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Modifying the spin-wave theory in the three-dimensional Heisenberg ferromagnet, we propose 

a simple approximation to investigate the low-temperature thermodynamics of one- and two­

dimensional Heisenberg ferromagnets H =- ]2}, (iJ) (S;S;- 5 2
), where S is the spin quantum num­

ber. We regard that the system is an ideal Bose gas with density S. For one-dimensional chain 

we get the free energy and the susceptibility per site: 

(3) s-- 2 

I =_ y3tz __ 2 -+_I_+ O( ystz) 
}47r]S 4!52 

' 

At S = 1/2 these coincide with the numerical results of the Bethe-ansatz integral equation. The 

susceptibility has not logarithmic correction contrary to a recent proposal by Schlottmann. For 

two-dimensional square lattice we get: 

1 ( 47r]5
2

) x= 37r]Sexp -T- (1+0(T)). 

§ 1. Introduction 

233 

In this paper we investigate the low-temperature thermodynamics of one- and two­
dimensional Heisenberg ferromagnets with general spin quantum number S: 

H = -] ~ (SiSj- S 2
), ]>0. (1·1) 

(iJ) 

Here < ij> means that i and j sites are nearest neighbors. We assume that there are N 
sites. Recently the one-dimensional S = 1/2 case was analyzed by us 1 >'

2
> and 

Schlottmann3>'4 > by the use of thermodynamic Bethe-ansatz integral equations. 5> From the 
numerical result of the integral equations we obtained free energy per site I as 
follows: 1

> 

I _ ( T)
1
1
2 

( T) ( T)
3

1
2 

2 -y--1.042 7 +1.00 7 -0.9 7 +O(T). (1· 2) 

On the other hand the spin-wave theory6>-s> gives 
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234 M. Takahashi 

f= 2~/_:dk ln(1-exp(T- 1](1-cosk))) 

= -1.0421869( ~r
12 

-0.0668971( ~r
12 

_ 0( T 512
) • (1· 3) 

The first term of Eq. (1·2) coincides with that of Eq. (1·3). This means that the spin­
wave theory stands in the one-dimensional system also. This is very surprising because 
one- and two-dimensional systems have not long range order and spin-wave theory is 
expected to lose its validity. The second terms of (1·2) and (1·3) are completely 
different. Then conventional spin-wave theory should be modified to get higher order 
terms. 

In one- and two-dimensional systems at low temperature the correlation length 
becomes very long and the system is nearly ordered. The spin-wave theory regards that 
an eigenstate of Eq. (1·1) is an excited state of non-interacting spin waves. In zero 
magnetic field the number of spin waves becomes infinite and the magnetization should be 
minus infinity. Actually the magnetization is zero and the density of spin waves is 5. 
Restriction on the particle number is a natural result of the fact that a site cannot have 
more than 25 bosons. This is well known as kinematical interaction.8

> Then we calcu­
late the free energy of an ideal Bose gas on the condition that the number of bosons is SN. 
Corresponding to this constraint condition a Lagrange multiplier appears which is equiva­
lent to the chemical potential. In three-dimensional system this chemical potential is 
equal to the external magnetic field. In one- and two-dimensional system the chemical 
potential is not zero even in zero magnetic field. Then we determine the chemical 
potential so that the average number of bosons is 5N. At low temperature it is a very 
small negative quantity. The introduction of nop-zero chemical potential is the essentials 
of this paper. Strictly speaking this should be derived from kinematical and dynamical 
interactions of spin waves. But we have not such a systematic way to calculate the 
effective chemical potential. 

In § 2 we formulate our approximation for one- and two-dimensional Heisenberg 
ferromagnets. The expressions of the free energy, energy, two-point correlation function 
and magnetic susceptibility are given. The results at high-temperature limit are given. 
In § 3 we investigate low-temperature properties of one-dimensional chain and the two­
dimensional square lattice. In § 4 the two-point correlation function is calculated. For 
the one-dimensional chain chemical potential is of the order of T 2

, where T is the 
temperature. It is shown that specific heat behaves as n and the susceptibility diverges 
as 1/T2

• The free energy and the magnetic susceptibility are expanded for general 5. 
At 5 = 1/ 2 our formulas coincide with the results of Bethe-ansatz integral equations in the 
first and second orders. Then our approximation is better than the conventional spin­
wave theory. The two-point correlation function decays as exp(- r/ ~). The correlation 
length~ is ]5 2 /T. In the two-dimensional square lattice the chemical potential is of the 
order of -exp( -4Jr]5 2/T). The free energy is expanded by power series of T. The 
coefficients coincide with those of the conventional spin-wave theory. The low­
temperature specific heat behaves as T. The susceptibility diverges as exp(4Jr]S 2/T). 
The two-point correlation function decays like the Yukawa function r- 1exp(- r/ ~), where 
~ is (]5/ T) 112exp(2Jr]5 2 

