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A recently proposed experimental protocol for quantum gravity induced entanglement of masses (QGEM)
requires in principle realizable, but still very ambitious, set of parameters in matter-wave interferometry.
Motivated by easing the experimental realization, in this paper, we consider the parameter space allowed by
a slightly modified experimental design, which mitigates the Casimir potential between two spherical neutral
test masses by separating the two macroscopic interferometers by a thin conducting plate. Although this setup
will reintroduce a Casimir potential between the conducting plate and the masses, there are several advantages
of this design. First, the quantum gravity induced entanglement between the two superposed masses will have
no Casimir background. Secondly, the matter-wave interferometry itself will be greatly facilitated by allowing
both the mass 10−16–10−15 kg and the superposition size �x ∼ 20 μm to be a one-two order of magnitude
smaller than those proposed earlier, and thereby also two orders of magnitude smaller magnetic field gradient of
104 Tm−1 to create that superposition through the Stern-Gerlach effect. In this context, we will further investigate
the collisional decoherences and decoherence due to vibrational modes of the conducting plate.
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I. INTRODUCTION

Quantum gravity induced entanglement of masses
(QGEM) is a protocol to test whether gravity is classical
or quantum in a table-top experiment [1–3]. Reference [2]
discusses what aspects of the quantum nature of gravity
we will test in a laboratory. The QGEM idea is based on
a simple fact that an initially pure state of two spatially
superposed (quantum) neutral masses will not entangle if they
are interacting via a classical gravitational potential. This
is in concordance with the “no generation of entanglement
via local operations and classical communication (LOCC)”
theorem [4]. As the two superposed quantum masses are
prohibited from interacting directly nonlocally (action at a
distance) because of the local character of quantum field
theory (local in comparison to the separation of the masses
[2]), the “LO” part of LOCC cannot be circumvented. Thus,
the growth of entanglement necessitates circumventing the
CC part of LOCC and is thus due to local operations and
quantum communication (LOQC). The relevant quantum
channel for the QC here has to be an off-shell/virtual graviton
[2] to maintain a continuous growth of entanglement in a pure
state of the two masses according to a 1/r interaction.1

1Reference [2] also investigated gravitational theories with nonlo-
cal interactions. However, in such theories the nonlocality has a very
mild form within the scale of nonlocality. Beyond the scale the theory
interpolates to a local theory. Moreover, nonlocality does not affect
the free theory, but it affects only at the level of interaction [5,6].

The exchange of a virtual graviton by the two quantum
superposed masses is entirely nonclassical. In the parlance
of quantum field theory, in a Feynman scattering diagram,
the mediator or a Feynman propagator does not obey the
Einstein’s classical equations of motion or the energy condi-
tion. Instead, the virtuality of a graviton is bounded by the
energy-time uncertainty relationship, see [2].2

The QGEM protocol relies on creating macroscopic spa-
tial superposition of large masses [1,2]. Spin is embedded
inside the macroscopic masses, generically a dielectric crys-
tal of micron dimensions. There have been many proposals
which have been put forward for creating large mass spatial
superpositions [20–33]. However, the QGEM proposal em-
ploys the Stern-Gerlach principle, which has only recently
been shown to be viable for interferometry [34–38], including
several ideas for noise reduction in the same [39,40]. How-
ever, the previously conducted experiments used atoms for
the interferometric particles, and superposition sizes and times
far below what is required for the proposed experiment [1].

Such nonlocal effects may appear in the world line approximation of
a string theory [7].

2This proposal has generated much interest in the community, see
Refs. [8–15] and paradox resolutions [16,17]. The interpretation of
the experiment through virtual graviton exchange has been provided
in Ref. [2]. There are also tests of ruling out certain models of classi-
cal gravity+quantum matter [16–20],[18],[16],[17], which, however,
will not unambiguously prove whether gravity ought to quantum in
nature, say, as opposed to being simply stochastic, but still classical
in nature.
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This has also led to recent work to determine the tolerable
decoherence in the experiment [41]. Here we will provide
an updated scheme for witnessing gravitationally mediated
entanglement which employs a perfectly conducting plate to
screen electromagnetic interactions between the two masses.
In doing so, we will show that the two masses can be made
smaller, be placed closer together, and will require a smaller
spatial superposition �x (and hence magnetic field gradient),
which will greatly aid in the ease of the implementation of the
protocol. We will also consider the sources of decoherence in
our setup.

This paper also has an additional minor role. While the
original QGEM proposal [1] used considerable simplifications
in the details of the analysis to keep the conceptual schematic
clear, here we systematically optimize the parameter domain
for various strengths of the gravitational entangling phase
and include also the gravitational phase acquired during the
splitting and the recombination parts of the interferometry so
as to exploit the full duration of the gravitational interaction.
It is only then that we find that to alleviate the parameter
domain the Casimir screening is necessary. Also note that
in the context of a QGEM experiment, Casimir screening is
far more nontrivial to investigate in comparison to its usage
in accurately estimating close range gravity [42] as the in-
troduction of the screen affects the entangling phase and its
coherence in a complex way, which we will discuss.

We will begin by describing the original experimental pro-
posal in Sec. II before introducing the proposed modifications
to the setup Sec. III. In Secs. V and VI we conduct a decoher-
ence analysis for the experiment. It will be shown that with
this setup we can use test masses of ∼10−15 kg and laboratory
possible magnetic field gradients of 104 Tm−1.

