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Quantum Incompressibility and
Razumov Stroganov Type Conjectures

Vincent Pasquier

Abstract. We establish a correspondence between polynomial representations of
the Temperley and Lieb algebra and certain deformations of the Quantum Hall
Effect wave functions. When the deformation parameter is a third root of unity,
the representation degenerates and the wave functions coincide with the domain
wall boundary condition partition function appearing in the conjecture of A.V.
Razumov and Y.G. Stroganov. In particular, this gives a proof of the identification
of the sum of the entries of the O(n) transfer matrix and a six vertex-model partition
function, alternative to that of P. Di Francesco and P. Zinn-Justin.

1 Introduction

This paper is aimed at establishing a correspondence between the deformation of
certain wave functions of the Hall effect and polynomial representations of the
Temperley and Lieb (T.L.) algebra.

This work originates from an attempt to understand the conjecture of A.V.
Razumov and Y.G. Stroganov [1][2][3], and some partial results towards its proof
by P. Di Francesco and P. Zinn-Justin [4].

We consider the analogue of spin singlet wave functions of the Hall effect
when one deforms the permutations into the braid group. This amounts to analyze
some simple representations of the T.L. algebra on a space of polynomials in Ne
variables where Ne is the number of electrons. The relation with the Hall effect
arises when we require certain incompressibility properties.

One of the wave functions we consider here is the Halperin wave function [5]
for a system of spin one half electrons at filling factor two. When the deformation
parameter q is a third root of unity, the braid group representation degenerates
into a trivial representation. In this way, we obtain a proof alternative to, and
apparently simpler than, that given in [4] of the equality between the sum of the
components of the transfer matrix eigenvector and the six vertex model partition
function with domain wall boundary conditions [2][6].

Another wave function we consider is the Haldane Rezayi wave function [7]1

describing a system of electrons of spin one half at filling factor one. This wave
function is a permanent, and its deformation is described in terms of Gaudin’s
determinants [8]. When q is a third root of unity, it degenerates to the square of
the six vertex model partition function.

1More precisely a minor modification of it considered in [15].
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In a separate publication [9], we shall consider the Moore Read wave function
describing spinless bosons at filling factor one [10]. Its deformation involves an
extension of the braid group known as the Birman-Wenzl algebra [11] which can
be represented on a polynomial space similarly to the cases presented here. In some
appropriate limit, the representation degenerates and the wave function coincides
with the transfer matrix eigenvector considered in [12] related to the conjecture of
J. De Gier and B. Nienhuis [13].

In general, when a Quantum Hall Effect wave function is discovered, it is
soon after observed experimentally. We argue here, that as a bonus, Quantum
Hall Effect wave functions and their deformations yield nice mathematical ob-
jects. Moreover, all these objects seem to be in relation with striking conjectures
emanating from the six vertex model.

Since the permutation group relevant in the quantum Hall effect is techni-
cally simpler than the braid group case, let us for pedagogical reasons explain why
finding a wave function turns out to be a useful tool to obtain a polynomial rep-
resentations of the permutation algebra. Essentially, the rest of the paper extends
the idea presented here to the braid group case.

We consider electrons in a strong magnetic field projected in the lowest Lan-
dau level. In a specific gauge the orbital wave functions are given by:

ψn(z) =
zn√
n!
e−

zz̄
4l2 , (1)

where z = x+iy is the coordinate of the electron, and l the magnetic length defines
the length scale related to the strength of the magnetic field. These orbitals are
shells of radius

√
2n l occupying an area 2πl2. Each orbital n is represented by a

monomial zn.
The quantum Hall effect [14] ground state Ψ is obtained by combining these

individual orbitals into a manybody wave function. A monomial zλ1
1 . . . z

λNe
Ne

de-
scribes a configuration where the electron j occupies the orbital λj . The wave
function is a linear combinations of such monomials. The effect of the interactions
is to impose some vanishing properties when electrons are in contact: Ψ ∼ (zi−zj)m
with m an integer when zi − zj → 0.

The physical properties are mainly characterized by the filling factor ν which
is the number of electrons per unit cell of area 2πl2. When the filling factor is
equal to ν, the accessible orbitals and thus the maximal degree in each variable is
bounded by ν−1Ne. On the other hand, the effect of the interactions (m) is to force
the electrons to occupy more space, thus to occupy higher orbitals and and has the
effect of increasing the degree. The problem is thus to obtain wave functions with
the maximal possible filling factor (equivalently the lowest degree in each variable)
compatible with the vanishing properties imposed by the interactions.

