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ABSTRACT

This work deals with the sonification of a quantum mechanical

system and the processes that occur as a result of its quantum me-

chanical nature and interactions with other systems. The quantum

harmonic oscillator is not only regarded as a system with sonifi-

able characteristics but also as a storage medium for quantum in-

formation. By representing sound information quantum mechan-

ically and storing it in the system, every process that unfolds on

this level is inherited and reflected by the sound. The main profit

of this approach is that the sonification can be used as a first in-

sight for two models: a quantum mechanical system model and a

quantum computation model.

1. INTRODUCTION

The quantum harmonic oscillator is one of the most fundamental

quantum mechanical systems. It describes as in classical mechan-

ics the motion of an object subjected to a parabolic potential [1,

pp. 54–63]. As every other quantum mechanical system it is de-

scribed by its Hamiltonian, which for this system is solvable with

known eigenstates and eigenvalues. Any state of the system can

be expressed as a superposition of its eigenstates. The quantum

harmonic oscillator provides a physical realization of a quantum

computer model [2, pp. 283–287] where quantum information is

stored in the state of the quantum harmonic oscillator and then

processed through its intristic time evolution or through coupling

with the environment. The sonification choices that were adopted

in this work could also be associated with these information pro-

cessing operations.

At a first step sound information is stored quantum mechani-

cally in the system’s state. Letting the system evolve in time or in-

teract with other systems affects the state and thereby the stored in-

formation. The deformation of the stored sound reflects the charac-

teristics and properties of the system and the processes that occur.

In the cases where the eigenvalues and eigenstates are affected,

their sonification could also add more insight to the phenomena.

The motivation for this approach is to gain a first insight to

quantum computational storage operations through sound. Quan-

tum mechanical memory has in general different properties from

the classical [2, pp. 13–17], which can be highlighted through

sonification. The impact of an external disturbance to the stored

quantum information is a fairly complex procedure with interde-

pendencies that can be perceived coherently through sound. The

part of the stored quantum information which is classically acces-

sible through quantum measurement and the impact of the mea-

surement operations in the classically retrieved part can be also

acoustically represented with the use of this approach.

The best known model of a quantum mechanical memory unit

is the qubit [2, pp. 13–17] which is abstract and unbounded from

the properties of the physical system that realizes it. The harmonic

oscillator quantum computer model bases on the features of the

underlying system and therefore the representation of the quantum

information is directly interconnected with the system properties.

Many other problems of quantum mechanics such as the single

mode of an electromagnetic field in a one-dimensional cavity and

the vibration spectra of diatomic molecules base on the quantum

harmonic oscillator [1, pp. 19–32]. Thus this sonification could be

a start to gain knowledge for more than one quantum mechanical

system that are of the same form but also quantum mechanical

systems in general because they follow the same principles.

This paper is organized as follows: The second section pro-

vides a very brief description of the system that is needed for the

understanding of the sonification decisions. The third section con-

centrates on the sonification of the time evolution process of the

quantum harmonic oscillator as a closed system, which is a deriva-

tion of the time-dependent Schrödinger equation. In the fourth

section the system is subjected in two types of disturbances where

the influence of the interactions with several other systems is de-

scribed with the help of perturbation theory. The fifth section pro-

vides some details of the implementation whereas the sixth section

presents some future plans and ideas for future works.

2. QUANTUM HARMONIC OSCILLATOR

2.1. Description of the system

Every quantum mechanical system’s total energy is described by

its Hamiltonian Ĥ . Leaving the time evolution of the system aside

and concentrating on the description of the system for a specific

time point, the time-independent Schrödinger equation is [1, pp.

19–32]:

Ĥψ(x) = Eψ(x) (1)

where Ĥ is the Hamiltonian of the system, ψ(x) the wave-

function that represents the state of the system and E the eigenval-

ues of Ĥ . The value of |ψ(x) |2 expresses the probability density

of finding the oscillating object at the position x [3, pp. 54–57].