II. ORIGINAL QGEM SETUP

Here we will discuss the original experimental proposal,
QGEM [1], as shown in Fig. 1. In the original paper, we
assumed that spins are embedded in the two spherical masses.
Let us assume them to be the same material. For the purpose
of illustration, here we will consider the system to be diamond
with one NV center point, where the electronic spin can be
embedded.3

With the parameters given in Fig. 1, it can be shown that the
entangled wave-function of the combined system of the two
test masses, both with the same mass m, after the completion
of the interferometers, when only that spins embedded in the
masses are entangled can be written as [1]

|�(tint )〉 = 1
2 eiφ[|↑〉1 {|↑〉2 + ei�φ↑↓ |↓〉2}
+ |↓〉1 {ei�φ↓↑ |↑〉2 + |↓〉2}], (1)

3Note that the diamond may also not be the ideal choice of material.
The surface defect of a diamond will modify the classical trajectory
in presence of an external inhomogeneous magnetic field, as dis-
cussed in [39]. In this paper, we will not consider this effect. We
will assume that the surface of the diamond is free from any defects.
Furthermore, since our computation relies only on the density of the
masses, and not other specific properties, we will assume our test
masses to be perfect spheres with density ρ = 3.5 gm/cm3.

Where tint is the total time of interaction or the total flight time,
the phases are given by

φ = Gm2

h̄d
tint, �φ↑↓ = Gm2

h̄(d + �x)
tint − φ,

�φ↓↑ = Gm2

h̄(d − �x)
tint − φ, (2)

where h̄ is the reduced Planck constant. The corresponding ef-
fective entangling phase (i.e., the phase which makes |�(tint )〉
of Eq. (1) an entangled state [1] and makes its entanglement
as quantified by the von Neumann entropy, which is nonzero
[2]), is given by4

�eff = �φ↑↓ + �φ↓↑

= Gm2

h̄
tint

(
1

d − �x
+ 1

d + �x
− 2

1

d

)
, (3)

We can see that for a fixed �eff, the required mass can be mini-
mized by reducing the distance of closest approach of the two
masses, d − �x. However, this distance of closest approach
has a lower limit for the QGEM protocol (Fig. 1), as the grav-
itational force is not the only force which can entangle the two
systems, with those of electromagnetic origin competing with
it. It is fortunate that there are mitigation methodologies for
all but one of the electromagnetic interactions.5 However, the
entanglement can still form due to the Casimir-Polder force
[46] present between the two dielectric spheres—this was the
main hindrance in reducing the distance d − �x to below
200 μm in Ref. [1], which, in turn, drove up the needed �x
and m (and concomitantly the necessary magnetic field gradi-
ent that creates the �x). This was also identified in the context
of optomechanical experiments for gravitational entanglement
[47] with screening again considered as a potential solution.
The Casimir-Polder potential between the two large neutral
masses is given by Ref. [46], and see also Refs. [1,39,48],

VCP ∼ −23h̄c

4π

R6

r7

(
ε − 1

ε + 2

)2

, (4)

with ε the dielectric constant of test masses, r is the sepa-
ration of two states and R the radius of the corresponding

4Note that the gravitational potential is the same as that of the
classical general relativity. However, for quantum aspects what mat-
ters is how the potential arises. If it is a contact potential, then it
violates relativity. However, it can be made to satisfy both relativity
and quantum mechanics if the potential arises by an off-shell/virtual
exchange of a graviton; it’s origin is then inherently nonclassical
and quantum [2]. The quantum induced gravitational potential in-
deed differentiates from the classical one. The former gives rise to
quantum entanglement, while a classical gravity will not lead to any
entanglement or increment in the entanglement. The QGEM protocol
can also test modifications of gravity at short distances [5,43]; see
Ref. [2].

5See, for example, Ref. [1] and its Supplemental Material lists the
techniques for neutralizing the masses, as well as getting rid of the
charge multipole-charge multipole interactions, namely by using UV
discharge [44] and physical rotations of the masses [45], respectively,
while the direct magnetic dipole interaction between the two spins is
truly negligible in comparison to gravity at the relevant distances.
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FIG. 1. The QGEM setup comprises two interferometers, sys-
tems 1 and 2 with the two spatially superposed particles and their
trajectories. Their respective spin states have been shown. Note the
three paths, Step 1, where the superposition is created by inhomo-
geneous magnetic field. Step 2, where the test masses and their
superpositions are freely-falling after being released from the exact
same height, and Step 3, where the trajectories are brought back for
the measurement of spin correlations. The center of mass distance
is d and the superposition is denoted as �x. The figure has been
adopted from Ref. [1], where the details of the pulse sequence that
enables the Stern-Gerlach interferometry is also described.

test masses which are taken to be equal. As the gravitational
potential scales as 1/r, at smaller separations (d − �x) the
Casimir-Polder force becomes dominant over the gravita-
tional potential. By imposing that the gravitational potential
should be at least one order of magnitude larger than the
Casimir-Polder potential, such that entanglement due to the
electromagnetic-force only has a minimal impact on the ef-
fective entanglement phase, implies the bound on the distance
(d − �x):

(d − �x) �
[

10
23h̄c

4πG

(
3

4πρ

ε − 1

ε + 2

)2] 1
6

≈ 157 μm, (5)

where ρ is the density of the test masses. Defining this separa-
tion as a constant, A ≡ d − �x, clearly manifests the largest
entanglement phase for any given mass is generated at a given
distance A. This gives us the maximum effective entanglement
phase, as

�eff,max = Gm2

h̄
tint

(
1

A
+ 1

2�x + A
− 2

1

�x + A

)
. (6)

The original paper [1] proposes the use of a magnetic field
gradient ∂xB in a Stern-Gerlach interferometer to create the
spatial superposition [34], giving

�x ∼ 2
gμB∂xB

m

(τ

2

)2
, (7)

where τ = 500 ms is the acceleration time and ∂xB ∼
106 Tm−1 was used.