Once such a wave function is obtained, it is the nondegenerate lowest energy
state of a Hamiltonian invariant under the permutations, thus we know that it is
left invariant under the permutations. By disentangling the coordinate part from
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the spin part, we obtain an irreducible representation of the permutation algebra
acting on polynomials.

Let us illustrate this point in the case of the Halperin wave function [5] which
describes a system of spin one half electrons at filling factor two. Due to the Pauli
principle, or to a δ potential interaction between electrons of the same spin, the
wave function must vanish when two electrons of the same spin come into contact.
Each independent orbital can be occupied with two electrons of opposite spin,
which is why the maximal filling factor is equal to two.

An equivalent way to impose the constraint is to require that any linear
combination of the spin components of the wave function vanishes when three
electrons come into contact. The reason for this is that two of the electrons involved
will necessary have the same spin. When this constraint is taken into account with
the minimal degree hypotheses, one obtains a space of polynomials which can be
recombined with the spin components into a wave function changing sign under
the permutations. Thus we know a priori that the spatial part of the wave function
carries an irreducible representation of the permutation algebra dual to that of the
spins. This is precisely by generalizing this argument to the braid group case that
we obtain the representations of the T.L. algebra mentioned above.

In the permutation group case case, the components have the simple structure
of a product of two Slater determinants grouping together the electrons with the
same spin and one does not require to recourse to this machinery.

Let us now briefly indicate why the Halperin wave function may have some-
thing to do with the eigenvector of a transfer matrix in the link pattern formulation
[16]. The wave function is a spin singlet, and the spin components can best be de-
scribed in a resonating valance bond (RVB) picture as follows: The labels of the
electrons are disposed cyclically around a circle and are connected by a link when
two electrons form a spin singlet. Links are not allowed to cross in order to avoid
overcounting states. These RVB states coincide with the link patterns of [16]. Thus,
the Halperin wave function as the eigenvector of the transfer matrix develops on a
basis of link patterns. By deforming the permutation action on link patterns into
a T.L. algebra action, one is forced to deform accordingly the polynomial repre-
sentation so as to insure the invariance of the total wave function. When q is a
third root of unity, this property is shared by the transfer matrix eigenvector and
allows to identify the two.

In the braid group case, the situation is technically more involved than for the
permutations. Nevertheless, the minimal degree hypothesis combined with some
annulation constraint satisfied by linear combination of the spin components yields
a wave function with the correct invariance properties. A major difference with
the Hall effect is that the cancellation no longer occurs at coincident points, but at
points shifted proportionally to the deformation parameter q. Typically, we require
that for three arbitrary electron labels i < j < k ordered cyclically, the wave
function vanishes when the corresponding coordinates take the values z, q2z, q4z.

One is also led to study the affine extension in order to impose cyclic invari-
ance properties which are tautologically satisfied with the permutations. While
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defined in a natural way on the link patterns, the cyclic properties require to
introduce a shift parameter s when we identify the coordinate i + Ne with the
coordinate i: zi+Ne = szi. When this shift parameter is related in a specific way to
the braid group deformation parameter, the generalized statistics properties can
be established coherently. Here, zi+Ne = q6zi, but the same annulation property
can also be satisfied with s not related to q, and this can be achieved at the price
of doubling the degree and enlarging the algebra [9].

In the Haldane Rezayi case, [7], the interactions are such that the wave func-
tion must vanish as the square of the distance when electrons of the same spin
come into contact. For the same reason as before, this amounts to impose that any
linear combination of its spin components vanishes as the square of the distance
when three electrons come into contact. This wave function is a permanent, and
its deformation is described in terms of Gaudin’s determinants [8]. It degenerates
to the square of the six vertex model partition function when the deformation
parameter is a third root of unity.

The paper is organized as follows. In Section 2, we recall some properties
about Hecke algebras and their polynomial representations. Section 3 introduces
the T.L. algebra representation used here. Section 4 is the core of the paper where
we work out the deformed Hall effect wave functions.