/ T). In § 5 we discuss about Schlottmann's susceptibility4
> for 5 

= 1/2 linear chain which diverges as J/ ( T 2 ln(]/ T)). We compare our results with 
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Quantum Heisenberg Ferromagnets in One and Two Dimensions 235 

various approximations9>- 12> which were made for the low-dimensional Heisenberg fer­
romagnet. 

§ 2. Spin-wave theory with fixed number of bosons 

2.1. Holstein-Primakoff expansion up to 5° 

For Hamiltonian 0·1) we apply the Holstein-Primakoff transformation:7
> 

S/= sjx+ iS/=/25 fj(S)aj, 

sj-=Sf-iS/=/2Sa/!AS), 

S/=5-a/aj, 

(2·1) 

where aj * and aj are the creation and annihilation operators of bosons of the j-th site. 
Expanding with respect to s-1 we have 

H=J ~ [s(a/-a/)(aj-ai)+ 
4
1 {a/a/(ai-aj) 2 +(a/-a/) 2 aiaj}]+o(S- 1

). 
(ij) 

(2· 2) 

We change from the site representation to the momentum representation: 

For simplicity we assume that the latt'ice has only one magnetic site in a unit cell. Then, 
for example, the honeycomb lattice is excluded. In the momentum representation (2· 2) is 

H=Ho+H1, 

Ho=~]Sc(k)a/ak, c(k) -~(1-cosk8), 
k 8 

H1=(8N)-1] ~ ~{e-i<k'-q>8(1-eik'8)(1-eik8) 
kk'q 8 

(2· 3) 

(2·4) 

(2 ·5) 

Here B's are the lattice vectors to nearest neighbors. We neglect the terms of O(S-1
). 

2.2. Eigenstate of Ho 

An eigenstate of Ho is given by 

A state is characterized by a set of N non-negative integers {nk}. The expectation value 
of H1 for this state is as follows : 
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236 M. Takahashi 

+ ~(1- eiM) (1- e-ik8) ( nkz_ nk)} . 
k 

The operator SiSj is written by the Bose operators: 

SiSj=S 2 -S(a/-a/)(ai-aj)- ~ {a/a/(ai-aj) 2 

+(a/-a/) 2 aiaj}+ ocs-l) at i-::tj. 

In the momentum representation this becomes 

Then we have the expectation value of SiSj at i-:::1= j: 

2.3. Density matrix and thermodynamic quantities 

We assume that the density matrix is approximately given by 

(2· 7) 

(2·8) 

(2·10) 

(2 ·11) 

Here P k(n) is the probability that the k momentum state has n bosons. It stands 

for all k's. (2 ·12) 

Entropy for this density matrix is 

00 

entropy=-~~Pk(n)lnPk(n). 
k n=O 

Unperturbed free energy for Ho is 

00 00 

Fo=]S~dk) ~ nPk(n) + T~ ~ Pk(n)lnPk(n). 
k n=O k n=O 

(2·13) 

Magnetization in the z -direction is given by SN-~ ka k *a k· Then the condition of zero 
magnetization is 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.87.233/1873132 by U

.S. D
epartm

ent of Justice user on 17 August 2022



Quantum Heisenberg Ferromagnets in One and Two Dimensions 237 

00 

SN=~~nPk(n). 
k n=O 

(2·14) 

We should minimize Eq. (2·13) under.constraint conditions (2·12) and (2·14). Then we 
introduce N + 1 Lagrange multipliers f1 k's and f1 and minimize the following quantity W: 

00 00 

W = Fo-~ f1 k ~ P k( n) - f1 ~ ~ nP k( n) . 
k n=O k n=O 

(2 ·15) 

From aW/aPk(n) =0 we have 

P k( n) =exp(fik r- 1 -1)exp(- nT- 1(]Ss(k)- !1)) . (2·16) 

Using Eq. (2·12) we have 

exp(fik r- 1 -1) = 1-exp(- r- 1(]Ss(k)- fi)) . 