However, our approach here is to explore the whole param-
eter space available to impart a given amount of gravitational
phase, and through that, a given amount of given amount of
entanglement. Thus we rewrite in terms of the mass needed to
generate the entanglement phase and find that to be

m = −3A�eff,maxC − C
√

A�eff,max(A3�eff,max + 16DC2)

2(A3�eff,max − 2DC2)
,

(8)
where here

C = 2gμB∂xB
(τ

2

)2
, D = Gtint

h̄
. (9)

Using the originally proposed interaction time tint = 2.5 s, one
obtains the following required masses: an entanglement phase
�eff,max ∼ 1 rad requires a mass of m ≈ 2 × 10−14 kg, a phase
of �eff,max ∼ 0.1 rad requires a minimum mass of m ≈ 4 ×
10−15 kg and for a phase �eff,max ∼ 0.01 rad requires a mass
of m ≈ 10−15 kg.

The aim of this paper will be to optimize the experiment
with lower magnetic field gradient and smaller mass super-
position, such that it will be still feasible to get a detectable
gravitationally induced entanglement. Motivated by that let
us examine the possibilities of using a superposition of �x ∼
1 μm, which is a full two orders of magnitude smaller than
that required in Ref. [1], and, in fact, a length for which
methodologies other than Stern-Gerlach are also available.
Note that in this limit Eq. (3) can be recast as

�eff,max = 2Gtint

h̄A3

(
gμB∂xB

2
τ 2

)2

. (10)

For the originally proposed parameters of the experiment, but
taking ∂xB ∼ 104 Tm−1, we cannot expect to achieve a higher
effective entanglement phase than ≈4 × 10−4 rad. Therefore,
to maximize the entanglement phase along with lowering ∂xB,
we would need to alter the original design of the QGEM
experiment.

III. CASIMIR SCREENING BETWEEN TWO
SUPERPOSITIONS

A. Setup

To achieve a detectable entanglement phase we must either
employ larger masses and magnetic field gradients, or as we
will show here, overcome the limitations on the minimum
interaction distance A imposed by the Casimir interaction
between the two test masses. To do this we will consider
optimizing the minimum distance with a free parameter N
given by

A = d − �x = NR, (11)

where R is the radius of the particle. To achieve this, we pro-
pose a simple modification to the original setup by inserting
a rigid conducting plate in the middle of two test masses as
depicted in Fig. 2. We will take this plate to have a metallic,
excellent conducting properties with a thickness W ∼ 1 μm.
The key assumption here is that the plate is a perfect conduc-
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FIG. 2. Alternative setup for step 2 of the QGEM protocol, where
we have a perfect conducting plate in between both test masses.
The Casimir force not present between the test masses, allowing
for smaller initial separations between the test masses, generating
a higher entanglement phase for a given mass. However, we have
to deal with the dynamic distance s caused by the acceleration of
the states toward the conducting plate. This displacement s will be
controlled principally by the free, dimensionless variable N which
sets the initial separation with d − �x = NR.

tor and assumed to be perfectly reflective.6 This will screen
the electromagnetic interaction between the two superposed
masses and act as a Faraday cage. The Casimir-Polder poten-
tial between the two masses will not be present any more, but
there will be Casimir potentials between the conducting plate
and the individual superposed masses. Note that this potential
between a conducting plate and a sphere is attractive in nature
[50].

As a consequence of the Casimir force between the plate
and individual masses, we can now allow much smaller sep-
arations between the states |↓〉1 and |↑〉2 than the originally
proposed separation A, found in Sec. II. As we will see, this
will help us to generate a larger entanglement phase than that
given in Eq. (6).

This Casimir force leads to acceleration of the inner states
|↓〉1 and |↑〉2 toward the plate during the free fall of the

6Although treating the plate as a perfect conductor becomes a
reasonably good assumption in the T ∼ O(1) K regime in which the
experiment will be carried out, it will be of no problem if the con-
ducting plate is not fully reflective. The use of a nonperfect conductor
will actually serve to reduce the Casimir force between the plate
and the masses, and thus assuming a perfect conductor will actually
lead to us overestimating any effect. While the specific conditions
required here have not been explored in any experiment, we consider
the results of Ref. [49] as an indication that the transmission would
be too small to produce any significant Casimir-Polder force between
the two test masses.

experiment and introduce a further source of decoherence as
we will analyze below. In Fig. 2, the “extra” distance traveled
by the inner states is denoted by s.

For the purpose of illustration, we consider a square plate
to have a length L = 1 mm and width W = 1 μm. We con-
sider a rigid conducting plate with high density, such as a
copper plate ρp = 8.96 g/cm3. We will clamp both ends of
the plate, and we will let the system free fall along with the
superposed masses of system 1 and 2, which will again be as-
sumed to be released from the same height. We now consider
the gravitational attraction between the plate and the masses,
and find that it is negligible. The gravitational attraction of
the states due to the plate will be given by ag ∼ 2πGρpW .
This is well justified in the limit when the radius of spherical
masses is much smaller than the separation distance between
the states and the conducting plate, and the conducting plate
can be treated as effectively as infinite in size compared to the
test masses. The radius of the sphere is R ∼ 100 nm. There-
fore, the gravitational acceleration of the states with respect to
the conducting plate yields an acceleration ag ∼ 10−12 m/s2.
Since this acceleration is negligible, any distance change due
to the gravitational interaction due to the presence of the plate
can be neglected.

B. Casimir screening

From Ref. [50] we find the Casimir force between a sphere
and a conducting plate is given by7

Fca = −3h̄c

2π

(
ε − 1

ε + 2

)
R3

x5
. (13)

Equation (13) shows that the Casimir force becomes infinite
for small separations, this implies that there is a certain separa-
tion distance at which the acceleration caused by the Casimir
force becomes dominant over that caused by the magnetic
field, making it impossible to close the interferometers (step
3 of the experiment). To clarify, if the Casimir force over-
whelmed the force due to the magnetic field gradient, then

7Note that the Casimir interaction here is between a mass and a
conductive plate, while Eq. (4) was between two dielectric spheres.
In full, we know that the Casimir interaction between a dielectric
sphere and a perfect conducting wall is given by [50]

Fca = 1

4πx4

∫ ∞

0
dω α1(ω)[3sin(2ωx) − 6ωxcos(2ωx)