We have attempted to be self contained, but in order not to overload the text
with technicalities, we have relegated most of the proofs to appendices to which
we refer when it is useful.

2 Hecke Algebra

In this section, we recall some known facts about the Hecke and Temperley and
Lieb algebras [17][18].

The Braid group algebra is generated by the braid group generators t1, t2, . . . ,
tn−1, obeying the braid relations:

titi+1ti = ti+1titi+1,

titj = tjti, if |i− j| > 1 (2)

for 1 ≤ i ≤ n − 1. It can be convenient to use the notation tii+1 instead of ti,
and we will use it when necessary. The Hecke algebra is the quotient of the Braid
group algebra by the relations:

(ti − q)(ti +
1
q
) = 0, (3)

It can also be defined using the projectors ei = ti − q obeying the relations:

e2i = τei,

eiej = ejei, if |i− j| > 1,
eiei+1ei − ei, = ei+1eiei+1 − ei+1, (4)
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where we set τ = −(q+q−1). The Temperley-Lieb (T.L.) algebra An is the quotient
of Hecke algebra by the relations:

eiei+1ei − ei = ei+1eiei+1 − ei+1 = 0. (5)

In An, a trace can be defined [18] as:

tr(xep) = τ−1 tr(x), ∀x ∈ Ap. (6)

The affine Hecke algebra, [19][20][21], is an extension of the Hecke algebra (3)
by generators yi, 1 ≤ i ≤ n obeying the following relations:

a) yiyj = yjyi,

b) tiyj = yjti, if j �= i, i+ 1,
c) tiyi+1 = yit

−1
i , if i ≤ n− 1. (7)

In Appendix D.2, we indicate why (7c) is natural from the Yang-Baxter algebra
point of view.

This algebra can be endowed with two possible involutions: e∗i = ei, y∗i = y±1
i ,

q∗ = q±1.
The symmetric polynomials in the yi are central elements.
We define the affine T.L. algebra A′

n as the extension of the T.L. algebra (5)
by the generators yi.

2.1 Yang’s realization of the Affine relations

The commutation relations of the affine generators yi become simpler to under-
stand if we assume that we have a representation of the permutations kij acting
in the natural way on the indices. Let us introduce the operators xij = tijkij for
i < j and xji = x−1

ij . These operators obey the Yang’s relations:

xijxji = 1,
xijxkl = xklxij if i �= j �= k �= l,

xijxikxjk = xjkxikxij if i < j < k. (8)

We also assume that we have commuting operators si such that sisjxij = xijsisj .
Using (8), one verifies that the operators introduced in [19], (see also [21][22]):

y1 = x12x13 . . . x1ns1,

y2 = x23x24 . . . x2ns2x21,

yn = snxn1xn2 . . . xnn−1 (9)

commute. Indeed, they coincide with the scattering matrices of Yang [23]. (7b) fol-
lows directly from (8) once we substitute ti = xii+1kii+1. (7c) is a direct conse-
quence of the definition (9) of yi.
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Gathering the permutation operators kij together, we can obtain another
presentation of the yi. Let us introduce the cyclic operator:

σ = kn−1n . . . k23k12s1. (10)

Then we have:

y1 = t1t2 . . . tn−1σ,

y2 = t−1
1 y1t

−1
1 ,

yn = t−1
n−1yn−1t

−1
n−1. (11)

We can define an additional generator to the ti: tn = σt1σ
−1, which makes

the relations (2) become cyclic. One has:

σti = ti−1σ. (12)

So that the affine Hecke (or T.L.) algebra is generated by the generators ti and
the cyclic operator σ obeying (12) and does not require a representation of the
permutations. σn is a central element which can be set equal to one, and σ∗ = σ−1

if we take t∗ = t−1.
Given the Hecke algebra, there is a simple realization of the affine Hecke

algebra which consists in taking y1 = 1. Then, σ is defined as:

σ = t−1
n−1 . . . t

−1
1 . (13)

Using the braid relations, one sees that σti = ti−1σ for i > 1, and one can
define tn by tn = σt1σ

−1. Using the braid relations again, one gets σtn = tn−1σ.
This defines an operator σ which allows to construct the affine generators with (11).

