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We investigated quantum Hall states in an inverted HgTe quantum well (QW) close to the critical
thickness using transconductance fluctuation (TF) measurements. In the conduction band, several
integer quantum Hall states were observed, corresponding to filling factor ν = 1, 2, 3, 4. For magnetic
fields above 2 T, quantum Hall states ν = 0 were observed in the normal gap. These observations
agreed well with the previous studies of quantum Hall states on GaAs QWs and graphene. Interest-
ingly, TFs corresponding to anomalous positive filling factor ν were clearly observed in the valence
band. We attribute the emergence of those TFs to the localization and charging of the heavy holes
located in the side maxima of the valence band.

I. INTRODUCTION

It is well known that HgTe quantum wells (QW) can
act as either a band insulator (BI) or a non-trivial
topological insulator (TI) [1], depending on quantum
well thickness [2], temperature [3], and hydrostatic pres-
sure [4]. For gapped HgTe QWs, the spectrum of the
conduction band (CB) is parabolic at small momentum
and becomes linear at large k. On the contrary, the spec-
trum of the valence band (VB) is non-monotonic with
side maxima arising at k > 0. So far, only a few publica-
tions have investigated the VB of these QWs [5–10]. Al-
though they provide a good qualitative description of the
VB, they fail to provide a quantitative examination with
good agreement to existing theories. For instance, the
experimentally determined hole effective masses and the
position of the side maxima in the VB do not correspond
to the theoretical prediction [8], and the importance of
spin-orbit coupling in the VB was only recently detected
[10].

A crucial way of analyzing the band structure is to
probe the dispersion of the Landau levels (LLs) under
a magnetic field. By doing so, a remarkable quantum
Hall (QH) plateau has been observed when the Fermi
energy is in the VB [11]. It is not clearly demonstrated,
however, that the quantum plateau is stabilized by some
parts of the VB acting as a charge reservoir. In fact,
the charge transfer between interface states and a two-
dimensional electron gas (2DEG) is often considered as
a complementary process to the well-known localization

mechanism accounting for the finite width of the quan-
tum Hall plateaus [12]. Such reservoir-related effects
have also been observed in graphene on SiC [13–15].

In this work, we exhibit the interplay between the
charge transfer and localization in the quantum Hall
regime for inverted HgTe QWs. Recent studies have
shown that transconductance measurements may reveal
microscopic information on 2DEGs, even when macro-
scopic devices are measured [16, 17]. Moreover, the
transconductance, i.e. the ratio of the change in drain
current to the change in gate voltage, can capture the
phenomena of charge localization in the QH regime. Such
charge localization was previously observed in various
2DEGs, e.g. GaAs QWs, and monolayer and bilayer
graphene. Transconductance fluctuations appearing in
the (carrier density–magnetic field) plane can even re-
veal very fragile fractional quantum Hall states that only
locally form although these states do not appear in con-
ventional magnetotransport measurements. Therefore,
transconductance measurements in the QH regime on
HgTe QWs can help to understand the nature of local-
ization when the charge is partitioned between different
quasiparticles.

Interestingly, a single-electron picture is expected
in HgTe QWs because of the very high permittivity
ǫ [18]. Moreover, an external potential is almost perfectly
screened due to this high ǫ value. Therefore, HgTe QWs
are excellent candidates to explore the universal theories
of the QHE, e.g. the semicircle model [19], or the theory
of the critical exponent [20] as these theories are based on
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noninteracting electrons moving into a weak long-range
potential. On the other hand, experimental studies have
shown poor agreement with these theories [21]. Hence,
the transconductance in these systems can reveal if the
single-particle picture is relevant or if charging effects
prevail.

II. MODEL OF DISORDER AND

LOCALIZATION

Fluctuations in the QH regime were first observed in
the magnetoresistance of microscopic Si transistors [22]
and graphene devices [23, 24]. Using single-electron
transistors, similar fluctuations were observed in the lo-
cal compressibility of 2DEGs, first in GaAs QWs [25]
and later in graphene [26]. Recently, the same type
of fluctuations was observed in the transconductance
of graphene [16] and bilayer graphene [17], where frac-
tional quantum states were identified. These experiments
showed that the fluctuations moved parallel to lines cor-
responding to integer or fractional filling factor ν in the
(density, magnetic field) plane and were attributed to
charging effects and localization. The underlying model
is detailed below.