The Hamiltonian Ĥ is mathematically represented by the equation

[1, pp. 54–63]:

Ĥ = K + V =
p̂2

2m
+

mω2

2
x̂

2
(2)

Where K is the kinetic energy, V the potential energy, p̂ the

momentum operator, m the mass of the oscillating particle, ω the
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eigenfrequency and x̂ the displacement operator. The eigenval-

ues that satisfy the equation (1) are quantized and represent the

eigenenergies of the quantum harmonic oscillator:

En =

„

n +
1

2

«

~ω, n = 0, 1, 2... (3)

The eigenstates that satisfy the equation (1) are mathemati-

cally expressed with the help of the Hermite Polynomials Hn(x):

Hn(x) = (−1)n
e

x
2 dn

dxn
e
−x

2

, n = 0, 1, 2... (4)

The eigenstates ψn(x) which satisfy the equation (1) are weighted

Hermite polynomials and represent the eigenfunctions of the quan-

tum harmonic oscillator:

ψn(x) =

„

a√
π n! 2n

« 1
2

Hn(ax) e
− a

2

2
x
2

, a =

r

mω

~
(5)

Figure 1: The first six (from 0 to 5) Eigenenergies and Eigenfuc-

ntions of the Quantum Harmonic Oscillator. The Eigenergies are

depicted with equally spaced vertical lines. The corresponding

Eigenfunctions are shifted on the y-axis each one with offset the

particular Eigenenergy. On the same plot is also the parabolic

potential V .

The eigenfunctions of the quantum harmonic oscillator consti-

tute a complete and orthonormal basis. Therefore any state of the

system which is represented by the wavefunction can be written as

a linear combination of its eigenstates.

ψ(x, t) =

∞
X

n=1

cnψn(x) (6)

The sum of all probabilities should sum up to one. The cn

coefficients are complex numbers that are called probability am-

plitudes [4] and fulfill the normalization condition:

∞
X

n=1

|cn |2= 1 (7)

2.2. Shapelet Basis Expansion Method

The description of the audio signals that is realized in this work

bases on their decomposition onto the eigenfuctions of the quan-

tum harmonic oscillator thus falling to the category of a

non-parametric signal expansion method [5, pp. 9–21]. The sig-

nal can be expaned as a linear combination of the basis functions

{ψn(x)}. The coefficients for a signal y can be obtained from the

following equation:

y =
X

n

cnψn ⇒ cn = B
−1

y (8)

Where B is the matrix that contains the eigenfunctions ψn(x)
of the quantum harmonic oscillator. The ψn(x) functions are called

Shapelets [6], [7], because they form a perturbed version of a gaus-

sian function as shown by the equation (5). Shapelets have a main

difference to wavelets, namely the various shapes of the basis func-

tions. The wavelet transform basis functions are the same up to a

scaling factor. On the other side the shapelet basis functions are of

different size and form.

The first step of the sonification procedure is to store an audio

signal into the quantum harmonic oscillator using the overlap -

add method [8, pp. 237–238]. The signal is multiplied by a sliding

window of length N . The successive windowed signal frames are

expaned as a linear combination of the eigenfunctions of the same

quantum harmonic oscillator.

The number of the eigenfunctions of the quantum harmonic

oscillator is theoretically infinite but in this work only finite num-

ber of eigenfunctions are implemented depending on the needs for

a good analysis and resynthesis. Throughout this work for a win-

dowed part of a signal with number of samples N the number of

the coefficients cn used was also N . An extended testing of this

basis for audio signal processing applications can be made in fu-

ture works.

2.3. Harmonic Oscillator Quantum Computation Model

The computational building block of a quantum mechanical mem-

ory is the qubit whereas the memory of a quantum computer con-

sists of several qubits [2, pp. 13–17]. As with the classical bit,

the qubit is realized on a physical system. The primarly difference

is that this physical system is in a level where quantum mechan-

ical phenomena are apparent and determine the properties of the

storage. A detailed description of the qubit, its properties and its

differences with the classical bit are beyond the scope of this paper

and are not needed for the understanding of this work.