2.2 Polynomial representations

Consider polynomials in z1, z2, . . . , zn, a basis of which is given by the monomials:
zμ = zμ1

1 zμ2
2 . . . zμnn . We restrict ourselves to a fixed total degree |μ| =

∑
μi. There

is a natural action of the permutations and of the operators si on this space defined
by:

ψ̄(z1, . . . zi . . . zj . . . , zn)kij = ψ̄(z1, . . . zj . . . zi . . . , zn),

ψ̄(z1, . . . , zi . . . , zn)si = cψ̄(z1 . . . , szi . . . , zn). (14)

It is convenient to consider the polynomials in an infinite set of variables zi, i ∈ Z,
with the identification: zi+n = szi. The operator σ̄ (10) takes the form:

ψ̄σ̄(zi) = cψ̄(zi+1). (15)

The condition σn = 1 imposes the relation cns|μ| = 1.
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As shown in the Appendix D.1, it is straightforward to derive the following
representation of the Hecke relations (2), (3):

t̄ij = −q−1 + (1 − kij)
qzi − q−1zj
zi − zj

. (16)

In this way we obtain a representation of the affine Hecke algebra acting on ho-
mogenous polynomials of a given total degree.

The operators xij take the form:

xij = −q−1 + (q − q−1)(1 − kij)
zj

zi − zj
. (17)

In the Appendix D.3, we show that there is a natural order on the monomial
basis, zμ, for which the operators xij , and hence the yi are realized as lower
triangular matrices.

The operator y = y1 + · · · + yn can be seen to commute with the Hecke
generators. It is therefore equal to a constant in an irreducible representation. Its
eigenvalue evaluated on the highest weight polynomial Pλ thus characterizes the
representation. It is given by:

yλ = c(−q)1−n(sλ1 + sλ2q2 + · · · + sλnq2(n−1)). (18)

If λ′ is a permutation of the partition λ, we say that zλ
′

is of degree λ. In
this paper, we are mainly concerned with the monomials zλ

′
, of degree:

λ = (
n

2
− 1,

n

2
− 1,

n

2
− 2,

n

2
− 2, . . . , 0, 0), (19)

and of total degree |λ| = n
2 (n2 − 1).

We will consider the subclass λπ of permutations of λ indexed by the standard
Young tableaus with two columns of n

2 boxes:

zλπ = (zμ1zν1)
n
2 (zμ2zν2)

n
2 −1 . . . (zμn

2
zνn

2
)0, (20)

with μ1 > μ2 > · · · > μn
2
, ν1 > ν2 > · · · > νn

2
, and μi > νi. To simplify notations,

we denote these monomials by zπ instead of zλπ .
We identify the standard Young tableaus with the paths π = [hi] introduced

in the Appendix A: h0 = hn = 0, hi ≥ 0 and hi+1 − hi = ±1. These paths are
obtained using the rule: hi − hi−1 = 1 if i ∈ {μj}, and hi − hi−1 = −1 if i ∈ {νj}.
For the paths, we use the order π ≥ π′, if [hi] ≥ [h′i] ∀i, which coincides with the
reverse order for the monomials: zπ ≤ zπ

′
.

This identification is illustrated in Fig. 1, following the Appendix A.1.
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3 Representation of the affine T.L. algebra on words

For n even, there is a simple representation (Hn) of the T.L. algebra An obtained
as follows. One considers the left action of An on the space Anα where α is the
minimal projector α = e1e3 . . . en−1. A basis of this space is given by reduced
monomial words in the ei. The elements of this basis can be put into correspon-
dence with paths or link patterns. In the Appendix A we exhibit a basis of reduced
words and we define an order relation on the reduced words.

A scalar product can be defined as:

π∗π′ = 〈π|π′〉α, (21)

where e∗i = ei and the involution reverses the order of the letters. In the link-
pattern representation, this scalar product is given by: τ l where l is the number of
loops one gets by concatenating the link patterns of π and π′. If τ = −(q + q−1)
with q not a root of one, this scalar product is positively definite [18]. For this
scalar product the T.L. generators ei are by construction hermitian.

To obtain the affine algebra representation, let us define as in (13) the cyclic
operator:

σ = −q n2 −2t−1
n−1 . . . t

−1
1 , (22)

where the normalization is such that in the link-pattern representation, σ acts by
cyclicly permuting the indices i → i − 1 (see Appendix A.4). One can define an
additional generator, en1 = σe12σ

−1, which acts in the same way as eii+1 with the
two indices 1, n. The affine generators are constructed using (11) with y1 = −q n2 −2.

