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Abstract. Entanglement is arguably the key quantum-mechanical resource
for improving the performance of communication, precision measurement and
computing systems beyond their classical-physics limits. Yet entanglement is
fragile, being very susceptible to destruction by the decoherence arising from
loss and noise. Surprisingly, Lloyd (2008 Science 321 1463) recently proved that
a very large performance gain accrues from use of entanglement in single-photon
target detection within an entanglement-destroying lossy, noisy environment
when compared to what can be achieved with unentangled single-photon states.
We extend Lloyd’s analysis to the full multiphoton input Hilbert space. We show
that the performance of Lloyd’s single-photon‘quantum illumination’ system is,
at best, equal to that of a coherent-state transmitter of the same average photon
number, and may be substantially worse. We demonstrate that the coherent-
state system derives its advantage from the coherence between a sequence of
weak—single photon on average—transmissions, a possibility that was not
allowed for in Lloyd’s work. Nevertheless, as shown by Tan et al (2008
Phys. Rev. Lett. 101 253601), quantum illumination may offer a significant,
although more modest, performance gain when operation is not limited to the
single-photon regime.
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Entanglement is arguably the key quantum-mechanical resource for improving the performance
of communication systems [3], precision-measurement sensors [4] and computer algorithms [5]
beyond their classical limits. Yet entanglement is fragile, being very susceptible to destruction
by the decoherence arising from loss and noise. Thus, the recent paper by Lloyd [1] is especially
exciting. Lloyd showed that a very large performance gain accrues from use of entanglement
in single-photon target detection within an entanglement-destroying lossy, noisy environment
when compared to what can be achieved with unentangled single-photon states. His work
teaches us not to dismiss the value of entanglement in all scenarios wherein decoherence
destroys that nonclassical behavior prior to quantum measurement.

The present work extends Lloyd’s analysis to include the full multiphoton input Hilbert
space that allows coherences between different photon-number states. In particular, we compare
Lloyd’s strictly single-photon ‘quantum illumination’ transmitter with a weak coherent-state
transmitter operating at unity average photon number per pulse. We get a somewhat surprising
result: Lloyd’s quantum-illumination system yields performance that, at best, equals that of
the coherent-state system, and may be substantially worse. Since [1] appeared, Tan et al [2]
reported a full Gaussian-state treatment of quantum-illumination target detection—outside the
single-photon regime—revealing that entanglement does provide a performance gain, albeit
more modest, compared to coherent-state systems of the same average photon number. Thus
we shall also address the cause for Lloyd’s single-photon quantum illumination losing its luster
when compared with its weak coherent-state counterpart. Here, the answer turns out be the
coherence between a sequence of single photon on average coherent-state transmissions.

Consider a quantum-illumination radar system in which, on each transmission, one photon
from a maximally entangled pair interrogates a region of space in which a target might be
located, whereas the other photon is retained at the receiver for use in a joint measurement with
what is received from that region. Lloyd [1] showed that such a transmitter affords dramatically
improved photodetection sensitivity in an entanglement-breaking scenario in comparison to
what is achieved with unentangled single-photon states. His quantum Chernoff bound on the
error probability—when the optimum quantum measurement over N -repeated entangled-state
transmissions is employed—can be stated as follows:

Pr(e)QI 6


e−Nκ/2, for κ � 1, M NB � 1and κ � NB/M;

the ‘good’ regime

e−Nκ2 M/8NB/2, for κ � NB/M � M NB � 1;

the ‘bad’ regime.

(1)

Here, κ is the transmitter-to-receiver coupling when the target is present, NB is the average
number of received background photons per mode, and M � 1 is the number of temporal
modes over which the transmitter state is entangled. The distinction between ‘good’ and ‘bad’
regimes is that performance in the former is independent of the background noise, whereas the
performance in the latter is dominated by that noise.

The quantum-illumination performance in (1) is substantially better than the quantum
Chernoff bound Lloyd found for N -repeated transmissions of a single-photon pure state,

Pr(e)SP 6


e−Nκ/2, for κ � 1 and κ � NB � M NB � 1;

the ‘good’ regime

e−Nκ2/8NB/2, for κ � NB � M NB � 1;

the ‘bad’ regime,

(2)
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where M-mode photodetection has been assumed, as in the entangled case. Comparing (1)
and (2) shows that when both systems are in their ‘good’ regimes, they achieve identical
performance. However, the ‘good’ regime for quantum illumination extends to M-times higher
background levels than does that for unentangled single-photon transmission. Moreover, when
both systems are in their ‘bad’ regimes, quantum illumination achieves an error-probability
exponent that is M times higher than that for unentangled single-photon transmission. Note
that M may be a very large number. For example, when the entangled state is obtained from
a continuous-wave spontaneous parametric downconverter source operating in the biphoton
limit, a T -sec-long pulse from a source whose phase-matching bandwidth is W Hz comprises
M = W T modes. Taking a reasonable W = 1 THz value for the phase-matching bandwidth, we
find that M = 103 for a T = 1 ns pulse.