Then we get the self-consistent equation for 11: 

(2·17) 

00 

nk ~ nPk(n) 
n=O 

1 (2·18) 

Unperturbed free energy is given by 

The expectation value of nk2 is as follows: 

00 

<nk2>= ~ n 2Pk(n)=iik2 +iik. 
n=O 

(2·19) 

Using (2·7) and (2·19) we get the expectation value of H1: 

(2·20) 

In the same way we get the expectation value of SiSj from (2·10) and (2·19): 

(2·21) 

Substituting (2·17) we have 

(2. 22) 

The free energy per site with the first order correction is given as follows: 

(2·23) 
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238 M. Takahashi 

Here 5' is defined by 

(2o24) 

z is the number of the nearest neighbors. 5' 2 is the correlation of nearest neighbors. 
The energy per site e is: 

Consider the case where the Zeeman term H' = -2h~5/ is added to Hamiltonian (1o1). 
The susceptibility per site x is given by the correlation functions: 

(2o 26) 

Here we used SiSi=5(5+1). Substitution of (2o22) into (2o26) yields 

X 4 {~- 2}+ 45 
3TN i:nk 3T (2o 27) 

In the same way the magnetic form factor S( q) is as follows: 

S(q)-N- 1 ~<SiSJ>eiq(r;-rj>=N- 1~ iik+qiik + S. 
iJ k 

(2 ° 28) 

2.4. Solution at T ~ oo 

We consider the limit of infinite temperature. In this case ii k is a constant which 
equals to 5. Self-consistent equation (2o17) gives 

,u/ T =ln(1 +5- 1
) • 

Then we have 5', e, xT, <SiSJ> from (2o24), (2o25), (2o27), (2o22): 

5'=0, 

xT=45(5+1)/3, 

<SiSj>=5(5+1)oij. 

These are trivial but correct results. From (2 o 23) we have 

- ¥~ { = ln ( 1 + 5) ( 1 + 1) 5 

• 

(2o 29) 

(2o30) 

(2o31) 

This value of entropy per site is bigger than the correct value ln(25 + 1). For 5 = 1/2 our 
theory gives ln(2.598) corresponding to the correct value ln 2. Thus our approximation 
is not very bad even at T~oo. 

2.5. Rotational symmetry 

The true density matrix should have a rotational symmetry in the spin space. But 
approximate density matrix (2o11) is far from rotationally symmetric. Actually we have 
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Quantum Heisenberg Ferromagnets in One and Two Dimensions 239 

completely different expectation values of S/S/ and S/S1x if we use density matrix 
(2·11) and the Holstein-Primakoff transformation (2·1). Then in real calculation of 
expectation value of an operator, it should be averaged by the following rotational 
symmetrization. The average is taken over angle 2Jr around a fixed axis. About the 
direction of axis we average the operator over solid angle 4Jr. By this averaging, an 
operator A is replaced by the following A: 

where 

U=exp icf;(cose sz+sinBcos¢ sx+sinBsin¢ SY). (2·32) 

By this rotational symmetrization we have 

(2·33) 

(2·34) 

It seems that the rotational symmetrization of any operator is expressed in terms of 
inner products of spin pair. Then we only need to calculate expectation values of the 
quantities as appeared on the right-hand side of (2 · 33) and (2 · 34). It is dangerous and 
misleading to calculate expectation value of an operator without this sy1mmetrization. 

2.6. Relation with the usual spin-wave theory 

As Dyson8
> formulated, the usual spin-wave theory considers the problem of 

Hamiltonian (1·1) with finite magnetic field: 

H' =-2h~ iS/. 

The zero-field case is derived by taking the limit h ~ 0 +. In the case of three dimensions 
at low temperature this limit is easily calculated. But in one and two dimensions this 
procedure is difficult because number of spin waves diverges. Therefore many approx­
imations were invented for the low-dimensional Heisenberg model. Our theory formulat­
ed in this section is a kind of such approximations. But as will be shown in the next 
section, it gives the correct low-temperature expansion for the one-dimensional 5=1/2 
Heisenberg ferromagnet. Our theory is applied also to the three-dimensional system. At 
low temperature we get zero-momentum condensation with p=O-. The quantity of zero 
momentum condensate is equal to the spontaneous magnetization. It is equivalent to the 
spin-wave theory for three-dimensional system at low temperature in the limit of zero 
field. Our theory is restricted to zero external magnetic field. If we want the free energy 
with finite field we should use the conventional spin-wave theory. For a very weak 
magnetic field, we can expand the free energy with powers of h2

• The first expansion 
coefficient is the susceptibility given by (2 · 27). The second coefficient is given by four­
point correlation functions. This may be calculated by rotational symmetrization (2 · 34) 
and substitution of (2·9). 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.87.233/1873132 by U

.S. D
epartm

ent of Justice user on 17 August 2022



240 M. Takahashi 

2. 7. Improvement of approximation 

In § 2.3 we minimize <Ho>- T ·entropy and obtain a self-consistent equation for f-1. 