− 6ω2x2sin(2ωx) + 4x3ω3cos(2ωx)], (12)

where x is the separation distance of the sphere with the closest edge
of plate, ω is the frequency of the electromagnetic (EM) waves and
α is the real part of the static polarizibility, which for a dielectric
sphere is α ∼ R3 ε(ω)−1

ε(ω)+2 [34]. It is worth noting that the temperature,
material and length scales we are interested in for the QGEM experi-
ment are largely unexplored and as such demand further exploration,
particularly at such low temperatures [55,56]. The experimental work
done previously does however suggest that treating the dielectric
constant ε(ω) of the diamond test mass as real and independent of
both frequency and temperature in the limit when T ∼ O(1) K is
a reasonably good assumption; see Refs. [51–53]. Furthermore, the
temperature correction to the Casimir force can also be neglected at
such low temperature regions, see the analysis in Ref. [54].
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FIG. 3. The plot shows the maximum entanglement phase gener-
ated during step 2 using the alternative setup of the QGEM protocol
as a function of mass for different initial separations, characterized
by the parameter N . The lowest mass indicates the minimum mass
for which the acceleration requirement Eq. (14) is barely met. The
values of ∂xB, ρ, τacc, ε,W are labeled above.

it would be impossible to use the magnetic field gradient
to bring the two interferometric paths back together. This
imposes a new minimum separation distance d , such that at
the end of the free fall (step 2), the separation between the
inner states and the edge of the plate ([(d − �x)/2 − W/2] is
large enough (where W is the width of the conducting plate),
so the acceleration caused by the Casimir force (aca) is at least
one order of magnitude smaller than that due to the magnetic
field gradient (amag) to bring back the classical path, closing
the interferometer. By demanding that

aca

amag
� 0.1 ⇒ x �

[
90h̄c

8ρπ2

(
ε − 1

ε + 2

)
m

gμB∂xB

]1/5

, (14)

during the free fall, the inner states will travel a distance s
inwards during the time interval �t . Note that the center of
mass distance d is a “tunable” distance in an experiment,
controlled by the parameter N as given in Eq. (11). During this
free fall the effective entanglement phase of Eq. (3) becomes
for an infinitesimal time period �t

�eff =Gm2

h̄
�t

(
1

NR − 2s
+ 1

2�x + NR
− 2

1

�x + NR − s

)
.

(15)

By computing this phase for different initial separations,
dictated here by the parameter N , we can optimize the phase
such that the bound given in Eq. (14) is saturated at the end of
the free fall for a given mass, m, while maximizing the phase
�eff. Here we show the results in Fig. 3, which displays the
optimum results, provided the entanglement phase of order
�eff = 0.01 rad, for different interaction times denoted here
by N .

Note that the acceleration due to the Casimir potential
is independent of the size of the test masses, see Eq. (13).
However, d can be chosen to scale with the radius R for the
purpose of optimisation of the phase and the Casimir potential
between systems 1 and 2. Following this, our Eq. (14) would
then scale as R3/5, whereas our dynamic distance scales with
R. Therefore, by fixing the value N , we will find the minimum
mass for which the condition Eq. (14) is barely met. Masses

FIG. 4. The plot shows the maximum entanglement phase gener-
ated during step 2 using the alternative setup of the QGEM protocol
as a function of mass for different initial separations, characterized
by the parameter N . The lowest mass indicates the minimum mass
for which the acceleration requirement given in Eq.(14) is barely met.
The values of ∂xB, ρ, τacc, ε,W are labeled above.

below this will lead to a violation of the bound set by Eq. (14).
The resulting minimum mass correspond to the lowest mass
seen in Fig. 3. These masses coincide with the chosen min-
imum final entanglement phase requirement, which we have
set to be �eff = 0.01 rad. If we consider tint ∼ 2.5 s, roughly
the total flight time, then we note that a mass of approximately
m ∼ 3.7 × 10−16 kg is sufficient to saturate the entanglement
phase.8

Similar analysis can be performed by reducing the required
magnetic field gradient to ∂xB = 104 Tm−1, which is much
more feasible with current technology. Following the same
procedure as before, and requiring �eff = 0.01, we obtain the
allowed parameter space as given in Fig. 4.

The Figs. 3 and 4 show that by inserting a conducting
plate, the magnetic field gradient can be reduced by two orders
of magnitude, which also reduces the mass of macroscopic
superposition by one or two orders of magnitude compared
to the original setup [1].9 Specifically we can use a magnetic
field gradient of 104 Tm−1 and a flight time of only 1 s by
placing the masses closer together with an initial separation
of 47 μm (corresponding to N = 57), an initial superposition
size �x = 23 μm which grows by a further s = 2 μm using
lighter masses (m ∼ 10−15 kg).

IV. ENTANGLEMENT WITNESS

For the rest of the analysis we will shift our focus toward
the most reasonable set of system parameters, and use an

8In fact, an interaction time of only tint ∼ 1 s already allows for a
50% reduction to the required mass compared to the original setup
where m ∼ 10−14 Kg. We can also conduct a similar analysis for a
phase requirement �eff = 1 rad to find that, for an interaction time of
tint = 2.5 s, a mass of 3.8 × 10−15 kg is adequate.

