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Abstract

I have already earlier proposed the explanation of FQHE, anyons, and fractionization of quan-
tum numbers in terms of hierarchy of Planck constants realized as a generalization of the imbed-
ding space H = M4 × CP2 to a book like structure. The book like structure applies separately
to CP2 and to causal diamonds (CD ⊂ M4) defined as intersections of future and past directed
light-cones. The pages of the Big Book correspond to singular coverings and factor spaces of CD
(CP2) glued along 2-D subspace of CD (CP2) and are labeled by the values of Planck constants
assignable to CD and CP2 and appearing in Lie algebra commutation relations. The observed
Planck constant ~, whose square defines the scale of M4 metric corresponds to the ratio of these
Planck constants. The key observation is that fractional filling factor results if ~ is scaled up by
a rational number.

In this chapter I try to formulate more precisely this idea. The outcome is a rather detailed
view about anyons on one hand, and about the Kähler structure of the generalized imbedding
space on the other hand.

1. The key idea in the formulation of quantum TGD in terms of modified Dirac equation associ-
ated with Kähler action is that the Dirac determinant defined by the generalized eigenvalues
assignable to the Dirac operator DK equals to the vacuum functional defined as the exponent
of Kähler function in turn identifiable as Kähler action for a preferred extremal for which
second variation of Kähler action vanishes at least for the variations responsible for dynam-
ical symmetries. The interpretation is in terms of quantum criticality. This representation
generalizes. One can add imaginary instanton term to the Kähler function and correspond-
ing modified Dirac operator: the hypothesis is that the resulting Dirac determinant equals
the exponent of Kähler action and imaginary instanton term.

2. Fundamental role is played by the assumption that the Kähler gauge potential of CP2

contains a gauge part with no physical implications in the context of gauge theories but
contributing to physics in TGD framework since U(1) gauge transformations are represen-
tations of symplectic transformations of CP2. Also in the case of CD it makes also sense to
speak about Kähler gauge potential. The gauge part codes for Planck constants of CD and
CP2 and leads to the identification of anyons as states associated with partonic 2-surfaces
surrounding the tip of CD and fractionization of quantum numbers. Explicit formulas re-
lating fractionized charges to the coefficients characterizing the gauge parts of Kähler gauge
potentials of CD and CP2 are proposed based on some empirical input.

3. One important implication is that Poincare and Lorentz invariance are broken inside given
CD although they remain exact symmetries at the level of the geometry of world of classical
worlds (WCW). The interpretation is as a breaking of symmetries forced by the selection of
quantization axis.

4. Anyons would basically correspond to matter at 2-dimensional ”partonic” surfaces of macro-
scopic size surrounding the tip of the light-cone boundary of CD and could be regarded as
gigantic elementary particle states with very large quantum numbers and by charge fraction-
ization confined around the tip of CD. Charge fractionization and anyons would be basic
characteristic of dark matter (dark only in relative sense). Hence it is not surprising that
anyons would have applications going far beyond condensed matter physics. Anyonic dark
matter concentrated at 2-dimensional surfaces would play key key role in the the physics of
stars and black holes, and also in the formation of planetary system via the condensation
of the ordinary matter around dark matter. This assumption was the basic starting point
leading to the discovery of the hierarchy of Planck constants. In living matter membrane
like structures would represent a key example of anyonic systems as the model of DNA as
topological quantum computer indeed assumes.

5. One of the basic questions has been whether TGD forces the hierarchy of Planck constants
realized in terms of generalized imbedding space or not. The condition that the choice
of quantization axes has a geometric correlate at the imbedding space level motivated by
quantum classical correspondence of course forces the hierarchy: this has been clear from
the beginning. It is now clear that first principle description of anyons requires the hierarchy
in TGD Universe. The hierarchy reveals also new light to the huge vacuum degeneracy of
TGD and reduces it dramatically at pages for which CD corresponds to a non-trivial covering
or factor space, which suggests that mathematical existence of the theory necessitates the
hierarchy of Planck constants.
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1 Introduction

Quantum Hall effect [8, 6, 9] occurs in 2-dimensional systems, typically a slab carrying a longitudi-
nal voltage V causing longitudinal current j. A magnetic field orthogonal to the slab generates a
transversal current component jT by Lorentz force. jT is proportional to the voltage V along the slab
and the dimensionless coefficient is known as transversal conductivity. Classically the coefficients is
proportional ne/B, where n is 2-dimensional electron density and should have a continuous spectrum.
The finding that came as surprise was that the change of the coefficient as a function of parameters like
magnetic field strength and temperature occurred as discrete steps of same size. In integer quantum
Hall effect the coefficient is quantized to 2να, α = e2/4π, such that ν is integer.

Later came the finding that also smaller steps corresponding to the filling fraction ν = 1/3 of the
basic step were present and could be understood if the charge of electron would have been replaced
with ν = 1/3 of its ordinary value. Later also QH effect with wide large range of filling fractions of
form ν = k/m was observed.

The model explaining the QH effect is based on pseudo particles known as anyons [3] , [8] .
According to the general argument of [4] anyons have fractional charge νe. Also the TGD based
model for fractionization to be discussed later suggests that the anyon charge should be νe quite
generally. The braid statistics of anyon is believed to be fractional so that anyons are neither bosons
nor fermions. Non-fractional statistics is absolutely essential for the vacuum degeneracy used to
represent logical qubits.

In the case of Abelian anyons the gauge potential corresponds to the vector potential of the
divergence free velocity field or equivalently of incompressible anyon current. For non-Abelian anyons
the field theory defined by Chern-Simons action is free field theory and in well-defined sense trivial
although it defines knot invariants. For non-Abelian anyons situation would be different. They would
carry non-Abelian gauge charges possibly related to a symmetry breaking to a discrete subgroup H
of gauge group [3] each of them defining an incompressible hydrodynamical flow. According to [9] the
anyons associated with the filling fraction ν = 5/2 are a good candidate for non-Abelian anyons and
in this case the charge of electron is reduced to Q = e/4 rather than being Q = νe [7] . This finding
favors non-Abelian models [9] .

Non-Abelian anyons [8, 10] are always created in pairs since they carry a conserved topological
charge. In the model of [9] this charge should have values in 4-element group Z4 so that it is conserved
only modulo 4 so that charges +2 and -2 are equivalent as are also charges 3 and -1. The state of n
anyon pairs created from vacuum can be show to possess 2n−1-dimensional vacuum degeneracy [11]
. When two anyons fuse the 2n−1-dimensional state space decomposes to 2n−2-dimensional tensor
factors corresponding to anyon Cooper pairs with topological charges 2 and 0. The topological ”spin”
is ideal for representing logical qubits. Since free topological charges are not possible the notion of
physical qubit does not make sense (note the analogy with quarks). The measurement of topological
qubit reduces to a measurement of whether anyon Cooper pair has vanishing topological charge or
not.

Topological quantum computation is perhaps the most promising application of anyons [9, 8, 4,
3, 5, 6] , [1] . I have already earlier proposed the explanation of FQHE, anyons, and fractionization
of quantum numbers in terms of hierarchy of Planck constants realized as a generalization of the
imbedding space H = M4 × CP2 to a book like structure [10] . The book like structure applies
separately to CP2 and to causal diamonds (CD ⊂ M4) defined as intersections of future and past
directed light-cones. The pages of the Big Book correspond to singular coverings and factor spaces of
CD (CP2) glued along 2-D subspace of CD (CP2) and are labeled by the values of Planck constants
assignable to CD and CP2 and appearing in Lie algebra commutation relations. The observed Planck
constant ~, whose square defines the scale of M4 metric corresponds to the ratio of these Planck
constants. The key observation is that fractional filling factor results for ordinary integer QHE if ~ is
scaled up by a rational number.

In this chapter I try to formulate more precisely this idea. The outcome is a rather detailed view
about anyons on one hand, and about the Kähler structure of the generalized imbedding space on the
other hand.

1. Fundamental role is played by the assumption that the Kähler gauge potential of CP2 contains
a gauge part with no physical implications in the context of gauge theories but contributing to
physics in TGD framework since U(1) gauge transformations are representations of symplectic
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transformations of CP2. Also in the case of CD it makes also sense to speak about Kähler
gauge potential. The gauge part codes for Planck constants of CD and CP2 and leads to
the identification of anyons as states associated with partonic 2-surfaces surrounding the tip of
CD and fractionization of quantum numbers. Explicit formulas relating fractionized charges to
the coefficients characterizing the gauge parts of Kähler gauge potentials of CD and CP2 are
proposed based on some empirical input.

2. One important implication is that Poincare and Lorentz invariance are broken inside given CD
although they remain exact symmetries at the level of the geometry of world of classical worlds
(WCW). The interpretation is as a breaking of symmetries forced by the selection of quantization
axis.

3. Anyons would basically correspond to matter at 2-dimensional ”partonic” surfaces of macro-
scopic size surrounding the tip of the light-cone boundary of CD and could be regarded as gi-
gantic elementary particle states with very large quantum numbers and by charge fractionization
confined around the tip of CD. Charge fractionization and anyons would be basic characteristic
of dark matter (dark only in relative sense). Hence it is not surprising that anyons would have
applications going far beyond condensed matter physics. Anyonic dark matter concentrated at
2-dimensional surfaces would play key key role in the the physics of stars and black holes, and
also in the formation of planetary system via the condensation of the ordinary matter around
dark matter. This assumption was the basic starting point leading to the discovery of the hi-
erarchy of Planck constants [10] . In living matter membrane like structures would represent a
key example of anyonic systems as the model of DNA as topological quantum computer indeed
assumes [9] .

4. One of the basic questions has been whether TGD forces the hierarchy of Planck constants
realized in terms of generalized imbedding space or not. The condition that the choice of
quantization axes has a geometric correlate at the imbedding space level motivated by quantum
classical correspondence of course forces the hierarchy: this has been clear from the beginning.
It is now clear that also the first principle description of anyons requires the hierarchy in TGD
Universe. The hierarchy reveals also new light to the huge vacuum degeneracy of TGD and
reduces it dramatically at pages for which CD corresponds to a non-trivial covering or factor
space, which suggests that mathematical existence of the theory necessitates the hierarchy of
Planck constants. Also the proposed manifestation of Equivalence Principle at the level of
symplectic fusion algebras as a duality between descriptions relying on the symplectic structures
of CD and CP2 [5] forces the hierarchy of Planck constants.

The first sections of the chapter contain summary about theories of quantum Hall effect appearing
already in [28] . Second section is a slightly modified version of the description of the generalized
imbedding space, which has appeared already in [10, 28, 9] and containing brief description of how
to understand QHE in this framework. The third section represents the basic new results about the
Kähler structure of generalized imbedding space and represents the resulting model of QHE.

2 About theories of quantum Hall effect

The most elegant models of quantum Hall effect are in terms of anyons regarded as singularities due
to the symmetry breaking of gauge group G down to a finite sub-group H, which can be also non-
Abelian. Concerning the description of the dynamics of topological degrees of freedom topological
quantum field theories based on Chern-Simons action are the most promising approach.

2.1 Quantum Hall effect as a spontaneous symmetry breaking down to a
discrete subgroup of the gauge group

The system exhibiting quantum Hall effect is effectively 2-dimensional. Fractional statistics suggests
that topological defects, anyons, allowing a description in terms of the representations of the homotopy
group of ((R2)n −D)/Sn. The gauge theory description would be in terms of spontaneous symmetry
breaking of the gauge group G to a finite subgroup H by a Higgs mechanism [3] , [8] . This would
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make all gauge degrees of freedom massive and leave only topological degrees of freedom. What is
unexpected that also non-Abelian topological degrees of freedom are in principle possible. Quantum
Hall effect is Abelian or non-Abelian depending on whether the group H has this property.

In the symmetry breaking G → H the non-Abelian gauge fluxes defined as non-integrable phase
factors Pexp(i

∮
Aµdx

µ) around large circles (surrounding singularities (so that field approaches a
pure gauge configuration) are elements of the first homotopy group of G/H, which is H in the case
that H is discrete group and G is simple. An idealized manner to model the situation [8] is to assume
that the connection is pure gauge and defined by an H-valued function which is many-valued such that
the values for different branches are related by a gauge transformation in H. In the general case a
gauge transformation of a non-trivial gauge field by a multi-valued element of the gauge group would
give rise to a similar situation.

One can characterize a given topological singularity magnetically by an element in conjugacy class
C ofH representing the transformation ofH induced by a 2π rotation around singularity. The elements
of C define states in given magnetic representation. Electrically the particles are characterized by an
irreducible representations of the subgroup of HC ⊂ H which commutes with an arbitrarily chosen
element of the conjugacy class C.

The action of h(B) resulting on particle A when it makes a closed turn around B reduces in
magnetic degrees of freedom to translation in conjugacy class combined with the action of element of
HC in electric degrees of freedom. Closed paths correspond to elements of the braid group Bn(X2)
identifiable as the mapping class group of the punctured 2-surface X2 and this means that symmetry
breaking G→ H defines a representation of the braid group. The construction of these representations
is discussed in [8] and leads naturally via the group algebra of H to the so called quantum double
D(H) of H, which is a quasi-triangular Hopf algebra allowing non-trivial representations of braid
group.

Anyons could be singularities of gauge fields, perhaps even non-Abelian gauge fields, and the latter
ones could be modelled by these representations. In particular, braid operations could be represented
using anyons.

2.2 Witten-Chern-Simons action and topological quantum field theories

The Wess-Zumino-Witten action used to model 2-dimensional critical systems consists of a 2-dimensional
conformally invariant term for the chiral field having values in groupG combined with 2+1-dimensional
term defined as the integral of Chern-Simons 3-form over a 3-space containing 2-D space as its bound-
ary. This term is purely topological and identifiable as winding number for the map from 3-dimensional
space to G. The coefficient of this term is integer k in suitable normalization. k gives the value of
central extension of the Kac-Moody algebra defined by the theory.

One can couple the chiral field g(x) to gauge potential defined for some subgroup of G1 of G. If
the G1 coincides with G, the chiral field can be gauged away by a suitable gauge transformation and
the theory becomes purely topological Witten-Chern-Simons theory. Pure gauge field configuration
represented either as flat gauge fields with non-trivial holonomy over homotopically non-trivial paths or
as multi-valued gauge group elements however remain and the remaining degrees of freedom correspond
to the topological degrees of freedom.

Witten-Chern-Simons theories are labelled by a positive integer k giving the value of central
extension of the Kac-Moody algebra defined by the theory. The connection with Wess-Zumino-Witten
theory come from the fact that the highest weight states associated with the representations of the Kac-
Moody algebra of WZW theory are in one-one correspondence with the representations Ri possible
for Wilson loops in the topological quantum field theory.

In the Abelian case case 2+1-dimensional Chern-Simons action density is essentially the inner
product A ∧ dA of the vector potential and magnetic field known as helicity density and the theory
in question is a free field theory. In the non-Abelian case the action is defined by the 3-form

k

4π
Tr

(
A ∧ (dA+

2

3
A ∧A)

)
and contains also interaction term so that the field theory defined by the exponential of the interaction
term is non-trivial.

In topological quantum field theory the usual n-point correlation functions defined by the functional
integral are replaced by the functional averages for Diff3 invariant quantities defined in terms of
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non-integrable phase factors defined by ordered exponentials over closed loops. One can consider
arbitrary number of loops which can be knotted, linked, and braided. These quantities define both
knot and 3-manifold invariants (the functional integral for zero link in particular). The perturbative
calculation of the quantum averages leads directly to the Gaussian linking numbers and infinite number
of perturbative link and not invariants.

The experience gained from topological quantum field theories defined by Chern-Simons action
has led to a very elegant and surprisingly simple category theoretical approach to the topological
quantum field theory [4, 5] allowing to assign invariants to knots, links, braids, and tangles and also
to 3-manifolds for which braids as morphisms are replaced with cobordisms. The so called modular
Hopf algebras, in particular quantum groups Sl(2)q with q a root of unity, are in key role in this
approach. Also the connection between links and 3-manifolds can be understood since closed, oriented,
3-manifolds can be constructed from each other by surgery based on links [3] .

Witten’s article [6] ”Quantum Field Theory and the Jones Polynomial” is full of ingenious con-
structions, and for a physicist it is the easiest and certainly highly enjoyable manner to learn about
knots and 3-manifolds. For these reasons a little bit more detailed sum up is perhaps in order.

1. Witten discusses first the quantization of Chern-Simons action at the weak coupling limit k →∞.
First it is shown how the functional integration around flat connections defines a topological
invariant for 3-manifolds in the case of a trivial Wilson loop. Next a canonical quantization is
performed in the case X3 = Σ2×R1: in the Coulomb gauge A3 = 0 the action reduces to a sum of
n = dim(G) Abelian Chern-Simons actions with a non-linear constraint expressing the vanishing
of the gauge field. The configuration space consists thus of flat non-Abelian connections, which
are characterized by their holonomy groups and allows Kähler manifold structure.

2. Perhaps the most elegant quantal element of the approach is the decomposition of the 3-manifold
to two pieces glued together along 2-manifold implying the decomposition of the functional inte-
gral to a product of functional integrals over the pieces. This together with the basic properties
of Hilbert of complex numbers (to which the partition functions defined by the functional inte-
grals over the two pieces belong) allows almost a miracle like deduction of the basic results about
the behavior of 3-manifold and link invariants under a connected sum, and leads to the crucial
skein relations allowing to calculate the invariants by decomposing the link step by step to a
union of unknotted, unlinked Wilson loops, which can be calculated exactly for SU(N). The
decomposition by skein relations gives rise to a partition function like representation of invari-
ants and allows to understand the connection between knot theory and statistical physics [2].
A direct relationship with conformal field theories and Wess-Zumino-Witten model emerges via
Wilson loops associated with the highest weight representations for Kac Moody algebras.

3. A similar decomposition procedure applies also to the calculation of 3-manifold invariants using
link surgery to transform 3-manifolds to each other, with 3-manifold invariants being defined as
Wilson loops associated with the homology generators of these (solid) tori using representations
Ri appearing as highest weight representations of the loop algebra of torus. Surgery operations
are represented as mapping class group operations acting in the Hilbert space defined by the
invariants for representations Ri for the original 3-manifold. The outcome is explicit formulas
for the invariants of trivial knots and 3-manifold invariant of S3 for G = SU(N), in terms of
which more complex invariants are expressible.

4. For SU(N) the invariants are expressible as functions of the phase q = exp(i2π/(k + N))
associated with quantum groups [3] . Note that for SU(2) and k = 3, the invariants are
expressible in terms of Golden Ratio. The central charge k = 3 is in a special position since
it gives rise to k + 1 = 4-vertex representing naturally 2-gate physically. Witten-Chern-Simons
theories define universal unitary modular functors characterizing quantum computations [8] .

2.3 Chern-Simons action for anyons

In the case of quantum Hall effect the Chern-Simons action has been deduced from a model of electrons
as a 2-dimensional incompressible fluid [6] . Incompressibility requires that the electron current has
a vanishing divergence, which makes it analogous to a magnetic field. The expressibility of the
current as a curl of a vector potential b, and a detailed study of the interaction Lagrangian leads
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to the identification of an Abelian Chern-Simons for b as a low energy effective action. This action
is Abelian, whereas the anyonic realization of quantum computation would suggest a non-Abelian
Chern-Simons action.

Non-Abelian Chern-Simons action could result in the symmetry breaking of a non-Abelian gauge
group G, most naturally electro-weak gauge group, to a non-Abelian discrete subgroup H [3] so that
states would be labelled by representations of H and anyons would be characterized magnetically
H-valued non-Abelian magnetic fluxes each of them defining its own incompressible hydro-dynamical
flow. As will be found, TGD predicts a non-Abelian Chern-Simons term associated with electroweak
long range classical fields.

2.4 Topological quantum computation using braids and anyons

By the general mathematical results braids are able to code all quantum logic operations [6] . In
particular, braids allow to realize any quantum circuit consisting of single particle gates acting on
qubits and two particle gates acting on pairs of qubits. The coding of braid requires a classical
computation which can be done in polynomial time. The coding requires that each dancer is able to
remember its dancing history by coding it into its own state.

The general ideas are following.

1. The ground states of anyonic system characterize the logical qubits, One assumes non-Abelian
anyons with Z4 -valued topological charge so that a system of n anyon pairs created from vacuum
allows 2n−1-fold anyon degeneracy [11] . The system is decomposed into blocks containing one
anyonic Cooper pair with QT ∈ {2, 0} and two anyons with such topological charges that the
net topological charge vanishes. One can say that the states (0, 1−1) and (0,−1,+1)) represent
logical qubit 0 whereas the states (2,−1,−1) and (2,+1,+1) represent logical qubit 1. This
would suggest 22-fold degeneracy but actually the degeneracy is 2-fold.

Free physical qubits are not possible and at least four particles are indeed necessarily in order
to represent logical qubit. The reason is that the conservation of Z4 charge would not allow
mixing of qubits 1 and 0, in particular the Hadamard 1-gate generating square root of qubit
would break the conservation of topological charge. The square root of qubit can be generated
only if 2 units of topological charge is transferred between anyon and anyon Cooper pair. Thus
qubits can be represented as entangled states of anyon Cooper pair and anyon and the fourth
anyon is needed to achieve vanishing total topological charge in the batch.

2. In the initial state of the system the anyonic Cooper pairs have QT = 0 and the two anyons have
opposite topological charges inside each block. The initial state codes no information unlike in
ordinary computation but the information is represented by the braid. Of course, also more
general configurations are possible. Anyons are assumed to evolve like free particles except
during swap operations and their time evolution is described by single particle Hamiltonians.

Free particle approximation fails when the anyons are too near to each other as during braid
operations. The space of logical qubits is realized as k-code defined by the 2n−1 ground states,
which are stable against local single particle perturbations for k = 3 Witten-Chern-Simons
action. In the more general case the stability against n-particle perturbations with n < [k/2] is
achieved but the gates would become [k/2]-particle gates (for k = 5 this would give 6-particle
vertices).

3. Anyonic system provides a unitary modular functor as the S-matrix associated with the anyon
system whose time evolution is fixed by the pre-existing braid structure. What this means that
the S-matrices associated with the braids can be multiplied and thus a unitary representation
for the group formed by braids results. The vacuum degeneracy of anyon system makes this
representation non-trivial. By the NP complexity of braids it is possible to code any quantum
logic operation by a particular braid [3] . There exists a powerful approximation theorem allowing
to achieve this coding classically in polynomial time [6] . From the properties of the R-matrices
inducing gate operations it is indeed clear that two gates can be realized. The Hadamard 1-gate
could be realized as 2-gate in the system formed by anyon Cooper pair and anyon.