But this is improved if we minimize <Ho + H1>- T ·entropy. In this approximation (2 ·18) 
should be replaced by 

1 (2. 35) exp( T- 1(]5' c(k)- f-1.)) -1 · 

It should be noted that S is replaced by 5' defined in (2 · 24). So we have two parameters 
S' and f-1 which should be determined self-consistently by coupled equations (2 · 35), (2 ·17) 
and (2·24). Equations (2·19)"'(2·28) still stand in this improvement. At the lowest few 
orders of the low-temperature expansion this improvement does not change the 
coefficients because S' = S- 0( T 312

) or S' = S- 0( T 2
). In this paper we do not adopt this 

improvement because the formulas become too complicated. 

§ 3. Free energy and susceptibility at low temperature T~JS 

3.1. State density and Bose-Einstein integral function 

It is convenient to define the state density function: 

1 w(x)= N"'2(o(x-c(k)). 

Equations (2·17), (2·24), (2·23) and (2·27) are written as follows: 

S=1
00 

w(x)dx 
o exp(xt-1 + v)-1 ' 

S'=S-1_1
00 

xw(x)dx 
z o exp(xt- 1 + v)-1 ' 

__f_= -v5+1ooln(1-exp( -xt- 1-v))w(x)dx- z! (5-5')2 

T o 2T ' 

=-4-100 exp(xt- 1 + v )w(x )dx 
X 3T o (exp(xr1 +v)-1)2 

' 

where we define reduced temperature t and reduced chemical potential v by 

t T/(JS), v=- f-liT. 

(3·1) 

(3·2) 

(3·3) 

(3·4) 

(3 ·5) 

(3·6) 

Thus in our approximation thermodynamic quantities are determined by state density 
w(x). For the one-dimensional chain, w(x) is as follows: 

1 2rr -• X 1--

{ 

1 ( ( x))-112 
w(x)= 27f 1 a(x-2+2cosk)dk~ z; 4 

For the square lattice we have 

at O~x~:;A, 

at x>4. (3·7) 
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Quantum Heisenberg Ferromagnets in One and Two Dimensions 241 

1 (27t (2n: . 
w(x)= 47r2 Jo dk1Jo dk2BCx-4+2cosk1+2cosk2) 

8 K(-x-) at O~x~4, 
7r2

( 8-X) 8- X 

_8_K(8-x) at 4~x~8, 
7Z'

2 X X 

0 at x28. 

Here K(k) is the complete elliptic integral of the first kind with modulus k. 
calculation of (3·2)~(3·5) we need Bose-Einstein integral function: 

1 reo ua-1du e-v e-2v 
F(a, v)= r(a)Jo eu+v_1 1a +--za-+ ... 

(3·8) 

For the 

(3·9) 

Analytical property of this function near v = 0 is known. 13
> If a is not a positive integer 

we have 
co 

F(a, v )= F(1- a)va-1 + ~ (n! )- 1
(- v )ns(a- n). 

n=O 
(3 ·10) 

When a is a positive integer, we have 

(3 ·11) 

Here s(a) is Riemann's zeta function. For the integrals in (3·4) and (3·5) the following 
identities are useful: 

1(XJ ua- 1ln(1- e-u-v)du = F(a)F(a+ 1, v) , 

1co ua-1eu+v(eu+v_l)-2du=.r(a)F(a-1, v). 

3.2. One-dimensional chain 

From (3·7), w(x) is expanded at small x: 

w(x)=(27f)-1x- 112(1 +l_x+-3-x2+···) 8 128 . 