9Note that in the above analysis we have ignored the outer states
from the conducting plate of Fig. 2. As we will point out here
that since the Casimir potential drops as x−5, the change in �x is
truly negligible. The positional displace is of the order of 10−3R ∼
10−1 nm after an interaction time of 2.5 s, which is truly negligible
compared to �x ∼ 10 μm.
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interaction time of tint = 1 s. This reduced interaction time
reduces the run time of the experiment significantly. As we
want to allow the magnetic field gradient of 104 Tm−1, we can
use a mass of around 10−15 kg (see Fig. 4). This will result in
an effective entanglement phase �eff ∼ 0.01 rad for N = 57
accrued during step 2. However, there is also a significant
phase evolution during steps 1 and 3 of the experiment. The
accumulated phase during steps 1 and 3 are described in
Appendix A, and will result in the total accumulated phase
becoming

�eff ∼ 0.015. (16)

Note that an entanglement witness W = I (1)I (2) − σ (1)
x σ (2)

x −
σ (1)

y σ (2)
z − σ (1)

x σ (2)
z is able detect entanglement of the test

masses provided Tr(Wρ) < 0, with ρ the reduced density
matrix of the entangled test masses.10 The decoherence can
be modelled as a reduction of the off-diagonal elements of
the density matrix. This decoherence is present throughout the
whole runtime of steps 1 to 3 of the experiment, this means
that in order for Tr(Wρ) < 0 we have the requirement [57]

γ tint <
�eff

2
. (17)

With γ the decoherence rate. This implies that for our accu-
mulated phase of Eq. (16), a bound on γ t< �eff/2 ∼ 0.0075
is required. In the following sections, we will discuss various
sources of decoherence.

V. COLLISIONAL DECOHERENCE

One of the primary sources of decoherence for a macro-
scopic spatial superposition will be due to the air molecules
present in the vacuum chamber, and the absorption and emis-
sion of blackbody photons, see Refs. [25,58]. In this section
we will analyze these decoherence rates with a test mass of
m = 10−15 kg, N = 57 and an interaction time of 1 s for the
purpose of illustration, but we can do a similar analysis for
other possibilities.

The largest superposition size, �x + smax ∼ 10−5 m, will
occur at the end of the free fall, end of step 2. This is
smaller than the thermal wavelength of blackbody photons
λbb ∼ 10−3 m for the external ambience temperature of Tex ∼
O(1) K.11 This implies that the long wavelength approxi-
mation for decoherence, see Ref. [58], is applicable as the
superposition size is much smaller than the blackbody pho-
tons. However, the thermal wavelength of air molecules in
the vacuum at these temperatures are in the order of λair ∼
10−10 m. Therefore, for the air molecule it is fairly reasonable
to assume the short-wavelength limit for computing the deco-
herence rate, see Ref. [58], during the whole duration of the
experiment. By applying these limits, we will obtain the total

10This form of W was found, in Ref. [57], to be a more suitable
witness for the original experiment [1].

11Note that here we have to consider the internal temperature, Tint,
of the test mass as well. For diamond below Tint < 4 K, the phonon
excitations are negligible; see Ref. [1].

FIG. 5. Decoherence of a single superposition as a function of
the number density of the environmental gas for different external
temperatures computed with Eq. (19) together with the maximum
allowed decoherence factor (horizontal dashed line) for measuring
entanglement for the parameters giving next to the graph. Note that
the actual decoherence rate is exp[−∑ γk�t].

decoherence factor to be

exp[−γ t] = exp

{
−
[
�airt +

3∑
i

�i

3∑
k

(x|↑〉k
− x|↓〉k

)2

]
�t

}
.

(18)

Here �air is the scattering rate of the ambient air molecules
inside the vacuum chamber, �i’s are the scattering constant of
the scattered blackbody photons, the absorbed photons, and
the emitted photons from the test mass. The form (x|↑〉k

−
x|↓〉k

) denotes the distance between the superposition states
inside a single interferometer at a time k�t , with k an integer,
which varies throughout the experiment. See Appendix B for
more details. The final expression for the total decoherence
factor during the whole duration of the experiment becomes
(as shown in Appendix C)12:

∑
k

γk�t = �air(tint + τ + τ1) +
3∑

i=1

�i

{
46

15
a2

mag

[(
τ

2

)5

+
(

τ1

2

)5]
+ 4a2

mag

(
τ

2

)4

tint

+
∑

k

[
4amag

(
τ

2

)2

sk + s2
k

]
�t

}
(19)

Here τ1 = 2
√

( τ
2 )2 + smax

amag
and amag is the acceleration of the

magnetic field, and tint is the total interaction time, including
all the three steps. In Fig. 5, we show how

∑
k γk�t evolves

with the number density nV of the air molecules inside the
vacuum chamber.

We found that the number density of the air molecule
should be low, nV ∼ 107 m−3. For these low number densities
ideal gas law holds. These number densities then correspond

12Note that the coherence of the spin state inside diamond will also
suffer during the spin flips, however, this effect we are not taking into
account here.
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to the vacuum pressure P ∼ 5 × 10−16 which is slightly lower
than the proposed pressure of 10−15 Pa in Ref. [1].

Further note that for the parameters we have shown in the
plot, the decoherence due to scattering of air molecules is the
dominant source of decoherence as shown by Eqs. (B5) and
(B7). Since, this is independent of the internal temperature of
the test mass, we can further increase this temperature to a few
Kelvin without interfering with the results significantly.

VI. DEFLECTION OF THE PLATE

Interactions between the two masses and the conductive
plate will excite the vibrational modes of the plate. A small
uncertainty in the initial displacement of the test masses will
lead to an unknown net force acting on both sides of the
plate in Fig. 2. Here we will demonstrate that under certain
conditions, these vibrational modes can be minimized. Any
differences in the vibrational states of the plate for different
positions of the pair of masses is going to decohere the com-
bined state of the masses.

This deflection of the conducting plate is maximum if the
force acts on the center of the plate as it is clamped at either
end. As such we will consider this worse case scenario, a
point force acting on the middle of the plate. The point source
approximation here is good as the the length of the plate
exceeds the radius of the two masses (assumed to be perfectly
spherical). Note that we have set the coordinates such that
along the length of the plate it is z axis and the y axis is onto
the plate while x axis denotes the distance of the test masses
from the plate. For a plate clamped along the z axis, we get
a deflection δd of the center of the plate due to imbalance
Casimir force of [59]

δd = FcaL3

192EIy
= FL2

16EW 3
. (20)

Where E is the Young’s modulus of the plate, Iy is the
moment of area in the xy plane of the plate. We assume
a square plate of length L and the thickness W . For the
external temperature T ∼ O(1) K, and taking the conductor
to be copper, the value of Young’s modulus of the plate is
E = 137 GPa.