What is essential for the comprehension of this approach is

that the state of the quantum harmonic oscillator is in correspon-

dence with the state of a quantum mechanical memory created

from qubits. In the quantum harmonic oscillator model one pos-

sible physical implementation of the qubits is made in such a way

that the state of the whole memory can be expanded as a linear

combination of the eigenfunctions ψn(x) [2, pp. 283–287]. The

analogy is for every 2N eigenstates that are used for the expansion

of the signal represent the quantum information storage capabil-

ity of N qubits because they create an equivalent complex Hilbert

space.

It is assumed that the system can be prepared in a desired state

through an initialization procedure. Special attention needs to be

drawn to the fact that the coefficients that are computed for the ex-

pansion of the stored audio signal not only need to fulfill the equa-

tion (8) but also the normalization condition (7). For the scope of
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this work no normalization of the coefficients to probability am-

plitudes is made. For a future work in which a measurement pro-

cedure is included, the consideration of the probability amplitudes

normalization is crucial.

3. CLOSED SYSTEM TIME EVOLUTION

A quantum system that evolves without coupling to the environ-

ment is called closed or isolated [2, pp. 81–84]. The time - depen-

dent

Schrödinger equation (9) describes the evolution of the closed sys-

tem in time [1, pp. 19–32].

i~
∂ψ(x, t)

∂t
= Ĥψ(x, t) (9)

where ~ is the Planck’s constant. The time evolution is a pro-

cedure that changes the state of the system but leaves the eigenen-

ergies and eigenfunctions unaffected. If the wavefunction of the

system ψ(x, 0) at time t0 = 0 is desribed by the equation [2, pp.

13–17]:

ψ(x, 0) =

∞
X

n=1

c
(0)
n ψn(x) (10)

where c
(0)
n are the coefficients of the input sound according to

the ψn(x) basis at time t0 = 0, then after time t each coefficient

will be multiplied by a different complex exponential term:

c
(t)
n = c

(0)
n e

−iEnt

~ (11)

where En is the n-th eigenenergy. The state of the system will

change accordingly:

ψ(x, t) =

∞
X

n=1

c
(t)
n ψn(x) =

∞
X

n=1

c
(0)
n e

−iEnt

~ ψn(x) (12)

Every time that a windowed sound segment is stored in the

quantum oscillator, the coefficients cn(0) for this window are com-

puted with respect to the basis of the eigenfunctions ψn(x). Each

coefficient is then multiplied with its corresponding exponential

term. The real and imaginary part of the time evolved coefficients

are separately used for the resynthesis of the sound and produce

two individual tracks that are merged in a stereo file. The phe-

nomenon produces a modulation in the spectral domain which re-

peats itself after a specific period of time (fig. 2). The period dura-

tion Tn of the evolution process is individual for each coefficient

cn and is the same for the real and imaginary part:

Tn =
4π

(2n + 1)ω
(13)

In this implementation the time variable t doesn’t flow contin-

uously at each sample but for every window increases by the value

of the hop size that is used in the overlap-add. With the use of a

scaling factor on the time parameter the phenomenon can be heard

at various speeds.

The time evolution implements a unitary transformation and

therefore is the main procedure that can be used for the realization

of quantum gates in this computational model [2, pp. 283–287].

With the additional use of perturbation of the eigenfunctions as

described in the next chapter, information processing is achieved.
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Figure 2: Spectrum of a sinusoidal of frequency 440 Hz expanded

over the shapelet basis, then resynthesized and time-evolved. Ac-

cording to the time-evolution descripted by equation (12), the

spectrum presents modulating frequency components that rise

through the periodic change of the expansion coefficients.