4. In [9] the time evolution is regarded as a discrete sequence of modifications of single anyon
Hamiltonians induced by swaps [4] . If the modifications define a closed loop in the space
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of Hamiltonians the resulting unitary operators define a representation of braid group in a
dense discrete sub-group of U(2n). The swap operation is 2-local operation acting like a 2-gate
and induces quantum logical operation modifying also single particle Hamiltonians. What is
important that this modification maps the space of the ground states to a new one and only if
the modifications correspond to a closed loop the final state is in the same code space as the
initial state. What time evolution does is to affect the topological charges of anyon Cooper pairs
representing qubits inside the 4-anyon batches defined by the braids.

In quantum field theory the analog but not equivalent of this description would be following.
Quite generally, a given particle in the final state has suffered a unitary transformation, which
is an ordered product consisting of two kinds of unitary operators. Unitary single particle
operators Un = Pexp(i

∫ tn+1

tn
H0dt) are analogs of operators describing single qubit gate and

play the role of anyon propagators during no-swap periods. Two-particle unitary operators
Uswap = Pexp(i

∫
Hswapdt) are analogous to four-particle interactions and describe the effect of

braid operations inducing entanglement of states having opposite values of topological charge
but conserving the net topological charge of the anyon pair. This entanglement is completely
analogous to spin entanglement. In particular, the braid operation mixes different states of
the anyon. The unitary time development operator generating entangled state of anyons and
defined by the braid structure represents the operation performed by the quantum circuit and
the quantum measurement in the final state selects a particular final state.

5. Formally the computation halts with a measurement of the topological charge of the left-most
anyon Cooper pair when the outcome is just single bit. If decay occurs with sufficiently high
probability it is concluded that the value of the computed bit is 0, otherwise 1.

3 Hierarchy of Planck constants and the generalization of the
notion of imbedding space

In the following the recent view about structure of imbedding space forced by the quantization of
Planck constant is summarized. The question is whether it might be possible in some sense to replace
H or its Cartesian factors by their necessarily singular multiple coverings and factor spaces. One can
consider two options: either M4 or the causal diamond CD. The latter one is the more plausible
option from the point of view of WCW geometry.

3.1 The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter as a
hierarchy of phases of matter with non-standard value of Planck constants was much faster than the
evolution of mathematical ideas and quite a number of applications have been developed during last
five years.

1. The starting point was the proposal of Nottale [1] that the orbits of inner planets correspond
to Bohr orbits with Planck constant ~gr = GMm/v0 and outer planets with Planck constant
~gr = 5GMm/v0, v0/c ' 2−11. The basic proposal [22, 18] was that ordinary matter condenses
around dark matter which is a phase of matter characterized by a non-standard value of Planck
constant whose value is gigantic for the space-time sheets mediating gravitational interaction.
The interpretation of these space-time sheets could be as magnetic flux quanta or as massless
extremals assignable to gravitons.

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Compton
length meaning that the density of matter at these space-time sheets must be very slowly vary-
ing. The string tension of string like objects implies effective negative pressure characterizing
dark energy so that the interpretation in terms of dark energy might make sense [23] . TGD
predicted a one-parameter family of Robertson-Walker cosmologies with critical or over-critical
mass density and the ”pressure” associated with these cosmologies is negative.

3. The quantization of Planck constant does not make sense unless one modifies the view about
standard space-time is. Particles with different Planck constant must belong to different worlds
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in the sense local interactions of particles with different values of ~ are not possible. This inspires
the idea about the book like structure of the imbedding space obtained by gluing almost copies
of H together along common ”back” and partially labeled by different values of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at different
pages of the book like structure cannot appear in the same vertex of the generalized Feynman
diagram. The phase transitions in which partonic 2-surface X2 during its travel along X3

l leaks
to another page of book are however possible and change Planck constant. Particle (say photon
-) exchanges of this kind allow particles at different pages to interact. The interactions are
strongly constrained by charge fractionization and are essentially phase transitions involving
many particles. Classical interactions are also possible. It might be that we are actually ob-
serving dark matter via classical fields all the time and perhaps have even photographed it [26]
.

5. The realization that non-standard values of Planck constant give rise to charge and spin fraction-
ization and anyonization led to the precise identification of the prerequisites of anyonic phase.
If the partonic 2-surface, which can have even astrophysical size, surrounds the tip of CD, the
matter at the surface is anyonic and particles are confined at this surface. Dark matter could
be confined inside this kind of light-like 3-surfaces around which ordinary matter condenses. If
the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to a connected
structure by flux tubes mediating gravitational interaction - are given by Bohr rules, the find-
ings of Nottale [1] can be understood. Dark matter would resemble to a high degree matter in
black holes replaced in TGD framework by light-like partonic 2-surfaces with a minimum size
of order Schwartschild radius rS of order scaled up Planck length lPl =

√
~grG = GM . Black

hole entropy is inversely proportional to ~ and predicted to be of order unity so that dramatic
modification of the picture about black holes is implied.

6. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic currents
through cell membrane (low dissipation, quantal character, no change when the membrane is
replaced with artificial one) has a natural explanation in terms of dark supra currents. This
leads to a vision about how dark matter and phase transitions changing the value of Planck
constant could relate to the basic functions of cell, functioning of DNA and aminoacids, and to
the mysteries of bio-catalysis. This leads also a model for EEG interpreted as a communication
and control tool of magnetic body containing dark matter and using biological body as motor
instrument and sensory receptor. One especially amazing outcome is the emergence of genetic
code of vertebrates from the model of dark nuclei as nuclear strings [2, 26] , [2] .

3.2 The most general option for the generalized imbedding space

Simple physical arguments pose constraints on the choice of the most general form of the imbedding
space.

1. The fundamental group of the space for which one constructs a non-singular covering space or
factor space should be non-trivial. This is certainly not possible for M4, CD, CP2, or H. One
can however construct singular covering spaces. The fixing of the quantization axes implies a
selection of the sub-space H4 = M2 × S2 ⊂ M4 × CP2, where S2 is geodesic sphere of CP2.
M̂4 = M4\M2 and ĈP 2 = CP2\S2 have fundamental group Z since the codimension of the
excluded sub-manifold is equal to two and homotopically the situation is like that for a punctured
plane. The exclusion of these sub-manifolds defined by the choice of quantization axes could
naturally give rise to the desired situation.

2. CP2 allows two geodesic spheres which left invariant by U(2 resp. SO(3). The first one is homo-
logically non-trivial. For homologically non-trivial geodesic sphere H4 = M2 × S2 represents a
straight cosmic string which is non-vacuum extremal of Kähler action (not necessarily preferred
extremal). One can argue that the many-valuedness of ~ is un-acceptable for non-vacuum ex-
tremals so that only homologically trivial geodesic sphere S2 would be acceptable. One could go
even further. If the extremals in M2×CP2 can be preferred non-vacuum extremals, the singular
coverings of M4 are not possible. Therefore only the singular coverings and factor spaces of
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CP2 over the homologically trivial geodesic sphere S2 would be possible. This however looks a
non-physical outcome.

(a) The situation changes if the extremals of type M2×Y 2, Y 2 a holomorphic surface of CP3,
fail to be hyperquaternionic. The tangent space M2 represents hypercomplex sub-space
and the product of the modified gamma matrices associated with the tangent spaces of Y 2

should belong to M2 algebra. This need not be the case in general.

(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled
up coordinates for M4 so that metric is continuous at M2 × CP2 but CDs with different
size have different sizes differing by the ratio of Planck constants and would thus have only
piece of lower or upper boundary in common.

3. For the more general option one would have four different options corresponding to the Cartesian
products of singular coverings and factor spaces. These options can be denoted by C−C, C−F ,
F − C, and F − F , where C (F ) signifies for covering (factor space) and first (second) letter
signifies for CD (CP2) and correspond to the spaces (ĈD×̂Ga) × ( ˆCP2×̂Gb), (ĈD×̂Ga) ×

ˆCP2/Gb, ĈD/Ga × ( ˆCP2×̂Gb), and ĈD/Ga × ˆCP2/Gb.

4. The groups Gi could correspond to cyclic groups Zn. One can also consider an extension by
replacing M2 and S2 with its orbit under more general group G (say tedrahedral, octahedral, or
icosahedral group). One expects that the discrete subgroups of SU(2) emerge naturally in this
framework if one allows the action of these groups on the singular sub-manifolds M2 or S2. This
would replace the singular manifold with a set of its rotated copies in the case that the subgroups
have genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups in
the ADE correspondence). For instance, in the case of M2 the quantization axes for angular
momentum would be replaced by the set of quantization axes going through the vertices of
tedrahedron, octahedron, or icosahedron. This would bring non-commutative homotopy groups
into the picture in a natural manner.

3.3 About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and phase tran-
sition as motion of partonic 2-surface from one sector of the imbedding space to another one.

1. How the gluing of copies of imbedding space at M2 × CP2 takes place? It would seem that the
covariant metric of CD factor proportional to ~2 must be discontinuous at the singular manifold
since only in this manner the idea about different scaling factor of CD metric can make sense.
On the other hand, one can always scale the M4 coordinates so that the metric is continuous
but the sizes of CDs with different Planck constants differ by the ratio of the Planck constants.

2. One might worry whether the phase transition changing Planck constant means an instantaneous
change of the size of partonic 2-surface in M4 degrees of freedom. This is not the case. Light-
likeness in M2 × S2 makes sense only for surfaces X1 ×D2 ⊂ M2 × S2, where X1 is light-like
geodesic. The requirement that the partonic 2-surface X2 moving from one sector of H to
another one is light-like at M2 × S2 irrespective of the value of Planck constant requires that
X2 has single point of M2 as M2 projection. Hence no sudden change of the size X2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant can
occur purely classically or whether it is analogous to quantum tunneling. Classical non-vacuum
extremals of Chern-Simons action have two-dimensional CP2 projection to homologically non-
trivial geodesic sphere S2

I . The deformation of the entire S2
I to homologically trivial geodesic

sphere S2
II is not possible so that only combinations of partonic 2-surfaces with vanishing total

homology charge (Kähler magnetic charge) can in principle move from sector to another one,
and this process involves fusion of these 2-surfaces such that CP2 projection becomes single
homologically trivial 2-surface. A piece of a non-trivial geodesic sphere S2

I of CP2 can be
deformed to that of S2

II using 2-dimensional homotopy flattening the piece of S2 to curve. If this
homotopy cannot be chosen to be light-like, the phase transitions changing Planck constant take
place only via quantum tunnelling. Obviously the notions of light-like homotopies (cobordisms)
are very relevant for the understanding of phase transitions changing Planck constant.
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3.4 How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers na and nb defining the covering
and factors spaces, is far from trivial and I have considered several options. The basic physical inputs
are the condition that scaling of Planck constant must correspond to the scaling of the metric of CD
(that is Compton lengths) on one hand and the scaling of the gauge coupling strength g2/4π~ on the
other hand.

1. One can assign to Planck constant to both CD and CP2 by assuming that it appears in the
commutation relations of corresponding symmetry algebras. Algebraist would argue that Planck
constants ~(CD) and ~(CP2) must define a homomorphism respecting multiplication and divi-
sion (when possible) by Gi. This requires r(X) = ~(X)~0 = n for covering and r(X) = 1/n for
factor space or vice versa.

2. If one assumes that ~2(X), X = M4, CP2 corresponds to the scaling of the covariant metric
tensor gij and performs an over-all scaling of H-metric allowed by the Weyl invariance of Kähler
action by dividing metric with ~2(CP2), one obtains the scaling of M4 covariant metric by
r2 ≡ ~2/~20 = ~2(M4)/~2(CP2) whereas CP2 metric is not scaled at all.

3. The condition that ~ scales as na is guaranteed if one has ~(CD) = na~0. This does not fix
the dependence of ~(CP2) on nb and one could have ~(CP2) = nb~0 or ~(CP2) = ~0/nb. The
intuitive picture is that nb- fold covering gives in good approximation rise to nanb sheets and
multiplies YM action action by nanb which is equivalent with the ~ = nanb~0 if one effectively
compresses the covering to CD×CP2. One would have ~(CP2) = ~0/nb and ~ = nanb~0. Note
that the descriptions using ordinary Planck constant and coverings and scaled Planck constant
but contracting the covering would be alternative descriptions.

This gives the following formulas r ≡ ~/~0 = r(M4)/r(CP2) in various cases.

C − C F − C C − F F − F

r nanb
na

nb

nb

na

1
nanb

3.5 Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat
polygons constructible using only ruler and compass and given as products nF = 2k

∏
s Fs, where

Fs = 22
s

+ 1 are distinct Fermat primes, are favored. The reason would be that quantum phase
q = exp(iπ/n) is in this case expressible using only iterated square root operation by starting from
rationals. The known Fermat primes correspond to s = 0, 1, 2, 3, 4 so that the hypothesis is very
strong and predicts that p-adic length scales have satellite length scales given as multiples of nF of
fundamental p-adic length scale. nF = 211 corresponds in TGD framework to a fundamental constant
expressible as a combination of Kähler coupling strength, CP2 radius and Planck length appearing in
the expression for the tension of cosmic strings, and the powers of 211 seem to be especially favored
as values of na in living matter [8] .

3.6 How Planck constants are visible in Kähler action?

~(M4) and ~(CP2) appear in the commutation and anticommutation relations of various supercon-
formal algebras. Only the ratio of M4 and CP2 Planck constants appears in Kähler action and is
due to the fact that the M4 and CP2 metrics of the imbedding space sector with given values of
Planck constants are proportional to the corresponding Planck constants. This implies that Kähler
function codes for radiative corrections to the classical action, which makes possible to consider the
possibility that higher order radiative corrections to functional integral vanish as one might expect
at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of
Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the ideal
case correspond to the spectrum of ~ coding for the scaled up values of Compton lengths and other
quantal lengths and times. If so, large ~ phases could be crucial for understanding of quantum critical
superconductors, in particular high Tc superconductors.
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3.7 Could the dynamics of Kähler action predict the hierarchy of Planck
constants?

The original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also in
biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor
spaces of CD and CP2 emerged from consistency conditions. The formula for the Planck constant
involves heuristic guess work and physical plausibility arguments. There are good arguments in
favor of the hypothesis that only coverings are possible. Only a finite number of pages of the Big
Book correspond to a given value of Planck constant, biological evolution corresponds to a gradual
dispersion to the pages of the Big Book with larger Planck constant, and a connection with the
hierarchy of infinite primes and p-adicization program based on the mathematical realization of finite
measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD
rather than as a separate hypothesis. The following arguments suggest that this might be possible. One
finds also a precise geometric interpretation of preferred extremal property interpreted as criticality
in zero energy ontology.

3.7.1 1-1 correspondence between canonical momentum densities and time derivatives
fails for Kähler action

The basic motivation for the geometrization program was the observation that canonical quantization
for TGD fails. To see what is involved let us try to perform a canonical quantization in zero energy
ontology at the 3-D surfaces located at the light-like boundaries of CD × CP2.

1. In canonical quantization canonical momentum densities π0
k ≡ πk = ∂LK/∂(∂0h

k), where ∂0h
k

denotes the time derivative of imbedding space coordinate, are the physically natural quantities
in terms of which to fix the initial values: once their value distribution is fixed also conserved
charges are fixed. Also the weak form of electric-magnetic duality given by J03√g4 = 4παKJ12
and a mild generalization of this condition to be discussed below can be interpreted as a manner
to fix the values of conserved gauge charges (not Noether charges) to their quantized values
since Kähler magnetic flux equals to the integer giving the homology class of the (wormhole)
throat. This condition alone need not characterize criticality, which requires an infinite number
of deformations of X4 for which the second variation of the Kähler action vanishes and implies
infinite number conserved charges. This in fact gives hopes of replacing πk with these conserved
Noether charges.

2. Canonical quantization requires that ∂0h
k in the energy is expressed in terms of πk. The equation

defining πk in terms of ∂0h
k is however highly non-linear although algebraic. By taking squares

the equations reduces to equations for rational functions of ∂0h
k. ∂0h

k appears in contravariant
and covariant metric at most quadratically and in the induced Kähler electric field linearly and
by multplying the equations by det(g4)3 one can transform the equations to a polynomial form
so that in principle ∂0h

k can obtained as a solution of polynomial equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates
as the coordinates of the spacetime surface so that the initial value conditions reduce to those for
the canonical momentum densities associated with the remaining four coordinates. For instance,
for space-time surfaces representable as map M4 → CP2 M

4 coordinates are natural and the
time derivatives ∂0s

k of CP2 coordinates are multivalued. One would obtain four polynomial
equations with ∂0s

k as unknowns. In regions where CP2 projection is 4-dimensional -in particular
for the deformations of CP2 vacuum extremals the natural coordinates are CP2 coordinates and
one can regard ∂0m

k as unknows. For the deformations of cosmic strings, which are of form
X4 = X2 × Y 2 ⊂M4 × CP2, one can use coordinates of M2 × S2, where S2 is geodesic sphere
as natural coordinates and regard as unknowns E2 coordinates and remaining CP2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivaties in terms of
other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions
to obtain algebraic equations from which one solves then second variable. Obviously situa-
tion is very complex without additional symmetries. The criticality of the preferred extremals
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might however give additional conditions allowing simplifications. The reasons for giving up the
canonical quantization program was following. For the vacuum extremals of Kähler action πk
are however identically vanishing and this means that there is an infinite number of value distri-
butions for ∂0h

k. For small deformations of vacuum extremals one might however hope a finite
number of solutions to the conditions and thus finite number of space-time surfaces carrying
same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat
the the many-valuedness of ∂0h

k. The most obvious guess is that one should replace the space of
space-like 4-surfaces corresponding to different roots ∂0h

k = F k(πl) with four-surfaces in the covering
space of CD × CP2 corresponding to different branches of the many-valued function ∂0h

k = F (πl)
co-inciding at the ends of CD.

3.7.2 Do the coverings forces by the many-valuedness of ∂0h
k correspond to the cover-

ings associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces asso-
ciated with the hierarchy of Planck constants. This would conform with quantum classical correspon-
dence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to cure
the failure of the perturbation theory at quantum level. At classical level the multivaluedness of ∂0h

k

means a failure of perturbative canonical quantization and forces the introduction of the covering
spaces. The interpretation would be that when the density of matter becomes critical the space-time
surface splits to several branches so that the density at each branches is sub-critical. It is of course not
at all obvious whether the proposed structure of the Big Book is really consistent with this hypothesis
and one also consider modifications of this structure if necessary. The manner to proceed is by making
questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers
assignable to CD and CP2 degrees of freedom are however needed. How these two coverings
could emerge?

(a) One should fix also the values of πnk = ∂LK/∂h
k
n, where n refers to space-like normal

coordinate at the wormhole throats. If one requires that charges do not flow between
regions with different signatures of the metric the natural condition is πnk = 0 and allows
also multi-valued solution. Since wormhole throats carry magnetic charge and since weak
form of electric-magnetic duality is assumed, one can assume that CP2 projection is four-
dimensional so that one can use CP2 coordinates and regard ∂0m

k as un-knows. The basic
idea about topological condensation in turn suggests that M4 projection can be assumed
to be 4-D inside space-like 3-surfaces so that here ∂0s

k are the unknowns. At partonic 2-
surfaces one would have conditions for both π0

k and πnk . One might hope that the numbers
of solutions are finite for preferred extremals because of their symmetries and given by na
for ∂0m

k and by nb for ∂0s
k. The optimistic guess is that na and nb corresponds to the

numbers of sheets for singular coverings of CD and CP2. The covering could be visualized
as replacement of space-time surfaces with space-time surfaces which have nanb branches.
nb branches would degenerate to single branch at the ends of diagrams of the generaled
Feynman graph and na branches would degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The fixing of π0
k and πnk should relate closely to the

effective 2-dimensionality as an additional condition perhaps crucial for criticality. One
could argue that both π0

k and πnk must be fixed at X3 and X3
l in order to effectively bring

in dynamics in two directions so that X3 could be interpreted as a an orbit of partonic
2-surface in space-like direction and X3

l as its orbit in light-like direction. The additional
conditions could be seen as gauge conditions made possible by symplectic and Kac-Moody
type conformal symmetries. The conditions for πk0 would give nb branches in CP2 degrees
of freedom and the conditions for πnk would split each of these branches to na branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for πnk ) could
relate also very closely to the slicing of the space-time sheets by string world sheets and
partonic 2-surfaces.
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2. Should one then treat these branches as separate space-time surfaces or as a single space-time
surface? The treatment as a single surface seems to be the correct thing to do. Classically the
conserved changes would be nanb times larger than for single branch. Kähler action need not
(but could!) be same for different branches but the total action is nanb times the average action
and this effectively corresponds to the replacement of the ~0/g2K factor of the action with ~/g2K ,
r ≡ ~/~0 = nanb. Since the conserved quantum charges are proportional to ~ one could argue
that r = nanb tells only that the charge conserved charge is nanb times larger than without
multi-valuedness. ~ would be only effectively nanb fold. This is of course poor man’s argument
but might catch something essential about the situation.

3. How could one interpret the condition J03√g4 = 4παKJ12 and its generalization to be discussed
below in this framework? The first observation is that the total Kähler electric charge is by
αK ∝ 1/(nanb) same always. The interpretation would be in terms of charge fractionization
meaning that each branch would carry Kähler electric charge QK = ngK/nanb. I have indeed
suggested explanation of charge fractionization and quantum Hall effect based on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding
space metric. The assumption that the M4 covariant metric is proportional to ~2 follows from
the physical idea about ~ scaling of quantum lengths as what Compton length is. One can
always introduce scaled M4 coordinates bringing M4 metric into the standard form by scaling
up the M4 size of CD. It is not clear whether the scaling up of CD size follows automatically
from the proposed scenario. The basic question is why the M4 size scale of the critical extremals
must scale like nanb? This should somehow relate to the weak self-duality conditions implying
that Kähler field at each branch is reduced by a factor 1/r at each branch. Field equations
should posses a dynamical symmetry involving the scaling of CD by integer k and J0β√g4 and
Jnβ
√
g4 by 1/k. The scaling of CD should be due to the scaling up of the M4 time interval

during which the branched light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M2 ⊂ M4 for CD and to S2 ⊂ CP2 for CP2. Here S2 is any
homologically trivial geodesic sphere of CP2 and has vanishing Kähler form. Weak self-duality
condition is indeed consistent with any value of ~ and impies that the vacuum property for the
partonic 2-surface implies vacuum property for the entire space-time sheet as holography indeed
requires. This condition however generalizes. In weak self-duality conditions the value of ~ is
free for any 2-D Lagrangian sub-manifold of CP2.

