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The term "Quantum Group" and the algebraic constructions asso­

ciated with it are rather popular nowadays. Different people however, 

endow this combination of words with different meaning. Here I will 
present some historical background and a systematic introduction into 

this rapidly developing theory 1>. 

§1. History of the subject 

The main source of motivation for quantum groups was the Quan­

tum Inverse Scattering Method (QISM) initiated by L. Faddeev, E. 

Sklyanin and this author in [1-3]. Their initial aim was to formulate 
a quantum theory of solitons. Quantum Lie groups and quantum Lie 

algebras appeared afterwards as abstraction of concrete algebraic con­

structions constituting the mathematical formalism of QISM. Let us first 

consider two characteristic examples. 

Example 1. In the paper [4] concerning the quantum Liouville 

model on the lattice, L. Faddeev and the author introduced the C­

algebra Aq generated by the elements a, b, c, d with relations 

(1) 

ab = qba, ac = qca, 

bd = qdb, cd = qdc, 

q EC\ {O}. 

be= cb, 

ad- da = (q- q- 1 )bc, 

This algebra has the following remarkable property. Consider two com­

muting copies (a', b', c', d') and (a", b", c", d") of generators of Aq and 
form two matrices 

/ (a' b') 
T= c' d'' 

11 ( a" b11
) 

T = c'' d" . 

Received December 20, 1988. 

l) This paper is an extended version of the lecture given in Taniguchi 

symposium at RIMS in October 1988. 
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Then the set ( a, b, c, d), where 

T = T'T" = (: : ) 

also generates Aq, i.e. satisfies relations (1). In other words, relations 

(1) are preserved under matrix multiplication. Another observation is 

that the element 

detqT = ad- qbc 

- the "quantum determinant"- belongs to the center of Aq, 

Setting 

we obtain 

TS(T) = S(T)T = detq T · I, 

where I is the unit matrix. Thus the quotient of the algebra Aq by the 

relation detq T = 1 could be called the "quantum group SL(2)" and 

denoted by SLq(2). The algebra SLq(2) with an additional *-structure 
was also introduced by S. Woronowicz [5-6] in his study of "compact 

matrix pseudogroups". This approach was based on the C* -algebra 

point of view. 

Example 2. P. Kulish and N. Reshetikhin [7] and E. Sklyanin 

[8] introduced in their study of concrete problems of QISM the following 

C-algebra Uh with generators H, x± and relations 

(2) 

Here the parameter h E C plays the role of Planck's constant. As h --t O, 

relations (2) tum into the commutation relations for the Lie algebra 
.sl(2). Therefore the algebra Uh could be considered as a deformation of 

the universal enveloping algebra U.sl(2) of the Lie algebra .sl(2). 

V. Drinfeld was the first to make an important observation that 

main algebraic constructions of QISM are nothing but very special ( and 

very meaningful) examples of bialgebras and Hopf algebras. Using this 
algebraic language, he gave in [9-10] a natural generalization of Example 
2. 

Remind (see, for instance, [11]) that a C-algebra A is called a Hopf 
algebra, if 
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i) there exists a C-algebra homomorphism 

.6.:A--+A®A 

called a coproduct, such that the following diagram is commutative: 

yA®A~ct 

A A@A@A 

~A@A~t:, 
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ii) there exist a C-algebra homomorphism e : A -> C, called a 

counit, and a C-algebra antihomomorphism S : A -> A, called an an­

tipode, such that the following diagrams are commutative: 

id 
A - A 

t:, l 11 

ict®e A®C 
A®A- II 

~C®A 

id®S 
A ~A@A - A@A~ A -

~S®id~ 

C 

Here m is the usual product in the algebra: m( a ® b) = ab, a, b E A 

and i is the natural imbedding of C into A: i(c) = c · 1, c EC, where 1 

is the unit element in A. Ha C-algebra satisfies condition i) and has a 

counit e it is called a bialgebra. 

Let G be a Lie (topological) group. The commutative algebra 

Fun( G) of smooth (continuous) functions on G is a typical example of a 

Hopf algebra and any commutative Hopf algebra is of this form. A typ­

ical example of a bialgebra is given by the algebra C(t,;] of polynomials 

in n 2 variables t,;, i, j = 1, · · · , n, with coproduct .6. 

n 

(3) .6.( t,;) = :1::>ik ® tk; 
k=l 
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and counit e 

e(ti;)=8i;, i,j=I,···,n, 

where 8i; is Kronecker's delta. Using the matrix T = ( ti; }f.;=i we can 

rewrite (3) in matrix form 

A(T) = T@T, 

where the symbol ® refers to the tensor product of algebras and usual 

product of matrices. In addition 

e(T) = I, 

where I is the n x n unit matrix. Thus the algebra C[ti;] can be in­

terpreted as the algebra of polynomial functions on the matrix algebra 

Mn(C} so that the coproduct (3) is induced by the usual matrix product. 
In Example 1 we are dealing with the non-commutative deformation 

of the latter algebra for the case n = 2. The main observation shows that 
Aq is a bialgebra with the same coproduct (3) as in the commutative 

case. The algebra Uh of Example 2 is also a bialgebra. The coproduct 
A introduced by E. Sklyanin [12] has the form 

(4) 
.6.(H) = H ® 1 + 1 ® H, 

A(X±} = x± ® e-¥ + e¥ ® x±. 