Each QW structure has a specific disorder configura-
tion which gives rise to a disorder potential Vbare(r) in
its plane. This potential forms hills and valleys and is in-
dependent of the magnetic field B and charge density n.
In a noninteracting picture, Vbare(r) is the effective po-
tential Veff(r) acting on the 2DEG. In the quantum Hall
regime, the fluctuations of the conductance, transcon-
ductance, and the local compressibility are due to trans-
mission through specific localized states, which follow
equipotential lines of the disorder potential Vbare(r). The
energy of these localized states is usually nonmonotonic
with B and does not correspond to a straight line in the
(density, B) plane, contradicting with the experimental
observations [16, 17, 22–26].

Let us now take into account nonlinear screening and
charge localization. We assume that the electron gas is
infinitely compressible. The charge density reorganizes
to screen the external potential. The relation between
Vbare and the charge density profile nscrn is given by the
Poisson equation: ∇2Vbare(r, z) = enscrn(r)δ(z)/ǫ, where
−e is the electron charge. Now, in high magnetic fields,
LLs appear and the local charge n(r) is partitioned be-
tween them:

n(r) = δn(r) + Nnmax, (1)

where nmax = eB/h is the LL degeneracy, δn(r) the ex-
tra charge appearing on the upper LL close to EF , which
is either partially populated (nmax > δn > 0) or depop-
ulated (−nmax < δn < 0). N is the Chern number of the
2DEG, a positive (negative) integer, which corresponds
to the number of LLs of the CB (of the VB) below (above)
the Fermi energy EF . As the last term of Eq. 1 does not
depend on r and hence cannot screen the disorder, the

density profile δn(r) should equal nscrn(r) to minimize
the electrostatic energy and screen Vbare(r). However, as
δn(r) has lower and upper bounds due to the LL degen-
eracy, δn(r) may depart significantly from nscrn(r). The
screening is then incomplete, and the potential tears the
2DEG into pieces . Some regions become metallic with a
flat screened potential. Others become insulating where
the LL is either empty or full. In the metallic regions,
Coulomb blockade comes into play and gives rise to fluc-
tuations in the conductance, transconductance, and local
compressibility.

To illustrate this situation, let us start with N filled
LLs while the (N + 1)-th LL is completely empty. The
average carrier density n is then n = Nnmax, and there
is no mobile charge or screening. Increasing n, additional
electrons appear in the (N + 1)-th LL and accumulate in
the low-energy regions of the potential, separated by an
incompressible insulating region. As screening is possi-
ble only in the populated low-energy regions, Vbare(r) is
imperfectly screened, and the effective potential Veff(r)
is composed of insulating hills (δn(r) = 0) and metal-
lic flat lakes (δn(r) > 0). The shape of Veff(r) governs
the conductance and depends only on the average car-
rier density δn. Thus, we can assume that the observed
fluctuations correspond to curves of constant δn in the
(n,B) plane. In the presence of a metallic gate, we have
n = (Cg/e)Vg, where Vg is the gate voltage and Cg is the
geometric capacitance of the gate. From the relation:
Cg

e
Vg = δn + Nnmax, it follows that the curves of the

fluctuations, i.e. the curves of constant δn, correspond
in the (Vg, B) plane to straight lines of slope

dVg

dB
= N ×

e2

h
×

1

Cg

. (2)

We end up with the same result if we start with N com-
pletely filled LLs and progressively depopulate the upper
LL (δn < 0). Remarkably, the formation of the screened
potential Veff(r) is determined solely by the density de-
viation from the completely full LLs, i.e. δn, and not by
the total density n.

III. SAMPLE PRESENTATION

The heterostructure presented in this work has been
used in our recent reports on the existence of a
temperature-driven phase transition [3] and the observa-
tion of enhanced stability of quantum Hall plateaus [11].
The structure was grown by molecular beam epitaxy
(MBE) on a [013]-oriented semi-insulating GaAs sub-
strate with a relaxed CdTe buffer. The HgTe QW of
6.6 nm width was embedded in 40-nm Cd0.65Hg0.35Te
barriers. A 40-nm CdTe cap layer was deposited on top
of the structures. The barriers from both sides of the
QW were selectively doped with indium. After MBE
growth, 100-nm SiO2 and 200-nm Si3N4 dielectric layers
were deposited on top of the structure by a plasmochem-
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FIG. 1. Band structure of our sample at T = 260 mK calcu-
lated on the basis of the 8-band k · p Hamiltonian [4]. The
VB and the CB are shown in blue and red, respectively.

ical method. The gated Hall bar has a total length of
650 µm and a total width of 50 µm.