The branching along M2 would mean that the branches of preferred extremals always collapse
to single branch when their M4 projection belongs to M2. Magnetically charged light-light-like
throats cannot have M4 projection in M2 so that self-duality conditions for different values of
~ do not lead to inconsistencies. For spacelike 3-surfaces at the boundaries of CD the condition
would mean that the M4 projection becomes light-like geodesic. Straight cosmic strings would
have M2 as M4 projection. Also CP2 type vacuum extremals for which the random light-
like projection in M4 belongs to M2 would represent this of situation. One can ask whether
the degeneration of branches actually takes place along any string like object X2 × Y 2, where
X2 defines a minimal surface in M4. For these the weak self-duality condition would imply
~ =∞ at the ends of the string. It is very plausible that string like objects feed their magnetic
fluxes to larger space-times sheets through wormhole contacts so that these conditions are not
encountered.

3.7.3 Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and light-
like 3-surfaces with degenerate 4-metric and the degeneration of the nanb branches of the space-time
surface at the its ends and at wormhole throats is exactly what happens at criticality. For instance,
in catastrophe theory roots of the polynomial equation giving extrema of a potential as function of
control parameters co-incide at criticality. If this picture is correct the hierarchy of Planck constants
would be an outcome of criticality and of preferred extremal property and preferred extremals would
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be just those multi-branched space-time surfaces for which branches co-incide at the the boundaries
of CD × CP2 and at the throats.

4 Weak form electric-magnetic duality and its implications

The notion of electric-magnetic duality [2] was proposed first by Olive and Montonen and is central
in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles
are two different phases of theory and that the description in terms of monopoles can be applied
at the limit when the running gauge coupling constant becomes very large and perturbation theory
fails to converge. The notion of electric-magnetic self-duality is more natural since for CP2 geometry
Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric monopoles and
Kähler coupling strength is by quantum criticality renormalization group invariant rather than running
coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago
in the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a
considerable step of progress took place in the understanding of this notion [7] . What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What
this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept
leads to precise predictions. The point is that elementary particles do not generate monopole fields in
macroscopic length scales: at least when one considers visible matter. The first question is whether
elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next
question is how the screening of the magnetic charges could take place and leads to an identification
of the physical particles as string like objects identified as pairs magnetic charged wormhole throats
connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could be
proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary
particles are string like objects in electro-weak scale: this should become manifest at LHC
energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads to
the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost topological
QFT and that Kähler function is explicitly calculable. This has enormous impact concerning
practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that all
isometry currents are proportional to Kähler current which is integrable in the sense that the flow
parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz
would describe a hydrodynamical flow with the property that isometry charges are conserved
along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions
is found. The solution ansatz applies also to the extremals of Chern-Simons action and and
to the conserved currents associated with the modified Dirac equation defined as contractions
of the modified gamma matrices between the solutions of the modified Dirac equation. The
strongest form of the solution ansatz states that various classical and quantum currents flow
along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field associated
with Chern-Simons action). Intuitively this picture is attractive. A more general ansatz would
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allow several Beltrami flows meaning multi-hydrodynamics. The integrability conditions boil
down to two scalar functions: the first one satisfies massless d’Alembert equation in the induced
metric and the the gradients of the scalar functions are orthogonal. The interpretation in terms
of momentum and polarization directions is natural.

6. The general solution ansatz works for induced Kähler Dirac equation and Chern-Simons Dirac
equation and reduces them to ordinary differential equations along flow lines. The induced spinor
fields are simply constant along flow lines of indued spinor field for Dirac equation in suitable
gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator can be
deduced explicitly if the throats and the ends of space-time surface at the boundaries of CD are
extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary differential
equations along flow lines and one can deduce the general form of the spectrum and the explicit
representation of the Dirac determinant in terms of geometric quantities characterizing the 3-
surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines in the
effective metric defined by the modified gamma matrices).

4.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the configuration space
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole
throats at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint could
be enough to fix the initial values of time derivatives of the imbedding space coordinates in the space-
time regions with Minkowskian resp. Euclidian signature of the induced metric. This is a condition
on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic
sub-space.

4.1.1 Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of the
partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which
cannot hold true. One would like to code to the WCW metric also information about the electric
part of the induced Kähler form assignable to the complement of the tangent space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner
to get electric magnetic duality at the level of the full theory would be via the identification of
the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced
metric is however troublesome since the presence of the induced metric means that the simple
transformation properties of flux Hamiltonians under symplectic transformations -in particular
color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory
this duality allows to solve field equations exactly in terms of instantons. This approach involves
also quaternions. These arguments suggest that the duality in some form might work. The full
electric magnetic duality is certainly too strong and implies that space-time surface at the
partonic 2-surface corresponds to piece of CP2 type vacuum extremal and can hold only in the
deep interior of the region with Euclidian signature. In the region surrounding wormhole throat
at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2) such
(x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates labeling
partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string
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world sheets making sense in the regions of space-time sheet with Minkowskian signature. The
assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kähler electric fluxes are apart from constant proportional to
Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (4.1)

A more general form of this duality is suggested by the considerations of [13] reducing the hierar-
chy of Planck constants to basic quantum TGD and also reducing Kähler function for preferred
extremals to Chern-Simons terms [1] at the boundaries of CD and at light-like wormhole throats.
This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (4.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of
CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of CD.
It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the
dependence on induced metric disappears at the right hand side and this condition eliminates
the potentials singularity due to the reduction of the rank of the induced metric at wormhole
throat.

5. Information about the tangent space of the space-time surface can be coded to the configuration
space metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (4.3)

where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial configuration
space metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kähler magnetic fields. This condition suggests that it can depend only on Kähler
magnetic flux and other symplectic invariants. Whether local symplectic coordinate invariants
are possible at all is far from obvious, If the slicing itself is symplectic invariant then K could be
a non-constant function of X2 depending on string world sheet coordinates. The light-like radial
coordinate of the light-cone boundary indeed defines a symplectically invariant slicing and this
slicing could be shifted along the time axis defined by the tips of CD.

4.1.2 Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained
if one assumes that the quantization of electro-weak charges reduces to this condition at classical
level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic
flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge
of the partonic 2-surface.
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2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [1] , [1] read
as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (4.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (4.5)

3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3V
2
−Qem , p = sin2(θW ) . (4.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3L + sin2(θW )Qem
appears. The reason is that only the vectorial isospin is same for left and right handed compo-
nents of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and
using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2Z
4π~0

=
αem

p(1− p)
. (4.7)

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-surface.
The linear coupling of the modified Dirac operator to conserved charges implies correlation
between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-
surface. The assumption of standard quantized values for Qem and QZ would be also seen as
the identification of the fine structure constants αem and αZ . This however requires weak isospin
invariance.

4.1.3 The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric field
equals to the Kähler charge gK would give the condition K = g2K/~, where gK is Kähler cou-
pling constant which should invariant under coupling constant evolution by quantum criticality.
Within experimental uncertainties one has αK = g2K/4π~0 = αem ' 1/137, where αem is finite
structure constant in electron length scale and ~0 is the standard value of Planck constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD andn CP2. The point
is that in this case a given value of Planck constant corresponds to a finite number pages of
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the ”Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Qem and QZ allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [19] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also Kähler
function is proportional to 1/αK and therefore to ~. This implies that for large values of ~
Kähler coupling strength g2K/4π becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling α→ α/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.

4. The condition K = g2K/~ implies that the Kähler magnetic charge is always accompanied by
Kähler electric charge. A more general condition would read as

K = n× g2K
~
, n ∈ Z . (4.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge possible
when the partonic 2-surface has opposite fermion and antifermion numbers (for both leptons and
quarks) so that Kähler electric charge should vanish. For instance, for neutrinos the vanishing
of electric charge strongly suggests n = 0 besides the condition that abelian Z0 flux contributing
to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (4.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side of
the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic charges
in Euclidian region since all charges are magnetic can be used to argue in favor of this form. The
same constraint arises from the condition that the action for CP2 type vacuum extremal has the value
required by the argument leading to a prediction for gravitational constant in terms of the square of
CP2 radius and αK the effective replacement g2K → 1 would spoil the argument.

The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at the
Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could be
self-dual so that the density of Kähler action would be just the instanton density. Self-duality follows if
the deformation of the metric induced by the deformation of the canonically imbedded CP2 is such that
in CP2 coordinates for the Euclidian region the tensor (gαβgµν −gανgµβ)/

√
g remains invariant. This

is certainly the case for CP2 type vacuum extremals since by the light-likeness of M4 projection the
metric remains invariant. Also conformal scalings of the induced metric would satisfy this condition.
Conformal scaling is not consistent with the degeneracy of the 4-metric at the wormhole

4.1.4 Reduction of the quantization of Kähler electric charge to that of electromagnetic
charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field, which
is a linear combination of induced K”ahler field and classical Z0 field
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γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (4.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [1]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman dia-
grams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle could
however vanish. If so, the condition guaranteing that electromagnetic charge of the partonic
2-surfaces equals to the above condition stating that the em charge assignable to the fermion
content of the partonic 2-surfaces reduces to the classical Kähler electric flux at the Minkowskian
side of the wormhole throat. One can argue that Weinberg angle must increase smoothly from a
vanishing value at both sides of wormhole throat to its value in the deep interior of the Euclidian
region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical intu-
ition. Above elementary particle length scales one sees only the classical electric field reducing
to the induced Kähler form and classical Z0 fields and color gauge fields are effectively ab-
sent. Only in phases with a large value of Planck constant classical Z0 field and other classical
weak fields and color gauge field could make themselves visible. Cell membrane could be one
such system [20]. This conforms with the general picture about color confinement and weak
massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would naturally
correspond to Einstein-Maxwell theory with cosmological constant which is non-vanishing only
in Euclidian regions of space-time so that both Reissner-Nordström metric and CP2 are allowed
as simplest possible solutions of field equations [27]. The extremely small value of the observed
cosmological constant needed in GRT type cosmology could be equal to the large cosmological
constant associated with CP2 metric multiplied with the 3-volume fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmological
constant term in Euclidian regions. The weak form of electric-magnetic duality would guarantee
also now the preferred extremal property and prevent the reduction to a mere topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic view
about quantum TGD as following considerations show.

4.2 Magnetic confinement, the short range of weak forces, and color con-
finement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with
some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic
length scales.
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4.2.1 How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one
should have a mechanism neutralizing the monopole charge. How electroweak interactions become
short ranged in TGD framework is still a poorly understood problem. What suggests itself is the
neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral
Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be a
wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral
but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the
electromagnetic charge of the fermion is visible on longer length scales. The distance of this
wormhole throat from the fermionic one should be of the order weak boson Compton length.
An interpretation as a bound state of fermion and a wormhole throat state with the quantum
numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would
have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would not be neutral Higgs
boson (which should correspond to a wormhole contact) but a super-partner of left-handed
neutrino obtained by adding a right handed neutrino. This mechanism would apply separately
to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time
sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding
gauge fluxes between space-time sheets. It would seem that these wormhole throats must always
appear as pairs such that for the second member of the pair monopole charges and I3V cancel
each other at both space-time sheets involved so that one obtains at both space-time sheets
magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of
fundamental particles should become visible at TeV energies so that LHC might have surprises
in store!

4.2.2 Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks)
do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean
that magnetic charges of the state q±1/2−X∓1/2 representing the physical quark would not vanish and
magnetic confinement would accompany also color confinement. This would explain why free quarks
are not observed. To how degree then quark confinement corresponds to magnetic confinement is an
interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite
and meson would correspond to a Kähler magnetic flux so that a stringy view about meson emerges.
For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the
magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum of color hyper charges
coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-charge correlates with the
Kähler magnetic charge. The geometric picture would be three strings connected to single vertex.
Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up
during the first year of TGD when I had not yet discovered CP2 and believed on M4 × S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in the most general

case. The dark variants of the particle would have the same mass as the original one. In particular,
Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been proposed to
define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy
of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of the
ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size scale
of color confinement for this physics would be same as the weal length scale. It would look more
natural that the weak confinement for the quarks of M89 physics takes place in some shorter scale
and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons would
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be by a factor 2(89−61)/2 = 214 higher and about 1.6× 104 TeV. M89 quarks would have virtually no
weak interactions but would possess color interactions with weak confinement length scale reflecting
themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many as
four Gaussian Mersennes corresponding to MG,k, k = 151, 157, 163, 167. This would suggest that the
existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this
range. There are recent claims about experimental evidence for magnetic monopole pairs [2] .

4.2.3 Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls
that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions
in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced
by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts
would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and
physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and anti-
fermions at the wormhole throat but these do not give rise to graviton like states [12] . The upper and
lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with sum
over all fermions. The reason is that otherwise one cannot realize graviton emission in terms of joining
of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary but
now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology could
allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman
diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make possible
twistor description of virtual particles allowing only massless particles (in 4-D sense usually and
in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2. The
members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices
of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to
form shorter strings but the replication of the entire string to form two strings with same length
or fusion of two strings to single string along all their points rather than along ends to form a
longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true
for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one describe
the state as superposition of non-parallel on mass shell states so that the composite state would
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be automatically massive? The description as superposition of on mass shell states does not
conform with the idea that bound state formation requires binding energy. In TGD framework
the notion of negentropic entanglement has been suggested to make possible the analogs of
bound states consisting of on mass shell states so that the binding energy is zero [15] . If this
kind of states are in question the description of virtual states in terms of on mass shell states is
not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind
of states serving as analogs for the excitations of string like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the Feynman
diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible.
If this picture is correct, the situation would not change in an essential manner from the earlier
one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should
have stringy character in electro-weak length scales and could behaving to become manifest at LHC
energies. This adds one further item to the list of non-trivial predictions of TGD about physics at
LHC energies [16] .

4.2.4 Should J + J1 appear in Kähler action?

The presence of the S2 Kähler form J1 in weak form of electric-magnetic duality was originally
suggested by an erratic argument about the reduction to almost topological QFT to be described in
the next subsection. In any case this argument raises the question whether one could replace J with
J +J1 in the Kähler action. This would not affect the basic non-vacuum extremals but would modify
the vacuum degeneracy of the Kähler action. Canonically imbedded M4 would become a monopole
configuration with an infinite magnetic energy and Kähler action due to the monopole singularity at
the line connecting tips of the CD. Action and energy can be made small by drilling a small hole
around origin. This is however not consistent with the weak form of electro-weak duality. Amusingly,
the modified Dirac equation reduces to ordinary massless Dirac equation in M4.

This extremal can be transformed to a vacuum extremal by assuming that the solution is also
a CP2 magnetic monopole with opposite contribution to the magnetic charge so that J + J1 = 0
holds true. This is achieved if one can regard space-time surface as a map M4 → CP2 reducing to
a map (Θ,Φ) = (θ,±φ) with the sign chosen by properly projecting the homologically non-trivial
rM = constant spheres of CD to the homologically non-trivial geodesic sphere of CP2. Symplectic
transformations of S2×CP2 produce new vacuum extremals of this kind. Using Darboux coordinates
in which one has J =

∑
k=1,2 PkdQ

k and assuming that (P1, Q1) corresponds to the CP2 image of

S2, one can take Q2 to be arbitrary function of P 2 which in turn is an arbitrary function of of M4

coordinates to obtain even more general vacuum extremals with 3-D CP2 projection. Therefore the
spectrum of vacuum extremals, which is very relevant for the TGD based description of gravitation
in long length scales because it allows to satisfy Einstein’s equations as an additional condition, looks
much richer than for the original option, and it is natural to ask whether this option might make
sense.

An objection is that J1 is a radial monopole field and this breaks Lorentz invariance to SO(3).
Lorentz invariance is broken to SO(3) for a given CD also by the presence of the preferred time
direction defined by the time-like line connecting the tips of the CD becoming carrying the monopole
charge but is compensated since Lorentz boosts of CDs are possible. Could one consider similar com-
pensation also now? Certainly the extremely small breaking of Lorentz invariance and the vanishing
of the monopole charge for the vacuum extremals is all that is needed at the space-time level. No
new gauge fields would be introduced since only the Kähler field part of photon and Z0 boson would
receive an additional contribution.

The ultimate fate of the modification depends on whether it is consistent with the general relativis-
tic description of gravitation. Since a breaking of spherical symmetry is involved, it is not at all clear
whether one can find vacuum extremals which represent small deformations of the Reissner-Nordström
metric and Robertson-Walker metric. The argument below shows that this option does not allow the
imbedding of small deformations of physically plausible space-time metrics as vacuum extremals.

The basic vacuum extremal whose deformations should give vacuum extremals allowing interpre-
tation as solutions of Einstein’s equations is given by a map M4 → CP2 projecting the rM constant
spheres S2 of M2 to the homologically non-trivial geodesic sphere of CP2. The winding number of
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this map is −1 in order to achieve vanishing of the induced Kähler form J + J1. For instance, the
following two canonical forms of the map are possible

(Θ,Ψ) = (θM ,−φM ) ,

(Θ,Ψ) = (π − θM , φM ) .

(4.11)

Here (Θ,Ψ) refers to the geodesic sphere of CP2 and (θM , φM ) to the sphere of M4.
The resulting space-time surface is not flat and Einstein tensor is non-vanishing. More complex metrics
can be constructed from this metric by a deformation making the CP2 projection 3-dimensional.

Using the expression of the CP2 line element in Eguchi-Hanson coordinates [4]

ds2

R2
=

dr2

F 2
+
r2

F
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + fracr24Fsin2ΘdΦ2)

(4.12)

and s the relationship r = tan(Θ), one obtains following expression for the CP2 metric

ds2

R2
= dθ2M + sin2(θM )

[
(dφM + cos(θ)dΦ)2 +

1

4
(dθ2 + sin2(θ)dΦ2

]
.

(4.13)

The resulting metric is obtained from the metric of S2 by replacing dφ2 which 3-D line element. The
factor sin2(θM ) implies that the induced metric becomes singular at North and South poles of S2.
In particular, the gravitational potential is proportional to sin2(θM ) so that gravitational force in
the radial direction vanishes at equators. It is very difficult to imagine any manner to produce a
small deformation of Reissner-Nordstrm metric or Robertson-Walker metric. Hence it seems that the
vacuum extremals produce by J + J1 option are not physical.

4.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces to
almost topological quantum theory in the sense that the counterpart of Chern-Simons action assigned
with the wormhole throats somehow dictates the dynamics. This proposal can be formulated also
for the modified Dirac action action. I gave up this proposal but the following argument shows that
Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons action
plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα plus
and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the quantity

J0βAβ
√
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement ~0 → r~0 would effectively describe this. Boundary conditions would however give
1/r factor so that ~ would disappear from the Kähler function! The original attempt to real-
ize quantum TGD as an almost topological QFT was in terms of Chern-Simons action but was
given up. It is somewhat surprising that Kähler action gives Chern-Simons action in the vacuum
sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to an
almost topological QFT. The attribute ”almost” would come from the fact that one has non-vanishing
classical Noether charges defined by Kähler action and non-trivial quantum dynamics in M4 degrees
of freedom. One could also assign to space-time surfaces conserved four-momenta which is not possible
in topological QFTs. For this reason the conditions guaranteeing the vanishing of Coulomb interaction
term deserve a detailed analysis.
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1. For the known extremals jαK either vanishes or is light-like (”massless extremals” for which weak
self-duality condition does not make sense [4] ) so that the Coulombic term vanishes identically in
the gauge used. The addition of a gradient to A induces terms located at the ends and wormhole
throats of the space-time surface but this term must be cancelled by the other boundary terms
by gauge invariance of Kähler action. This implies that the M4 part of WCW metric vanishes
in this case. Therefore massless extremals as such are not physically realistic: wormhole throats
representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on CP2 coordinates
only, its variation with respect to Minkowski coordinates must vanish so that the WCW met-
ric would be trivial in M4 degrees of freedom. This conclusion is in conflict with quantum
classical correspondence and was indeed too hasty. The point is that the allowed variations of
Kähler function must respect the weak electro-magnetic duality which relates Kähler electric
field depending on the induced 4-metric at 3-surface to the Kähler magnetic field. Therefore the
dependence on M4 coordinates creeps via a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (4.14)

The (1,1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question about
how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was a modification of
the weak form of electric-magnetic duality. Besides CP2 Kähler form there would be the Kähler
form assignable to the light-cone boundary reducing to that for rM = constant sphere - call it
J1. The generalization of the weak form of self-duality would be Jnβ = εnβγδK(Jγδ + εJ1

γδ).

This form implies that the boundary term gives a non-trivial contribution to the M4 part of
the WCW metric even without the constraint from electric-magnetic duality. Kähler charge is
not affected unless the partonic 2-surface contains the tip of CD in its interior. In this case the
value of Kähler charge is shifted by a topological contribution. Whether this term can survive
depends on whether the resulting vacuum extremals are consistent with the basic facts about
classical gravitation.

4. The Coulombic interaction term is not invariant under gauge transformations. The good news
is that this might allow to find a gauge in which the Coulomb term vanishes. The vanishing
condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (4.15)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential is
proportional to the covariant form of Kähler current: dt = φjK . This condition in turn implies
d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more concretely,

εαβγδjKβ ∂γj
K
δ = 0 . (4.16)

jK is a four-dimensional counterpart of Beltrami field [7] and could be called generalized Beltrami
field.