4. OPEN SYSTEM

4.1. Overview of Perturbation Theory

When a quantum mechanical system has strong interactions with

the environment it is called open [2, pp. 353–354]. Solving such

systems i.e. finding their eigenenergies and eigenfunctions, is a

complex and difficult procedure. Therefore an approximation method

needs to be used. The perturbation theory is one of them and can

be applied when a system with a solvable Hamiltonian Ĥ0 is sub-

jected to a relatively weak disturbance δĤ in regard to the value

of Ĥ0 [1, pp. 133]. Thus, the Hamiltonian of the overall system

can be written as an addition of the exact solvable Ĥ0 and the dis-

turbance δĤ:

Ĥ = Ĥ0 + δĤ (14)

The fact that this disturbance is small enough assures that there

are only going to be slight changes δψ and δE on the wavefunc-

tion and the energy of the system. The eigenenergies and eigen-

functions can be expressed with the help of power series:

E
(k)
n =

1

k!

dkEk

dλk
, k = 0, 1, 2... (15)

ψ
(k)
n =

1

k!

dkψn

dλk
, k = 0, 1, 2... (16)

The perturbation δĤ corresponds to a Hamiltonian that is math-

ematically represented by a Hermitian matrix. In the case of the

quantum harmonic oscillator with Hamiltonian Ĥ0 we can think

of a disturbance δĤ that is a result of adding or removing some

energy from the system. Throughout this work, the use of ap-

proximation approaches other than the perturbation theory are not

addressed, but this could be a topic that can be further explored.
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There are two types of perturbation approaches: the time-

independent and the time-dependent. The time-independet pro-

cedure describes the system’s behavior when the disturbance is

constant, whereas the time-dependent deals with systems that are

subjected to a time-varying disturbance.

4.2. Time-independent or Rayleigh-Schrödinger Method

4.2.1. Description of the process

The undisturbed or principal system will have an exact solution

according to the time-independent Schrödinger equation [1, pp.

134–140]:

Ĥ0 ψ
(0)
n (x) = E

(0)
n ψ

(0)
n (x) (17)

The zero at the superscript of E
(0)
n denotes that the eigenener-

gies are from the undisturbed system whereas the n at the subscript

of the eigenenergies shows the correspondence of the n-th eigenen-

ergy to the n-th eigenfunction. After the disturbance is applied the

Hamiltonian will change by means of the equation (14) where the

term δĤ is replaced by λ V and thus the Schrödinger equation for

this system will be:

Ĥψn(x) = (Ĥ0 + λ V )ψn(x) = Enψn(x) (18)

Where Ĥ is the Hamiltonian, ψn(x) the eigenfunctions and

E the eigenenergies of the of the disturbed system. The λ term

is a factor that controls the disturbance intensity and can take val-

ues with range from 0 to 1 which represent no pertubation to full

perturbation accordingly. Just because the disturbance is weak,

the eigenenergies En of the disturbed system will not deviate very

much from the eigenenergies E(0) of the undisturbed. The same

property holds for the eigenfunctions. The power series expansion

will be in accordance with the equations (15) and (16).

En = E
(0)
n + λE

(1)
n + λ

2
E

(2)
n + ... (19)

ψn(x) = ψ
(0)
n (x) + λψ

(1)
n (x) + λ

2
ψ

(2)
n (x) + ... (20)

The superscripts 0, 1, 2... denote the zero-th, first and second

term of the power series. The zero superscript is the unperturbed

one. The n at the subscript of the eigenenergies shows the corre-

spondence of the n-th eigenenergy to the n-th eigenfunction.