Fig. 1 shows the expected band structure for the stud-
ied QW, as given by an 8-band k · p model. The CB
shows a quasi-linear dispersion. There is a small topo-
logical gap of 8 meV between the CB and VB. The VB
also shows a quasi-linear dispersion in the center of the
Brillouin zone. At approximately |kx| = |ky| = 0.4 nm−1,
4 local side maxima can be distinguished in the E1 VB.
They appear because of the zincblende structure of the
crystal. In the following, we name “light holes” the carri-
ers located in the central part of the E1 VB, and “heavy
holes” the carriers located in the 4 local maxima.

IV. MEASUREMENTS

A. Magnetoresistances

Fig. 2(a,b) show the transverse and the longitudinal
magnetoresistances as a function of the magnetic field
for a gate voltage Vg = −3 V at different temperatures.
The sign of the Hall resistance indicates that the Fermi
energy is in the VB. Fig. 2(c) shows the experimen-
tal Hall carrier density as a function of the gate volt-
age. The Fermi energy is within the topological gap at
around Vg ≃ -1.6 V. At Vg > −1.6 V, when the Fermi
energy EF lies in the CB, the gate voltage dependence
of the Hall concentration nH follows a slope correspond-
ing precisely to the expected geometric capacitance Cg:
dnH/dVg = Cg/e ≃ 9.1× 1010 cm−2/V . The situation is
completely different for Vg < −1.6 V, when the Fermi en-
ergy is located in the VB. The Hall concentration, then,
follows a slope dnH/dVg ≃ 1.0 × 1010 cm2/V, almost 10
times smaller than the slope expected from the geometric
capacitance. We attribute this anomalous slope, already
observed in Refs. 10 and 27, to the coexistence of light
and heavy holes. The heavy holes have low mobility and
do not contribute to the classical Hall effect in which only

FIG. 2. (a) Transverse and (b) longitudinal magnetoresis-
tances at several temperatures T = 1.7 K, 4.2 K, 10 K, 15 K,
20 K, 25 K and 30 K for Vg = −3 V. (c) Hall concentration
nH as a function of the gate voltage at T = 1.7 K, 20 K, 30 K
and 40 K. The diamond at Vg = −3 V corresponds to the
concentration deduced from the SdH period at T = 1.7 K.
(d) Mobility as a function of the gate voltage, at the same
temperatures as in (c). The inset is a fit of the resistance
R = 1/(nHeµ) (open symbols) at Vg = −3 V with a quadratic
function, R(B)−R(0) ∝ T 2 (solid line).

light holes participate. However, the heavy holes have a
large density of states and pin the light hole density at
an almost constant Fermi energy EF , so the nH density
becomes almost independent of Vg.

The coexistence of different kinds of holes is confirmed
by the mobility analysis. As observed in Fig. 2(d), the
Hall mobility in the VB is three times higher than the
mobility of the electrons in the CB for the same carrier
concentration at T = 1.7 K. We attribute this effect to
the presence of the heavy holes, which have a high density
and efficiently screen the ionized impurities. The Hall
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FIG. 3. Longitudinal (blue lines) and transverse (red lines)
magnetoresistances measured at 1.7 K for 3 gate voltages:
(a) Vg = −1.2 V , (b) Vg = −2.2 V and Vg = −2.5 V. The
Fermi level lies in the CB in (a) and in the VB in (b,c). The
cyan lines correspond to a magnified view of the longitudinal
resistances.

mobility then corresponds to the light hole mobility [27,
28]. The presence of two types of carriers is sustained by
the temperature dependence of the hole mobility, which
decreases roughly as 1/T 2 below T ≤ 30 K, as seen in the
inset of Fig. 2(d). This suggests that scattering between
light and heavy holes is the limiting factor for the light
hole mobility. Indeed, the coexistence of light and heavy
holes results in their mutual scattering via the Baber
mechanism [29, 30], which is proportional to T 2. By
contrast, the Hall mobility in the CB depends weakly on
temperature below 40 K, confirming the presence of only
one type of carrier.