The integrability conditions follow also from the construction of the extremals of Kähler action
[4] . The conjecture was that for the extremals the 4-dimensional Lorentz force vanishes (no
dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the topologization of
the Kähler current meaning that it is proportional to the instanton current: jK = φjI , where
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jI = ∗(J ∧ A) is the instanton current, which is not conserved for 4-D CP2 projection. The
conservation of jK implies the condition jαI ∂αφ = ∂αj

αφ and from this φ can be integrated if the
integrability condition jI∧djI = 0 holds true implying the same condition for jK . By introducing
at least 3 or CP2 coordinates as space-time coordinates, one finds that the contravariant form of
jI is purely topological so that the integrability condition fixes the dependence onM4 coordinates
and this selection is coded into the scalar function φ. These functions define families of conserved
currents jαKφ and jαI φ and could be also interpreted as conserved currents associated with the
critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanishing
condition for the Coulomb term is gauge invariant only under the gauge transformations A →
A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total divergence a giving

an integral over various 3-surfaces at the ends of CD and at throats vanishes. This is satisfied
if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (4.17)

As a consequence Coulomb term reduces to a difference of the conserved chargesQeφ =
∫
j0φ
√
g4d

3x
at the ends of the CD vanishing identically. The change of the imons type term is trivial if the
total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over wormhole throats is conserved. The

existence of an infinite number of conserved weighted magnetic fluxes is in accordance with the
electric-magnetic duality. How these fluxes relate to the flux Hamiltonians central for WCW
geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have some
special physical meaning. The measurement interaction term in the modified Dirac interaction
corresponds to a critical deformation of the space-time sheet and is realized as an addition
of a gauge part to the Kähler gauge potential of CP2. It would be natural to identify this
gauge transformation giving rise to a conserved charge so that the conserved charges would
provide a representation for the charges associated with the infinitesimal critical deformations
not affecting Kähler action. The gauge transformed Kähler potential couples to the modified
Dirac equation and its effect could be visible in the value of Kähler function and therefore also
in the properties of the preferred extremal. The effect on WCW metric would however vanish
since K would transform only by an addition of a real part of a holomorphic function. Kähler
function is identified as a Dirac determinant for Chern-Simons Dirac action and the spectrum
of this operator should not be invariant under these gauge transformations if this picture is
correct. This is is achieved if the gauge transformation is carried only in the Dirac action
corresponding to the Chern-Simons term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kähler action can
be guessed to correspond just to the Chern-Simons contribution from the instanton term.

7. A reasonable looking guess for the explicit realization of the quantum classical correspondence
between quantum numbers and space-time geometry is that the deformation of the preferred
extremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of δCD×CP2 generating the gauge transformation
represented by φ. This interpretation makes sense if the fluxes defined by Qmφ and corresponding
Hamiltonians affect only zero modes rather than quantum fluctuating degrees of freedom.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kähler functions and to the terms
from light-like wormhole throats giving interaction term between positive and negative energy parts of
the state. Hence Kähler function could be calculated without any knowledge about the interior of the
space-time sheets and TGD would reduce to almost topological QFT as speculated earlier. Needless
to say this would have immense boost to the program of constructing WCW Kähler geometry.
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4.4 Kähler action for Euclidian regions as Kähler function and Kähler
action for Minkowskian regions as Morse function?

One of the nasty questions about the interpretation of Kähler action relates to the square root of
the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion is
that the square root is imaginary in Minkowskian space-time regions so that Kähler action would be
complex. The Euclidian contribution would have a natural interpretation as positive definite Kähler
function but how should one interpret the imaginary Minkowskian contribution? Certainly the path
integral approach to quantum field theories supports its presence. For some mysterious reason I
was able to forget this nasty question and serious consideration of the obvious answer to it. Only
when I worked betweeen possibile connections between TGD and Floer homology [31] I realized that
the Minkowskian contribution is an excellent candidate for Morse function whose critical points give
information about WCW homology. This would fit nicely with the vision about TGD as almost
topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would have
a mathematically well-defined theory. Minkowskian contribution would give the quantal interference
effects and stationary phase approximation. The analog of Floer homology would represent quantum
superpositions of critical points identifiable as ground states defined by the extrema of Kähler action
for Minkowskian regions. Perturbative approach to quantum TGD would rely on functional integrals
around the extrema of Kähler function. One would have maxima also for the Kähler function but
only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should one assume
that the reduction to Chern-Simons terms occurs for the preferred extremals in both Minkowskian and
Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [11] involve local light-
like momentum direction which does not make sense in the Euclidian regions. This does not
however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of CP2 bounded by wormhole throats: for CP2 itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
general case solutions of Laplacian represent broken super-symmetries and should be in one-one
correspondences with the solutions of the modified Dirac equation. The interpretation for the
counterparts of momentum and polarization would be in terms of classical representation of
color quantum numbers.

If the reduction occurs in Euclidian regions, it gives in the case of CP2 two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for CP2 so that one would have two Chern-Simons terms. Without any
other contributions the first term would be identical with that from Minkowskian region apart
from imaginary unit. Second Chern-Simons term would be however independent of this. For
wormhole contacts the two terms could be assigned with opposite wormhole throats and would
be identical with their Minkowskian cousins from imaginary unit. This looks a little bit strange.

2. There is however a very delicate issue involved. Quantum classical correspondence requires that
the quantum numbers of partonic states must be coded to the space-time geometry, and this is
achieved by adding to the action a measurement interaction term which reduces to what is almost
a gauge term present only in Chern-Simons-Dirac equation but not at space-time interior [11].
This term would represent a coupling to Poincare quantum numbers at the Minkowskian side
and to color and electro-weak quantum numbers at CP2 side. Therefore the net Chern-Simons
contributions and would be different.

3. There is also a very beautiful argument stating that Dirac determinant for Chern-Simons-Dirac
action equals to Kähler function, which would be lost if Euclidian regions would not obey
holography. The argument obviously generalizes and applies to both Morse and Kähler function.

The Minkowskian contribution of Kähler action is imaginary due to the negative of the metric
determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms at worm-
hole throats. Ground state degeneracy due to the possibility of having both signs for Minkowskian
contribution to the exponent of vacuum functional provides a general view about the description of
CP breaking in TGD framework.
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1. In TGD framework path integral is replaced by inner product involving integral over WCV. The
vacuum functional and its conjugate are associated with the states in the inner product so that
the phases of vacuum functionals cancel if only one sign for the phase is allowed. Minkowskian
contribution would have no physical significance. This of course cannot be the case. The ground
state is actually degenerate corresponding to the phase factor and its complex conjugate since√
g can have two signs in Minkowskian regions. Therefore the inner products between states

associated with the two ground states define 2 × 2 matrix and non-diagonal elements contain
interference terms due to the presence of the phase factor. At the limit of full CP2 type vacuum
extremal the two ground states would reduce to each other and the determinant of the matrix
would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K − K and of CKM matrix should reduce to this
mixing. K0 mesons would be CP even and odd states in the first approximation and correspond
to the sum and difference of the ground states. Small mixing would be present having exponential
sensitivity to the actions of CP2 type extremals representing wormhole throats. This might allow
to understand qualitatively why the mixing is about 50 times larger than expected for B0 mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation at
either upper or lower boundary of CD. Do long- and shortlived neutral K mesons correspond
to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or almost
completely to a fixed arrow of time induced by environment? Is the dominant part of the arrow
same for both or is it opposite for long and short-lived neutral measons? Different lifetimes
would suggest that the arrow must be the same and apart from small leakage that induced by
environment. CP breaking would be induced by the fact that CP is performed only K0 but not
for the environment in the construction of states. One can probably imagine also alternative
interpretations.

Remark: The proportionality of Minkowskian and Euclidian contributions to the same Chern-
Simons term implies that the critical points with respect to zero modes appear for both the phase
and modulus of vacuum functional. The Kähler function property does not allow extrema for vacuum
functional as a function of complex coordinates of WCW since this would mean Kähler metric with
non-Euclidian signature. If this were not the case. the stationary values of phase factor and extrema
of modulus of the vacuum functional would correspond to different configurations.

4.5 A general solution ansatz based on almost topological QFT property

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological field
theory. This requires that the flow parameters associated with the flow lines of isometry currents
and Kähler current extend to global coordinates. This leads to integrability conditions implying
generalized Beltrami flow and Kähler action for the preferred extremals reduces to Chern-Simons
action when weak electro-weak duality is applied as boundary conditions. The strongest form of the
hydrodynamical interpretation requires that all conserved currents are parallel to Kähler current. In
the more general case one would have several hydrodynamic flows. Also the braidings (several of them
for the most general ansatz) assigned with the light-like 3-surfaces are naturally defined by the flow
lines of conserved currents. The independent behavior of particles at different flow lines can be seen
as a realization of the complete integrability of the theory. In free quantum field theories on mass
shell Fourier components are in a similar role but the geometric interpretation in terms of flow is of
course lacking. This picture should generalize also to the solution of the modified Dirac equation.

4.5.1 Basic field equations

Consider first the equations at general level.

1. The breaking of the Poincare symmetry due to the presence of monopole field occurs and leads
to the isometry group T×SO(3)×SU(3) corresponding to time translations, rotations, and color
group. The Cartan algebra is four-dimensional and field equations reduce to the conservation
laws of energy E, angular momentum J , color isospin I3, and color hypercharge Y .
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2. Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y .

Dα

[
Dβ(JαβHA)− jαKHA + TαβjlAhkl∂βh

l
]

= 0 . (4.18)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kähler form
and vanishes so that one has

Dα

[
jαKH

A − TαβjkAhkl∂βhl
]

= 0 . (4.19)

For energy one has HA = 1 and energy current associated with the flow lines is proportional to
the Kähler current. Its divergence vanishes identically.

3. One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving jαKJαβ and contraction of second fundamental form with energy momentum
tensor so that one obtains

jαKDαH
A = jαKJ

β
α jAβ + TαβHk

αβj
A
k . (4.20)

4.5.2 Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to hydrody-
namics analogous to that for a continuous distribution of particles initially at the end of X3 of the
light-like 3-surface moving along flow lines defined by currents jA satisfying the integrability condi-
tion jA ∧ djA = 0. Field theory would reduce effectively to particle mechanics along flow lines with
conserved charges defined by various isometry currents. The strongest condition is that all isometry
currents jA and also Kähler current jK are proportional to the same current j. The more general
option corresponds to multi-hydrodynamics.

Conserved currents are analogous to hydrodynamical currents in the sense that the flow parameter
along flow lines extends to a global space-time coordinate. The conserved current is proportional to
the gradient ∇Φ of the coordinate varying along the flow lines: J = Ψ∇Φ and by a proper choice of
Ψ one can allow to have conservation. The initial values of Ψ and Φ can be selected freely along the
flow lines beginning from either the end of the space-time surface or from wormhole throats.

If one requires hydrodynamics also for Chern-Simons action (effective 2-dimensionality is required
for preferred extremals), the initial values of scalar functions can be chosen freely only at the partonic
2-surfaces. The freedom to chose the initial values of the charges conserved along flow lines at the
partonic 2-surfaces means the existence of an infinite number of conserved charges so that the theory
would be integrable and even in two different coordinate directions. The basic difference as compared
to ordinary conservation laws is that the conserved currents are parallel and their flow parameter
extends to a global coordinate.

1. The most general assumption is that the conserved isometry currents

JαA = jαKH
A − TαβjkAhkl∂βhl (4.21)

and Kähler current are integrable in the sense that JA∧JA = 0 and jK ∧ jK = 0 hold true. One
could imagine the possibility that the currents are not parallel.

2. The integrability condition dJA ∧ JA = 0 is satisfied if one one has

JA = ΨAdΦA . (4.22)

The conservation of JA gives
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d ∗ (ΨAdΦA) = 0 . (4.23)

This would mean separate hydrodynamics for each of the currents involved. In principle there is
not need to assume any further conditions and one can imagine infinite basis of scalar function
pairs (ΨA,ΦA) since criticality implies infinite number deformations implying conserved Noether
currents.

3. The conservation condition reduces to d’Alembert equation in the induced metric if one assumes
that ∇ΨA is orthogonal with every dΦA.

d ∗ dΦA = 0 , dΨA · dΦA = 0 . (4.24)

Taking x = ΦA as a coordinate the orthogonality condition states gxj∂jΨA = 0 and in the gen-
eral case one cannot solve the condition by simply assuming that ΨA depends on the coordinates
transversal to ΦA only. These conditions bring in mind p · p = 0 and p · e condition for massless
modes of Maxwell field having fixed momentum and polarization. dΦA would correspond to p
and dΨA to polarization. The condition that each isometry current corresponds its own pair
(ΨA,ΦA) would mean that each isometry current corresponds to independent light-like momen-
tum and polarization. Ordinary free quantum field theory would support this view whereas
hydrodynamics and QFT limit of TGD would support single flow.

These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.

1. The strongest ansatz is inspired by the hydrodynamical picture in which all conserved isometry
charges flow along same flow lines so that one would have

JA = ΨAdΦ . (4.25)

In this case same Φ would satisfy simultaneously the d’Alembert type equations.

d ∗ dΦ = 0 , dΨA · dΦ = 0. (4.26)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have different polarizations. The spinor modes associated with light-light like
3-surfaces carry parallel four-momenta, which suggest that this option is correct. This allows a
very general family of solutions and one can have a complete 3-dimensional basis of functions
ΨA with gradient orthogonal to dΦ.

2. Isometry invariance under T × SO(3)× SU(3) allows to consider the possibility that one has

JA = kAΨAdΦG(A) , d ∗ (dΦG(A)) = 0 , dΨA · dΦG(A)) = 0 . (4.27)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for color
currents. Energy would thus flow along its own flux lines, angular momentum along its own flow
lines, and color quantum numbers along their own flow lines. For instance, color currents would
differ from each other only by a numerical constant. The replacement of ΨA with ΨG(A) would
be too strong a condition since Killing vector fields are not related by a constant factor.
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To sum up, the most general option is that each conserved current JA defines its own integrable
flow lines defined by the scalar function pair (ΨA,ΦA). A complete basis of scalar functions satisfying
the d’Alembert type equation guaranteeing current conservation could be imagined with restrictions
coming from the effective 2-dimensionality reducing the scalar function basis effectively to the partonic
2-surface. The diametrically opposite option corresponds to the basis obtained by assuming that only
single Φ is involved.

The proposed solution ansatz can be compared to the earlier ansatz [13] stating that Kähler
current is topologized in the sense that for D(CP2) = 3 it is proportional to the identically conserved
instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(CP2) = 4 (Maxwell phase).
This hypothesis requires that instanton current is Beltrami field for D(CP2) = 3. In the recent
case the assumption that also instanton current satisfies the Beltrami hypothesis in strong sense
(single function Φ) generalizes the topologization hypothesis for D(CP2) = 3. As a matter fact, the
topologization hypothesis applies to isometry currents also for D(CP2) = 4 although instanton current
is not conserved anymore.

4.5.3 Can one require the extremal property in the case of Chern-Simons action?

Effective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-Simons
action. The strongest condition would be that space-time surfaces allow orthogonal slicings by 3-
surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. Kähler magnetic field B = ∗J defines a conserved
current so that all conserved currents would flow along the field lines of B and one would have 3-D
Beltrami flow. Note that in magnetohydrodynamics the standard assumption is that currents flow
along the field lines of the magnetic field.

For wormhole throats light-likeness causes some complications since the induced metric is degener-
ate and the contravariant metric must be restricted to the complement of the light-like direction. This
means that d’Alembert equation reduces to 2-dimensional Laplace equation. For space-like 3-surfaces
one obtains the counterpart of Laplace equation with partonic 2-surfaces serving as sources. The
interpretation in terms of analogs of Coulomb potentials created by 2-D charge distributions would
be natural.

4.6 Hydrodynamic picture in fermionic sector

Super-symmetry inspires the conjecture that the hydrodynamical picture applies also to the solutions
of the modified Dirac equation.

4.6.1 4-dimensional modified Dirac equation and hydrodynamical picture

Consider first the solutions of of the induced spinor field in the interior of space-time surface.

1. The local inner products of the modes of the induced spinor fields define conserved currents

DαJ
α
mn = 0 ,

Jαmn = umΓ̂αun ,

Γ̂α =
∂LK

∂(∂αhk)
Γk . (4.28)

The conjecture is that the flow parameters of also these currents extend to a global coordinate
so that one would have in the completely general case the condition

Jαmn = ΦmndΨmn ,

d ∗ (dΦmn) = 0 , ∇Ψmn · Φmn = 0 . (4.29)

The condition Φmn = Φ would mean that the massless modes propagate in parallel manner and
along the flow lines of Kähler current. The conservation condition along the flow line implies
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tht the current component Jmn is constant along it. Everything would reduce to initial values
at the ends of the space-time sheet boundaries of CD and 3-D modified Dirac equation would
reduce everything to initial values at partonic 2-surfaces.

2. One might hope that the conservation of these super currents for all modes is equivalent with
the modified Dirac equation. The modes un appearing in Ψ in quantized theory would be kind
of ”square roots” of the basis Φmn and the challenge would be to deduce the modes from the
conservation laws.

3. The quantization of the induced spinor field in 4-D sense would be fixed by those at 3-D space-
like ends by the fact that the oscillator operators are carried along the flow lines as such so
that the anti-commutator of the induced spinor field at the opposite ends of the flow lines at
the light-like boundaries of CD is in principle fixed by the anti-commutations at the either end.
The anti-commutations at 3-D surfaces cannot be fixed freely since one has 3-D Chern-Simons
flow reducing the anti-commutations to those at partonic 2-surfaces.

The following argument suggests that induced spinor fields are in a suitable gauge simply constant
along the flow lines of the Kähler current just as massless spinor modes are constant along the geodesic
in the direction of momentum.

1. The modified gamma matrices are of form Tαk Γk, Tαk = ∂LK/∂(∂αh
k). The H-vectors Tαk can

be expressed as linear combinations of a subset of Killing vector fields jkA spanning the tangent
space of H. For CP2 the natural choice are the 4 Lie-algebra generators in the complement
of U(2) sub-algebra. For CD one can used generator time translation and three generators of
rotation group SO(3). The completeness of the basis defined by the subset of Killing vector
fields gives completeness relation hkl = jAkjAk. This implies Tαk = TαkjAk j

k
A = TαAjkA. One

can defined gamma matrices ΓA as Γkj
k
A to get Tαk Γk = TαAΓA.

2. This together with the condition that all isometry currents are proportional to the Kähler
current (or if this vanishes to same conserved current- say energy current) satisfying Beltrami
flow property implies that one can reduce the modified Dirac equation to an ordinary differential
equation along flow lines. The quantities T tA are constant along the flow lines and one obtains

T tAjADtΨ = 0 . (4.30)

By choosing the gauge suitably the spinors are just constant along flow lines so that the spinor
basis reduces by effective 2-dimensionality to a complete spinor basis at partonic 2-surfaces.

4.6.2 Generalized eigen modes for the modified Chern-Simons Dirac equation and hy-
drodynamical picture

Hydrodynamical picture helps to understand also the construction of generalized eigen modes of 3-D
Chern-Simons Dirac equation.

The general form of generalized eigenvalue equation for Chern-Simons Dirac action

Consider first the the general form and interpretation of the generalized eigenvalue equation as-
signed with the modified Dirac equation for Chern-Simons action [6] . This is of course only an
approximation since an additional contribution to the modified gamma matrices from the Lagrangian
multiplier term guaranteing the weak form of electric-magnetic duality must be included.

1. The modified Dirac equation for Ψ is consistent with that for its conjugate if the coefficient of
the instanton term is real and one uses the Dirac action Ψ(D→ −D←)Ψ giving modified Dirac
equation as

DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (4.31)
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As noticed, the divergence DαΓ̂αC−S does not contain second derivatives in the case of Chern-
Simons action. In the case of Kähler action they occur unless field equations equivalent with the
vanishing of the divergence term are satisfied. The extremals of Chern-Simons action provide a
natural manner to define effective 2-dimensionality.

Also the fermionic current is conserved in this case, which conforms with the idea that fermions
flow along the light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not satisfy the Dirac
equation following from the variational principle and fermion current is not conserved.

2. The generalized eigen modes of DC−S should be such that one obtains the counterpart of Dirac
propagator which is purely algebraic and does not therefore depend on the coordinates of the
throat. This is satisfied if the generalized eigenvalues are expressible in terms of covariantly
constant combinations of gamma matrices and here only M4 gamma matrices are possible.
Therefore the eigenvalue equation would read as

DΨ = λkγkΨ , D = DC−S +
1

2
DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(4.32)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent
gauge term. For extremals one has

D = DC−S . (4.33)

Covariant constancy allows to take the square of this equation and one has

(D2 +
[
D,λkγk

]
)Ψ = λkλkΨ . (4.34)

The commutator term is analogous to magnetic moment interaction.

3. The generalized eigenvalues correspond to λ =
√
λkλk and Dirac determinant is defined as a

product of the eigenvalues and conjecture to give the exponent of Kähler action reducing to
Chern-Simons term. λ is completely analogous to mass. λk cannot be however interpreted as
ordinary four-momentum: for instance, number theoretic arguments suggest that λk must be
restricted to the preferred plane M2 ⊂ M4 interpreted as a commuting hyper-complex plane
of complexified quaternions. For incoming lines this mass would vanish so that all incoming
particles irrespective their actual quantum numbers would be massless in this sense and the
propagator is indeed that for a massless particle. Note that the eigen-modes define the boundary
values for the solutions of DKΨ = 0 so that the values of λ indeed define the counterpart of the
momentum space.

This transmutation of massive particles to effectively massless ones might make possible the
application of the twistor formalism as such in TGD framework [29] . N = 4 SUSY is one
of the very few gauge theory which might be UV finite but it is definitely unphysical due to
the masslessness of the basic quanta. Could the resolution of the interpretational problems
be that the four-momenta appearing in this theory do not directly correspond to the observed
four-momenta?

2. Inclusion of the constraint term

As already noticed one must include also the constraint term due to the weak form of electric-
magnetic duality and this changes somewhat the above simple picture.

1. At the 3-dimensional ends of the space-time sheet and at wormhole throats the 3-dimensionality
allows to introduce a coordinate varying along the flow lines of Kähler magnetic field B = ∗J .
In this case the integrability conditions state that the flow is Beltrami flow. Note that the
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value of Bα along the flow line defining magnetic flux appearing in anti-commutation relations
is constant. This suggests that the generalized eigenvalue equation for the Chern-Simons ac-
tion reduces to a collection of ordinary apparently independent differential equations associated
with the flow lines beginning from the partonic 2-surface. This indeed happens when the CP2

projection is 2-dimensional. In this case it however seems that the basis un is not of much help.

2. The conclusion is wrong: the variations of Chern-Simons action are subject to the constraint
that electric-magnetic duality holds true expressible in terms of Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (4.35)

This gives a constraint force to the field equations and also a dependence on the induced 4-
metric so that one has only almost topological QFT. This term also guarantees the M4 part
of WCW Kähler metric is non-trivial. The condition that the ends of space-time sheet and
wormhole throats are extrema of Chern-Simons action subject to the electric-magnetic duality
constraint is strongly suggested by the effective 2-dimensionality. Without the constraint term
Chern-Simons action would vanish for its extremals so that Kähler function would be identically
zero.