In the Appendix A.3, we show that the operators yi are realized as triangular
matrices in Hn, they are hermitian for the choice q = q∗. Their sum y =

∑
i yi is

constant with a value given by:

y = −(q + q−1)
q
n
2 − q−

n
2

q − q−1
. (23)

There is an imbedding of Hn−2 into Hn given by π → πe1 and a projection
E from Hn to Hn−2 given by:

e1π = τE(π)e1. (24)

This projection is both triangular and hermitian.
In the Appendix A.2, we identify Hn with An

2
. This allows us to interpret

the projection E as a conditional expectation value of An
2
→ An

2 −1 [18].

4 q-deformed Quantum Hall Effect wave functions

4.1 Statement of the Problem

Let us consider a vector Ψ:
Ψ =

∑
π

πFπ(zi), (25)
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constructed in the following way. The vectors π are the basis vector Hn on which
the T.L. algebra acts to the left. Fπ are homogeneous polynomials in the variables
z1, z2, . . . , zn (n is even). The polynomial coefficients of Ψ carry a representation
of the affine Hecke algebra generated by the operators t̄i and σ̄ acting to the right.
The problem is to determine the coefficients Fπ in such a way that both actions
give the same result on the vector Ψ:

Ψt̄i = tiΨ
Ψσ̄ = σΨ, (26)

The first of these relations is equivalent to the more familiar relation (63) derived
in Appendix D.1.

Said differently, we look for a dual action of the affine T.L. algebra acting on
polynomials. Unless we specify it, we address this problem for a generic value of
the parameter q, not a root of unity, for which the T.L. algebra is semisimple [18].

4.2 Module Mn

The dual representation of Hn is obtained by acting with the T.L. generators on the
dual Fω of the highest vector ω ∈ Hn. ω is given by the sequence (a2p+1 = p+1) in
the characterization of words we use in the Appendix A and is fully characterized
by the property that it can be written ω = eiπ only for i = n

2 . The dual vector Fω
must therefore be annihilated by all the ei with i �= n/2. We realize the module
Hn upon acting on Fω with the generators ei for 1 ≤ i ≤ n− 1. We define:

Mn = Vec{ψ̄ = Fωψ}, (27)

where we denote with a bar ψ̄ the result of the action of ψ, a monomial in ei,
on Fω. Thus we have 1̄ = Fω . In the Appendix C.1, we show that Mn defined
in this way is a module over the T.L. algebra as long as the ei obey the Hecke
relations (4). In other words, the projectors U−

i,i+1 = eiei+1ei − ei are null in Mn.
This formal module is however not isomorphic to Hn unless Fω obeys some sup-
plementary condition (56). Here, we construct a representation of the T.L. algebra
by identifying a state Fω dual to ω and satisfying the condition (56).

The expression of the T.L. generators ei = ti − q for 1 ≤ i ≤ n − 1 follows
from (16):

ei = −qzi+1 − q−1zi
zi+1 − zi

(1 + kii+1)

ei − τ = (1 − kii+1)
qzi − q−1zi+1

zi − zi+1
. (28)

The effect of ei and τ−ei is to split a polynomial ψ̄ into two polynomials belonging
to Mn, ψ̄ = S1 + (qzi− q−1zi+1)S2, where both S1 and S2 are symmetrical under
the exchange of zi and zi+1. This decomposition is unique and characterizes the
projector ei.
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It can be convenient to distinguish the representation on Hn from its dual
on Mn. When this is the case, we denote ēi the dual projectors which act on
polynomials.

One verifies that:

Δp(z1, . . . , zp) =
∏

1≤i<j≤p
(qzi − q−1zj) (29)

is annihilated by all the ēi, 1 ≤ i ≤ p− 1, and this defines Δp up to a product by
a symmetric polynomial in z1, . . . , zp. Therefore, the minimal degree polynomial
candidate for Fω is:

Fω = Δn
2
(z1, . . . , zn2 )Δn

2
(zn

2 +1, . . . , zn). (30)

This polynomial cannot be q-antisymmetrized over n
2 +1 variables, since the result

would have a degree at least n
2 in z1, and this is the content of the condition (56).