Let us now analyze the situation in a quantizing mag-
netic field. Fig. 3(a) shows the longitudinal and the
transverse magnetoresistance of the Hall bar at T = 1.7 K
and Vg = −1.2 V, when EF is in the CB. The plateau
corresponding to Chern number N = 1 is visible only
after B = 1.5 T. The minimum of the longitudinal resis-
tance in the quantum regime appears around B = 2 T,
and the residual resistance is less than 0.1 Ω. Fig. 3(b)
shows the magnetoresistances at Vg = −2.2 V when EF

is now in the VB. The Shubnikov-de Haas oscillations
are well visible and give a concentration nSdH ≃ nH . At
B > 0.5 T, the QH effect emerges and a large plateau cor-
responding to Chern number N = −1 appears. Its very
large width is reminiscent of the large plateaus N = 2
appearing in graphene on SiC [15, 31]. This suggests

FIG. 4. (a) Scheme of the transconductance setup. (b)
Transconductance gm as a function of gate voltage Vg, at
T = 260 mK and from B= 0 T up to B = 6 T. The stars
and plain circles indicate the positions of the ν = 0 and ν = 1
regions, respectively. The two black dashed lines indicate the
position of the two zero-mode LLs.

that charge transfer takes place between the light holes
and some reservoir, presumably the heavy holes located
in the side maxima.

The residual conductivity of the heavy holes must be
extremely small in the QH regime. In Fig. 3b, ρxx has
a minimum ρmin

xx ≃ 5 Ω at B ≃ 1.5 T on the N = −1
plateau. Let us assume that all the residual resistivity
ρmin
xx is due to the presence of heavy holes. Then, the

residual conductivity σhh of heavy holes can be evaluated
as σhh = ρmin

xx /R2
K , where RK = h/e2.

The heavy hole concentration nhh ≃ 2 × 1010 cm−2

can be deduced from the difference between the concen-
tration from the estimated gate capacitance (the black
dashed line in Fig. 2(c)) and the measured light hole con-
centration nH . We obtain a mobility µhh = σhh/nhhe ≃
2 cm2/Vs, much smaller than the mobility µhh ≃ (2 −
3)×103 cm2/Vs calculated in Ref. 10 for a similar struc-
ture. The same analysis can be done at Vg = −2.5 V.
At this gate voltage, as shown in Fig. 3(c), the residual
resistivity in the QH regime shifts to higher magnetic
fields B ≥ 2.5 T, as expected if the carrier concentra-
tion increases, but also drops by one order of magnitude,
ρmin
xx ≤ 0.1 ❲. This gives extremely small mobility for

the heavy holes, µhh ≃ 0.02 cm2/Vs. These very small
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mobilities suggest that localization takes place for both
light holes and heavy holes in the QH regime.

B. Transconductance

The transconductance measurements were performed
in a two-probe configuration at a base temperature of
260 mK. A constant DC bias voltage Vsd = 2 mV was ap-
plied between the source and drain. A small AC voltage
δVg of 2 mV (corresponding to a carrier density varia-
tion of 2 electrons per micrometer square) and frequency
71 Hz was superimposed to a chosen DC gate voltage
Vg and the corresponding source-drain current δIsd was
detected at fixed Vg with a lock-in amplifier. Then the
transconductance gm = δIsd/δVg was measured while the
gate voltage Vg was swept between -3 V and 0 V and the
magnetic field B between 0 and 6 T. Three different pairs
of probes were tested, and similar results were obtained
for all pairs. In what follows we present the results ob-
tained for one of these pairs.

Fig. 4 shows the transconductance as a function of the
gate voltage Vg at T = 260 mK and for different magnetic
fields from B = 0 T up to B = 6 T. The curves are
completely different from what is observed in the usual
QH regime in a four-probe configuration, as in Fig. 3.
The curves in Fig. 4 reveal a rich pattern of fluctuations,
which are not noise and are fully reproducible. Some
regions indicated by stars and circles appear flat and have
been identified as the quantum plateaus N = 0 and N =
1. In other regions, large bumps and dips appear with
a width of 200 mV. These features result from the large
variation in conductance when the Fermi level crosses an
LL. The two dashed black lines correspond to the two of
these features, which are identified as the two zero-mode
LLs. Finally, in other regions, rapid fluctuations appear
with a smaller width δVg ≃ 50 mV.

Transconductance measurements such as the one
shown in Fig. 4 have been repeated between B = 0 T
and B = 6 T with a step size as small as 10 mT. Figure 5
displays a color map of the transconductance gm(Vg, B).
The background of the transconductance has been sub-
tracted to enhance the visibility of the rapid fluctuations,
exposing a rich set of lines.

1. Conduction band

First, we analyze the map corresponding to the CB
H1, for Vg > −1.6 V. The TFs are clearly visible as lines
in the (Vg, B) plane, whose slopes correspond roughly to
integer filling factors. The quantization of the TF slope
is apparent along the line of integer filling factor ν = 0,
ν = 1 and ν = 2, indicated with white solid lines in
Fig. 5.