Let us now denote the uncertainty in the placement of a
single test mass relative to the conducting plate by uR, where
R is the radius of the test mass, and 0 < u < 0.5. In our
setup there are pair wise test masses for systems 1 and 2.
Therefore, the maximum force imbalance arises when both
the test masses are displaced by a distance uR to one side of
the x axis. Since the main force is due to Casimir here, we can
maximize this force up to the point of free fall (end of step
2) for both the systems 1 and 2, and compute the maximum
deflection to be

δd,max = FmaxL2

16EW 3
= |F|↓〉1

[x(tint )] + F|↑〉2
[x(tint )]|L2

16EW 3
. (21)

In Fig. 6 we show δd with respect to the uncertainty in the
initial displacement of the test masses from the plate 0 < u <

0.5. Observe that the deflection is truly negligible compared
to the thickness of the plate, implying that one does not have
to worry about the deflection of the plate. Furthermore, if
we consider the plates displacement due to the | ↑〉1| ↑〉2 and

FIG. 6. Deflection of the conducting plate, which is assumed to
be made out of copper, for an range of displacement errors of the test
masses to the right of Fig. 2 in terms of the radius of the test mass for
the parameters given next to the graph.

| ↓〉1| ↓〉2 states, then we found that there is still a negligible
deflection bounded from above by ∼5 × 10−21 m. This is
as we sill see shortly orders of magnitudes smaller than the
ground state of the plate, such that no which path information
is imprinted onto the plate, as such no significant decoherence
is expected.

From Eq. (21) we can deduce the corresponding frequency
of oscillation of the whole plate to be

ω =
√

k

m
=
√

16EW 3

mL2
=
√

16EW 2

ρpL4
, (22)

where m is the mass of the plate and ρp is the density of the
plate. We can now compute the ground-state spread of the
plate to be roughly given by

�S =
√

h̄

mω
= 1

W

√
h̄

ρ
√

16E
. (23)

Therefore, by demanding that the plate itself does not en-
code significant which path information due to the different
Casimir force imbalances for each of the possible positions of
the masses, this ground-state quantum spread should be larger
than the deflection of the plate, δd . This will further constrain
the mass of the plate. In our case we can select the length of
the plate to be a free parameter, which is then constrained as

L <

{
1

W 2

|F|↓〉1
[x(tint )] + F|↑〉2

[x(tint )]|
(16E )3/4

√
ρ

h̄

}−1/2

. (24)

For the optimal parameters of the experiment, tint = 1 s, N =
57, ∂xB = 104 Tm−1, m = 10−15 kg, and u = ±0.5R, we find
that L < 100 mm. This implies that for L = 1 mm is suitable,
the oscillations in the plate induced by the Casimir force will
not spoil the coherence of the test masses.

VII. OTHER CONSIDERATIONS

While we have alleviated one specific problem and not nec-
essarily solved all the difficulties of QGEM we still point out a
few potential ways to address them. Knowing and controlling
the fluctuations in the position of each mass is a hurdle of the
original QGEM protocol, which is not specifically addressed
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by the Casimir screening idea, whose purpose is electromag-
netic shielding. However, in exciting recent developments,
levitated masses can now be cooled to their motional ground
states [60,61], so that thermal fluctuations of motion are not
an issue any more. However, motional fluctuations can also
stem from random nuclear spins in the mass, as even for
a >99.9995% isotopically pure sample [62] (be it a silicon
crystal or a diamond crystal or some other dielectric) on av-
erage a total nuclear moment equivalent to at most 1 random
electronic spin moment could be present in each ∼10−15 Kg
mass. This random moment is quasistatic—fluctuates only
from run to run of the experiment. Thus one can gently modify
the scheme of Ref. [1] so as to incorporate frequent reversals
of both the magnetic field gradient and the electronic spin in
tandem in the splitting and recombination stages, while the
nuclear spin moment remains unaffected. Such frequent mag-
netic field direction reversals also have the potential to cancel
the contribution of the diamagnetic energy to the Hamiltonian
of the system (this has been pointed out to be an important
term in the Hamiltonian in Ref. [39]) when integrated over
the full time scale of the splitting/recombination, while the
electron-motion coupling terms remains unchanged as the
electronic spin is flipped each time the magnetic field changes
direction. As pointed out in Ref. [40] the magnetic field
sources of such interferometers would be “shaped” magnets
or current carrying wires, which essentially shift the center
of the diamagnetic trap according to the path so that the
superposition size is not limited by the diamagnetism either.
Additionally, if the masses used are composite materials such
as nickel coated diamond (thin layer of nickel on diamond),
the diamagnetic core’s effect can be canceled by the ferromag-
netic coating of very small appropriate thickness. A further
consideration is the patch potential between the spheres and
the conducting plate. Despite this close range interaction, we
believe it is not as harmful as one would expect at the first
instance. Specifically, any effect will be suppressed by the
fact that the particle radius is much smaller than the distance
between the sphere and the conducting plate. This means
that the conducting plate will not see any charge variations
across the spherical surface. This results in an exponential
suppression of the patch potential interaction (e−N ∼ e−45)13;
for details, see Ref. [63]. Moreover, the patch potential inter-
actions can be mitigated through either material science, by
growing the particle using a single diamond crystal to avoid
the charged patches forming due to surface defects or by
first spinning the particle at a very high frequency such that
the patch affects average to zero throughout the experiment.
Therefore, we believe that the other challenges in QGEM
are not insurmountable, and several techniques are potentially

13The patch potential force is given by − −4πε0σ 2
ν R

(k2
max−kmin2 )

∫ kmax

kmin

k2e−ka

sinh(ka) dk

[63], where a is the surface distance between the mass and screening
plate and k � R−1 where R is the radius of the sphere. Since ka � 1,
this force can be seen to scale as approximately

∫ kmax

kmin
k2e−2kadk =

e−2kmina
∫ kmax−kmin

0 (k + kmin)2e−2kadk. Finally, given kmin ≈ R−1 and
N is the ratio of the separation size and the particle radius we note
that 2kmina ≈ N , therefore exponentially suppressed by the distance
∼e−N .

available, although their detailed studies are beyond the scope
of this current paper.