This term implies also an additional contribution to the modified gamma matrices besides the
contribution coming from Chern-Simons action so tht the first guess for the modified Dirac
operator would not be quite correct. This contribution is of exactly of the same general form
as the contribution for any general general coordinate invariant action. The dependence of the
induced metric on M4 degrees of freedom guarantees that also M4 gamma matrices are present.
In the following this term will not be considered.

3. When the contribution of the constraint term to the modifield gamma matrices is neglected,
the explicit expression of the modified Dirac operator DC−S associated with the Chern-Simons
term is given by

D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = BαK(Jkα + ∂αAk) ,

BαK = εαβγJβγ , Jkα = Jkl∂αs
l , ε̂αβγ = εαβγ

√
g3 . (4.36)

For the extremals of Chern-Simons action one has DαΓ̂α = 0. Analogous condition holds true
when the constraing contriabution to the modified gamma matrices is added.

3. Generalized eigenvalue equation for Chern-Simons Dirac action

Consider now the Chern-Simons Dirac equation in more detail assuming that the inclusion of the
constraint contribution to the modified gamma matrices does not induce any complications. Assume
also extremal property for Chern-Simons action with constraint term and Beltrami flow property.

1. For the extremals the Chern-Simons Dirac operator (constraint term not included) reduces to a
one-dimensional Dirac operator

DC−S = ε̂rαβ [2JkαAβ + JαβAk] ΓkDr . (4.37)

Constraint term implies only a modification of the modified gamma matrices but the form of
the operator remains otherwise same when extrema are in question so that one has DαΓ̂α = 0.
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2. For the extremals of Chern-Simons action the general solution of the modified Chern-Simons
Dirac equation (λk = 0) is covariantly constant with respect to the coordinate r:

DrΨ = 0 . (4.38)

The solution to this condition can be written immediately in terms of a non-integrable phase
factor Pexp(i

∫
Ardr), where integration is along curve with constant transversal coordinates. If

Γ̂v is light-like vector field also Γ̂vΨ0 defines a solution of DC−S . This solution corresponds to a
zero mode for DC−S and does not contribute to the Dirac determinant (suggested to give rise to
the exponent of Kähler function identified as Kähler action). Note that the dependence of these
solutions on transversal coordinates of X3

l is arbitrary which conforms with the hydrodynamic
picture. The solutions of Chern-Simons-Dirac are obtained by similar integration procedure also
when extremals are not in question.

The formal solution associated with a general eigenvalue λ can be constructed by integrating the
eigenvalue equation separately along all coordinate curves. This makes sense if r indeed assigned to
possibly light-like flow lines of Bα or more general Beltrami field possible induced by the constraint
term. There are very strong consistency conditions coming from the conditions that Ψ in the interior
is constant along the flow lines of Kähler current and continuous at the ends and throats (call them
collectively boundaries), where Ψ has a non-trivial variation along the flow lines of Bα.

1. This makes sense only if the flow lines of the Kähler current are transversal to the boundaries
so that the spinor modes at boundaries dictate the modes of the spinor field in the interior.
Effective 2-dimensionality means that the spinor modes in the interior can be calculated either
by starting from the throats or from the ends so that the data at either upper of lower partonic
2-surfaces dictates everything in accordance with zero energy ontology.

2. This gives an infinite number of commuting diagrams stating that the flow-line time evolution
along flow lines along wormhole throats from lower partonic 2-surface to the upper one is equiv-
alent with the flow-line time evolution along the lower end of space-time surface to interior, then
along interior to the upper end of the space-time surface and then back to the upper partonic
2-surface. If the space-time surface allows a slicing by partonic 2-surfaces these conditions can
be assumed for any pair of partonic 2-surfaces connected by Chern-Simons flow evolution.

3. Since the time evolution along interior keeps the spinor field as constant in the proper gauge
and since the flow evolutions at the lower and upper ends are in a reverse direction, there is a
strong atemptation to assume that the spinor field at the ends of the of the flow lines of Kähler
magnetic field are identical apart from a gauge transformation. This leads to a particle-in-box
quantizaton of the values of the pseudo-mass (periodic boundary conditions). These conditions
will be assumed in the sequel.

These assumptions lead to the following picture about the generalized eigen modes.

1. By choosing the gauge so that covariant derivative reduces to ordinary derivative and using the
constancy of Γ̂r, the solution of the generalized eigenvalue equation can be written as

Ψ = exp(iL(r)Γ̂rλkΓk)Ψ0 ,

L(r) =

∫ r

0

1√
ĝrr

dr . (4.39)

L(r) can be regarded as the along flux line as defined by the effective metric defined by modified
gamma matrices. If λk is linear combination of Γ0 and ΓrM it anti-commutes with Γr which
contains only CP2 gamma matrices so that the pseudo-momentum is a priori arbitrary.
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2. When the constraint term taking care of the electric-magnetric duality is included, also M4

gamma matrices are present. If they are in the orthogonal complement of a preferred plane
M2 ⊂ M4, anti-commutativity is achieved. This assumption cannot be fully justified yet but
conforms with the general physical vision. There is an obvious analogy with the condition that
polarizations are in a plane orthogonal to M2. The condition indeed states that only transversal
deformations define quantum fluctuating WCW degrees of freedom contributing to the WCW
Kähler metric. In M8−H duality the preferred plane M2 is interpreted as a hyper-complex plane
belonging to the tangent space of the space-time surface and defines the plane of non-physical
polarizations. Also a generalization of this plane to an integrable distribution of planes M2(x)
has been proposed and one must consider also now the possibility of a varying plane M2(x) for
the pseudo-momenta. The scalar function Φ appearing in the general solution ansatz for the
field equations satisfies massless d’Alembert equation and its gradient defines a local light-like
direction at space-time-level and hence a 2-D plane of the tangent space. Maybe the projection
of this plane to M4 could define the preferred M2. The minimum condition is that these planes
are defined only at the ends of space-time surface and at wormhole throats.

3. If one accepts this hypothesis, one can write

Ψ =
[
cos(L(r)λ) + isin(λ(r))Γ̂rλkΓk)

]
Ψ0 ,

λ =
√
λkλk . (4.40)

4. Boundary conditions should fix the spectrum of masses. If the the flow lines of Kähler current
coincide with the flow lines of Kähler magnetic field or more general Beltrami current at worm-
hole throats one ends up with difficulties since the induced spinor fields must be constant along
flow lines and only trivial eigenvalues are possible. Hence it seems that the two Beltrami fields
must be transversal. This requires that at the partonic 2-surfaces the value of the induced spinor
mode in the interior coincides with its value at the throat. Since the induced spinor fields in
interior are constant along flow lines, one must have

exp(iλL(max)) = 1 . (4.41)

This implies that one has essentially particle in a box with size defined by the effective metric

λn =
n2π

L(rmax)
. (4.42)

5. This condition cannot however hold true simultaneously for all points of the partonic 2-surfaces
since L(rmax) depends on the point of the surface. In the most general case one can consider
only a subset consisting of the points for which the values of L(rmax) are rational multiples of the
value of L(rmax) at one of the points -call it L0. This implies the notion of number theoretical
braid. Induced spinor fields are localized to the points of the braid defined by the flow lines of
the Kähler magnetic field (or equivalently, any conserved current- this resolves the longstanding
issue about the identification of number theoretical braids). The number of the included points
depends on measurement resolution characterized somehow by the number rationals which are
allowed. Only finite number of harmonics and sub-harmonics of L0 are possible so that for
integer multiples the number of points is finite. If nmaxL0 and L0/nmin are the largest and
smallest lengths involved, one can argue that the rationals nmax/n, n = 1, ..., nmax and n/nmin,
n = 1, ..., nmin are the natural ones.

6. One can consider also algebraic extensions for which L0 is scaled from its reference value by an
algebraic number so that the mass scale m must be scaled up in similar manner. The spectrum
comes also now in integer multiples. p-Adic mass calculations predicts mass scales to the inverses
of square roots of prime and this raises the expectation that

√
n harmonics and sub-harmonics

of L0 might be necessary. Notice however that pseudo-momentum spectrum is in question so
that this argument is on shaky grounds.
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There is also the question about the allowed values of (λ0, λ3) for a given value of λ. This issue will
be discussed in the next section devoted to the attempt to calculate the Dirac determinant assignable
to this spectrum: suffice it to say that integer valued spectrum is the first guess implying that the
pseudo-momenta satisfy n20 − n23 = n2 and therefore correspond to Pythagorean triangles. What is
remarkable that the notion of number theoretic braid pops up automatically from the Beltrami flow
hypothesis.

5 How to define Dirac determinant?

The basic challenge is to define Dirac determinant hoped to give rise to the exponent of Kähler action
associated with the preferred extremal. The reduction to almost topological QFT gives this kind
of expression in terms of Chern-Simons action and one might hope of obtaining even more concrete
expression from the Chern-Simons Dirac determinant. The calculation of the previous section allowed
to calculate the most general spectrum of the modified Dirac operator. If the number of the eigenvalues
is infinite as the naive expectation is then Dirac determinant diverges if calculated as the product of the
eigenvalues and one must calculate it by using some kind of regularization procedure. Zeta function
regularization is the natural manner to do this.

The following arguments however lead to a concrete vision how the regularization could be avoided
and a connection with infinite primes. In fact, the manifestly finite option and the option involving zeta
function regularization give Kähler functions differing only by a scaling factor and only the manifestly
finite option satisfies number theoretical constraints coming from p-adicization. An explicit expression
for the Dirac determinant in terms of geometric data of the orbit of the partonic 2-surface emerges.

Arithmetic quantum field theory defined by infinite emerges naturally. The lines of the generalized
Feynman graphs are characterized by infinite primes and the selection rules correlating the geometries
of the lines of the generalized Feynman graphs corresponds to the conservation of the sum of number
theoretic momenta log(pi) assignable to sub-braids corresponding to different primes pi assignable to
the orbit of parton. This conforms with the vision that infinite primes indeed characterize the geometry
of light-like 3-surfaces and therefore also of space-time sheets. The eigenvalues of the modified Dirac
operator are proportional 1/

√
pi where pi are the primes appearing in the definition of the p-adic prime

and the interpretation as analogs of Higgs vacuum expectation values makes sense and is consistent
with p-adic length scale hypothesis and p-adic mass calculations. It must be emphasized that all this is
essentially due to single basic hypothesis, namely the reduction of quantum TGD to almost topological
QFT guaranteed by the Beltrami ansatz for field equations and by the weak form of electric-magnetic
duality.

5.1 Dirac determinant when the number of eigenvalues is infinite

At first sight the general spectrum looks the only reasonable possibility but if the eigenvalues cor-
relate with the geometry of the partonic surface as quantum classical correspondence suggests, this
conclusion might be wrong. The original hope was the number of eigenvalues would be finite so that
also determinant would be finite automatically. There were some justifications for this hope in the
definition of Dirac determinant based on the dimensional reduction of DK as DK = DK,3 + D1 and
the identification of the generalized eigenvalues as those assigned to DK,3 as analogs of energy eigen-
values assignable to the light-like 3-surface. It will be found that number theoretic input could allow
to achieve a manifest finiteness in the case of DC−S and that this option is the only possible one if
number theoretic universality is required.

If there are no constraints on the eigenvalue spectrum of DC−S for a given partonic orbit, the naive
definition of the determinant gives an infinite result and one must define Dirac determinant using ζ
function regularization implying that Kähler function reduces to the derivative of the zeta function
ζD(s) -call it Dirac Zeta- associated with the eigenvalue spectrum.

Consider now the situation when the number of eigenvalues is infinite.

1. In this kind of situation zeta function regularization is the standard manner to define the Dirac
determinant. What one does is to assign zeta function to the spectrum- let us call it Dirac zeta
function and denote by ζD(s)- as
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ζD(s) =
∑
k

λ−sk . (5.1)

If the eigenvalue λk has degeneracy gk it appears gk times in the sum. In the case of harmonic
oscillator one obtains Riemann zeta for which sum representation converges only for Re(s) ≥ 1.
Riemann zeta can be however analytically continued to the entire complex plane and the idea
is that this can be done also in the more general case.

2. By the basic conjecture Kähler function corresponds to the logarithm of the Dirac determinant
and equals to the sum of the logarithms of the eigenvalues

K = log(
∏

λk) = −dζD
ds |s=0

. (5.2)

The expression on the left hand side diverges if taken as such but the expression on the right
had side based on the analytical continuation of the zeta function is completely well-defined and
finite quantity. Note that the replacement of eigenvalues λk by their powers λnk -or equivalently
the increase of the degeneracy by a factor n - brings in only a factor n to K: K → nK.

3. Dirac determinant involves in the minimal situation only the integer multiples of pseudo-mass
scale λ = 2π/Lmin. One can consider also rational and even algebraic multiples qLmin < Lmax,
q ≥ 1, of Lmin so that one would have several integer spectra simultaneously corresponding to
different braids. Here Lmin and Lmax are the extrema of the braid strand length determined
in terms of the effective metric as L =

∫
(ĝrr)−1/2dr. The question what multiples are involved

will be needed later.

4. Each rational or algebraic multiple of Lmin gives to the zeta function a contribution which is of
same form so that one has

ζD =
∑
q

ζ(log(qx)s) , x =
Lmin
R

, 1 ≤ q < Lmax
Lmin

. (5.3)

Kähler function can be expressed as

K =
∑
n

log(λn) = −dζD(s)

ds
= −

∑
q

log(qx)
dζ(s)

ds |s=0
, x =

Lmin
R

. (5.4)

What is remarkable that the number theoretical details of ζD determine only the overall scaling
factor of Kähler function and thus the value of Kähler coupling strength, which would be purely
number theoretically determined if the hypothesis about the role of infinite primes is correct.
Also the value of R is irrelevant since it does not affect the Kähler metric.

5. The dependence of Kähler function on WCW degrees of freedom would be coded completely by
the dependence of the length scales qLmin on the complex coordinates of WCW: note that this
dependence is different for each scale. This is reminiscent of the coding of the shape of the drum
(or more generally - manifold) by the spectrum of its eigen frequencies. Now Kähler geometry
would code for the dependence of the spectrum on the shape of the drum defined by the partonic
2-surface and the 4-D tangent space distribution associated with it.

What happens at the limit of vacuum extremals serves as a test for the identification of Kähler
function as Dirac determinant. The weak form of electric magnetic duality implies that all com-
ponents of the induced Kähler field vanish simultaneously if Kähler magnetic field cancels. In the
modified Chern-Simons Dirac equation one obtains L =

∫
(ĝrr)−1/2dr. The modified gamma matrix

Γ̂r approaches a finite limit when Kähler magnetic field vanishes
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Γ̂r = εrβγ(2JβkAγ + JβγAk)Γk → 2εrβγJβkΓk . (5.5)

The relevant component of the effective metric is ĝrr and is given by

ĝrr = (Γ̂r)2 = 4εrβγεrµνJβkJ
k

µ AγAν . (5.6)

The limit is non-vanishing in general and therefore the eigenvalues remain finite also at this limit
as also the parameter Lmin =

∫
(ĝrr)−1/2dr defining the minimum of the length of the braid strand

defined by Kähler magnetic flux line in the effective metric unless ĝrr goes to zero everywhere inside
the partonic surface. Chern-Simons action and Kähler action vanish for vacuum extremals so that in
this case one could require that Dirac determinant approaches to unity in a properly chosen gauge.
Dirac determinant should approach to unit for vacuum extremals indeed approaches to unity since
there are no finite eigenvalues at the limit ĝrr = 0.

5.2 Hyper-octonionic primes

Before detailed discussion of the hyper-octonionic option it is good to consider the basic properties of
hyper-octonionic primes.

1. Hyper-octonionic primes are of form

Πp = (n0, n3, n1, n2, ..., n7) , Π2
p = n20 −

∑
i

n2i = p or p2 . (5.7)

2. Hyper-octonionic primes have a standard representation as hyper-complex primes. The Minkowski
norm squared factorizes into a product as

n20 − n23 = (n0 + n3)(n0 − n3) . (5.8)

If one has n3 6= 0, the prime property implies n0 − n3 = 1 so that one obtains n0 = n3 + 1 and
2n3 + 1 = p giving

(n0, n3) = ((p+ 1)/2, (p− 1)/2) .

(5.9)

Note that one has (p + 1)/2 odd for p mod 4 = 1) and (p + 1)/2 even for p mod 4 = 3). The
difference n0 − n3 = 1 characterizes prime property.

If n3 vanishes the prime prime property implies equivalence with ordinary prime and one has
n23 = p2. These hyper-octonionic primes represent particles at rest.

3. The action of a discrete subgroup G(p) of the octonionic automorphism group G2 generates form
hyper-complex primes with n3 6= 0 further hyper-octonionic primes Π(p, k) corresponding to the
same value of n0 and p and for these the integer valued projection to M2 satisfies n20−n23 = n > p.
It is also possible to have a state representing the system at rest with (n0, n3) = ((p + 1)/2, 0)
so that the pseudo-mass varies in the range [

√
p, (p + 1)/2]. The subgroup G(n0, n3) ⊂ SU(3)

leaving invariant the projection (n0, n3) generates the hyper-octonionic primes corresponding
to the same value of mass for hyper-octonionic primes with same Minkowskian length p and
pseudo-mass λ = n ≥ √p.

4. One obtains two kinds of primes corresponding to the lengths of pseudo-momenta equal to p or√
p. The first kind of particles are always at rest whereas the second kind of particles can be

brought at rest only if one interprets the pseudo-momentum as M2 projection. This brings in
mind the secondary p-adic length scales assigned to causal diamonds (CDs) and the primary
p-adic lengths scales assigned to particles.
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If the M2 projections of hyper-octonionic primes with length
√
p characterize the allowed basic

momenta, ζD is sum of zeta functions associated with various projections which must be in the limits
dictated by the geometry of the orbit of the partonic surface giving upper and lower bounds Lmax and
Lmin on the length L. Lmin is scaled up to

√
n20 − n23Lmin for a given projection (n0, n3). In general

a given M2 projection (n0, n3) corresponds to several hyper-octonionic primes since SU(3) rotations
give a new hyper-octonionic prime with the same M2 projection. This leads to an inconsistency unless
one has a good explanation for why some basic momentum can appear several times. One might argue
that the spinor mode is degenerate due to the possibility to perform discrete color rotations of the
state. For hyper complex representatives there is no such problem and it seems favored. In any case,
one can look how the degeneracy factors for given projection can be calculated.

1. To calculate the degeneracy factor D(n associated with given pseudo-mass value λ = n one must
find all hyper-octonionic primes Π, which can have projection in M2 with length n and sum up
the degeneracy factors D(n, p) associated with them:

D(n) =
∑
p

D(n, p) ,

D(n, p) =
∑

n2
0−n2

3=p

D(p, n0, n3) ,

n20 − n23 = n , Π2
p(n0, n3) = n20 − n23 −

∑
i

n2i = n−
∑
i

n2i = p . (5.10)

2. The condition n20 − n23 = n allows only Pythagorean triangles and one must find the discrete
subgroup G(n0, n3) ⊂ SU(3) producing hyper-octonions with integer valued components with
length p and components (n0, n3). The points at the orbit satisfy the condition

∑
n2i = p− n . (5.11)

The degeneracy factor D(p, n0, n3) associated with given mass value n is the number of elements
of in the coset space G(n0, n3, p)/H(n0, n3, p), where H(n0, n3, p) is the isotropy group of given
hyper-octonionic prime obtained in this manner. For n20−n23 = p2 D(n0, n3, p) obviously equals
to unity.

5.3 Three basic options for the pseudo-momentum spectrum

The calculation of the scaling factor of the Kähler function requires the knowledge of the degeneracies
of the mass squared eigen values. There are three options to consider.

5.3.1 First option: all pseudo-momenta are allowed

If the degeneracy for pseudo-momenta in M2 is same for all mass values- and formally characterizable
by a number N telling how many 2-D pseudo-momenta reside on mass shell n20−n23 = m2. In this case
zeta function would be proportional to a sum of Riemann Zetas with scaled arguments corresponding
to scalings of the basic mass m to m/q.

ζD(s) = N
∑
q

ζ(log(qx)s) , x =
Lmin
R

. (5.12)

This option provides no idea about the possible values of 1 ≤ q ≤ Lmax/Lmin. The number N
is given by the integral of relativistic density of states

∫
dk/2

√
k2 +m2 over the hyperbola and is

logarithmically divergent so that the normalization factor N of the Kähler function would be infinite.
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5.3.2 Second option: All integer valued pseudomomenta are allowed

Second option is inspired by number theoretic vision and assumes integer valued components for the
momenta using mmax = 2π/Lmin as mass unit. p-Adicization motivates also the assumption that
momentum components using mmax as mass scale are integers. This would restrict the choice of the
number theoretical braids.

Integer valuedness together with masses coming as integer multiples of mmax implies (λ0, λ3) =
(n0, n3) with on mass shell condition n20−n23 = n2. Note that the condition is invariant under scaling.
These integers correspond to Pythagorean triangles plus the degenerate situation with n3 = 0. There
exists a finite number of pairs (n0, n3) satisfying this condition as one finds by expressing n0 as
n0 = n3 + k giving 2n3k + k2 = p2 giving n3 < n2/2,n0 < n2/2 + 1. This would be enough to have a
finite degeneracy D(n) ≥ 1 for a given value of mass squared and ζD would be well defined. ζD would
be a modification of Riemann zeta given by

ζD =
∑
q

ζ1(log(qx)s) , x =
Lmin
R

,

ζ1(s) =
∑

gnn
−s , gn ≥ 1 . (5.13)

For generalized Feynman diagrams this option allows conservation of pseudo-momentum and for loops
no divergences are possible since the integral over two-dimensional virtual momenta is replaced with
a sum over discrete mass shells containing only a finite number of points. This option looks thus
attractive but requires a regularization. On the other hand, the appearance of a zeta function having
a strong resemblance with Riemann zeta could explain the finding that Riemann zeta is closely related
to the description of critical systems. This point will be discussed later.