To confirm the quantization of the TF slopes, we used
a more quantitative analysis. We calculated the correla-
tion function C(ν) =

∑
DijDklδν , where Dij corresponds

to a data point at gate voltage Vi and magnetic field Bj

located within a chosen analysis window. A pair of data
points (Dij , Dkl) contributes to the correlation C(ν) only
if the delta function δν = 1, i. e., if the line connecting
the two points has a slope, which corresponds to ν. A
plot of C(ν) then highlights those filling factors, which
correspond to the preferential slopes of the TFs in the
analysis window. A similar procedure has been previ-
ously applied for data recorded on monolayer and bilayer
graphene [16, 17].

Figure 5(b) plots the correlation functions C(ν) for
seven different analysis windows chosen exclusively in the
region corresponding to the CB. These analysis windows
are indicated in Fig. 5(a) by solid open rectangles of
the same color as their corresponding correlation func-
tion. The C(ν) peaks in Fig. 5(b) reveal clearly the in-
teger quantum states ν = 0, 1, 2, 3, and 4. There is
a small deviation (10%) of the correlation peaks with
respect to their expected position because of the error
when determining the geometric capacitance. Therefore,
the analysis of the TFs observed in the CB validates the
model presented above, based on localization, charging,
and partial screening of the disorder.

2. Valence band

Let us now analyze the TFs visible in the VB. In
Fig. 5(a) the thick black dotted polygon encloses the re-
gion corresponding to the N = −1 plateau, as determined
by the experimental Hall conductivity. In this region, dif-
ferent regimes are clearly distinguishable. The analysis of
the TFs reveals the presence of integer QH states ν = −1
close to the edges of this region.

These states can be seen in the analysis windows in-
dicated by the dashed black and blue rectangles. The
corresponding correlation functions of these windows are
reported in Fig. 5(c), where the peak of C(ν) at ν = −1
is easily identified.

Beyond these expected TFs, deep inside the N = −1
plateau, remarkable TFs can be determined. For 1.2 T
< B < 3.0 T, bunches of TFs of identical positive slopes
are immediately noticed by eyes. A complete correlation
analysis has been performed, and some representative
correlation functions are reported in Fig. 5(c), for 3 anal-
ysis windows indicated by dashed red, magenta, and yel-
low rectangles in Fig. 5(a). Several correlation peaks are
found at positive ν’s. Correlation peaks appear mainly
around ν = 0 (all three dashed regions), ν = 1 (magenta
and yellow dashed regions), ν =3–6 (all three regions
again). Even if correlation peaks and line bunches are
easily identified, the superimposition of the correlation
peaks in Fig. 5(c) suggest that the slopes of the TFs are
not fully quantized, in sharp contrast to what is observed
in Fig. 5(b). An intriguing trend is that the slope of the
TFs visible in the range B = 1.2–3 T increases when
Vg increases. Indeed, C has its maximum at ν ≃ 3, 4, 5
for the analysis regions corresponding to the yellow, ma-
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FIG. 5. Color map of the transconductance gm in the (Vg, B) plane. The solid white lines correspond to integer filling factors.
The dotted black line encloses the N = −1 plateau as determined from the Hall conductivity. (b) Correlation function C(ν)
for 7 analysis windows in the (Vg, B) plane, located in the CB and indicated by solid colored rectangles in (a). (c) Correlation
function C(ν) for 5 analysis windows in the (Vg, B) plane, located in the VB and shown as dashed colored rectangles in (a).

genta, and red dashed regions, respectively, which are
centered around increasing Vg ≃ −2.9,−2.6,−2.1 V.

Finally, at B > 3.0 T, the situation clarifies and all the
TF slopes roughly align along ν = 0 (constant Vg). Simi-
lar results were reproduced for all three pairs of contacts
analyzed on this device.

V. INTERPRETATION

A. Estimation of the disorder potential

The quantization of the TF slope in the CB allows us to
use the model of screened disorder and localization as de-
scribed above. The screening is, however, neither perfect
nor linear. Even in the center of the LLs, TF lines of dif-
ferent slopes overlap, indicating that the network of per-
colating puddles is still present. This overlap is well visi-
ble in Fig. 5(a) in the blue (cyan) solid analysis window,
where TFs of slopes ν = 0, 1 (ν = 1, 2) coexist. The cor-
relation function in this window has also two pronounced
peaks at ν = 0 and ν = 1 (ν = 1 and ν = 2). Additional
measurements have shown that the TFs still overlap in
the center of the two first LLs up to at least Bmax = 6 T.
Following Refs. 16 and 25 we get the lower bound of the
carrier density ∆nd needed to completely screen the bare
disorder potential: ∆nd ≥ Bmaxe/h ≃ 1.4 × 1011 cm−2.
This value is comparable to that observed for graphene
on SiO2 [16] and 10 times larger than the value observed
in GaAs QWs [25].