VIII. CONCLUSION

The original QGEM proposal required a mechanism to
overcome the Casimir-Polder potential. Here we have pro-
vided a simple solution, inserting a conducting plate between
the two quantum superpositions, denoted here by systems
1 and 2; see Fig. 2. The conducting plate screens electro-
magnetic interactions and Casimir potential between the two
superposed neutral masses allowing for smaller separations
between the neutral masses. Doing so, provides many exciting
outcomes. Namely, the particle masses can be reduced to
around 10−15–10−16 kg. However, the conducting plate intro-
duces a Casimir force between the two masses and the plate
itself. The force is attractive and tends to modify the traj-
ectories of the particles in such a way that the initial size
of spatial superposition can now be made slightly smaller.
A smaller mass and a smaller spatial superposition can be
achieved with the current state of strength for the inhomo-
geneous magnetic field, i.e., of order 104 Tm−1. We have
also found that the flight time of the experiment can also be
reduced to roughly 1 s. A smaller mass and the reduced flight
time will yield a lower, but still detectable entanglement phase
of order 0.01 rad.

We have also analyzed various sources of decoherence
in the experiment. We have considered collisional decoher-
ence due to air molecules and blackbody radiation. We have
also analyzed an alternative source of decoherence due to
Casimir potential between the test mass and the conduct-
ing plate. We have found that it is possible to mitigate
the decoherence due to vibrational motion of the conduct-
ing plate, provided the plate is relatively rigid, such as a
copper square plate with a 1 mm length and height and a
thickness 1 μm.

Although our results highlight a small improvement in
some of the experimental parameters, step by step it brings
us closer toward entangling two macroscopic quantum super-
positions in a table-top experiment. In fact, it is now eminently
possible with magnetic field gradients which is well within the
reach of current generation laboratories. Tests such as QGEM
are essential for constructing sensible quantum theory of grav-
ity at all energies. The gravity remains the only interactions
of nature whose quantum properties are not known in any
experiment. Although the concept of graviton is viewed as a
consequence of a perturbative treatment of quantum gravity,
nevertheless, it is a vital tool for nonperturbative aspects of
quantum gravity as well, such as strings [5,7]. Moreover,
the QGEM protocol highlights that if gravity is quantum, it
would inevitably entangle matter. This will have implications
of quantum gravity at all energies and can be considered as
a complementary path of research from AdS/CFT correspon-
dence [64].
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APPENDIX A: PHASE EVOLUTIONS STEPS 1 TO 3

The initial separation of the test mass is d . During the
acceleration period of step 1 the superposition is created due
to the acceleration created by the magnetic field gradient. The
phase evolution of Eq. (3) during this acceleration period of
τ/2 will be given by

�eff = Gm2

h̄

∫ τ
2

0

(
1

d − amagt2
+ 1

d + amagt2
− 2

d

)
dt = Gm2

h̄

⎛
⎜⎜⎝−

ln

( | amagτ

2 −
√

amagd|
amagτ

2 +
√

amagd

)
2
√

amagd
+

arctan

(
amagτ

2
√

amagd

)
√

amagd
− τ

d

⎞
⎟⎟⎠. (A1)

During the deceleration period, the phase evolution is given by

�eff = Gm2

h̄

∫ τ
2

0

(
1

d + amagt2 − amagτ t − amag
(

τ
2

)2 + 1

d − amagt2 + amagτ t + amag
(

τ
2

)2 − 2

d

)
dt . (A2)

Now by defining d1 = d − amag( τ
2 )2 and d2 = d + amag( τ

2 )2, we arrive at the following solution:

�eff = Gm2

h̄

⎧⎨
⎩ 2√

4d1amag − (aτ )2
arctan

⎡
⎣ amagτ√

4d1amag − (amagτ )2

⎤
⎦

− 1√
(amagτ )2 + 4amagd2

ln

⎡
⎣−amagτ +

√
(amagτ )2 + 4amagd2

amagτ +
√

(amagτ )2 + 4amagd2

⎤
⎦− τ

d

⎫⎬
⎭, (A3)

Where the assumptions are made that 4d1amag > (amagτ )2 and
(amagτ )2 < 4amagd2, which hold for the parameters of m =
10−15 kg discussed in this paper. Therefore, Eqs. (A1) and
(A3) describe the total phase evolution during step 1 of the
experiment.

In step 3 the superposition size is slightly enhanced due
to Casimir force which tends to attract the nearby states to
the plate, �x + smax, with smax the value of s at the end of
the flight time, but as �x is an order of magnitude larger it
is fairly reasonable to make the assumption that the phase
evolution of step-3 is the same as that of step-1 with τ → τ1

and d → d − smax. With τ1 and d ′ the assumptions 4d1a >

(amagτ )2 and (aτ )2 < 4amagd2 still hold. Therefore, the total
phase evolution during steps 1 and 3 of the experiment are
given by Eqs. (A1) and (A3) for step 1 and the same equations
with τ → τ1 and d → d − smax for step 3.

APPENDIX B: SCATTERING CONSTANTS OF
DECOHERENCE RATES

The Ref. [58] has a detailed analysis on the decoherence of
a spatially separated superposition of two macroscopic states
like in in our case. The off-diagonal elements of the reduced
density matrix ρ of a single superposition evolves due to loss
of coherence due to interaction with environmental particles.
The master equation is given by

∂ρ(x, x′, t )

∂t
= −F (x − x′)ρ(x, x′, t ), (B1)

where (x − x′) is the superposition size. If the wavelength
of the environmental particles/photons are much shorter than
the superposition size, then we have the so-called short wave-
length limit in which it can be shown [58] that for an isotropic
medium F (x − x′) = �, with � the scattering rate of the
environmental particles/photons independent of time, in an
adiabatic limit.

