined an alternative scalar product which
gets such an outcome, as compares entanglement graphs with the goal of maximising their
overlap, regardless of the vertex labelling.

7Note that the links of the graph, as adjacency relations among vertices, are defined by the vertex labels
themselves.
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In addition to the pre-Fock space of labelled-graph states and their superpositions, our
framework includes the space of properly physical, i.e. “diffeomorphism invariant”, states:
the Fock space. Within it, we have naturally superpositions of unlabelled entanglement
graphs, which can be understood, at a discrete-gravity level, as superpositions of geome-
tries (i.e. equivalence classes of metrics). Note that a simple alignment prescription is not
possible among unlabelled graphs, exactly as a notion of locality is not available when
working with geometries. It could be possible, in principle, to define topological observ-
ables that capture the purely combinatorial, label-independent pattern encoded in a graph,
i.e. associated to its entire equivalence class under graph isomorphisms. However, we leave
this possibility for further work. Beside this possibility, we highlighted that a straightfor-
ward alignment prescription can be recovered when new degrees of freedom, interpreted
as discretized matter, are added to the fundamental model, in the same spirit of the con-
struction of relational (and diffeomorphism-invariant) observables in quantum gravity. In
particular, we have shown that certain states allow to restore an effective (and relational)
distinguishability of vertices thanks to their semi-classical behaviour with respect to the
additional degrees of freedom.

11 Conclusions and outlook

The complexity of the quantum gravity problem has led to a proliferation of strategies to
approach it. Among them, tensorial group field theories, which are intended as a quantum
field theories of spacetime, distinguish themselves by their cross-cutting nature, given by
the multiple connection with other quantum gravity approaches. In this paper, we have
shown that, in group field theory, discretized spatial geometries arise as entanglement pat-
terns among quanta of space, the excitations of the GFT bosonic field. We provided a
detailed picture of the identification of such entanglement graphs among the GFT states.
We exploited the distinguishability of vertices in the pre-Fock space of the theory to de-
fine in the latter a prescription for the construction of entanglement graphs with arbitrary
connectivity, as well as a scalar product to compare them on the basis of their combina-
torics. We then removed the unphysical vertex-labelling to implement on the entanglement
graphs a discretized version of diffeomorphism invariance. An effective notion of distin-
guishability, needed for practical reasons, is then recovered in the semi-classical regime of
an extended model comprising an additional degree of freedom playing the role of a refer-
ence frame. Finally, we showed that GFT entanglement graphs match well known quantum
information structures, with a high computational efficiency: tensor networks. In doing
that, we generalised to the second-quantization setting the intuition of [38], implemented
in first-quantization. A different reading of this correspondence is that, once transposed
in the GFT framework, tensor networks inherit a simplicial-geometry interpretation and a
second-quantized model characterization.

Such a dictionary paves the way for exploiting in a much more intensive way tensor
networks techniques in quantum gravity calculations.

To give an example, since graphs correspond, in the GFT context, to patterns of
entanglement, TN operations (such as disentanglers and coarse-grainers [16]) could be

– 29 –



J
H
E
P
0
7
(
2
0
2
1
)
0
5
2

used to define observables capable to extract the combinatorial-pattern information from
GFT states.

Moreover, as a wide class of tensor networks (for example, built from random [18, 19]
or perfect [21] tensors) exhibits an holographic behaviour, we expect the established cor-
respondence with GFT states to simplify the study of holographic properties of the latter.
In particular, we have in mind the generalization to the GFT framework of recent works
that investigate the relation between bulk and boundary degrees of freedom of random
tensor networks, by regarding the latter as maps between such degrees of freedom (see for
example [18, 19]); defining a similar map for GFT states, by taking the intertwiners as
bulk degrees of freedom, will make possible to study how volume correlations (entangle-
ment among intertwiners) affects the properties of the graph boundary. We expect this
bulk entanglement to provide corrections to the Ryu–Takayanagi formula (recovered in the
GFT context in [38]), in analogy to what is the case for random tensor networks [18].

In this programme, noteworthy from a quantum gravity perspective is the idea under-
pinning GFT graphs and distinguishing them from (random) tensor networks: the GFT
structures are not just (background) structures decorated with some labels, but mani-
festations of the interaction of degrees of freedom with a genuine geometrical interpreta-
tion, whose “randomness” is induced by the GFT model which determines their dynamics.
Moreover, our dictionary will allow to translate the aforementioned results to a second-
quantized (and hence diffeomorphism-invariant, in a discrete quantum gravity interpreta-
tion) language.

Finally, we would like to remark that the potential of our dictionary relies on the fact
that, to extract continuum physics from the GFT formalism, we need to control the regime
of the theory with a large number of interacting quanta, and tensor networks can efficiently
tackle such a computational problem. Possible candidates for states modelling an effective
continuum-geometry are condensate states [42, 43], and our dictionary could be used to
analyse them in a quantum-information theoretic setting, and to characterize them in terms
of information-transmission properties. An important application concerns the GFT con-
densate states introduced for modelling quantum black holes [44, 45]: the aforementioned
strategy could in fact be applied to characterize the event horizon in information-theoretic
terms, before looking at the translation of such characterization in geometric terms. The
usefulness of the correspondence goes in the opposite direction too. A number of results
and techniques developed in the context of random tensor models and tensorial group field
theories can be useful in standard quantum many-body systems, improving standard ten-
sor networks applications. We have in mind in particular the body of work on large-N
expansions and universality results [35].
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A Scalar product between graph basis states

Here we want to compute the scalar product between graph basis states in spin represen-
tation. We start by rewriting the graph basis wave-functions in the following form:

θ
{jxti(x)
i }~ι

γ{nxi }open
({g` = gxi g

ti(x)−1
i }) = C

{jxti(x)
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where the labels qxti(x)
i are such that qxyi = qyxi (the ones corresponding to internal links

are thus summed over) and qx0
i = nxi . We then have that
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where
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∏
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