Moreover, defining the antipode S by 

S(H) = -H, 

and the counit e by 

± h.H ± h.H 
S(X ) = -e-,- X e,-

e(l) = 1, e(H) = e(X±) = 0 

we make Uh a non-commutative and non-cocommutative Hopf algebra. 
It was this particular example that served as a starting point for the 

work of V. Drinfeld [9-10] and M. Jimbo [13-14] who have generalized 

the algebra Uh to the general case of simple Lie algebras. 
Let us now turn to the QISM. The basic algebraic formulas consti­

tuting the essence of the method are 

(5) 

and 

(6) 
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Here RE Mn2(e) and T1 = T © I,T2 =I© T, where Tis an n x n­

matrix with matrix elements belonging to some associative algebra A. 

The indices 12, 13 and 23 in (6) show the way of imbedding Mn2(C) 
into Mna(C) according to the choice of two factors in the triple tensor 
product en © en © en. 

Note that in the framework of QISM the matrices T and R depend 

on an additional complex parameter .X, called the spectral parameter. 

Hence in (5) one should replace T1 by T1(.X), T2 by T2(µ) and R by 

R(.X- µ). Respectively in (6) one should make the replacements R12 1-+ 

R12(.X - µ), Ru 1-t Ru(.\ - v), R23 1-t R23(µ - v). The matrix T(.X) 

plays the role of the monodromy matrix for the corresponding quantum 

linear problem: 

i.e. 

The main observation equivalent to the existence of a bialgebra struc­

ture states that if local matrices Q1(.X), · · ·, QN(A) satisfy (5), then the 

monodromy matrix T(.X) also satisfies (5). In this context formula (6), 

which is nothing but the famous Yang-Baxter equation in QISM; (this 

name was given to it by Faddeev and myself in [2]) can be considered as 

a compatibility condition for (5). For certain classes of integrable quan­

tum models there exists a special value of spectral parameter .X, say 

A = oo, where some simplifications occur. Setting R = Iim>.-+oo R(.X) 

and T = lim>.-+oo T(.X) we arrive to formulas (5) and (6). 

Examples 1 and 2 can be constructed by the above procedure us­

ing the matrix Q(.X) for the quantum Sinh- and Sine-Gordon models 

(see [4],[7]). In this approach formulas (5) and (6) have been of great 

help. However Drinfeld [9-10] and Jimbo [13-14], who were general­

izing Example 2, did not use the main formulas of QISM (5) and (6) 

to the full strength. This is why Faddeev, Reshetikhin and the author 

decided to develop a more systematic approach to quantum Lie groups 

and quantum Lie algebras based on the exclusive use of formulas (5) and 

(6). This natural suggestion materialized in our papers [15-16], and my 

lecture will mostly be based on them. 

Before passing to formal definitions I would like to explain the mean­

ing of the word "quantum" in connection with quantum groups. His­

torically, it points out to their birthplace, QISM. Mathematically it has 

the same meaning as the term "deformation" as applied to algebraic 

structures. We will apply this idea to the algebra Fun( G) of polynomial 

functions - "observables" - on the Lie group G. Its special non­

commutative deformation will be called the "algebra of functions on the 
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quantum Lie group Gq'' and will be denoted by Fun(Gq)- The quan­

tum group Gq itself should be interpreted as a would-be spectrum of the 

non-commutative algebra Fun(Gq) (if such an object exists). Thus the 

terminology will be as follows: when saying quantum group I will mean 

the corresponding non-commutative algebra. It is relevant to note that 

quantum groups should provide a meaningful example for the general 

program of non-commutative differential geometry of A. Connes [17]. 

§2. Quantum matrix algebras 

Denote by e(ti;) thee-algebra freely generated by ti;, i,j = 1, · · ·, 

n. Let RE GL(n 2 ) and consider the two-sided ideal IR in e(ti;) gener­

ated by the relations 

RT1T2 = T2T1R. 

Here T1 = T®I,T2 = I®T E Mn2(e(ti;)), where T = (ti;)f.;=t E 

Mn(e(ti;)) is an n x n matrix with matrix elements belonging to e(ti;) 

and I is the unit matrix in Mn(e). 