Thus, Mn is a simple module which can be identified with Hn. This representation
is characterized by its Young diagram (2

n
2 ) having two columns of length n

2 . Its
dimension is given by the Catalan number Cn =

(
n
n
2

) − (
n

n
2 −1

)
.

If we denote π|ω the coefficient of ω in the reduced expression of π, we can
identify the polynomials ψ̄ ∈ Mn with the dual of Hn through the relation: ψ̄(π) =
ψπ|ω.

We can also introduce the dual basis Fπ defined by its action on reduced
words:

Fπ(π′) = δπ,π′ . (31)

Let πψ be the complementary word of ψ (defined in Appendix C) such that
one can write ψπψ = ω without reducing the expression. One has ψπψ |ω = 1 and
ψπ|ω = 0 if π < πψ. Expanding ψ̄ on the basis Fπ , we get: ψ̄ =

∑
π≥πψ ψπ|ωFπ ,

and by inverting the triangular system, we can obtain the expression of Fπ.
Let us verify that the highest monomial of ψ̄, and thus of Fπψ as well, is

proportional to zπψ . We show this by recursion. It is true for ψ = 1: 1̄ = Fω ,
π1 = ω and zω is the highest monomial of Fω . We assume that the property is
true for ψ′ < ψ. If ψ �= 1, one can write ψ = ψ′ei with ψ′ < ψ, and we have
πψ′ = eiπψ with πψ < πψ′ .

Then, according to the recursion hypothesis, the highest monomial of ψ̄′ is
zπψ′ which contains the factor zmi z

n
i+1 with n > m. Since zmi z

n
i+1ei = −qzni zmi+1 +

lower monomials, the highest monomial of ψ̄ = ψ̄′ei is zπψ .
We also obtain the normalization coefficient of zπ up to a global factor:

Fπ = cπz
π + lower monomials, with cπ = (− 1

q )
lπ , and lπ is the number of letters

ei entering the reduced expression of π.

4.3 Module M′
n

We now consider a larger module M′
n ⊃ Mn by letting the operator σ̄ defined

in (15) act on the polynomials. We will put some constraint on the parameter s
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(which characterizes σ̄) to have M′
n = Mn. We consider the simple case n = 4 in

the Appendix B and we obtain s = q6 which is the general case as we show here.
Let us assume that M′

n = Mn and see what constraints s must satisfy to
identify σ̄ defined by its action on polynomials (15) with σ defined in terms of
generators (13).

We observe that σ−1ωn = e1ωn−2, where ωn−2 is the highest state in Hn−2.
This can easily be verified in the link pattern representation. Thus, we must have:

σE(π)e1|ωn = E(π)e1|σ−1ωn = E(π)|ωn−2 . (32)

Let us consider the dual to the projection E, E′ from Mn → Mn−2 defined
as ψ̄e1 = τE′(ψ̄). E′ needs to satisfy the conditions:

a) E′(ψ̄e1) = τE′(ψ̄)

b) E′(ψ̄ei) = E′(ψ̄)ei ∀i > 2

c) E′(ψ̄e1) = 0 ⇒ ψ̄e1 = 0. (33)

From (32), in order to identify σ̄ with σ, we see that the projection E′ must satisfy:

E′(Fωn σ̄) = Fωn−2 . (34)

E′ can be realized as:

E′(ψ̄) = c′
1

φ(z, zi)
ψ̄(z1 = z, z2 = q2z, zi), (35)

where φ(z, zi) =
∏n
i=3(zi − q4z) and c′ is a normalization constant. E′ verifies

(33a,b) by construction as can be seen from the expression (28) of e1 − τ .
Using the explicit expression (15) of σ, we have:

E′(Fωnσ) = c′s−
n
4 − 1

2
1

φ(z, zi)

n
2 +1∏
3

(q3z − q−1zi)

×
n∏

n
2 +2

(qzi − q−1sz)Fωn−2(z3, . . . , zn). (36)

which imposes s = q6 for the polynomial in the numerator to be proportional to
φ(z, zi) and (34) to be satisfied.