5.3.3 Third option: Infinite primes code for the allowed mass scales

According to the proposal of [24] , [3] the hyper-complex parts of hyper-octonionic primes appearing
in their infinite counterparts correspond to the M2 projections of real four-momenta. This hypothesis
suggests a very detailed map between infinite primes and standard model quantum numbers and
predicts a universal mass spectrum [24] . Since pseudo-momenta are automatically restricted to
the plane M2, one cannot avoid the question whether they could actually correspond to the hyper-
octonionic primes defining the infinite prime. These interpretations need not of course exclude each
other. This option allows several variants and at this stage it is not possible to exclude any of these
options.

1. One must choose between two alternatives for which pseudo-momentum corresponds to hyper-
complex prime serving as a canonical representative of a hyper-octonionic prime or a projection
of hyper-octonionic prime to M2.

2. One must decide whether one allows a) only the momenta corresponding to hyper-complex
primes, b) also their powers (p-adic fractality), or c) all their integer multiples (”Riemann
option”).

One must also decide what hyper-octonionic primes are allowed.

1. The first guess is that all hyper-complex/hyper-octonionic primes defining length scale
√
pLmin ≤

Lmax or pLmin ≤ Lmax are allowed. p-Adic fractality suggests that also the higher p-adic length
scales pn/2Lmin < Lmax and pnLmin < Lmax, n ≥ 1, are possible.

It can however happen that no primes are allowed by this criterion. This would mean vanishing
Kähler function which is of course also possible since Kähler action can vanish (for instance, for
massless extremals). It seems therefore safer to allow also the scale corresponding to the trivial
prime (n0, n3) = (1, 0) (1 is formally prime because it is not divisible by any prime different
from 1) so that at least Lmin is possible. This option also allows only rather small primes unless
the partonic 2-surface contains vacuum regions in which case Lmax is infinite: in this case all
primes would be allowed and the exponent of Kähler function would vanish.
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2. The hypothesis that only the hyper-complex or hyper-octonionic primes appearing in the infinite
hyper-octonionic prime are possible looks more reasonable since large values of p would be
possible and could be identified in terms of the p-adic length scale hypothesis. All hyper-
octonionic primes appearing in infinite prime would be possible and the geometry of the orbit of
the partonic 2-surface would define an infinite prime. This would also give a concrete physical
interpretation for the earlier hypothesis that hyper-octonionic primes appearing in the infinite
prime characterize partonic 2-surfaces geometrically. One can also identify the fermionic and
purely bosonic primes appearing in the infinite prime as braid strands carrying fermion number
and purely bosonic quantum numbers. This option will be assumed in the following.

5.4 Expression for the Dirac determinant for various options

The expressions for the Dirac determinant for various options can be deduced in a straightforward
manner. Numerically Riemann option and manifestly finite option do not differ much but their number
theoretic properties are totally different.

5.4.1 Riemann option

All integer multiples of these basic pseudo-momenta would be allowed for Riemann option so that ζD
would be sum of Riemann zetas with arguments scaled by the basic pseudo-masses coming as inverses
of the basic length scales for braid strands. For the option involving only hyper-complex primes the
formula for ζD reads as

ζD = ζ(log(xmins)) +
∑
i,n ζ(log(xi,ns)) +

∑
i,n ζ(log(yi,ns)) ,

xi,n = p
n/2
i xmin ≤ xmax , pi ≥ 3 , yi,n = pni xmin ≤ xmax . pi ≥ 2 ,

(5.14)

Lmax resp. Lmin is the maximal resp. minimal length L =
∫

(ĝrr)−1/2dr for the braid strand defined
by the flux line of the Kähler magnetic field in the effective metric. The contributions correspond to
the effective hyper-complex prime p1 = (1, 0) and hyper-complex primes with Minkowski lengths

√
p

(p ≥ 3) and p, p ≥ 2. If also higher p-adic length scales Ln = pn/2Lmin < Lmax and Ln = pnLmin <
Lmax, n > 1, are allowed there is no further restriction on the summation. For the restricted option
only Ln, n = 0, 2 is allowed.

The expressions for the Kähler function and its exponent reads as

K = k(log(xmin) +
∑
i

log(xi) +
∑
i

log(yi) ,

exp(K) = (
1

xmin
)k ×

∏
i

(
1

xi
)k ×

∏
i

(
1

yi
)k ,

xi ≤ xmax , yi ≤ xmax , k = −dζ(s)

ds |s=0
=

1

2
log(2π) ' .9184 .

(5.15)

From the point of view of p-adicization program the appearance of strongly transcendental numbers
in the normalization factor of ζD is not a well-come property.

If the scaling of the WCW Kähler metric by 1/k is a legitimate procedure it would allow to get
rid of the transcendental scaling factor k and this scaling would cancel also the transcendental from
the exponent of Kähler function. The scaling is not however consistent with the view that Kähler
coupling strength determines the normalization of the WCW metric.

This formula generalizes in a rather obvious manner to the cases when one allows M2 projections
of hyper-octonionic primes.
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5.4.2 Manifestly finite options

The options for which one does not allow summation over all integer multiples of the basic momenta
characterized by the canonical representatives of hyper-complex primes or their projections to M2

are manifestly finite. They differ from the Riemann option only in that the normalization factor
k =' .9184 defined by the derivative Riemann Zeta at origin is replaced with k = 1. This would mean
manifest finiteness of ζD. Kähler function and its exponent are given by

K = k(log(xmin) +
∑
i

log(xi) +
∑
i

log(yi) , xi ≤ xmax , yi ≤ xmax ,

exp(K) =
1

xmin
×
∏
i

1

xi
×
∏
i

1

yi
.

(5.16)

Numerically the Kähler functions do not differ much since their ratio is .9184. Number theoretically
these functions are however completely different. The resulting dependence involves only square roots
of primes and is an algebraic function of the lengths pi and rational function of xmin. p-Adicization
program would require rational values of the lengths xmin in the intersection of the real and p-adic
worlds if one allows algebraic extension containing the square roots of the primes involved. Note that
in p-adic context this algebraic extension involves two additional square roots for p > 2 if one does
not want square root of p. Whether one should allow for Rp also extension based on

√
p is not quite

clear. This would give 8-D extension.
For the more general option allowing all projections of hyper-complex primes to M2 the general

form of Kähler function is same. Instead of pseudo-masses coming as primes and their square roots
one has pseudomasses coming as square roots of some integers n ≤ p or n ≤ p2 for each p. In this
case the conservation laws are not so strong.

Note that in the case of vacuum extremals xmin = ∞ holds true so that there are no primes
satisfying the condition and Kähler function vanishes as it indeed should.

5.4.3 More concrete picture about the option based on infinite primes

The identification of pseudo-momenta in terms of infinite primes suggests a rather concrete connection
between number theory and physics.

1. One could assign the finite hyper-octonionic primes Πi making the infinite prime to the sub-
braids identified as Kähler magnetic flux lines with the same length L in the effective metric.
The primes assigned to the finite part of the infinite prime correspond to single fermion and
some number of bosons. The primes assigned to the infinite part correspond to purely bosonic
states assignable to the purely bosonic braid strands. Purely bosonic state would correspond to
the action of a WCW Hamiltonian to the state.

This correspondence can be expanded to include all quantum numbers by using the pair of
infinite primes corresponding to the ”vacuum primes” X±1, where X is the product of all finite
primes [24] . The only difference with respect to the earlier proposal is that physical momenta
would be replaced by pseudo-momenta.

2. Different primes pi appearing in the infinite prime would correspond to their own sub-braids.
For each sub-braid there is a N -fold degeneracy of the generalized eigen modes corresponding
to the number N of braid strands so that many particle states are possible as required by the
braid picture.

3. The correspondence of infinite primes with the hierarchy of Planck constants could allow to
understand the fermion-many boson states and many boson states assigned with a given finite
prime in terms of many-particle states assigned to na and nb-sheeted singular covering spaces of
CD and CP2 assignable to the two infinite primes. This interpretation requires that only single
p-adic prime pi is realized as quantum state meaning that quantum measurement always selects
a particular p-adic prime pi (and corresponding sub-braid) characterizing the p-adicity of the
quantum state. This selection of number field behind p-adic physics responsible for cognition
looks very plausible.
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4. The correspondence between pairs of infinite primes and quantum states [24] allows to interpret
color quantum numbers in terms of the states associated with the representations of a finite
subgroup of SU(3) transforming hyper-octonionic primes to each other and preserving the M2

pseudo-momentum. Same applies to SO(3). The most natural interpretation is in terms of wave
functions in the space of discrete SU(3) and SO(3) transforms of the partonic 2-surface. The
dependence of the pseudo-masses on these quantum numbers is natural so that the projection
hypothesis finds support from this interpretation.

5. The infinite prime characterizing the orbit of the partonic 2-surface would thus code which
multiples of the basic mass 2π/Lmin are possible. Either the M2 projections of hyper-octonionic
primes or their hyper-complex canonical representatives would fix the basic M2 pseudo-momenta
for the corresponding number theoretic braid associated. In the reverse direction the knowledge
of the light-like 3-surface, the CD and CP2 coverings, and the number of the allowed discrete
SU(3) and SU(2) rotations of the partonic 2-surface would dictate the infinite prime assignable
to the orbit of the partonic 2-surface.

One would also like to understand whether there is some kind of conservation laws associated
with the pseudo-momenta at vertices. The arithmetic QFT assignable to infinite primes would indeed
predict this kind of conservation laws.

1. For the manifestly finite option the ordinary conservation of pseudo-momentum conservation
at vertices is not possible since the addition of pseudo-momenta does not respect the condition
n0−n3 = 1. In fact, this difference in the sum of hyper-complex prime momenta tells how many
momenta are present. If one applies the conservation law to the sum of the pseudo-momenta
corresponding to different primes and corresponding braids, one can have reactions in which the
number of primes involved is conserved. This would give the selection rule

∑N
1 pi =

∑N
1 pf .

These reactions have interpretation in terms of the geometry of the 3-surface representing the
line of the generalized Feynman diagram.

2. Infinite primes define an arithmetic quantum field theory in which the total momentum defined
as
∑
nilog(pi) is a conserved quantity. As matter fact, each prime pi would define a separately

conserved momentum so that there would be an infinite number of conservation laws. If the sum∑
i log(pi) is conserved in the vertex , the primes pi associated with the incoming particle are

shared with the outgoing particles so that also the total momentum is conserved. This looks the
most plausible option and would give very powerful number theoretical selection rules at vertices
since the collection of primes associated with incoming line would be union of the collections
associated with the outgoing lines and also total pseudo-momentum would be conserved.

3. For the both Riemann zeta option and manifestly finite options the arithmetic QFT associated
with infinite primes would be realized at the level of pseudo-momenta meaning very strong
selection rules at vertices coding for how the geometries of the partonic lines entering the vertex
correlate. WCW integration would reduce for the lines of Feynman diagram to a sum over light-
like 3-surfaces characterized by (xmin, xmax) with a suitable weighting factor and the exponent
of Kähler function would give an exponential damping as a function of xmin.

5.4.4 Which option to choose?

One should be able to make two choices. One must select between hyper-complex representations
and the projections of hyper-octonionic primes and between the manifestly finite options and the one
producing Riemann zeta?

Hyper-complex option seems to be slightly favored over the projection option.

1. The appearance of the scales
√
pixmin and possibly also their pn multiples brings in mind p-

adic length scales coming as
√
pn multiples of CP2 length scale. The scales pixmin associated

with hyper-complex primes reducing to ordinary primes in turn bring in mind the size scales
assignable to CDs. The hierarchy of Planck constants implies also ~/~0 =

√
nanb multiples of

these length scales but mass scales would not depend on na and nb [25] . For large values of
p the pseudo-momenta are almost light-like for hyper-complex option whereas the projection
option allows also states at rest.
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2. Hyper-complex option predicts that only the p-adic pseudo-mass scales appear in the partition
function and is thus favored by the p-adic length scale hypothesis. Projection option predicts
also the possibility of the mass scales (not all of them) coming as 1/

√
n. These mass scales are

however not predicted by the hierarchy of Planck constants.

3. The same pseudo-mass scale can appear several times for the projection option. This degeneracy
corresponds to the orbit of the hyper-complex prime under the subgroup of SU(3) respecting
integer property. Similar statement holds true in the case of SO(3): these groups are assigned
to the two infinite primes characterizing parton. The natural assignment of this degeneracy is to
the discrete color rotational and rotational degrees associated with the partonic 2-surface itself
rather than spinor modes at fixed partonic 2-surface. That the pseudo-mass would depend on
color and angular momentum quantum numbers would make sense.

Consider next the arguments in favor of the manifestly finite option.

1. The manifestly finite option is admittedly more elegant than the one based on Riemann zeta
and also guarantees that no additional loop summations over pseudo-momenta are present. The
strongest support for the manifestly finite option comes from number theoretical universality.

2. One could however argue that the restriction of the pseudo-momenta to a finite number is not
consistent with the modified Dirac-Chern-Simons equation. Quantum classical correspondence
however implies correlation between the geometry of the partonic orbits and the pseudo-momenta
and the summation over all prime valued pseudo-momenta is present but with a weighting factor
coming from Kähler function implying exponential suppression.

The Riemann zeta option could be also defended.

1. The numerical difference of the normalization factors of the Kähler function is however only
about 8 per cent and quantum field theorists might interpret the replacement the length scales
xi and yi with xdi and ydi , d ' .9184, in terms of an anomalous dimension of these length scales.
Could one say that radiative corrections mean the scaling of the original preferred coordinates
so that one could still have consistency with number theoretic universality?

2. Riemann zeta with a non-vanishing argument could have also other applications in quantum
TGD. Riemann zeta has interpretation as a partition function and the zeros of partition func-
tions have interpretation in terms of phase transitions. The quantum criticality of TGD indeed
corresponds to a phase transition point. There is also experimental evidence that the distribu-
tion of zeros of zeta corresponds to the distribution of energies of quantum critical systems in
the sense that the energies correspond to the imaginary parts of the zeros of zeta [1] .

The first explanation would be in terms of the analogs of the harmonic oscillator coherent
states with integer multiple of the basic momentum taking the role of occupation number of
harmonic oscillator and the zeros s = 1/2 + iy of ζ defining the values of the complex coherence
parameters. TGD inspired strategy for the proof of Riemann hypothesis indeed leads to the
identification of the zeros as coherence parameters rather than energies as in the case of Hilbert-
Polya hypothesis [21] and the vanishing of the zeta at zero has interpretation as orthogonality
of the state with respect to the state defined by a vanishing coherence parameter interpreted as
a tachyon. One should demonstrate that the energies of quantum states can correspond to the
imaginary parts of the coherence parameters.

Second interpretation could be in terms of quantum critical zero energy states for which the
”complex square root of density matrix” defines time-like entanglement coefficients of M -matrix.
The complex square roots of the probabilities defined by the coefficient of harmonic oscillator
states (perhaps identifiable in terms of the multiples of pseudo-momentum) in the coherent state
defined by the zero of ζ would define the M -matrix in this situation. Energy would correspond
also now to the imaginary part of the coherence parameter. The norm of the state would be
completely well-defined.
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5.4.5 Representation of configuration Kähler metric in terms of eigenvalues of DC−S

A surprisingly concrete connection of the configuration space metric in terms of generalized eigenvalue
spectrum of DC−S results. From the general expression of Kähler metric in terms of Kähler function

Gkl = ∂k∂lK =
∂k∂lexp(K)

exp(K)
− ∂kexp(K)

exp(K)

∂lexp(K)

exp(K)
, (5.17)

and from the expression of exp(K) =
∏
i λi as the product of of finite number of eigenvalues of DC−S

, the expression

Gkl =
∑
i

∂k∂lλi
λi

− ∂kλi
λi

∂lλi
λi

(5.18)

for the configuration space metric follows. Here complex coordinates refer to the complex coordinates
of configuration space. Hence the knowledge of the eigenvalue spectrum of DC−S(X3) as function of
some complex coordinates of configuration space allows to deduce the metric to arbitrary accuracy.
If the above arguments are correct the calculation reduces to the calculation of the derivatives of
log(
√
pLmin/R), where Lmin is the length of the Kähler magnetic flux line between partonic 2-surfaces

with respect to the effective metric defined by the anti-commutators of the modified gamma matrices.
Note that these length scales have different dependence on WCW coordinates so that one cannot
reduce everything to Lmin. Therefore one would have explicit representation of the basic building
brick of WCW Kähler metric in terms of the geometric data associated with the orbit of the partonic
2-surface.

5.4.6 The formula for the Kähler action of CP2 type vacuum extremals is consistent
with the Dirac determinant formula

The first killer test for the formula of Kähler function in terms of the Dirac determinant based on
infinite prime hypothesis is provided by the action of CP2 type vacuum extremals. One of the first
attempts to make quantitative predictions in TGD framework was the prediction for the gravitational
constant. The argument went as follows.

1. For dimensional reasons gravitational constant must be proportional to p-adic length scale
squared, where p characterizes the space-time sheet of the graviton. It must be also proportional
to the square of the vacuum function for the graviton representing a line of generalized Feynman
diagram and thus to the exponent exp(−2K) of Kähler action for topologically condensed CP2

type vacuum extremals with very long projection. If topological condensation does not reduce
much of the volume of CP2 type vacuum extremal, the action is just Kähler action for CP2

itself. This gives

~0G = L2
pexp(2LK(CP2) = pR2exp(2LK(CP2) . (5.19)

2. Using as input the constraint αK ' αem ∼ 1/137 for Kähler coupling strengths coming from the
comparison of the TGD prediction for the rotation velocity of distant galaxies around galactic
nucleus and the p-adic mass calculation for the electron mass, one obtained the result

exp(2LK(CP2) =
1

p×
∏
pi≤23 pi

. (5.20)

The product contains the product of all primes smaller than 24 (pi ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23}).
The expression for the Kähler function would be just of the form predicted by the Dirac deter-
minant formula with Lmin replaced with CP2 length scale. As a matter fact, this was the first
indication that particles are characterized by several p-adic primes but that only one of them is
”active”. As explained, the number theoretical state function reduction explains this.
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3. The same formula for the gravitational constant would result for any prime p but the value
of Kähler coupling strength would depend on prime p logarithmically for this option. I indeed
proposed that this formula fixes the discrete evolution of the Kähler coupling strength as function
of p-adic prime from the condition that gravitational constant is renormalization group invariant
quantity but gave up this hypothesis later. It is wisest to keep an agnostic attitude to this issue.

4. I also made numerous brave attempts to deduce an explicit formula for Kähler coupling strength.
The general form of the formula is

1

αK
= klog(K2), K2 = p× 2× 3× 5..× 23 . (5.21)

The problem is the exact value of k cannot be known precisely and the guesses for is value depend
on what one means with number theoretical universality. Should Kähler action be a rational
number? Or is it Kähler function which is rational number (it is for the Dirac determinant
option in this particular case). Is Kähler coupling strength g2K/4π or g2K a rational number?
Some of the guesses were k = π/4 and k = 137/107. The facts that the value of Kähler action
for the line of a generalized diagram is not exactly CP2 action and the value of αK is not known
precisely makes these kind of attempts hopeless in absence of additional ideas.

Also other elementary particles -in particular exchanged bosons- should involve the exponent of
Kähler action for CP2 type vacuum extremal. Since the values of gauge couplings are gigantic as
compared to the expression of the gravitational constant the value of Kähler action must be rather
small form them. CP2 type vacuum extremals must be short in the sense that Lmin in the effective
metric is very short. Note however that the p-adic prime characterizing the particle according to
p-adic mass calculations would be large also now. One can of course ask whether this p-adic prime
characterizes the gravitational space-time sheets associated with the particle and not the particle
itself. The assignment of p-adic mass calculations with thermodynamics at gravitational space-time
sheets of the particle would be indeed natural. The value of αK would depend on p in logarithmic
manner for this option. The topological condensation of could also eat a lot of CP2 volume for them.

5.4.7 Eigenvalues of DC−S as vacuum expectations of Higgs field?

Infinite prime hypothesis implies the analog of p-adic length scale hypothesis but since pseudo-
momenta are in question, this need not correspond to the p-adic length scale hypothesis for the
actual masses justified by p-adic thermodynamics. Note also that Lmin does not correspond to CP2

length scale. This is actually not a problem since the effective metric is not M4 metric and one can
quite well consider the possibility that Lmin corresponds to CP2 length scale in the the induced metric.
The reason is that light-like 3- surface is in question the distance along the Kähler magnetic flux line
reduces essentially to a distance along the partonic 2-surface having size scale of order CP2 length for
the partonic 2-surfaces identified as wormhole throats. Therefore infinite prime can code for genuine
p-adic length scales associated with the light-like 3-surface and quantum states would correspond by
number theoretical state function reduction hypothesis to single ordinary prime.

Support for this identification comes also from the expression of gravitational constant deduced
from p-adic length scale hypothesis. The result is that gravitational constant is assumed to be pro-
portional to have the expression G = L2

pexp(−2SK(CP2)), where p characterizes graviton or the
space-time sheet mediating gravitational interaction and exponent gives Kähler action for CP2 type
vacuum extremal representing graviton. The argument allows to identify the p-adic prime p = M127

associated with electron (largest Mersenne prime which does not correspond to super-astronomical
length scale) as the p-adic prime characterizing also graviton. The exponent of Kähler action is pro-
portional to 1/p which conforms with the general expression for Kähler function. I have considered
several identifications of the numerical factor and one of them has been as product of primes 2 ≤ p ≤ 23
assuming that somehow the primes {2, ..., 23, p} characterize graviton. This guess is indeed consistent
with the prediction of the infinite-prime hypothesis.

The first guess inspired by the p-adic mass calculations is that the squares λ2i of the eigenvalues
of DC−S could correspond to the conformal weights of ground states. Another natural physical
interpretation of λ is as an analog of the Higgs vacuum expectation. The instability of the Higgs=0
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phase would corresponds to the fact that λ = 0 mode is not localized to any region in which ew
magnetic field or induced Kähler field is non-vanishing. By the previous argument one would have
order of magnitude estimate h0 =

√
2π/Lmin.

1. The vacuum expectation value of Higgs is only proportional to the scale of λ. Indeed, Higgs
and gauge bosons as elementary particles correspond to wormhole contacts carrying fermion
and anti-fermion at the two wormhole throats and must be distinguished from the space-time
correlate of its vacuum expectation as something proportional to λ. For free fermions the vacuum
expectation value of Higgs does not seem to be even possible since free fermions do not correspond
to wormhole contacts between two space-time sheets but possess only single wormhole throat
(p-adic mass calculations are consistent with this). If fermion suffers topological condensation as
indeed assumed to do in interaction region, a wormhole contact is generated and makes possible
the generation of Higgs vacuum expectation value.