Definition 1. The quotient algebra 

is called the algebra of functions on the quantum matrix algebra of rank 

n associated with the matrix R. 

When R =I® I, the algebra AR coincides with the commutative 

algebra of polynotnial functions on Mn(e). 

Proposition 1. The algebro AR is a bialgebro with coproduct A 

A(T) =T®T 

and counit e 

e(T) = I. 

The proof is evident. 

Thus we see that AR can be considered as a non-commutative 

deformation of the polynotnial algebra on Mn(e) with the same R­

independent coproduct (3). 

Let now denote by e(:z:1, · · · ,:z:n) thee-algebra freely generated by 

:Z:1, • • • , Zn and let p be the permutation matrix in en ® en : p U ® V = 
v ® u for u,v E en. Set fl= PR and for any polynomial f(t) E e[t] 
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denote by lt,R the two-sided ideal in C(x 1 , .. ·,xn), generated by the 

relations 

f(R) x © x = 0. 

Here x©x = (xix;)f.j=l E Mn(C(x1,···,xn)). 

Definition 2. The quotient algebra 

Cf,R = C(x1,···,Xn)/lt,R 

is called the algebra of functions on the quantum n-dimensional vector 

space, associated with the polynomial f(t) and the matrix R. 

Proposition 2. The map 6 : c;,R - AR © c;,R defined by the 

formula 

(7) 

z.e. 

n 

6(xi) = Ltik © Xk, i = 1,· ·· ,n, 
k=l 

6(x) = T@x, 

is a C-algebra homomorphism and provide c;,R with the left Aw 

comodule structure with coaction 6. 

The latter means that the following diagrams are commutative 

The proof is clear. 

When R = P and /(1) = O, the algebra C1,R turns into the commu­

tative algebra C[x1 , · • • , Xn] and the coaction 6 is induced by the usual 
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action of the matrix algebra Mn(e) on en. Thus formula (7) can be 

interpreted as an R-independent action of the quantum matrix algebra 

on the quantum vector space. 

Several remarks are now in order. The algebras AR and ef,R 

naturally inherit the structure of graded algebras from e(tii) and 

e(x 1 , · • ·, xn)- In this respect they are nothing but special types of 

finitely generated quadratic algebras. From the functorial point of view 

the category of quadratic algebras was studied by Y. Manin [18-19]. 

However from our point of view this approach is rather general. Even 

the properties of the algebras AR and ef,R for an arbitrary matrix R 

can differ drastically from the properties of their commutative analogs 

e[t;i] and e[x 1 , · · ·, xn]- For example they can have different Poincare 

series - the generating functions for the dimensions of their graded 

components. In particular, relations (5) for the graded components of 

degree two imply additional relations for the components of degree three. 

Equation (6) ensures that these additional relations must be satisfied 

identically. This is one possible way of incorporating (6) into this alge­

braic scheme. From now on we will assume that the matrix R satisfies 

the Yang-Baxter equation (6). 

Now, everybody knows the crucial role played by the Yang-Baxter 

equation in QISM and in related subjects. I will remind here only that 

in terms of the matrix R it reads 

(R ® I)(I ® R)(R ® I) = (I® R)(R ® I)(I ® R) 

and its solutions correspond to the representations p: B 3 --t End(en © 

en ® en) of the braid group B3 satisfying certain locality conditions. 

By this I mean that 

p(81) = R®I, 

where 81 and 82 are generators of B3 satisfying a single relation 

I would like to emphasize here that the problem of complete classifica­

tion of local representations of the braid group B3 is not solved even 

in the case of symmetric group S3 , where 8~ = 8~ = 1. An interesting 

connection between the Yang-Baxter equation, the braid groups and the 

monodromy representations was discovered by Kohno (see his lecture in 

this volume). 

However, V. Bazhanov [20] and M. Jimbo [13-14], motivated by 

QISM, constructed special solutions of the Yang-Baxter equation asso-
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dated with simple Lie algebras of classical type. The corresponding ma­

trices R act in the tensor square of the vector representation and depend 

on a complex parameter q =/. 0 which is the parameter of deformation; 

when q = 1 R turns into the unit matrix. We will use quantum matrix 

algebras connected with these R-matrices in defining simple quantum 

Lie groups by passing to their natural quotient algebras admitting a 

Hopf structure. This procedure is parallel to the definition of classi­

cal Lie groups as algebraic varieties in Mn(C) and was introduced by L. 

Faddeev, N. Reshetikhin and the author [15]. Contrary to the q = 1 case 

where all simple Lie groups are embedded into the "Universal Mn(C)", 
in the case q =/. 1 the algebras AR attached to the various series of simple 

Lie algebras are not isomorphic. This illustrates once more the general 

principle that "quantization removes degeneracy". 