To identify Mn and M′
n, we give a more convenient characterization of M′

n.
Consider the space M′′

n of homogenous polynomials in n variables, and of the
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minimal total degree, obeying the property:

(P): ψ̄(zi = z, zj = q2z, zk = q4z) = 0, if i, j, k, are cyclically ordered. (37)

This property is obviously compatible with the cyclic identification zi+n = q6zi,
it is thus preserved by σ̄ (15). By applying (P) to the triplets (1, 2, j), we see that
the projection (35) is well defined from M′′

n to M′′
n−2.

We show that M′′
n = Mn. For this, we first show that M′′

n is a module over
the T.L. algebra An and that it contains Mn, then we show that M′′

n is irreducible
over An.

To show that M′′
n is a module over An, we verify that the generators ei

preserve the property (P). Assuming that the polynomial ψ̄ verifies (P) we verify
that ψ̄ei obeys (P) for a cyclically ordered triplet k, l,m. If {i, i+1}∩{k, l,m} = ∅,
it is obvious. If i + 1 = k, it results from the fact that ψ̄ obeys (P) for the
triplets i, l,m and i+1, l,m. The same type of argument applies if i = m. If
{i, i+1} ⊂ {k, l,m}, ψ̄(ei − τ) is proportional to (qzi − q−1zi+1) and therefore
obeys (P).

Let us show that (33c) is satisfied in M′′
n. If E′(ψ̄e1) = 0, ψ̄e1 vanishes when

z2 = q2z1, and from the definition (28) of e1, it is symmetric in z1, z2. It is therefore
divisible by (z1 − q2z2)(z2 − q2z1). Hence, ψ̄e1/(z1 − q2z2) satisfies (P) and has
a total degree reduced by one. It is thus equal to zero according to our minimal
degree hypothesis.

It is clear that Fω satisfies the property (P). To show that Mn ⊂ M′′
n, we

need to show that the degree of the polynomials in M′′
n is the degree n

2 (n2 − 1)
of Fω. We proceed by recursion on n and for the moment, we exclude the case
where e1 is represented as zero in M′′

n. Due to (33c) there are polynomials ψ̄ in
M′′

n such that E′(ψ̄) �= 0. This implies that ψ̄ has a degree at least n− 2 in z1, z2.
We can apply the recursion hypothesis to E′(ψ̄) ∈ M′′

n−2 to conclude that the
minimal degree is n

2 (n2 − 1).2

To show that M′′
n is irreducible as a T.L. module, we use the recursion

hypothesis that M′′
n−2 = Mn−2. Due to (33c), E′ is injective from M′′

ne1 to
E′(M′′

n) ⊂ Mn−2. Since Mne1 = Mn−2 ⊂ M′′
ne1, we have M′′

ne1 = Mne1. Thus,
if M′′

n contains an irreducible submodule R �= Mn, Re1 = 0. If Re1 = 0, from (5)
we see that all the ei are represented as 0 in R, and therefore, the polynomials in
R are proportional to Δn defined in (29) times a symmetric polynomial. Since the
total degree of Δn is larger than n

2 (n2 − 1), R = 0. We conclude that M′′
n = Mn

as a T.L. module.
Finally, to identify M′′

n and Mn as affine modules, we observe that y1 = σ−1σ̄
commutes with An−1 generated by e2, . . . , en. Since Mn is irreducible over An−1

[18], y1 is proportional to the identity, thus σ and σ̄ can be identified.

2The same argument shows that the maximal degree of the polynomials in M′′
n is ≥ λ for the

order defined in the Appendix D.3.
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4.3.1 Relation with the Macdonald Polynomials and the work of Di Francesco
and Zinn-Justin

As a check of consistency, we must verify that the two expressions of the eigenvalue
of the central operators y (18), (23) are the same when s = q6. This is indeed the
case if we substitute in (18) the degree λ (19) of the highest polynomial in Mn

and c = q3(1−
n
2 ).

For a generic s, the operator y (18) can be diagonalized on the basis of
symmetric polynomials and its eigenvectors define the Macdonald polynomials [24].
We have seen that when s = q6, the polynomial representation is reducible. As
a counterpart, some diagonal elements yλ′ of y become degenerate with yλ, for
example, λ′2 = λ2 − 1, λ′5 = λ5 + 1. Thus, y cannot be diagonalized. We must use
another operator such as dy

ds to define the analogous symmetric polynomial.
In the non semisimple case q2 + q + 1 = 0, (τ = 1), the T.L. representation

admits a sub-representation given by Vec{∑xππ, with
∑
xπ = 0}. The trivial

representation Ω is obtained by equating to zero these vectors. The dual polynomial
FΩ =

∑
π Fπ is therefore symmetrical of degree λ, and obeys the property (P) (37).