Lloyd’s results were predicated upon the assumption of single-photon operation. For any
given transmission he assumed that at most one photon was received, be it from target return or
background light. He also indicated that a full Gaussian-state analysis of quantum illumination
in the κ � 1 regime would lift the preceding restriction. That analysis has now been performed
by Tan et al [2]. Their work, as we will now show, demonstrates a significant difference
from what Lloyd found for the single-photon limit. Before turning to that demonstration, it
is important to note that Chernoff bounds are exponentially tight. Specifically, if

Pr(e)6 e−NE/2 (3)

is the Chernoff bound on the error probability achieved with N repeated uses of a particular
transmitter state, then

lim
N→∞

[ln(Pr(e))/N ] = −E, (4)

so that system performance is well characterized by the Chernoff bound error-probability
exponent E .

For a transmitter that emits a coherent state with N photons on average—e.g. by
N -repeated transmissions of a coherent state with unity average photon number—the quantum
Chernoff bound from Tan et al is

Pr(e)CS 6 e−Nκ(
√

NB+1−
√

NB)2
/2 ≈ e−Nκ/2, for NB � 1. (5)

This performance equals that of Lloyd’s quantum-illumination transmitter in that system’s
‘good’ regime, and is superior to that transmitter’s performance in its ‘bad’ regime. Indeed,
when (1) is compared with (5) we see that the latter has no κ restriction on its validity, i.e.
NB � 1 is enough to ensure that repeated transmission of coherent states with unity average
photon number leads to minimum error-probability target detection performance that is not
background-noise limited. Thus, whereas Lloyd’s quantum-illumination system will fall prey
to background noise—within its assumption of single-photon operation—when κ � NB/M �

M N B � 1, no such thing happens for the coherent-state system.
It is easy to understand the origin of the performance advantage afforded by N -repeated

transmissions of a unity average photon-number coherent state. All of these transmissions have
been assumed to be phase coherent. Hence they are equivalent to transmitting the coherent
state |

√
N 〉, with average photon number N , in a single mode that is the coherent superposition

of the modes excited by each individual transmission. Unity quantum efficiency photon counting
(direct detection) on this super-mode will achieve error probability e−Nκ/2, when Nκ�NB�1.
The optimum quantum receiver for the coherent-state system is not photon counting, but, as
shown in (5), it is always in the ‘good’ regime when NB � 1.
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Another way to exhibit the role played by coherence in achieving the performance given
in (5) is to consider a receiver that eschews this coherence. Suppose that on each of the N
coherent-state transmissions we employ a minimum error-probability receiver to decide—based
on the return from that transmission alone—whether or not the target is present. When κ �

NB � 1, the error probability for this single-transmission receiver is given by

Pr(e)CS1 ≈
1 −

√
1 − e−κ

2
≈

1 −
√

κ

2
, for κ � 1, (6)

where we have used the background-free error probability of the optimum receiver in the
first approximation [6]. Now suppose that the decisions made on each of the N individual
transmissions are combined, by majority vote, to determine a final decision as to target absence
or presence. This majority-vote receiver ignores the coherence between the different coherent-
state transmissions. The Chernoff bound on its error probability is

Pr(e)MV 6
[2

√
p(1 − p)]

N

2
, where p ≡ Pr(e)CS1 . (7)

Making use of the κ � 1 approximation for p we can reduce this Chernoff bound to

Pr(e)MV 6 e−Nκ/2/2, (8)

which has an error-probability exponent that is a factor of two worse than what is obtained with
coherent processing of the N coherent-state transmissions.

The single-shot receiver needed to achieve Pr(e)CS1 is a complicated photodetection
feedback system [7]. Thus it is of interest to exhibit an alternative, for use with the coherent-
state transmitter, whose performance may exceed that of Lloyd’s quantum-illumination system.
Suppose that a coherent-state transmitter is used in conjunction with unity quantum-efficiency
homodyne detection. The Chernoff bound for this system is

Pr(e)hom 6 e−Nκ/(4NB+2)/2 ≈ e−Nκ/2/2, for NB � 1, (9)

so that the performance of this conventional (coherent-state transmitter, homodyne-detection
receiver) laser radar is a factor of two worse in error-probability exponent than Lloyd’s quantum-
illumination system when that system is in its ‘good’ regime. The conventional system, however,
performs far better than Lloyd’s quantum-illumination system when the latter is in its ‘bad’
regime.

In conclusion, the full Gaussian-state analysis suggests that Lloyd’s quantum illumination
is unlikely to substantially improve radar performance in the low-noise regime wherein NB � 1.
Tan et al [2], however, showed that a factor-of-four error-probability exponent improvement,
over coherent-state transmission, is achieved with a spontaneous parametric downconverter
entangled-photon source and the optimum quantum measurement in the lossy (κ � 1), noisy
(NB � 1), low-brightness (N/M � 1) scenario. Thus, the ultimate conclusion remains the
same, i.e. we should be careful not to dismiss the potential benefits of entanglement in scenarios
wherein decoherence destroys that entanglement prior to quantum measurement.
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