§3. Quantum groups SLq(n) and GLq(n) 

The matrix R = Rq associated with the Lie algebra of type An-1, 

n 2:: 2, has the form 

n n 

Rq = q L eii ® eii + L eii ® e;; 
i=l i,j=l 

i"#j 

n 

+ (q - q- 1) L ei; ® e;i, 
i,j=l 

q EC\ {O}, 

i>j 

where ei; E Mn(C), i,j = 1, · · ·, n, are matrix units. The corresponding 

matrix R.q = P Rq enters in local representations of the Hecke-Iwahori 

algebra [13]. 
Set 

where 

" (-q) 1(a-)t1 •• •t· 1 t·+1 • • •t .L..,,,, 0-1 ,- O"i-1 , a,+1 nu,.., i,j = 1, ·· · ,n . 

Here l(u) is the length {minimal number of transpositions) of the sub­

stitution u = u{l, · · ·, j -1,j + 1, · · ·, n) = (0-1, · · ·, O'i-1, O"i+1, · · ·, un). 
We have 

Proposition 3. Let S(T) = (S(ti;))~ ._1 • Then ,,,-

TS(T) = S(T)T = detq T · I, 
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where 

detq T = L (-q)'(o-)t1,,.1 • • • tna-., 

a-ES., 

is called the quantum determinant. 

The element detq T E Aq = AR. is central and group-like: 

Moreover, in the generic case, when q is not a root of 1, the center of Aq 

is generated by detq T. 

Definition 3. The quotient algebra of Aq by the relation detq T 

= 1 is called the algebra of functions on the quantum group SLq{n) and 

is denoted by Fun(SLq{n)). 

In a similar way, localizing the algebra Aq with respect to the ele­

ment detqT we obtain the algebra Fun(GLq(n)). 

Theorem 1. The algebras Fun(SLq{n)) and Fun(GLq{n)) are 

Hopf algebras with the same coproduct A and counit e as in Aq and with 

antipodes defined by S(T) and ( detq T)- 1 S(T) respectively. In addition 

where 'D == diag(l, q2 , • • ·, q2(n-l)) E Mn(C). 

In the simplest case n = 2 we have 

(

q 0 

0 1 
Rq = O q-q-1 

0 0 

0 0) 0 0 
1 0 

0 q 

and the corresponding algebra Aq coincides with the algebra of Example 

1. 

Now specializing the matrix R in Definition 2 to be Rq and f ( t) = 
t - q we arrive at 

Definition 4. The algebra of "q-polynomials" - the algebra c; 
with generators :z:1, • • • , Zn and relations 
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is called the algebra of functions on the quantum n-dimensional vector 

space. 

The algebra Aq, Fun(SLq(n)) and Fun(GLq(n)) "act" on c; via 

formula (7). 

Now set R = Rq and f(t) = t + q- 1 . From Definition 2 we obtain 

for q2 i= -l 

Definition 5. The finite dimensional algebra /\ c; with gener-

ators x1,···,Xn and relations x; = 0, XiXj = -q- 1XjXi, l ~ i < j ~ n, 

is called the q-exterior algebra of the quantum vector space c;. 

The "action" o of Aq on /\ c; leads to the formula o(x1 • • • xn) = 
detq T © X1 • • • Xn and provides a direct proof of the relation~( detq T) = 
detq T © detq T. This interpretation of the quantum determinant was 

also given in [19]. 

In the case lql = 1, the algebra c; admits a natural completion to 

the algebra T; of formal Laurent series :E~,.--,k,,=-oo aki ···k,, x~ 1 • • • X~" 

with rapidly decreasing coefficients { aki ···k,,} E S(zn ). 
The algebra T; is called the algebra of functions on the quantum 

n-torus. When n = 2 it arises in the study of the Kronecker foliation on 

the 2-torus. The algebra T! was the main example in Connes's program 

of non-commutative differential geometry [17]. In particular he calcu­

lates the Hochschild (co)homology groups H*(A,A) (H*(A,A*)) and 

the corresponding (co)homology groups H,!>R(A) (H0a(A)) of the non­

commutative de Rham complex. These calculations can be generalized 

to the case A = T; and, in principle, to the cases A = Fun(SLq(n)), 

Fun(GLq(n)). It is clear that we will have the same dimensions for the 

de Rham ( co )homology groups as in the commutative case q = l. How­

ever the spaces H*(A, A) and H*(A, A*) now play the role of the spaces 

of quantum differential forms and quantum de Rham currents, so a nice 

geometrical interpretation for them is needed. 