The derivation of the solution occurs by inserting the equations

(19) and (20) into (18). The expression of the first order term of

the eigenfunction’s correction as a linear combination with respect

to the orthonormal basis that is formed from the eigenfunctions

ψ
(0)
n (x) of the unperturbed system, leads to the first and second

correction to the energy of the system:

E
(1)
n = ψ

(0)
n (x)

†
V ψ

(0)
n (x), E

(2)
n =

´X

m

| ψ
(0)
m (x)

†
V ψ

(0)
n (x) |2

E
(0)
n − E

(0)
m

(21)

The first term of the eigenfunction correction is expressed by

the following equation:

ψ
(1)
n (x) =

´X

m

ψ
(0)
m (x)

†
V ψ

(0)
n (x)

E
(0)
n − E

(0)
m

ψ
(0)
m (x) (22)

where the acute in the summation denotes that the sum is made

over all n eigenfunctions except the m. Higher terms can be ob-

tained iteratively but are not used for the implementation to reduce

the computational complexity of the implementation.

4.2.2. Audification Choices

For the audification of this perturbation kind various disturbance

types that correspond to different Hermitian matrices V were used.

One example of a used perturbation corresponds to a constant elec-

trical field with a potential that has linear dependency from the

displacement x which is added to the parabolic potential. The λ

factor can also be used to control how intense the development of

the disturbance phenomena will be.

By applying the same disturbance type V many times consec-

utively, a slow deformation of the shape of each of the eigenfunc-

tions can be examined at first. The eigenenergie’s values are also

slightly deviating from their initial value, each one differently but

consistently as a whole. Each one of the perturbation types pro-

duces a characteristic change which is clearly recognizable.

A phenomenon that occurs in every tested disturbance type,

is a deformation of the eigenfrequencies and eigenvalues after the

application of sufficient many consecutive time-independent per-

turbations. Suddenly the system starts to decompose and after a

while it collapses. The eigenenergies En value range grow and

the implemented simulation eventually stops. The eigenfunctions

ψn(x) are also greatly deformed at the same time because as the

eigenenergie’s and eigenfunction’s changes are closely linked as

expressed also from the equations (21) and (22).

The alteration of the eigenfunctions can be made indepen-

dently hearable by a direct mapping of the eigenfunctions in the

time axis, where each channel holds one eigenfunction. Figure 3

shows the deformation of the eigenfrequencies in subsequent per-

turbations. One crucial point in which audification and sonifica-

tion are profitable over a visual representation is the fact that the

eye cannot grasp the interconnections and the consistensy of the

changes of all eigenfunctions as an integrated entity.

Figure 3: The deformation of the Eigenfunctions ψ0, ψ39, ψ80 and

ψ127 after perturbing succesively several times. In the leftmost

part of the figure the Eigenfunctions are unperturbed and at the

rightmost are one step before collapsing. The value of p denotes

the number of time-independent perturbations that are already ap-

plied to the system. The analogy between the amplitude of the per-

turbed Eigenfunctions is not in direct proportion with their com-

puted values after the desolving starts, due to normalizing condi-

tions.

As mentioned before, the eigenfunction’s transformations can
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be also made recognizable by analyzing the windowed part of the

audio signal as a linear combination of the eigenbasis. In every

step of the overlap-add procedure a time-independent perturbation

is applied which alters the eigenfunctions in a way that they may

not constitute a complete orthogonal basis anymore. Despite this

fact, the coefficients are computed as if the underlying basis was

orthonormal. By this means the deformation of the sound is an

indication for the decompostion of the eigenfunctions and their

orthonormality.

Perturbations of small intensity have no recognizable audible

effects in the stored sound. The effects are starting to take place

only a little before the collapsing occurs. Because of the rich con-

tent of the eigenfunction’s alterations, a sonification procedure that

would be more reflective of the phenomenon could be addressed.

4.2.3. Sonification Choices

Just because the eigenenergies of the unperturbed system are equally

spaced as presented in (3), the idea of a projection of their values

on the frequency plane has arised. With an appropriate scaling fac-

tor the eigenenergies can be seen as the frequencies of sinusoidals

that before any perturbation create a harmonic sound. Each time

the perturbation is applied the values of the frequencies of the si-

nusoidals are slightly changed. To make the sound effect more

recognizable, the amplitude of all the sinusoidal components of

the spectrum was set to the same value and then was filtered with

the spectral envelope of a vowel of small duration with the help of

cepstrum analysis [8, pp. 319–321].