If the wavelength of the environmental particles/photons
is much larger than the superposition size, then we are in
the long wavelength limit, in which case F (x − x′) = �(x −
x′)2 [58]. However, note that in our case, (x − x′), is time-
dependent during the whole experiment. As mentioned in
Sec. V we have scattering of air molecules valid for a short
wavelength limit and photons from absorption and scattering
from the environment and emission from the test mass for the
long wavelength limit. This will yield that Eq. (B1) reduces to

∂ρ(x, x′, t )

∂t
= �air +

3∑
i

�i[x(t ) − x′(t )]2ρ(x, x′, t ) (B2)

and

ρ(x, x′, t )

= exp

(
−
{

�airt +
3∑
i

∫
[x(t ) − x′(t )]2dt

})
ρ(x, x′, 0).

(B3)

In the small time interval limit, this integration can be ex-
pressed by a summation with �t taken sufficiently small, and
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therefore we can obtain the total decoherence factor e−γ t :

exp[−γ t] = exp

[
−�airt +

3∑
i

�i

∑
k

(xk − x′
k )2�t

]
,

(B4)

where t denotes the final time of evolution of the summation
given by kmax�t . In our case it is the total time of steps 1,
2, and 3 of the experiment. In the long-wavelength limit the
scattering constant for air molecules can be expressed as [58]

�air = 4R2

3h̄2

N

V

√
πmair(2kbT )3/2, (B5)

where kb is the Boltzmann constant. Note that �air = λ2
air�air,

see Ref. [25], and denoting N
V = nV we will obtain

�air = 16πnV R2

3

√
2πkbTex

mair
, (B6)

which is consistent with Ref. [25] if one applies the ideal gas
law, and Tex is the external temperature of the ambience.

The relevant formulas for the scattering constants for the
photon scattering, absorption and emission can be found in

Refs. [25,58] and are given by

�sc = 8!ζ (9)
8cR6

9π

(
kbTex

h̄c

)9

Re

(
ε − 1

ε + 2

)2

,

�(e)a = 16π5cR3

189

(
kbT(i)ex

h̄c

)6

Im

(
ε − 1

ε + 2

)
. (B7)

Here Ti is the internal temperature of the test mass.

APPENDIX C: COMPUTING THE DECOHERENCE RATE

Note that from Eq. (18) x|↑〉k
− x|↓〉k

is time-dependent.
Step 1 of Fig. 1 can be split up into an acceleration and
deceleration period of the superposition size [1]. For the accel-
eration part, we get with the constant acceleration of amag =
gμB∂xB

m during a time of τ
2 that the summation of Eq. (18)

becomes

∑
k

(x|↑〉k
− x|↓〉k

)2�t = a2
mag

∫ τ/2

0
t4dt = a2

mag

5

(τ

2

)5
. (C1)

We can perform the same analysis for the deceleration period,

∑
k

(x|↑〉k
− x|↓〉k

)2�t =
∫ τ/2

0

[
− amagt2 + 2amag

τ

2
t + amag

(τ

2

)2
]2

dt = −a2
mag

5

(τ

2

)5
+ 46

15
a2

mag

(τ

2

)5
. (C2)

Combining both the expressions will give us that during step 1 of the experiment,

∑
k

(x|↑〉k
− x|↓〉k

)2�t = 46

15
a2

mag

(τ

2

)5
. (C3)

During the free-fall period of the experiment, see Fig. 2, x|↑〉k
− x|↓〉k

= �x + sk and by using that �x = 2amag( τ
2 )2, we obtain

3∑
i=1

�i

∑
k

(x|↑〉k
− x|↓〉k

)2�t =
3∑

i=1

�i

∑
k

(�x + sk )2�t

=
3∑

i=1

�i

[
4a2

mag

(τ

2

)4
tint +

∑
k

(
4amag

(τ

2

)2
sk + s2

k

)
�t

]
. (C4)

Finally, at the end of the free fall we we will have the superposition size �x + smax. Then we make the assumption that the inner
states in Fig. 2 instantaneously turn around when the magnetic field is switched back on. However, in reality this will take longer
due to residual velocity of the state toward the plate, but this will for the mass of 10−15 kg with the parameters of the interaction
time of 1s happen after an additional time of 10 ms and can even be reduced if one plays around with slightly higher magnetic
field gradients during step 3 of the experiment, or taking slightly higher values of N . In short, there are a lot of possibilities. With
this assumption, we get that the time required to bring the superposition back becomes

τ1 = 2

√(τ

2

)2
+ smax

amag
. (C5)

As step 3 of the experiment is the reverse action of step 1, but with now a time of τ1 instead of τ , we obtain the summation,
equivalent to Eq. (C3), but with τ → τ1:

∑
k

(x|↑〉k
− x|↓〉k

)2�t = 46

15
a2

mag

(τ1

2

)5
. (C6)
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Then by combining Eqs. (C3), (C4), and (C6), and denoting that the total runtime of the superposition is tint + τ + τ1, we will
get that the total decoherence factor becomes

exp

[
−
∑

k

γk�t

]
= exp

[
−
[
�air(tint + τ + τ1) +

3∑
i=1

�i

(
46

15
a2

mag

{(τ

2

)5
+
(τ1

2

)5
}

+ 4a2
mag

(τ

2

)4
tint +

∑
k

(
4amag

(τ

2

)2
sk + s2

k

)
�t

)]]
, (C7)

where we have switched form the notation γ t to
∑

k γk�t as the decoherence rate is not constant during the altered QGEM
protocol.
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