B. Fermi level pinning in the valence band

Before discussing the TF fluctuations, let us first fo-
cus on the remarkable width of the N = −1 plateau, as

enclosed by the black dashed line in Fig. 5(a). Because
the VB has a nonmonotonic dispersion with side maxima
hosting a high density of states, the Fermi level EF must
be pinned close to the energy of these side maxima on
a large range of gate voltages. This naturally explains
the anomalously large quantum plateau N = −1, which
starts at a lower magnetic field and continues until a
higher magnetic field than expected from a simple esti-
mate of the positions of the filling factors ν = −1/2 and
ν = −3/2 in the (Vg, B) plane.

To get numerical estimates, we have calculated the dis-
persion of the LLs by using an 8 band k · p method [4].
The disorder is taken into account by introducing a con-
stant Gaussian broadening Γ ∼ 5 meV for each LL.
The broadening was estimated from the damping of the
Shubnikov-de Haas oscillations in the VB. The result is
shown in Fig. 6. The LLs in the CB have a monotonic
electron-like dispersion, roughly in the power of B0.5.
The two zero-mode LLs cross at B ≃ 2 T and also have
a monotonic, almost linear, dispersion. By contrast, the
LLs in the VB have a nonmonotonic dispersion (for clar-
ity, one of these LLs is shown in purple in Fig. 6). At low
magnetic fields, when their eigenstates are localized in
the center of the Brillouin zone, the LLs of the VB have
a hole-like dispersion. At higher magnetic field (around
B ≃ 3 T for the LL enlightened in purple), when the
LL eigenstates leave the center of the Brillouin zone and
slip toward the side maxima, the LL dispersion changes
its direction and becomes electron-like. Finally, at even
larger B when the eigenstates leave the side maxima, still
increasing their momenta, the LLs retrieve a hole-like dis-
persion.

The upper LLs of the VB are energetically very close:
the first upper 50 LLs lie in a 2 meV energy range at
B = 3 T. As this range is smaller than Γ, all these LLs
are partly populated simultaneously when EF is in the
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FIG. 6. Landau level in our sample at T = 260 mK on the
basis of the 8-band k · p Hamiltonian [4]. The LLs in the
CB and VB are shown as red and blue lines, respectively.
One of the LL of the VB is shown in violet to evidence its
nonmonotonic dispersion. The two zero-mode LLs are shown
as green solid lines. The chemical potential is indicated with
white dashed lines for different values of the gate voltage, from
0 (upper curve) down to -3 V (lowest curve) with a step of
-0.3 V. A Gaussian broadening Γ = 5 meV was added in the
calculation. A color map of the total carrier concentration n
is shown in the background.

N = −1 plateau. This quasi-continuum of LLs acts as a
charge reservoir. To check this, we evaluated the position
of the Fermi energy EF as a function of Vg and B. The
result is shown in Fig. 6 for various values of Vg. In
the CB, the Fermi energy EF oscillates between the LLs
before collapsing down to the upper zero-mode LL. The
magnetic field range of the N = 1 plateau is relatively
limited for all gate voltages. By contrast, in VB, EF is
pinned in the N = −1 plateau over an extended magnetic
field range. At Vg = −2.5 V, EF enters the N = −1
plateau at B ≃ 0.5 T and is still in the gap at B = 3 T.
These findings are in agreement with the observed width
of the QH plateau in Fig. 3.

C. Model for the transconductance fluctuations

The localization model presented before, based on the
screening of the disorder, is valid when only one LL is
partly populated, whereas all the other LLs are either
empty or filled. This model predicts a unique slope
dVg/dB = −e2/hCg on the N = −1 plateau. In the
situation corresponding to Fig. 6, the screening is simul-
taneously induced by several partly populated LLs. The

FIG. 7. (b,d,g,h,j) Color map in the (Vg, B) plane rendering
the isocharge lines δn for the LLs indicated as thick magenta
lines in panels a, c, e, g, and i, respectively. The solid and
dashed lines are contour lines for positive and negative δn,
respectively.

numerical calculation of the screened disorder in such a
situation is outside the scope of this work [32]. The over-
all picture is, nevertheless, well established. When EF is
in the N = −1 plateau, just above the VB, the 2DEG
is an incompressible sea where ν = −1, in which appear
compressible antidots where ν < −1. These antidots are
themselves formed of a concentric succession of incom-
pressible and compressible regions, which correspond to
the progressive filling of the underlying LLs of the VB.