2. Physical considerations suggest that the vacuum expectation of Higgs field corresponds to a
particular eigenvalue λi of modified Chern-Simons Dirac operator so that the eigenvalues λi
would define TGD counterparts for the minima of Higgs potential. For the minimal option
one has only a finite number of pseudo-mass eigenvalues inversely proportional

√
p so that the

identification as a Higgs vacuum expectation is consistent with the p-adic length scale hypothesis.
Since the vacuum expectation of Higgs corresponds to a condensate of wormhole contacts giving
rise to a coherent state, the vacuum expectation cannot be present for topologically condensed
CP2 type vacuum extremals representing fermions since only single wormhole throat is involved.
This raises a hen-egg question about whether Higgs contributes to the mass or whether Higgs is
only a correlate for massivation having description using more profound concepts. From TGD
point of view the most elegant option is that Higgs does not give rise to mass but Higgs vacuum
expectation value accompanies bosonic states and is naturally proportional to λi. With this
interpretation λi could give a contribution to both fermionic and bosonic masses.

3. If the coset construction for super-symplectic and super Kac-Moody algebra implying Equiva-
lence Principle is accepted, one encounters what looks like a problem. p-Adic mass calculations
require negative ground state conformal weight compensated by Super Virasoro generators in
order to obtain massless states. The tachyonicity of the ground states would mean a close anal-
ogy with both string models and Higgs mechanism. λ2i is very natural candidate for the ground
state conformal weights identified but would have wrong sign. Therefore it seems that λ2i can
define only a deviation of the ground state conformal weight from negative value and is positive.

4. In accordance with this λ2i would give constant contribution to the ground state conformal
weight. What contributes to the thermal mass squared is the deviation of the ground state
conformal weight from half-odd integer since the negative integer part of the total conformal
weight can be compensated by applying Virasoro generators to the ground state. The first
guess motivated by cyclotron energy analogy is that the lowest conformal weights are of form
hc = −n/2+λ2i where the negative contribution comes from Super Virasoro representation. The
negative integer part of the net conformal weight can be canceled using Super Virasoro generators
but ∆hc would give to mass squared a contribution analogous to Higgs contribution. The
mapping of the real ground state conformal weight to a p-adic number by canonical identification
involves some delicacies.

5. p-Adic mass calculations are consistent with the assumption that Higgs type contribution is
vanishing (that is small) for fermions and dominates for gauge bosons. This requires that the
deviation of λ2i with smallest magnitude from half-odd integer value in the case of fermions is
considerably smaller than in the case of gauge bosons in the scale defined by p-adic mass scale
1/L(k) in question. Somehow this difference could relate to the fact that bosons correspond to
pairs of wormhole throats.

5.4.8 Is there a connection between p-adic thermodynamics, hierarchy of Planck con-
stants, and infinite primes

The following observations suggest that there might be an intrinsic connection between p-adic ther-
modynamics, hierarchy of Planck constants, and infinite primes.
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1. p-Adic thermodynamics [14] is based on string mass formula in which mass squared is pro-
portional to conformal weight having values which are integers apart from the contribution of
the conformal weight of vacuum which can be non-integer valued. The thermal expectation
in p-adic thermodynamics is obtained by replacing the Boltzman weight exp(−E/T ) of ordi-
nary thermodynamics with p-adic conformal weight pn/Tp , where n is the value of conformal
weight and 1/Tp = m is integer values inverse p-adic temperature. Apart from the ground state
contribution and scale factor p-adic mass squared is essentially the expectation value

〈n〉 =

∑
n g(n)np

n
Tp∑

n g(n)p
n
Tp

. (5.22)

g(n) denotes the degeneracy of a state with given conformal weight and depends only on the
number of tensor factors in the representations of Virasoro or Super-Virasoro algebra. p-Adic
mass squared is mapped to its real counterpart by canonical identification

∑
xnp

n →
∑
xnp

−n.

The real counterpart of p-adic thermodynamics is obtained by the replacement p
− n

Tp and gives
under certain additional assumptions in an excellent accuracy the same results as the p-adic
thermodynamics.

2. An intriguing observation is that one could interpret p-adic and real thermodynamics for mass
squared also in terms of number theoretic thermodynamics for the number theoretic momentum
log(pn) = nlog(p). The expectation value for this differs from the expression for 〈n〉 only by the
factor log(p).

3. In the proposed characterization of the partonic orbits in terms of infinite primes the primes
appearing in infinite prime are identified as p-adic primes. For minimal option the p-adic prime
characterizes

√
p- or p- multiple of the minimum length Lmin of braid strand in the effective

metric defined by modified Chern-Simons gamma matrice. One can consider also (
√
p)n and

pn (p-adic fractality)- and even integer multiples of Lmin if they are below Lmax. If light-like
3-surface contains vacuum regions arbitrary large p:s are possible since for these one has Lmin →
∞. Number theoretic state function reduction implies that only single p can be realized -one
might say ”is active”- for a given quantum state. The powers pni appearing in the infinite prime
have interpretation as many particle states with total number theoretic momentum nilog(p)i.
For the finite part of infinite prime one has one fermion and ni−1 bosons and for the bosonic part
ni bosons. The arithmetic QFT associated with infinite primes - in particular the conservation
of the number theoretic momentum

∑
nilog(pi) - would naturally describe the correlations

between the geometries of light-like 3-surfaces representing the incoming lines of the vertex of
generalized Feynman diagram. As a matter fact, the momenta associated with different primes
are separately conserved so that one has infinite number of conservation laws.

4. One must assign two infinite primes to given partonic two surface so that one has for a given
prime p two integers n+ and n−. Also the hierarchy of Planck constants assigns to a given page
of the Big Book two integers and one has ~ = nanb~0. If one has na = n+ and nb = n− then
the reactions in which given initial number theoretic momenta n±,ilog(pi) is shared between
final states would have concrete interpretation in terms of the integers na, nb characterizing the
coverings of incoming and outgoing lines.

Note that one can also consider the possibility that the hierarchy of Planck constants emerges
from the basic quantum TGD. Basically due to the vacuum degeneracy of Kähler action the
canonical momentum densities correspond to several values of the time derivatives of the imbed-
ding space oordinates so that for a given partonic 2-surface there are several space-time sheets
with same conserved quantities defined by isometry currents and Kähler current. This forces the
introduction of N -fold covering of CD × CP2 in order to describe the situation. The splitting
of the partonic 2-surface into N pieces implies a charge fractionization during its travel to the
upper end of CD. One can also develop an argument suggesting that the coverings factorize to
coverings of CD and CP2 so that the number of the sheets of the covering is N = nanb [13] .

These observations make one wonder whether there could be a connection between p-adic thermo-
dynamics, hierarchy of Planck constants, and infinite primes.
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1. Suppose that one accepts the identification na = n+ and nb = n−. Could one perform a
further identification of these integers as non-negative conformal weights characterizing physical
states so that conservation of the number theoretic momentum for a given p-adic prime would
correspond to the conservation of conformal weight. In p-adic thermodynamics this conformal
weight is sum of conformal weights of 5 tensor factors of Super-Virasoro algebra. The number
must be indeed five and one could assign them to the factors of the symmetry group. One factor
for color symmetries and two factors of electro-weak SU(2)L × U(1) are certainly present. The
remaining two factors could correspond to transversal degrees of freedom assignable to string
like objects but one can imagine also other identifications [14] .

2. If this interpretation is correct, a given conformal weight n = na = n+ (say) would correspond
to all possible distributions of five conformal weights ni, i = 1, ..., 5 between the na sheets of
covering of CD satisfying

∑5
i=1 ni = na = n+. Single sheet of covering would carry only unit

conformal weight so that one would have the analog of fractionization also now and a possible
interpretation would be in terms of the instability of states with conformal weight n > 1.
Conformal thermodynamics would also mean thermodynamics in the space of states determined
by infinite primes and in the space of coverings.

3. The conformal weight assignable to the CD would naturally correspond to mass squared but
there is also the conformal weight assignable to CP2 and one can wonder what its interpretation
might be. Could it correspond to the expectation of pseudo mass squared characterizing the
generalized eigenstates of the modified Dirac operator? Note that one should allow in the
spectrum also the powers of hyper-complex primes up to some maximum power pnmax/2 ≤
Lmax/Lmin so that Dirac determinant would be non-vanishing and Kähler function finite. From
the point of conformal invariance this is indeed natural.

6 Quantum Hall effect, charge fractionization, and hierarchy
of Planck constants

In this section the most recent view about the relationship between dark matter hierarchy and quantum
Hall effect is discussed. This discussion leads to a more realistic view about FQHE allowing to
formulate precisely the conditions under which anyons emerge, describes the fractionization of electric
and magnetic charges in terms of the delicacies of the Kähler gauge potential of generalized imbedding
space, and relates the TGD based model to the original model of Laughlin. The discussion allows also
to sharpen the vision about the formulation of quantum TGD itself.

6.1 Quantum Hall effect

Recall first the basic facts. Quantum Hall effect (QHE) [8, 1, 6] is an essentially 2-dimensional
phenomenon and occurs at the end of current carrying region for the current flowing transversally
along the end of the wire in external magnetic field along the wire. For quantum Hall effect transversal
Hall conductance characterizing the 2-dimensional current flow is dimensionless and quantized and
given by

σxy = 2ναem ,

ν is so called filling factor telling the number of filled Landau levels in the magnetic field. In the case
of integer quantum Hall effect (IQHE) ν is integer valued. For fractional quantum Hall effect (FQHE)
ν is rational number. Laughlin introduced his many-electron wave wave function predicting fractional
quantum Hall effect for filling fractions ν = 1/m [6] . The further attempts to understand FQHE led
to the notion of anyon by Wilzeck [8] . Anyon has been compared to a vortex like excitation of a
dense 2-D electron plasma formed by the current carriers. ν is inversely proportional to the magnetic
flux and the fractional filling factor can be also understood in terms of fractional magnetic flux.

The starting point of the quantum field theoretical models is the effective 2-dimensionality of the
system implying that the projective representations for the permutation group of n objects are repre-
sentations of braid group allowing fractional statistics. This is due to the non-trivial first homotopy
group of 2-dimensional manifold containing punctures. Quantum field theoretical models allow to
assign to the anyon like states also magnetic charge, fractional spin, and fractional electric charge.



6.2 A simple model for fractional quantum Hall effect 52

Topological quantum computation [28, 9] , [9] , [1] is one of the most fascinating applications of
FQHE. It relies on the notion of braids with strands representing the orbits of of anyons. The unitary
time evolution operator coding for topological computation is a representation of the element of the
element of braid group represented by the time evolution of the braid. It is essential that the group
involved is non-Abelian so that the system remembers the order of elementary braiding operations
(exchange of neighboring strands). There is experimental evidence that ν = 5/2 anyons possessing
fractional charge Q = e/4 are non-Abelian [9, 7] .

During last year I have been developing a model for DNA as topological quantum computer [9] .
Therefore it is of considerable interest to find whether TGD could provide a first principle description
of anyons and related phenomena. The introduction of a hierarchy of Planck constants realized in
terms of generalized imbedding space with a book like structure is an excellent candidate in this
respect [10] . As a rule the encounters between real world and quantum TGD have led to a more
precise quantitative articulation of basic notions of quantum TGD and the same might happen also
now.

6.2 A simple model for fractional quantum Hall effect

The generalization of the imbedding space suggests that it could possible to understand fractional
quantum Hall effect [1] at the level of basic quantum TGD as integer QHE for non-standard value of
Planck constant.

The formula for the quantized Hall conductance is given by

σ = ν × e2

h
,

ν =
n

m
. (6.1)

Series of fractions in ν = 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, 7/15..., 2/3, 3/5, 4/7, 5/9, 6/11, 7/13...,
5/3, 8/5, 11/7, 14/9...4/3, 7/5, 10/7, 13/9..., 1/5, 2/9, 3/13..., 2/7, 3/11..., 1/7.... with odd denominator
have been observed as are also ν = 1/2 and ν = 5/2 states with even denominator [1] .

The model of Laughlin [6] cannot explain all aspects of FQHE. The best existing model proposed
originally by Jain is based on composite fermions resulting as bound states of electron and even number
of magnetic flux quanta [5] . Electrons remain integer charged but due to the effective magnetic field
electrons appear to have fractional charges. Composite fermion picture predicts all the observed
fractions and also their relative intensities and the order in which they appear as the quality of sample
improves.

Before proposing the TGD based model of FQHE as IQHE with non-standard value of Planck
constant, it is good to represent a simple explanation of IQHE effect. Choose the coordinates of the
current currying slab so that x varies in the direction of Hall current and y in the direction of the
main current. For IQHE the value of Hall conductivity is given by σ = jy/Ex = neev/vB = nee/B =
Ne2/hBS = Ne2/mh, were m characterizes the value of magnetized flux and N is the total number
of electrons in the current. In the Landau gauge Ay = xB one can assume that energy eigenstates are
momentum eigenstates in the direction of current and harmonic oscillator Gaussians in x-direction in
which Hall current runs. This gives

Ψ ∝ exp(iky)Hn(x+ kl2)exp(− (x+kl2)2

2l2 ) , l2 = ~
eB . (6.2)

Only the states for which the oscillator Gaussian differs considerably from zero inside slab are impor-
tant so that the momentum eigenvalues are in good approximation in the range 0 ≤ k ≤ kmax = Lx/l

2.

Using N = (Ly/2π)
∫ kmax

0
dk one obtains that the total number of momentum eigenstates associated

with the given value of n is N = eBdLxLy/h = n. If ν Landau states are filled, the value of σ is
σ = νe2/h.

The interpretation of FQHE as IQHE with non standard value of Planck constant could explain
also the fractionization of charge, spin, and electron number. There are 2 × 2 = 4 combinations of
covering and factor spaces of CP2 and three of them can lead to the increase or at least fractionization
of the Planck constant required by FQHE.
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1. The prediction for the filling fraction in FQHE would be

ν = ν0
~0

~ , ν0 = 1, 2, ... . (6.3)

ν0 denotes the number of filled Landau levels.

2. Let us denote the options as C-C, C-F, F-C, F-F, where the first (second) letter tells whether
a singular covering or factor space of CD (CP2) is in question. The observed filling fractions
are consistent with options C-C, C-F, and F-C for which CD or CP2 or both correspond to a
singular covering space. The values of ν in various cases are given by the following table.

Option C − C C − F F − C

ν ν0
nanb

ν0nb

na

ν0na

nb

(6.4)

There is a complete symmetry under the exchange of CD and CP2 as far as values of ν are
considered.

3. All three options are consistent with observations. Charge fractionization allows only the options
C −C and F −C. If one believes the general arguments stating that also spin is fractionized in
FQHE then only the option C −C, for which charge and spin units are equal to 1/nb and 1/na
respectively, remains. For C − C option one must allow ν0 > 1.

4. Both ν = 1/2 and ν = 5/2 state has been observed [1, 3] . The fractionized charge is believed
to be e/4 in the latter case [9, 7] . This requires nb = 4 allowing only (C,C) and (F,C) options.
ni ≥ 3 holds true if coverings and factor spaces are correlates for Jones inclusions and this gives
additional constraint. The minimal values of (ν0, na, nb) are (2, 1, 4) for ν = 1/2 and (10, 1, 4)
for ν = 5/2) for both C−C and F −C option. Filling fraction 1/2 corresponds in the composite
fermion model and also experimentally to the limit of zero magnetic field [5] . nb = 2 would be
inconsistent with the observed fractionization of electric charge for ν = 5/2 and with the vision
inspired by Jones inclusions implying ni ≥ 3.

5. A possible problematic aspect of the TGD based model is the experimental absence of even values
of m except m = 2 (Laughlin’s model predicts only odd values of m). A possible explanation is
that by some symmetry condition possibly related to fermionic statistics (as in Laughlin model)
both na and nb must be odd. This would require that m = 2 case differs in some manner from
the remaining cases.

6. Large values of m in ν = n/m emerge as B increases. This can be understood from flux
quantization. One has e

∫
BdS = n~. By using actual fractional charge eF = e/nb in the flux

factor would give for (C,C) option eF
∫
BdS = nna~0. The interpretation is that each of the nb

sheets contributes one unit to the flux for e. Note that the value of magnetic field at given sheet
is not affected so that the build-up of multiple covering seems to keep magnetic field strength
below critical value.

7. The understanding of the thermal stability is not trivial. The original FQHE was observed in
80 mK temperature corresponding roughly to a thermal energy of T ∼ 10−5 eV. For graphene
the effect is observed at room temperature. Cyclotron energy for electron is (from fe = 6 ×
105 Hz at B = .2 Gauss) of order thermal energy at room temperature in a magnetic field
varying in the range 1-10 Tesla. This raises the question why the original FQHE requires such
a low temperature. A possible explanation is that since FQHE involves several values of Planck
constant, it is quantum critical phenomenon and is characterized by a critical temperature. The
differences of single particle energies associated with the phase with ordinary Planck constant
and phases with different Planck constant would characterize the transition temperature.
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6.3 Description of QHE in terms of hierarchy of Planck constants

The proportionality σxy ∝ αem ∝ 1/~ suggests an explanation of FQHE [8, 1, 6] in terms of the
hierarchy of Planck constants. Perhaps filling factors and magnetic fluxes are actually integer valued
but the value of Planck constant defining the unit of magnetic flux is changed from its standard value
- to its rational multiple in the most general case. The killer test for the hypothesis is to find whether
higher order perturbative QED corrections in powers of αem are reduced from those predicted by
QED in QHE phase. The proposed general principle governing the transition to large ~ phase is
states that Nature loves lazy theoreticians: if perturbation theory fails to converge, a phase transition
increasing Planck constant occurs and guarantees the convergence. Geometrically the phase transition
corresponds to the leakage of 3-surface from a given 8-D page to another one in the Big Book having
singular coverings and factor spaces of CD × CP2 as pages. Only cove

The hierarchy of Planck constants strongly suggests the emergence of quantum groups and frac-
tionalization of quantum numbers [3] . The challenge is to figure out the details and see whether this
framework is consistent with what is known about FQHE. At least the following questions pop up
immediately in the mind of physicist.

1. What the effective 2-dimensionality of the system exhibiting QHE corresponds in TGD frame-
work?

2. What happens in the phase transition leading to the phase exhibiting QHE effect?

3. What are the counterparts anyons? How the fractional electric and magnetic charges emerge at
classical and quantum level in the two descriptions?

The TGD inspired description of charge fractionization is based on the weak form of electric-
magnetic duality and the reduction of the hierarchy of Planck constants to the basic quantum TGD.
Also now one can raise a series of questions.

1. Electric magnetic duality provides a natural description of charge quantization and fraction-
ization. The explanation for the hierarchy of Planck constants predicts that all charges- even
Noether charges- are fractionized in the same manner and come as multiples of 1/na and 1/nb.
Does this prediction make sense physically?

2. Does the singular gauge part ∆A = dΦ of Kähler gauge potential whose exponent is na- (nb-)
valued function of appropriate angle coordinates of M4 and CP2 provide a description of charge
fractionization for a given sheet of the covering associated with a given value of Planck constant?
Does this description reduce to the measurement interaction term which is indeed effective gauge
part added to the Kähler gauge potential of either space-time surface or of wormhole throats or
ends of space-time surface.

3. The Chern-Simons action associated with the induced Kähler gauge potential is Abelian: is this
consistent with the non-Abelian character of the braiding matrix?

In the following I try to summarize the basic ideas giving hopes about a coherent description of
quantum Hall effect and charge and spin fractionization in TGD framework.

6.3.1 Hierarchy of Planck constants and book like structure of imbedding space

TGD leads to a description for the hierarchy of Planck constants in terms of the generalization of
CD × CP2 to book like structure. To be more precise, the generalization takes place for any region
CD×CP2 ⊂ H, where CD corresponds to a causal diamond defined as an intersection of future and
past directed light-cones of M4. CDs play key role in the formulation of quantum TGD in zero energy
ontology in which the light-like boundaries of CD connected by light-like 3-surfaces can be said to be
carriers of positive and negative energy parts of zero energy states. They are also crucial for TGD
inspired theory of consciousness, in particular for understanding the relationship between experienced
and geometric time [2] .

1. Should one postulate the hierarchy of Planck constants separately?
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In the most general case both CD and CP2 are replaced with a book like structure consisting of
singular coverings and factor spaces associated with them. A simple geometric argument identifying
the square of Planck constant as scaling factor of the covariant metric tensor of M4 (or actually CD)
leads in the most general case to the identification of Planck constant as the ratio ~/~0 = xaxb, where
x = n holds true for a singular covering of X and x = 1/n holds true for a singular factor space.
x is the order of the maximal cyclic subgroup of the covering/divisor group G ⊂ SO(3). The order
of G can be thus larger than n. As a consequence, the spectrum of Planck constants is in principle
rational-valued. ~0 is unique since it corresponds to the unit of rational numbers.

2. Does the hierarchy follow from the basic quantum TGD?

The proposed option is too general if one believes on the argument reducing the hierarchy of Planck
constants to the basic quantum TGD. Recall that the argument goes as follows.

1. By the extreme non-linearity of the Kähler action the correspondence between the time deriva-
tives of the imbedding space coordinates and canonical momentum densities is many-to-one.
This leads naturally to the introduction of covering spaces of CD × CP2, which are singular in
the sense that the sheets of the covering co-incide at the ends of CD and at wormhole throats.
One can say that quantum criticality means also the instability of the 3-surfaces defined by
the throats and the ends against the decay to several space-time sheets and consequent charge
fractionization. The interpretation is as an instability caused by too strong density of mass and
making perturbative description possible since the matter density at various branches is reduced.
The nearer the vacuum extremal the system is, the lower the mass density needed to induce the
instability is and the larger is the number of sheets resulting in this manner is.

2. The singular regions of the covering are regions in which the integer characterizing the multiple-
valuedness of the time derivatives of the imbedding space coordinates as functions of canonical
momentum densities is reduced from the maximal value. The reduction to single sheeted cov-
ering could (but need not!) take place over any Lagrangian manifold of CP2 rather than only
over a homologically trivial geodesic sphere and would thus directly correspond to the vacuum
degeneracy of Kähler action. One can also imagine the reduction of the integer characterizing
multivaluedness to a smaller value different from one in non-vacuum regions.