(3 ·12) 

(3·13) 

(3·14) 

Equations (3·2)~(3·5) are expanded by Bose-Einstein integral function. Using Eq. 
(3 ·10), these are written as series of v and t: 

S=_l
112 

{.fiiv-112+ s-(l)+ls(l_)t- s-(-l)v+ ... } 
2./JZ' 2 16 2 2 ' 

(3 ·15) 

S'=S--1-s(l_)ts'2+ ... 
8.fi[ 2 ' 

(3 ·16) 

(3 ·17) 

(3 ·18) 

From Eq. (3 ·15) we should determine v as a function of t. We transform Eq. (3 ·15) as 
follows: 
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242 M. Takahashi 

(3 ·19) 

By iteration we get v112 as a power series of t 112: 

V112 . t
112

( 1+7r-l/2r-(l)( l
112

)+7r-ls2(l)_t_+O(t3!2)) 
2S '=> 2 2 S 2 4 S2 

• 
(3. 20) 

Substituting this into (3 ·17) and (3 ·18) we get 

1 . t(5/2) }(_I_)312 
+ O( T2) 

8 /27[ 2SJ · 

= 8S
4
J (1_l_. tC1/2) (_I_)112 +_1_· s

2
(1/2) (_I__)+ oc r3!2)) 

X 3 T 2 S /27[ 2S] S 2 27r 2S] . 

We substitute the following values into the above equations: 

t(1/2) 
j2; 

t(5/2) 
j2; 

-0,582597455' 

0.53517597 

t(3/2) 
j2; 

and get the expansions for S = 1/2: 

1.0421869' 

f _ ( y)112 T ( T)3/2 2 -y- -1.0421869 7 +7-1.2320919 7 + 0( T ) , 

(3. 21) 

(3. 22) 

(3. 23) 

(3. 24) 

(3·25) 

These equations should be compared with the result of the Bethe-ansatz integral 
equations :1

>'
2
> 

f _ ( T)l/2 ( T) ( T)3/2 2 -r--1.042 7 +1.00 7 -0.9 7 +O(T), (3. 26) 

J ]112 1 
x=0.1667 y2 +0.581 y 312 +0.68-y+ O(T112). (3. 27) 

All the coefficients except the third term of f coincide very well. Anyway it is possible 
that Eqs. (3·21) and (3·22) give exact coefficients of the low-temperature expansions for 
arbitrary spin quantum number at least up to the second term. 

3.3. Two-dimensional square lattice 

From Eq. (3·8), w(x) is expanded at small x: 

w(x)=-
1-(1 +~+-3-x2 + ···) 47r 8 128 . (3. 28) 

Then the integrals in Eqs. (3·2)"'(3·5) are expanded by Bose-Einstein integral function 
with integer a. Using Eqs. (3·10) and (3·11), we have 
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Quantum Heisenberg Ferromagnets in One and Two Dimensions 243 

5=-t-{-lnv+_£_+ s(2) t+···} 
47r 2 8 ' 

(3. 29) 

5'=5- s(2) t2+··· 
167r ' (3· 30) 

_t_=- sC2) t- s(3) t2- 27s(4) t3···-JLc5 _ 5 ,)2 
T 47r 327r 2567r T ' 

(3. 31) 

x= 3;T(;+0(1)). (3. 32) 

From Eq. (3·29) we get 

v=exv(-
4 ~5 + O(t)). (3. 33) 

At low temperature v is a very small quantity. Substituting this into (3·31)"'(3·32) we 
have 

/=-__E__{s(2)+ s(3) ·_L_+O(T2
)} 

47r]5 8 15 ' (3. 34) 

x= 3;15 exv( 47r!J
2 

)c1 + O(T)). (3. 35) 

The susceptibility diverges strongly as exp(47r]52 /T). The free energy behaves as the 
conventional spin-wave theory predicts. Unfortunately for the two-dimensional Heisen­
berg ferromagnet we have no exact solution to compare with our theory. But it is 
possible that Eqs. (3·34) and (3·35) give the correct low-temperature expansion of the free 
energy and the susceptibility. 

§ 4. Asymptotic behavior of two-point correlation function 
at low temperature and long distance 

As shown in Eq. (2 · 22) the two-point correlation function is the square of the Fourier 
transform of the Bose momentum distribution (2·18). At long distances it is determined 
by nk at smalllkl. From Eq. (2·18) we have 

_ 2dt/z e:- 1 (2d I )-1/2 
nk k2+(2~)-2 , .,-=2 tv z . (4 ·1) 

The Fourier transform of this function is well known both in one and two dimensions. In 
one dimension we have 

(4. 2) 

In two dimensions we have 

<SoS r> 112 =(2dt/z) (2;)21
00 

dk k 12

7C dB exfz~~;e)sf) 

- 1 roo k]o(kr) dt 
- (2dt/z) 27r Jo dk kz+ (2 ~)-2 ITZ Ko( r/2~) 

~ ~~[if-exp( -r/2~), (4. 3) 
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244 M. Takahashi 

where Ko is the modified Bessel function. Then for the square lattice we have 

yz e-r/~ 

47f]2 5 2 
• (r/~) ' 

"""' ( JS )
1

'
2 

( 27f]S
2

) ~- T exp T . (4 ·4) 

Thus we find that ~ defined in ( 4 ·1) gives the correlation length. Reduced chemical 
potential v determines the correlation length and the magnetic susceptibility. 