As it can also be seen in figure 4 the first times the perturbation

is applied the spectrum of the sound has a characteristic develop-

ment. After a critical number of perturbations the decomposition

of the system begins and an inharmonic sound is produced.

Time (s)
0 48.8575

0
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F
re

q
u
e
n
c
y
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H
z
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Figure 4: Spectrum of the sonified Eigenenergies after perturbing

succesively several times. At each frame that is easilly seen in

the figure by the vertical characteristic, the new Eigenenergies are

computed. For the first perturbations the spectrum maintains a

recognizable structure and after sufficiently many the dissolution

of the spectral structure is apparent.

4.3. Time-dependent or Dirac Method

4.3.1. Description of the process

In this case the perturbation is denoted with the V (t) operator that

is assumed to be small in regard to the Hamiltonian Ĥ0 of the

undisturbed system and the time duration of the disturbance reac-

tion to the system is considered to be small enough. The eigenen-

ergies and eigenfunctions of the system will also change with time.

The Hamiltonian will be the addition of the unperturbed solvable

and the time-dependent term [1, pp. 149–153]:

Ĥ(t) = Ĥ0 + V (t) (23)

The time-dependent Schrödinger equation is in this case:

i~
∂ψ(x, t)

∂t
= Ĥ(t)ψ(x, t) = (Ĥ0 + V (t))ψ(x, t) (24)

and cannot be solved by separating the spacial and temporal

parts with the use of variable separation. That is the reason that

in this case the solution cannot be implemented with the approach

of the time-independent case. In analogy with the methodology of

the time-independent case, the wavefunction of the system will be

expanded as a linear combination of the basis of the unpertubed

systm’s eigenfunctions whereas the solution involves the detection

of the expansion coefficients.

ψ(x, t) =

∞
X

m=1

cm(t)ψ(0)
m (x) (25)

The coefficients cm(t) are represented by a mathematical ex-

pression that includes both the time-evolution term that is caused

from the unperturbed Hamiltonian Ĥ0 combined with the time-

dependent transformation am(t) that is generated from V (t):

cm(t) = am(t)e
−iE

(0)
m t

~ (26)

The am(t) terms are expanded with the help of power series.

The equation (25) is solved to:

ψ(x, t) =

∞
X

m=1

am(t)e
−iE

(0)
m t

~ ψ
(0)
m (x) (27)

where the a
(1)
m (t) is the first correction term of the am(t) ex-

pansion:

a
(1)
m (t) = − i

~

Z

t

0

Vnm(t′)e
−i(En−Em)t

′

~ dt
′

(28)

and Vnm(t) expresses the term:

Vnm(t) =

Z

x

ψ
(0)
m (x)

†
V (t)ψ(0)

n (x)dx (29)

The further higher terms are computed iteratively but are not

used in the implementation of this work due to their computational

complexity.

The term a
(1)
m (t) in equation (28) represents the fact that the

system posesses a kind of memory. The integration is always com-

puted from the time point where the perturbation started. Even if

the disturbance stops its action the effects of the interaction are

“remembered” and maintained in the system. This phenomenon is

inherited to the stored sound.
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4.3.2. Audification Choices

The time-dependent perturbation only affects the state of the sys-

tem. Therefore an insight to the influence of the disturbance can

be only made through the audification of the stored sound. More

specifically, for every windowed segment coefficients the first or-

der correction term is computed and added as shown in (29). The

resynthesized sound with respect to the basis of the unperturbed

eigenfunctions contains the changes that are implied by the distur-

bance.