In the algebra Fun(SLq(n)) it is possible to define left coideals 

corresponding to the algebras of functions on the homogeneous spaces 

SL(n)/ SL(k) x SL(n - k), k = l, · · ·, n - l. For instance in the k = l 

case consider the subalgebra in Fun(SLq(n)) generated by tin, S(tni), i = 
1, · · ·, n. This is a left coideal in Fun(SLq(n)) and it can be interpreted 

as the algebra Fun(SLq(n)/ SLq(n - l)). 

Consider now real forms of the quantum group SLq(n). They are 

classified by *-involutions of the Hopf algebra Fun(SLq(n)). Here two 

possibilities occur. 
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1) Case jqj = 1 

The corresponding *-involution has the form T* = T and leads to 

the quantum group SLg{n, R). The analogous involution x; = Xi, i = 

1 · · · , n, turns c; into R; so that the quantum group S Lg{ n, R) "acts" 

on the quantum n-dimensional real space R;. One can also define a *-

subalgebra in Fun(SLq(n, R)) generated by :E;=1 tiktik, i,j = 1, · · ·, n. 

It is a left coideal and can be interpreted as the algebra of functions 

on the homogeneous space of rank n - 1. In the case n = 2 we simply 

obtain the quantum Lobachevsky plane. Natural question is to define 

quantum Fuchsian groups. 

2) Case q ER 

The corresponding *-involution has the form T* = US(T)tu- 1 , 

where U is a diagonal matrix satisfying U2 = I. Setting U = I we obtain 

the quantum group SUg{n) - a compact form of SL 9 (n). When n = 2 

the group SUq(2) was introduced by S. Woronowicz in [5-6]. In this case 

there is another choice of matrix U = diag(l, -1) leading to the quantum 

group SUq(l, 1). Note that for q-:/-±1 quantum groups SL 9 (2,R) and 

SUg{l, 1) are defined for different domains of q and are non isomorphic. 

This illustrates again how quantization removes degeneracy. 

§4. Quantum groups SO 9 (n) and Spg{n) 

The corresponding matrix R = R9 is of order N 2 x N 2 , where 

N = 2n + 1 for Bn type and N = 2n for Cn, Dn types and has the 
following form 

N N 

R9 = q"'"' eii © eii + el!.±!. 1!..±!. © el!.±!. .l!.±!. + "'"' eii © eii 
L...J 2'2 2'2 L..J 
i=l i,j=l 

i=;ei' i#i,i' 

N N 

+ q- 1 L ei'i' © eii + (q - q- 1 ) L eii © eii 
i=l 
i#i' 

N 

i,i=l 
i>j 

- (q- q- 1 ) L qP•-Pieiejei; © ei'i', 

i,j=l 
i>j 

q EC\ {O}, 

where the second term is present only for the type Bn. Here ei; E 

MN(C) are matrix units, i' = N + 1 ,- i, j' = N + 1 - j, ei = 1, i = 
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1, · · ·, N, for types Bn, Dn, Ci = 1, i = 1, ···,If-, Ci 

1, · · ·, N, for type Cn and 

(p1, " .. , p N) 
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-1, i 

{ 
(n - l n - ~ ... l O _! · · · l - n) for the type Bn, 

2' 2' '2' ' 2 1 '2 

= (n, n - 1, · · ·, 1, -1, · · ·, -n) for the type Cn, 

(n -1,n - 2,· · ·, 1,0,0,-1,· · ·, 1- n) for the type Dn. 

The matrix Rq = P Rq enters in local representations of the Birman­

Wenzl-Murakami algebra [21]. 
The matrix Rq satisfies the relations 

where for the matrices in the tensor product cN ©CN the symbols t1 and 

t2 stand respectively for the transposition in the first and second factors. 

Here C1 = C ©I, C2 =I© C and C = qPC0 , where p = diag(p1, · · ·, PN) 

and {Co)i; = ei6i'i• i,j = 1, · · ·, N, so that C2 = el withe= 1 for types 

Bn,Dn and e = -1 for type Cn. 

These properties of the matrix Rq suggest the following 

Definition 6. The quotient algebra Fun{Gq) of the algebra Aq 

by the relations 

TCTtc- 1 = CTtc- 1T = J 

is called the algebra of functions either on the quantum group Gq = 

SOq(N) if the matrix Rq corresponds to types Bn, Dn or on the quantum 

group Gq = Spq{n) if the matrix Rq corresponds to type Cn. 

Theorem 2. The algebras Fun(SOq(N)) and Fun(Spq{n)) are 

Hopf algebras with the standard coproduct ll, counit c and with antipode 

S given by 

S(T) = CTtc- 1• 

It has the property 

The proof is clear. 