As the upper LL of the VB delimits the boundary be-
tween the incompressible sea and antidots, we assume
that this peculiar LL is responsible for the most visible
TFs. We extend the previous model assuming that the
TFs are formed by the filling δnu of the upper LL of the
VB only, while the lower LLs act only as a reservoir.

To sustain this hypothesis, we need to calculate the
lines of constant δn for each LL in the (Vg, B) plane and
check if these lines are deflected with respect to the initial
model. In the following, we call isocharges these lines of
constant δn in the (Vg, B) plane. First, one point is cho-
sen in the (Vg, B) plane, and the LL dispersion, density of
states, electrochemical potential, and carrier density for
each LL are calculated with the numerical model used to
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FIG. 8. Colormap in the (Vg, B) plane, indicating the
area corresponding to Chern numbers N = −3, . . . 4 (N =
−σxyh/e

2). The isocharge lines δn for the 5 LLs detailed in
Fig. 7 are also superimposed on this colormap.

calculate Fig. 6 with a macroscopic Gaussian broaden-
ing of the LLs. This operation is repeated for each point
in the (Vg, B) plane to separately retrieve the isocharges
for each LL. The result is shown in Fig. 7. Figs. 7(b,d)
show the isocharges for the second and first LLs of the
CB. These LLs are enlightened in the left panels (a) and
(c), respectively. The isocharges are separated into two
groups whose slope corresponds to ν = 2 and 3 for the
second LL (Fig. 7b) and ν = 1 and 2 for the first LL
(Fig. 7d). The change of the slope takes place when
the LL is half-filled. In the (Vg, B) plane, this corre-
sponds to lines corresponding to half integer filling factor
ν = 3/2 and ν = 5/2. This is in remarkable agreement
with both experimental data and the charge localization
model when only one LL screens the disorder.

Similar results are reproduced for the two zero-mode
LLs, as shown in Fig. 7(e–h). The isocharges again follow
quantized slopes corresponding to ν = 1, 0 (upper zero-
mode LL, Fig. 7(e,f)) and ν = 0,−1 (lower zero-mode LL,
Fig. 7(g,h)). A slope deviation is predicted only in the
vicinity of the crossing of the two zero-mode LLs around
B ≃ 2 T.

The situation becomes more complex in the VB. Here,
the isocharges for the upper LL of the VB are shown in
Fig. 7(i,j). These isocharges do not follow any quantized
value, and have a strong nonmonotonic character. Below
B = 1 T, the model predicts isocharges with negative
slopes, as observed experimentally. However, this is the
limit of validity for the model because not enough LLs
are taken into account (we calculate only the first 320
LLs of the VB). More interestingly, between B = 1 and
B = 2 T, the slope of the isocharges changes its signs
and becomes positive (dVg/dB > 0). Finally, at higher
B, the slope becomes almost vertical, dVg/dB ≃ 0. This
nonmonotonic behavior is qualitatively coincides with the
experimental observations.

Furthermore, we calculated the isocharges for the first
ten upper LLs of the VB, and for all, we found the same

trend, i.e. all the isocharges have unusual positive slopes

in the N = −1 plateau.

A hand waving explanation for the unusual behavior
of these isocharges is as follows. At low Vg values, EF

is pinned on top of the VB and slightly varies with B,
as seen in Fig. 6. Thus, the filling factor of the up-
per LL of the VB, νu, does not depend on B and is a
monotonically increasing function of Vg: νu = f(Vg) ≃
f(0) + f ′(0)Vg. Using δnu = (νu − 1)eB/h, it follows
that Vg = cte + f ′(0)−1δnu(h/eB), which gives a positive

slope ∂Vg/∂B as δnu < 0 and f ′(0) > 0. This hyperbolic
behavior induces the nonmonotonic dispersion of the δnu

isocharges.

D. Discussion

The different isocharges of the five LLs presented in
Fig. 7 have been superimposed in Fig. 8 to present a more
complete view of the predicted fluctuations. This model
reproduces the quantization of the slope of the isocharges
in the CB. Since the energy separation between the LLs
in the CB is larger than LL broadening, only one LL is
partly (de)populated.