3. In M4 degrees of freedom branching to a single sheeted covering can occur over any partonic
2-surface which does not enclose the tip of CD. In this case the Kähler gauge potential would
contain a singular gauge term having an archetypal form ∆A = dφ/na at say upper hemisphere
so that the magnetic flux would receive a non-vanishing contribution from North pole and give
rise to a fractionized Kähler magnetic and therefore also to Kähler electric charge. This term is
pure gauge for all partonic 2-surface not containing the tip of CD. Thus one species of anyons
would be associated with this kind of partonic 2-surfaces. Second species would correspond to
singular gauge transforms about which example would be ∆A = dΨ/nb, where Ψ is the angle
coordinate associated with a homologically non-trivial geodesic sphere. The modification of the
Kähler gauge potential could be interpreted in terms of a measurement interaction term added
to the Dirac action and their sum at the ends would give rise to the non-fractional contribution
to the measurement interaction term. This kind of term would be also associated with Noether
charges such as 4-momentum. Depending on whether one consdiders the end of space-time
sheet or at wormhole throat, the measurement interaction term would be given as 1/nb or
1/na multiple of the measurement interaction term in absence of branching and would be more
complex than the simple archetypal forms. The general form of the measurement interaction
term is discussed in [11] .

4. Classically the fractional Noether charges would emerge from Chern-Simons representation of
Kähler function with the Lagrangian multiplier term realizing the weak form of electric-magnetic
duality as a constraint. The latter term would be responsible for the non-vanishing values of
four-momentum and angular momentum. The isometry charges in CP2 degrees of freedom would
receive a contribution also from the Chern-Simons term.

5. The situation can be described mathematically either by using effectively only single sheet but
an integer multiple of Planck constant or many-sheeted covering and ordinary value of Planck
constant. In [10] the argument that this indeed leads to hierarchy of Planck constants including
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charge fractionization is developed in detail. The restriction to singular coverings is consistent
with the experimental constraints and means that only integer valued Planck constants are
possible. A given value of Planck constant corresponds only to a finite number of the pages of
the Big Book and that the evolution by quantum jumps is analogous to a diffusion at half-line
and tends to increase the value of Planck constant.

6. The following argument would suggest a direct connection between vacuum degeneracy, cover-
ings, and the hierarchy of infinite primes. For vacuum extremal the number of sheets is formally
infinite but the sheets are in a well-define sense ”passive”. On the other hand, by the argu-
ments of [11] the numbers na and nb for sheets correspond to powers pna and pnb for a prime
appearing in infinite prime characterizing the partonic 3-surface and having interpretation as
particle numbers. The unit infinite primes X ± 1 correspond to the two basic infinite primes
having interpretation as fermionic vacua are interpreted as Dirac sea: the numbers of bosons
and fermions are vanishing for them. This suggests that the fermions of Dirac sea correspond to
the ”passive” sheets. This raises the question whether one could characterize the infinite degen-
eracy associated with vacuum extremals by these two infinite primes and non-vacuum extremals
by infinite primes for which boson and fermion numbers are non-vanishing. The two infinite
primes would correspond to CD and CP2 degrees of freedom. They could also correspond to
the space-time sheets of Euclidian and Minkowskian signature of the induced metric meeting at
the wormhole throat at which the induced 4-metric is degenerate. Bose-Einstein condensate of
ni bosons (i = a, b) or fermion plus ni − 1 bosons would correspond to ni sheets of covering.

Arithmetic quantum field theory allows infinite number of conservation laws corresponding to
the conservation of the number theoretic momentum p =

∑
i nilog(pi) which forces separate

conservation of each number theoreticl momentum nilog(pi) since the logarithms of primes are
linearly independent in the realm of rationals. This conservation law could correlate the partonic
lines arriving in the interaction vertices and state that the total number of sheets of the covering
is conserved although it can be shared by several partonic space-time sheets in the final state.

The reduction of the hierarchy of Planck constants to basic quantum TGD is of course only an
interesting idea and the best strategy to proceed is to develop objections against it.

1. The branching of partonic 2-surfaces at the ends of space-time sheets and wormhole throats
is analogous to the branching of the line of Feynman graph. The 3-D lines of generalized
Feynman graphs indeed branch at the vertices and this leads to the basic objection against the
proposed interpretation of the fractionization. Could one consider the possibility that branching
corresponds to what happens in the vertices of Feynman diagrams? This cannot not seem to
be the case. The point is that canonical momentum densities are identical so that also the
conserved classical Noether and Kähler charges associated with various branches should be the
same.

2. The value of gravitational Planck constant is enormous and one would mean enormously many-
fold branching of partonic 2-surfaces of astrophysical size. Does this really make sense? Is this
simply due the fact that the basic parameter GM1M2 characterizing the strength of gravita-
tional interaction is much larger than unity so that perturbation theory in terms of it fails to
converge and the splitting to ~gr/~0 sheets guarantees that the perturbation theory at each
sheet converges.

3. One can also ask whether the fractional charges can be observed directly since it seems that
only the partonic 2-surfaces at the ends of the space-time sheet are observable.

4. Perhaps the most serious objection relates to the basic intuition about scaling of quantum lengths
by ~ since this scaling is fundamental for all predictions in the model of quantum biology. It is
not obvious why the basic quantum lengths in M4 degrees of freedom - in particular the size
scale of CD - should be scaled up by nanb. Could this scaling up result dynamically or can
one find some simple kinematic argument forcing the size scale spectrum of CDs? Kinematic
argument is more plausible and indeed exists. Suppose that one can speak about plane waves
exp(inEt/~0), where t is proper time coordinate associated with the line connecting the tips of
CD. Periodic boundary conditions at t = T imply E = n~0/2πT where T is the proper time



6.3 Description of QHE in terms of hierarchy of Planck constants 57

distance between the tips of CD. Suppose that ~0 is replaced with its nanb multiple in the plane
wave. As a consequence, the plane waves for sheets and for same value of E do not anymore
satisfy periodic boundary conditions at t = T anymore. These conditions are however satisfied
for t = nanbT .

3. Connection with quantum measurement theory

The hierarchy of Planck constants relates closely to quantum measurement theory. The selection
of quantization axis implied by the gauge terms ∆A proportional to appropriate angle coordinates
has a direct correlate at the level of imbedding space geometry. This means breaking of isometries
of H for a given CD with preferred choice time axis (rest frame) and quantization axis of spin. For
CP2 the choice of the quantization axes of color hyper charge and isospin imply symmetry breaking
SU(3) → U(2) → U(1) × U(1). The ”world of classical worlds” (WCW) is union over all Poincare
and color translates of given CD × CP2 so that these symmetries are not lost at the level of WCW
although the loss can happen at the level of quantum states.

4. How the different sectors of the generalized imbedding space are glued together?

Intuitively the scaling of Planck constant scales up quantum lengths, in particular the size of CD.
This looks trivial but one one must describe precisely what is involved to check internal consistency
and also to understand how to model the quantum phase transitions changing Planck constant. The
first manner to understand the situation is to consider CD with a fixed range of M4 coordinates.
The scaling up of the covariant Kähler metric of CD by r2 = (~/~0)2 scales up the size of CD by r.
Another manner to see the situation is by scaling up the linear M4 coordinates by r for the larger
CD so that M4 metric becomes same for both CDs. The smaller CD is glued to the larger one
isometrically together along (M2 ∩ CD) ⊂ CD anywhere in the interior of the larger CD. What
happens is non-trivial for the following reasons.

1. The singular coverings (and possibly also factor spaces) are different and M4 scaling is not a
symmetry of the Kähler action so that the preferred extrema in the two cases do not relate by
a simple scaling. The interpretation is in terms of the coding of the radiative corrections in
powers of ~ to the shape of the preferred extremals. This becomes clear from the representation
of Kähler action in which M4 coordinates have the same range for two CDs but M4 metric
differs by r2 factor.

2. In common M4 coordinates the M4 gauge part Aa of CP2 Kähler potential for the larger CD
differs by a factor 1/r from that for the smaller CD. This guarantees the invariance of four-
momentum assignable to Chern-Simons action in the phase transition changing ~. The resulting
discontinuity of Aa at M2 is analogous to a static voltage difference between the two CDs and
M2 could be seen as an analog of Josephson junction. In absence of dissipation (expected in
quantum criticality) the Kähler voltage could generate oscillatory fermion, em, and Z0 Josephson
currents between the two CDs. Fermion current would flow in opposite directions for fermions
and antifermions and also for quarks and leptons since Kähler gauge potential couples to quarks
and leptons with opposite signs. In presence of dissipation fermionic currents would be ohmic
and could force quarks and leptons and matter and antimatter to different pages of the Big
Book. Quarks inside hadrons could have nonstandard value of Planck constant.

6.3.2 Measurement interaction term as gauge transform of Kähler gauge potential and
description of charge fractionization in terms of singular gauge transforms

The introduction of a gauge part to the Kähler gauge potential of the imbedding space looks somewhat
tricky idea. Can one really assing non-trivial physics to a mere gauge transformation? This is certainly
the case if the gauge transformation is singular and induces a fractional Kähler magnetic charge and by
electric-magnetic duality also a fractional Kähler electric charge. The introduction of a measurement
interaction term as a formal gauge transform of the Kähler gauge potential only in Dirac Kähler action
or Kähler Chern-Simons Dirac action but not both provides a second manner to achieve a non-trivial
physical effect. It is good to summarize the background in more detail before continuing.

The idea about description of quantum Hall effect in terms of a gauge part of Kähler gauge potential
emerged from the idea that Chern-Simons action for Kähler gauge potential (equivalently the for
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induced classical color gauge field proportional to the Kähler form) could define TGD as an almost
topological QFT. It turned out however that Kähler action and the corresponding modified Dirac
action containing also Chern-Simons boundary term with the constraint term coming from electric-
magnetic duality are the fundamental actions. The general ansatz for the classical field equations based
on the proportionality of Kähler current to instanton current reduces TGD to almost topological QFT
with action reducing to Chern-Simons term with a Lagrangian multiplier term guaranteing the weak
form of electric-magnetic duality. This term is of extreme importance since the extremals of mere
Chern-Simons action would give rise to identically vanishing Kähler function and Kähler metric and
WCW metric would not have any M4 part even if one gives up the extremality condition.

The measurement interaction term which corresponds to a gauge part of the Kähler gauge potential
and can be added either to the interior part of Kähler Dirac action (and Kähler action) or to the Chern-
Simons Dirac action. The measurement interaction term therefore modifies the physics and is visible
also in the classical dynamics by the proportionality of Kähler current to instanton current. Note that
the modification of Chern-Simons term assigned to the ends of the space-time sheet and to wormhole
throats affects the space-time sheet since the Kähler action changes.

For Noether charges the Lagrangian multiplier term guaranteing the weak form of electric magnetic
duality in Chern-Simons action gives rise to non-vanishing Noether charges also in M4 degrees of
freedom. The proposed view about the basic process behind the charge fractionization implies that
all charges are fractionized in basically the same manner although it seems that M4 charges are nb
multiples and CP2 charges na multiples of 1/nanb . Also in this case the additional of a formal gauge
term would realize the fractionization at the level of couplings and total anomalous coupling would
correspond to a non-singular gauge transformation of A.

One can imagine several kinds of pseudo gauge transformations appearing in the measurement
interaction term.

1. The first kind of gauge transformation corresponds to a gauge change for Aµ with no reference
to the fact that it is a projection of CP2 Kähler gauge potential. It is not clear whether
measurement interaction could be induced also by this kind of gauge transform. In any case, the
proposed form of measurement interaction coan be interpreted in terms of a gauge transform at
the level of imbedding space [11]

2. Second kind of gauge transformations are induced by the symplectic transformations of δM4
± ×

CP2 and in general affect the induced metric and thus the gravitational properties of the system
in the case of non-vacuum extremals. Furthermore, there exist no symplectic transformation
allowing to eliminate the ”gauge part” of A in M2 ⊂ M4 or gauge part in CD\M2 or CP2\S2

if it corresponds to a scalar function which is discontinuous. ∆Aφ = kφ, k 6= n, where φ is an
angle variable in M4 or CP2 would represent a canonical example of this.

3. Third kind of gauge transform would characterize the pages of the Big Book and give rise to
fractional Kähler magnetic charge and by definition would not be reducible to a gauge transform
induced by a symplectic transformation. This raises the idea that the gauge parts of A in CD
and CP2 could characterize the pages of the Big Book andthus the charge fractionization. In
particular in the case of coverings one might argue that ∆A must be pure gauge in the covering
implying k = m/na or k = m/nb.

The simplest hypothesis is that the ordinary measurement interaction term for trivial covering
is simply scaled down by 1/nanb in the interior of the space-time sheet and by 1/nb or 1/nb at its
ends and at throats where nb or na sheets co-incide. With this interpretation ∆A would provide
a description of physics at a particular sheet of covering and there would be no need to introduce
anything new at the level of imbedding space geometry since the coverings of the imbedding space
would provide only a formal tool to describe the situation caused by the extreme non-linearity of the
Kähler action.

6.4 In what kind of situations do anyons emerge?

Charge fractionization is a fundamental piece of quantum TGD and should be extremely general
phenomenon and the basic characteristic of dark matter known to contribute 95 per cent to the
matter of Universe.
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1. In TGD framework scaling ~ = m~0 implies the scaling of the unit of angular momentum for
m-fold covering of CD only if the many particle state is Zm singlet. Zm singletness for many
particle states allows of course non-singletness for single particle states. For factor spaces of CD
-if present- the scaling ~→ ~/m is compensated by the scaling l → ml for Lz = l~ guaranteing
invariance under rotations by multiples of 2π/m. Again one can pose the invariance condition on
many-particle states but not to individual particles so that genuine physical effect is in question.

2. There is analogy with Z3-singletness holding true for many quark states and one cannot com-
pletely exclude the possibility that quarks are actually fractionally charged leptons with m = 3-
covering of CP2 reducing the value of Planck constant [30, 10] so that quarks would be anyonic
dark matter with smaller Planck constant and the impossibility to observe quarks directly would
reduce to the impossibility for them to exist at our space-time sheet. Confinement would in this
picture relate to the fractionization requiring that the 2-surface associated with quark must
surround the tip of CD. Whether this option really works remains an open question. In any
case, TGD anyons are quite generally confined around the tip of CD.

3. The model of DNA as topological quantum computer [9] assumes that DNA nucleotides are
connected by magnetic flux tubes to the lipids of the cell membrane. In this case, p-adically
scaled down u and d quarks and their antiquarks are assumed to be associated with the ends
of the flux tubes and provide a representation of DNA nucleotides. Quantum Hall states would
be associated with partonic 2-surfaces assignable to the lipid layers of the cell and nuclear
membranes and also endoplasmic reticulum filling the cell interior and making it macroscopic
quantum system and explaining also its stability. The entire system formed in this manner
would be single extremely complex anyonic surface and the coherent behavior of living system
would result from the fusion of anyonic 2-surfaces associated with cells to larger anyonic surfaces
giving rise to organs and organisms and maybe even larger macroscopically quantum coherent
connected systems. An interesting possibility is that the ends of the flux tubes assumed to
connect DNA nucleotides to lipids of various membranes carry instead of u, d and their anti-
quarks fractionally charged electrons and neutrinos and their anti-particles having nb = 3 and
large value of na.

In astrophysical scales gigantic values of Planck constants would be realized meaning coverings
with huge number of sheets. This conforms with the fact that for vacuum extremals the coverings
would be formally infinitely many sheeted.

1. Quite generally, one would expect that dark matter and its anyonic forms emerge in situations
where the density of plasma like state of matter is very high so that N -fold cover of CD reduces
the density of matter by 1/N factor at given sheet of covering and thus also the repulsive
Coulomb energy. Plasma state resulting in QHE is one example of this. The interiors of neutron
stars and black hole like structures are extreme examples of this, and I have proposed that black
holes are dark matter with a gigantic value of gravitational Planck constant implying that black
hole entropy -which is proportional to 1/~ - is of the same order of magnitude and even smaller
as the entropy assignable to the spin of elementary particle. If the covering results from the
basic quantum TGD this entropy would characterize single sheet of the covering only. The fact
that there are nanb sheets would mean that the total entropy has just the standard value! Could
this mean that entropy is the critical contrple parameter which splits the 3-surface into parallel
sheets?

2. The confinement of matter inside black hole could have interpretation in terms of macroscopic
anyonic 2-surfaces containing the topologically condensed elementary particles. This conforms
with the TGD inspired model for the final state of star [27] inspiring the conjecture that even
ordinary stars could possess onion like structure with thin layers with radii given by p-adic
length scale hypothesis.

3. The idea about hierarchy of Planck constants was inspired by the finding that planetary orbits
can be regarded as Bohr orbits [10] , [1] : the explanation was that visible matter has condensed
around dark matter at spherical cells or tubular structures around planetary orbits. This led
to the proposal that planetary system has formed through this kind of condensation process
around spherical shells or flux tubes surrounding planetary orbits and containing dark matter.
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The question why dark matter would concentrate around flux tubes surrounding planetary orbits
was not answered. The answer could be that dark matter is anyonic matter at partonic 2-surfaces
whose light-like orbits define the basic geometric objects of quantum TGD. These partonic 2-
surfaces could contain a central spherical anyonic 2-surface connected by radial flux tubes to
flux tubes surrounding the orbits of planets and other massive objects of solar system to form
connected anyonic surfaces analogous to elementary particles.

4. If factor spaces appear in M4 degrees of freedom, they give rise to Zn ⊂ Ga symmetries. In
astrophysical systems the large value of ~ necessarily requires a large value of na for CD coverings
as the considerations of [18] - in particular the model for graviton dark graviton emission and
detection - forces to conclude. The same conclusion follows also from the absence of evidence
for exact orbifold type symmetries in M4 degrees of freedom for dark matter in astrophysical
scales.

Coverings alone are enough to produce rational number valued spectrum for ~ consistent with the
observed spectrum of ν, and one must keep in mind that the applications of theory do not allow to
decide whether singular factor spaces are really needed and that the reduction of the hierarchy of
Planck constants to basic quantum TGD for coverings disfavors the factor spaces. The possibility to
interpret evolution in terms of the increase of Planck constant also favors coverings-only option.

6.5 What happens in FQHE?

This picture suggest following description for what would happen in QHE in TGD Universe accepting
the C-C option implied by the basic quantum TGD.

1. Light-like 3-surfaces - locally random light-like orbits of partonic 2-surfaces- are identifiable as
very tiny wormhole throats in the case of elementary particles. This is the case for electrons in
particular. Partonic surfaces can be also large, even macroscopic, and the size scales up in the
scaling of Planck constant. To avoid confusion, it must be emphasized that light-likeness is with
respect to the induced metric and does not imply expansion with light velocity in Minkowski
space since the contribution to the induced metric implying light-likeness typically comes from
CP2 degrees of freedom. Strong classical gravitational fields are present near the wormhole
throats. Second important point is that regions of space-time surface with Euclidian signature
of the induced metric are implied: CP2 type extremals representing elementary particles and
having light-like random curve as CP2 projection represents basic example of this. Hence rather
exotic gravitational physics is predicted to manifest itself in everyday length scales.

2. The simplest identification for what happens in the phase transition to quantum Hall phase
is that the end of wire carrying the Hall current corresponds to a partonic 2-surface having a
macroscopic size. The electrons in the current correspond to similar 2-surfaces but with size of
elementary particle for the ordinary value of Planck constant. As the electrons meet the end of
the wire, the tiny wormhole throats of electrons suffer topological condensation to the boundary.
One can say that one very large elementary particle having very high electron number is formed.

3. Fractionization occurs for charges in CP2 degrees of freedom with unit 1/na. If the end of the
wire forms part of a spherical surface surrounding the tip of the CD involved fractionization
occurs also in CD degrees of freedom so that electrons can become carriers of anomalous electric
and magnetic charges. If not then the total spin is na multiple of fundamental spin unit.

One of the basic question was whether it is possible to describe non-Abelian FQHE in TGD
framework.

1. Chern- Simons action for Kähler gauge potential is Abelian. This raises the question whether the
representations of the number theoretical braid group are also Abelian. Since there is evidence
for non-Abelian anyons, one might argue that this means a failure of the proposed approach.
There are however may reasons to expect that braid group representations are non-Abelian.
The action is for induced Kähler form rather than primary Maxwell field, U(1) gauge symme-
try is transformed to a dynamical symmetry (symplectic transformations of CP2 representing
isometries of WCW and definitely non-Abelian), and the particles of the theory belong to the
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representations of electro-weak and color gauge groups naturally defining the representations of
braid group.

2. The finite subgroups of SU(2) defining covering and factor groups are in the general case non-
commutative subgroups of SU(2) since the hierarchies of coverings and factors spaces are as-
sumed to correspond to the two hierarchy of Jones inclusions to which one can assign ADE Lie
algebras by McKay correspondence. The ADE Lie algebras define effective gauge symmetries
having interpretation in terms of finite measurement resolution described in terms of Jones in-
clusion so that extremely rich structures are expected. The question arises whether the covering
option implied by the basic quantum TGD allows coverings defined by finite groups. There
seems to be no obvious reason why this could not be the case.

An interesting challenge is to relate concrete models of FQHE to the proposed description. Here
only some comments about Laughlin’s wave function are made.

1. In the description provided by Lauglin wave function FQHE results from a minimization of
Coulomb energy. In TGD framework the tunneling to the page of H with m sheets of covering
has the same effect since the density of electrons is reduced by 1/m factor.

2. The formula ν ∝ e2Ne/e
∫
BdS with scaling up of magnetic flux by ~/~0 = m implies effective

fractional filling factor. The scaling up of magnetic flux results from the presence of m sheets
carrying magnetic field with same strength. Since the Ne electrons are shared between m sheets,
the filling factor is fractional when one restricts the consideration to single sheet as one indeed
does.

3. Laughlin wave function makes sense for ν = 1/m, m odd, and is m:th power of the many electron
wave function for IQHE and expressible as the product

∏
i<j(zi − zj)

m, where z represents
complex coordinate for the anyonic plane. The relative orbital angular momenta of electrons
satisfy Lz ≥ m if the value of Planck constant is standard. If Laughlin wave function makes
sense also in TGD framework, then m:th power implies that many-electron wave function is
singlet with respect to Zm acting in covering and the value of relative angular momentum
indeed satisfies Lz ≥ m~0 just as in Laughlin’s theory.
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