Consider now the orthogonal case and set in Definition 2 the matrix 

R to be Rq and f(t) = t2 - (q + q1-N)t + q2-N. We arrive at 
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Definition 7. 

and relations 

The algebra Of (C) with generators x1, · · ·, XN 

XiXj = qXjXi, 1 ::; i < j ::; N, i-/- j', 

N N-2 i'-l 
q - q '""' p-,-p· 

X;•Xi = X;X;, + l + N- 2 L..., q' 1 XjXj' 
q j=l 

2 1 N 
q - L p-,-p· - ---- q' 'X·X·, 

1 + qN-2 . . 1 1 ' 
1=i' 

1 ::; i < i' ::; N, 

is called the algebra of functions on the quantum n-dimensional Eu­

clidean space. 

It is not difficult to see that the Poincare series for the algebra 

Of(C) are the same as for the commutative algebra C[x1,···,xN]­
Moreover the element 

N N 

xtcx = L XiCijXj = L q-P; XjXj' 

i,j=l j=l 

is central and has the property 

6(xtcx) = 1 © xtcx. 

In other words, the "action" 6 preserves the quadratic form xtcx. 

In the symplectic case, setting j(t) = t - q we arrive at 

Definition 8. 

and relations 

The algebra Sp;n( C) with generators x 1 , • • ·, X2n 

i'-1 

x;,x; =x;x;, + (q2 -1) L c;•c;qp,,-P;x;xj', 1::; i < i'::; 2n, 

j=l 

is called the algebra of functions on the quantum 2n-dimensional sym­

plectic space. 

In the algebra Sp;n(C) the following equality holds: 

2n 

xtcx = L q-P·c;X;X;, = 0 

i=l 
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and the "action" 8 preserves the bilinear form 

By this I mean that 

2n 

xt © Cx = L q-P,eiXi © Xi'· 

i=l 

449 

where m1a stands for the usual product of the factors with index 1 and 

3 in the quadruple tensor product of Sp!n(C). 

One can also define the quantum exterior algebras of the quantum 

Euclidean and symplectic spaces and introduce the algebras of functions 

on the quantum homogeneous spaces like Fun(SOq(N)/ SOq(N-2)) and 

Fun(Spq(n)/ Spq(n - 1)). Let us describe real forms of these algebras 

instead. 

1) Case lql = 1 

We have a *-involution T* = T defining the algebras Fun(Spq(n, R)) 
and Fun(SOq(n, n)),Fun(SOq(n,n + 1)). However no group of the 

type SO(3, 1) appears, so we are not able to define a quantum Lorentz 

group. For the case of quantum symplectic space Sp!n( C) the involution 

x-; = Xi, i = 1, · · ·, 2n, turns it into Sp!n(R) and the quantum group 

Spq(n, R) "acts" on it via 8. 

2) Case q ER 

We have T* = US(T)tu- 1 , where U = diag(c:1,···,cN),e~ = 
1, ci = Ci', i = 1, .. ·, N, and ei = 1 for i = i'. In particular setting 

U = I we obtain the quantum group SOq(N, R) - a compact form of 

SOq(N). The involution x-; = qP•xi, i = 1,···,N, turns Of(C) into 

Of (R) and SO q ( N, R) "acts" on it via 8. This "action" preserves the 

quadratic form xtcx = x*' x and the quotient algebra of Of (R) by the 

relation x*' x = 1 is called the quantum N - I -sphere sf- 1 • The algebra 

s: was introduced in [22]. 

One can in principle define in analogous manner the quantum groups 

connected with exceptional Lie groups Ga, F4, E6, E1 and Es. The main 

problem here is in constructing the corresponding matrices Rq. For the 

G2 case the matrix Rq was found by Reshetikhin [21]. 
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§5. Quantum simple Lie algebras 

In the classical case there is a nice way, due to Laurent Schwartz, 

of introducing the universal enveloping algebra U g of a Lie algebra g. 

Namely, let G be a corresponding Lie group, then 

ug = c;=(c) 

where c;=( G) stands for the space of distributions on G with support 

in the unit element e. We will introduce quantum universal enveloping 

algebras by a suitable generalization of this relation. 

Denote by A'.n = Hom(AR, C) the algebraic dual of a bialgebra AR. 

It naturally has the structure of bialgebra itself and can be considered 

as a quantum analog of the algebra c-=(G). In order to define an 

analog of c;= ( G) consider the subalgebra UR c AR generated by zi;> E 

A'.n, i,j = 1, · · ·, n. These elements are defined as follows. Let £(±) = 
(lit>n:i=l E Mn(AR) and define the matrices-functionals£(±) by their 

action on the graded elements of algebra AR of degree k given by the 

formula 

(8) 

Here Ti= I®···®~®···® IE Mnk(AR), i = 1,···,k, and the 

i 

matrices Ri±) E MnH1(C) act nontrivially only in the factors with 

indices O and i in the tensor product en ® · · · ® en and coincide there ____________.. 
k+l 

with the matrices 

R(+) = PRP, 

When k = 0 the RHS of {8) equals to I. Note that due to the Yang­

Baxter equation, the action (8) is compatible with relations (5) in the 

algebra AR, The subalgebra UR ia called the algebra of regular function­

als on AR. Thus we see that the Yang-Baxter equation is a necessary 

ingredient in defining the algebra of regular functionals. 