Remarkably, the model reproduces many of the experi-
mental features observed on the N = −1 plateau. In par-
ticular, TFs with positive and negative slopes are repro-
duced. Isocharges with a slope corresponding to ν = −1,
associated with the lower zero-mode LL, are predicted
around B ≃ 2.5 T, Vg ≃ −2 V, as shown by the solid
black lines in Fig. 8. The isocharges of the lower zero-
mode LL and the upper LL of the VB follow very distinct
trajectories. The isocharges of the upper LL of the VB
are shown as black dashed lines in the σxy = −e2/h re-
gion. The slopes of these isocharges are positive at low
B and become more vertical in the (Vg, B) plane when B
increases, where they can even become slightly negative.

This roughly corresponds to what is observed experi-
mentally where At an intermediate magnetic field 1.2 T
< B < 3 T, the TFs slopes are positive and increase
when Vg increases, whereas at higher magnetic fields, the
TFs slopes are almost vertical in the (Vg, B) plane.

Nevertheless, interesting discrepancies exist. On the
N = −1 plateau, the TFs appear experimentally as sets
of parallel lines with a constant slope, and we do not
observe TFs with varying slopes, as predicted by the
model. Experimentally, there is also the superposition
of TFs with various slopes. This is well visible, for in-
stance around (Vg = −2.5 V, B = 2 T), where three sets
of TFs with slopes ν ≃ 5, 1.5 and 0 are superimposed.
This suggests that microscopically, the 2DEG has been
torn apart and regions of different local filling factors co-
exist at different places. These observations underline
that the proposed model does not reproduce the micro-
scopic features as all the complexity of charge localiza-
tion, screening, and Coulomb blockade is hidden in the
unique macroscopic parameter δn.
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VI. CONCLUSION

To conclude, we conducted transconductance measure-
ments on a macroscopic Hall bar made from an inverted
HgTe quantum well. We observed pronounced and re-
producible transconductance fluctuations in the (B, Vg)
plane due to the screening and charge localization. We
conclude that transconductance measurements can reveal
microscopic states, even when measuring macroscopic de-
vices. In the CB, the slopes of these TFs follow lines
of positive integer filling factors, as already observed in
other 2DEGs. However, in the VB, we observe an unex-
pected behavior, i.e. transconductance fluctuations with
positive slopes. We attribute the appearance of these
unexpected fluctuations to the charge localization in the
quantum states ν = −1 of the upper LL localized in the
side maxima of the VB. The unusual slope of these fluc-
tuations is attributed to the underlying large density of

states in these side maxima, which acts as a charge reser-
voir and deflects the expected trajectories of the fluctu-
ations.
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[5] G. Landwehr, J. Gerschütz, S. Oehling, A. Pfeuffer-
Jeschke, V. Latussek, and C. R. Becker, Physica E 6,
713 (2000).

[6] K. Ortner, X. C. Zhang, A. Pfeuffer-Jeschke, C. R.
Becker, G. Landwehr, and L. W. Molenkamp, Phys. Rev.
B 66, 075322 (2002).

[7] Z. D. Kvon, E. B. Olshanetsky, E. G. Novik, D. A. Ko-
zlov, N. N. Mikhailov, I. O. Parm, and S. A. Dvoretsky,
Phys. Rev. B 83, 193304 (2011).

[8] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A.
Sherstobitov, S. A. Dvoretski, and N. N. Mikhailov, Phys.
Rev. B 88, 155306 (2013).

[9] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A.
Sherstobitov, S. A. Dvoretski, and N. N. Mikhailov, Phys.
Rev. B 89, 165311 (2014).

[10] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sher-
stobitov, M. O. Nestoklon, S. A. Dvoretski, and
N. N. Mikhailov, Phys. Rev. B 93, 155304 (2016).

[11] I. Yahniuk, S. S. Krishtopenko, G. Grabecki, B. Jouault,
C. Consejo, W. Desrat, M. Majewicz, A. M. Kadykov,
K. E. Spirin, V. I. Gavrilenko, et al., npj Quantum Ma-
terials 4, 13 (2019).

[12] W. Zawadzki, A. Raymond, and M. Kubisa, Physica Sta-
tus Solidi (b) 251, 247 (2014).

[13] S. Kopylov, A. Tzalenchuk, S. Kubatkin, and V. I. Fal’ko,
Appl. Phys. Lett. 97, 112109 (2010).

[14] T. J. B. M. Janssen, A. Tzalenchuk, R. Yakimova, S. Ku-
batkin, S. Lara-Avila, S. Kopylov, and V. I. Fal’ko, Phys.
Rev. B 83, 233402 (2011).

[15] M. Yang, O. Couturaud, W. Desrat, C. Consejo,
D. Kazazis, R. Yakimova, M. Syväjärvi, M. Goiran,
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