So far the type of perturbations V (t) that were used could be

decomposed as a product of a constant Hermitian matrix V and

a function of time f(t). The V term contains the spatial depen-

dency and is in analogy with the systems that were used in the

time-independent perturbation and the f(t) which expresses the

time dependency and contains combinations of linear, step and si-

nusoidal functions.

In the signals treated with a time-dependent perturbation there

is always an existing component that evolves in time according to

the unperturbed Hamiltonian as seen in (26) and a component that

evolves under the influence of the perturbation. These two evolu-

tions interfere with each other and create recognizable interference

patterns in the spectral domain. Specially in the case where f(t)
is almost constant for a specific duration, a periodic component

which acoustically is clearly separated from the evolution modu-

lation appears as shown in figure 6.

Figure 5: The time-dependency f(t) of the perturbation that was

used for the creation sound in figure 6

By using perturbations with different types of V parts and

same time dependency f(t) it became apparent that the developed

sounds reflect more the time dependency than the V component.

5. IMPLEMENTATION DETAILS

Two different software packages that implement the functionality

mentioned above have been programmed, one in Matlab and one in

C for a PD external. The GNU Multiple Precision Arithmetic Li-

brary (GMP) [9] provided an efficient solution to the computation

of the factorial which is the main obstacle for the implementation

of the eigenfunctions ψn(x) for large n. For the efficient compu-

tation of the externals, specially in the analysis-resynthesis stage,

the CBLAS [10] and CLAPACK [11] were included.

6. FUTURE WORK

For the further comprehension of the system’s behavior sonifica-

tion decisions need to be undertaken. As seen in the eigenfunc-
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Figure 6: Spectrum of a sinusoidal with frequency 440 Hz when

opposed to a time-dependent perturbation with V a Hadamard

matrix and time-dependency f(t) as in the figure 5. The devel-

opment of the sound has similarities with the time-evolution spec-

trum of the figure 2 in the beginning but the perturbation effects

gradually grow. At the time point t = 5 sec the perturbation stops

but its effects remain as a constant periodical component.

tion’s deformation from time-independent perturbation case, ap-

propriate methods that include psychoacoustical principles and are

stronger interconnected to the nature of some of the phenomena,

should be further explored.

Apart from the pertubation method other disturbance approaches

can be explored, such as the variational method [1, pp. 147–149].

This approaches are applied in the cases where the decomposi-

tion of the disturbed Hamiltonian cannot be made in the means of

an approximative method because the system cannot be described

through a small disturbance on a solvable system.

According to the correspondence principle of Bohr for rela-

tively big values of n, the bahavior of the quantum harmonic oscil-

lator should be consistent with its classical counterpart. In partic-

ular, the larger the n becomes, the more we approach the classical

harmonic oscillator [3, pp. 54–57]. Contrariwise, for the lowest

possible value of n the behavior of the oscillating object deviates

the most from the classical one. Quantum mechanical phenom-

ena obey the uncertainty principle, therefore the comparison can

only be made in terms of propability densities of finding the oscil-

lating object in a specific position x. A sonification scheme that

will concentrate on the transition from the quantum to the classical

equivalent harmonic oscillator could be one of the possible ways

for the sonification of the correspondence principle.

All of the phenomena that are described until now were real-

ized in the quantum mechanical level. How much of the stored

information will be accessible in the classical level could be also

explored. For the computational model to be complete a readout

process of the state of the system must be included [2, pp. 283–

287]. The three quantum measurement schemes (General, Pro-

jective and Positive Operator Valued) will also be implemented

and included in this work [2, pp. 84–93]. The audification of the

measurement process, can be an approach to understand the phe-
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Figure 7: Pure Data External qho ∼ that implements the impact

that the time evolution, time-independent and time-dependent per-

turbation procedures have to a stored test sound.

nomenon of the collapse of the wavefunction. Audio signals could

be used to gain a first insight of how much of the signal informa-

tion that was stored by a quantum mechanical memory is classicaly

accesible.
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