We have 

Proposition 4. 

place: 

(9) 

i) In the algebra UR the following relations take 
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and 

(10) 

where e = ±, L~e) = L(e) © I, L~e) =I© L(e) E Mn2(UR), 

ii) The algebra UR is a bialgebra with coproduct A 

The proof is clear. 

Consider now the case when the matrix R corresponds to the clas­

sical types of simple Lie algebras and set R = cRq, where c = q-¼ 
for type An-l and c = 1 for types Bn, Cn, Dn. In this normalization 
det R = 1. Since the matrix Rq is lower-triangular it follows from {8) 

that the matrices £(+) and £(-) are respectively upper and lower tri-

1 M h l<+lz<-l z(-lz<+l 1 · 1 N d angu ar. oreover, we ave ii ii = ii ii = , i = , · · ·, , an 

from the condition det R = 1 it follows that z~tl · · -z~}.. = 1. Let G be 
a Lie group of classical type. Denote by Gq the corresponding quantum 

group constructed in Sec.3-4, and let Sq denote the antipode in the Hopf 

algebra Fun( G q ). It is not difficult to prove the following 

Proposition 5. In the case R = cRq the algebra UR is a Hopf 

subalgebra in Fun(Gq)* with the antipode S given by 

(11) 

The restrictions on elements zi;l and relations (9),(10) mentioned 

above completely determine the algebra UR for the case An-1 · In the 

case Bn, Cn and Dn one should also add the relations 

Thus in all cases the Hopf algebra UR has the same number of generators 

as Fun(Gq), 

Now let g be the simple Lie algebra of rank r, corresponding to the 

Lie group G, a:1, • .. , O:r be its simple roots and Ai; = 2 ~ :: ::: ~ , i, j = 
1, · · ·, r be its Cartan matrix, where ( , ) stands for the invariant scalar 

product. V. Drinfeld [9-10] and M. Jimbo [13-14] introduced the quan­

tum enveloping algebra Uhg, h E C, of the Lie algebra gas the C[[h]]-
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algebra with generators Hi, x"f, i = 1, · · ·, r, and relations 

[Hi,H;] = O, [Hi, X[] = ±( o:i, o:; )X[, 

(12) 
i,j = 1, · · ·,r, 

and 

(13) f)-l)k (7) q-;,.<"'2_,.l (X°f)k X[(X°f)m-k = 0 

k=O q; 

if i =/: j, 

where m = 1 - Ai;, qi= eh(a;,a;) and 

(m) (qm -1) ... (qm-k+l -1) 

k q = ( qk - 1) · · · ( q - 1) 

When h -t 0, the algebra Uhg goes into the universal enveloping 

algebra U g of the Lie. algebra g. 

The generators Hi, X"f, i = 1, · · · , r, play the role of a quantum 

analog of the Chevalley basis. In the case g = .sl(2) the algebra Uhg 

coincides with the algebra Uh from Example 2. 

The algebra Uhg is a Hopf algebra with coproduct tJi. 

tJi.(Hi) = Hi ® 1 + 1 ® Hi, 
(14) 

tJi.(X"t-) = xt- ® e-~ + e~ ® xt-• . . 
and antipode S 

(15) S(Hi) = -H,, S(X°f) = -e-hp X"/'ehp, i = 1, · · ·, r. 

Here p = ½ :Eaea+ Ha, where tJi.+ is the set of positive roots and for 

o: = :E;=l n,o:, we set Ha = :Er=l n,H,. 

Theorem 3. Let R = cRq, where the matrix Rq is attached to the 

simple Lie algebra g, and set q = eh. Then for a certain completion UR 

of the algebra UR we have 

Thus we have managed to introduce quantum enveloping algebras 

of simple Lie algebras using exclusively formulas (5) and (6)1 In this ap­

proach complicated relations (13) for the quantum Chevalley generators 

and formulas (14),(15) follow from the elementary formulas (9)-(11). 
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The isomorphism in Theorem 3 can be written down explicitly. For 

instance, in the simplest case n = 2 we have 

PH)' e 2 

where H and x± are generators of the algebra Uh from Example 2. 

Summing up we can say that our way of defining quantum universal 

enveloping algebras is more geometrical than the methods of [9,10,13,14]. 

In particular, the generators z~;> play the role of a quantum analog of the 

Cartan-Weyl basis. Often this basis is more useful than Chevalley basis. 