§ 5. Summary and discussion 

As shown in § 2 we can construct modified spin-wave theory which calculates low­
temperature properties of one- and two-dimensional Heisenberg ferromagnets. We re­
produced the low-temperature expansions of free energy and susceptibility of the 5=1/2 
Heisenberg chain which was previously obtained by the Bethe-ansatz method. 

Recently Schlottmann4
> proposed that the susceptibility diverges as J/( T 2ln(J/T)). 

He claims that this susceptibility is derived analytically from the Bethe-ansatz integral 
equation. Apparently it contradicts with our expansion (3 · 25) which diverges as J/T 2

• 

Here we review his derivation briefly. The Bethe-ansatz integral equations5
> contain 

infinite number of unknowns 77n(A) (n=1, 2, ···, -oo< A< oo). At very large n or lA I, 
77n(A) approaches to the free spin solution. At sufficiently low temperature, Tln7Jn(A) 
approaches to its zero-temperature solution. He assumes that one can define crossover 
point Ac(n) and nc for given temperature T. Using matching condition for two solutions 
he determined nc and Ac(n) and got expressions of the free energy and the susceptibility. 
In our opinion the crossover region is very wide and the behavior of 77n(A) in this region 
is essential. His assumption is too crude for the calculation of the susceptibility. His 

J.Q 

o.s 

0 o.os 0.1 

T/J 
Fig.l. xT2

]-
1 as a function of T]- 1 for the 5=1/2 

Heisenberg ferromagnet. Crosses are the results 
of the Bethe-ansatz integral equation from Ref. 
1). The solid line is our expansion Eq. (3·25). 
The dashed line is Schlottmann's susceptibility 
(5·1) taken from Ref. 4). Our expansion for­
mula coincides accurately with that of the Bethe­
ansatz integral equation. 

derivation cannot be regarded as an 
analytical one. Of course we have not 
succeeded in deriving analytically that x 
behaves as J/T 2 from the Bethe-ansatz 
integral equations. In Fig. 1 we compare 
numerical results of the integral equations, 
our expansion (3 · 25) and Schlottmann's 
expansion:4

> 

0.84] { 1 lnln(J/T)} 
X T 2 ln(J/T) + ln2(]/T) · 

(5·1) 

Apparently his expansion is worse than 
ours. Thus we can say that there is not 
logarithmic correction in the suscep­
tibility. The correlation length is propor­
tional to r- 1 and has not logarithmic 
correction. 

We can understand the reason why 
thermodynamic quantities of the linear 
chain are expanded by IT. It is because 
the chemical potential is expanded by ff 
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as shown in (3·20). We can explain the mysterious second term of free energy expansion 
(1· 2) by the effect of chemical potential. 

Kondo and Yamaji9
l were the first to find that the energy and the free energy of the 

S = 1/2 linear chain is expanded by power series of /1'. They used the Green function 
decoupling approximation. Their coefficients are slightly different from ours. The first 
term of the free energy is 5/6 times of the spin-wave result. This discrepancy comes from 
their decoupling approximation. For the susceptibility they gave the correct first term 
x= J/(6T2

). 

From Eq. (3 · 21) we get the expansion of the specific heat per site: 

c (5· 2) 

This formula does not contradict with BlOte's numerical result10
l for the finite linear chain 

with large spin quantum number S. He got that the specific heat is stnaller than the 
spin-wave result which is the first term of r.h.s. of (5 · 2). Unfortunately detailed compari­
son is difficult because the length of chain is short. 

For the two-dimensional Heisenberg ferromagnet the free energy is expanded as a 
power series of T and the first and the second terms are the same with those of the 
conventional spin-wave theory. It is because in two dimensions chemical potential effect 
is of the order of exp(- 4Jf]52 /T) and the situation is different from that in one dimension. 
We show that the susceptibility diverges as exp(4Jf]S2/T). This result apparently denies 
Stanley and Kaplan's conjecture11

l that the susceptibility diverges at finite temperature. 
The following formula for the susceptibility was derived by several authors: 12

l 

x= CTzexp(a/T). 

The values of C, l and a are dependent on approximations. Our result is a=4Jf]52 and 
l=O. 

Our spin-wave approximation can be applied to the classical Heisenberg model by 
taking an appropriate limit. 
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