Thus for instance in its terms one can write rather simple formulas for 

the quantum Casimir operators - generators of the center of the algebra 

UR. Namely, we have 

Theorem 4. For generic q the center of the algebra UR is gener­

ated by 

k = 1,···,r. 

At this point it is appropriate to end this introduction to quantum 

groups. Before posing some interesting {from my point of view) open 

problems I would like to mention other subjects which I was unable to 

cover in this lecture. 

a) One can play more with the algebras AR and UR for the general 

matrix R satisfying the Yang-Baxter equation. In particular, there exists 

a procedure of making them Hopf algebras (see [16]}. 

b} There exists a natural interpretation (see [16]} of the construc­

tions of Sect.3-5 in terms of the quantum double, a concept introduced 

by V. Drinfeld [10]. 

c) In a similar manner one can define quantum loop groups and alge­

bras (see [15]}. The problem of defining quantum Kac-Moody algebras 

is more complicated. V. Drinfeld introduced them in [10] by a rather 

complicated system of generators and relations. However, recently N. 

Reshetikhin and M. Semenov-Tian-Shansky found that it is possible to 

define quantum Kac-Moody algebras along the lines presented in this 

lecture. 

d} Here I have said nothing about the representation theory of 

quantum groups {by these one should understand corepresentations of 

Fun{Gq} or representations of Uh.Eli representations of Fun{Gq} corre­

spond to the problem of classifying quantum Lax operators in the QISM 
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formalism). Surely this subject is very important and rapidly develop­

ing. Now we know a lot about representations of quantum groups SUq(2) 

and SUq(l, 1) due to the work of S. Woronowicz [5], L. Vaksman and Ya. 

Soibelman [23], T. Masuda. K. Mimachi, Y. Nakagami, M. Noumi and 

K. Ueno [24-25], A. Kirillov and N. Reshetikhin [26]. In these papers 

q-analysis and q-special functions naturally enter the game. Finite di­

mensional representations of Uhg were studied by G. Luztig [27] and M. 

Rosso [28]. It seems that general considerations presented in the lecture 

could be useful in the construction of realizations of representations of 

quantum groups and in treating quantum groups of higher rank. 

e) There exists by now well-known connection between quantum 

groups and braid representations on the one hand and invariants of links 
on the other hand. I will mention only the work of N. Reshetikhin [21,29] 

and references therein and Deguchi's talk at this conference. 

§6. Problems 

1) Intrinsic definition of quantum groups is needed. One can imag­

ine the following analogy. Suppose that one knows nothing about Lie 

algebras and tries to find all solutions of the Jacobi identity written in 

terms of the structure constants ct;· Then he ( or she) eventually dis­

covers intrinsic definition of Lie algebras and classification theorems for 

them. Since the Yang-Baxter equation plays the role of quantum Jacobi 

identity, intrinsic definition and classification of quantum groups will 

give us a list of all solutions of this equation. More seriously we need to 

define a proper category of quantum groups we are working with. 

2) Why do we have a one-parameter continuous family Gq of quan­

tum groups starting from the simple Lie group G ? There should be 

some cohomology theory for Fun( G) describing these deformations and 

having the property that its H 2 group is one-dimensional. It seems 

there exists an analogy with the approach of A. Lichnerowicz, M. Flato, 

D. Sternheimer and others to quantization procedure as deformation of 

symplectic structure. This problem is under consideration now. 

3) There are several problems in representation theory. How can 

one construct models for representations of quantum groups ? What is 

a quantum method of orbits and a quantum analog of the Borel-Weil­

Bott theorem ? 

4) Quantum differential geometry. At present we have here only 

problems. I will mention only one: how can one in addition to the quan­

tum de Rham complex define quantum Dolbeaut complex and an analog 

of Hodge theory. Certainly this question is also interesting for the gen­

eral approach of A. Connes to non-commutative differential geometry. 
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5) Applications to the integrable models of quantum field theory and 

statistical mechanics. It should be stressed that quantum groups are a 

rather small selection from the rich structures of QISM. Certainly all 

constructions of QISM, even the most complicated technically, should 

have some quantum group meaning; what remains is to reveal it. An­

other possible application is the "Virasoro puzzle" ( called so by J. Cardy 

in his lecture at Katata), where for certain models away from critical 

point Virasoro characters nevertheless do appear. Possible explanation 

is that in this case the model has some deformed Virasoro symmetry; 

since the characters are a kind of Poincare series they are not deformed 

and this is the reason of appearance of true Virasoro characters. Of 

course in realizing this program one should first define a quantum Vira­

soro algebra. 

6) It seems that this list of problems has a tendency to be infi­
nite. So I will end with the most fantastic possible applications to arith­

metic algebraic geometry. Could it be an idea that quantum groups play 

an interpolations role in the geometry of varieties defined over number 

fields ? 
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