This completely determines it to be proportional to the Schur function sλ with
λ given by (19). Indeed, sλ has a degree λ and satisfies (P) since three columns
of the determinant which defines it become linearly dependant when we make the
substitution (P). By the same argument as used in 4.3, the degree of a symmetric
polynomial satisfying (P) must be at least λ (relatively to the order of partitions
which follows from Appendix D.3) which prove its unicity.

Following [4], in this limit, the Fπ can be identified with the components of a
transfer matrix eigenvector fully characterized by the relation (63). Thus, the sum
of these components is sλ.

It would be interesting to see if in this limit, FΩ can be recovered as the
eigenvector of some operator such as dy

ds .

4.4 Representation on Gaudin’s determinants

It is well known that the Bethe scalar products [8] can be expressed using a quotient
of two determinants. Here, we construct a representation of the T.L. algebra acting
on these quotients. We split the variables zi into A = {z1, . . . , zn2 } and B =
{zn

2 +1, . . . , zn}. We also introduce p a square root of q, p2 = q. We define the
polynomial F ′

ω:

F ′
ω(z1, . . . , zn) =

∣∣(p2zi − p−2zj)−1(pzi − p−1zj)−1
∣∣

|(pzi − p−1zj)−1| Δn(z1, . . . , zn),

with i ∈ A, j ∈ B. (38)

The first factor is the ratio of the Gaudin determinant with the Cauchy
determinant [8]. It is also related to the domain wall boundary condition partition
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function [6] of a six vertex model with weights: a = qx − q−1y, b = px − p−1y,
c =

√
xy(p− p−1) 3.
The second factor Δn (29) insures that F ′

ω(zi) is a polynomial. This factor
has an innocuous effect on the T.L. algebra since:

Δn(z1, . . . , zn)ti = t̃iΔn(z1, . . . , zn), (39)

where t̃i is obtained from ti (16) by the substitution q → −1/q which preserves
the relations (2), (3), but exchanges ei with ei − τ .

The ratio of the two determinants being symmetrical in the two sets of vari-
ables A and B, F ′

ω is annihilated by all the ei with i �= n
2 .

To show that the action of the T.L. algebra (28) on F ′
ω produces an irreducible

module, we proceed as in 4.3. Consider the space Mn of homogenous polynomials
in n variables, and of the minimal total degree, obeying the property:

(P′):
ψ̄(zi1 = qa1z, zi2 = qa2z, zi3 = qa3z) = 0, if i1, i2, i3, are cyclically ordered,

and for: (a1, a2, a3) = (−1, 0, 1), (−1, 1, 0), (−2, 0, 2), (0,−1, 1). (40)

Note that these triplets are stable under the cyclic permutation, (a1, a2, a3) →
(a3 − 2, a1 + 1, a2 + 1), and the transpositions, (ai, ai+1) → (ai+1, ai), whenever
|ai+1 − ai| = 1.

From the cyclic invariance, we deduce that this space is preserved under the
action of σ (15) if we take s = q3.

By applying the property (P′) to z1, z2, zi with (a1, a2, a3) = (−1, 1, 0) and
(−2, 0, 2), we can define a projection (35) from Mn → Mn−2. The polynomial
φ(z, zi) is now a product of two factors φ(z, zi) =

∏n
i=3(qz−zi)(q4z−zi). Arguing

as in 4.3, we see that this projection satisfies the properties (33).
This space is stable under the action of the generators ei. The proof is similar

to the one given in 4.3 and requires the stability of the triplets (a1, a2, a3) under
the transpositions. The minimal degree is now n(n2 − 1) = 2|λ| with |λ| given
by (19).

Let us show that F ′
ω (38) satisfies the property (P′) (40). We consider

(i1, i2, i3) and (a1, a2, a3). If the variables zl, zm with l < m, corresponding to
two ai which differ by 2, belong to the same set A or B, F ′

ω(zm = q2zl) = 0 due to
the factor Δn. Otherwise, two variables zl = z ∈ A and zm = q2z ∈ B differ by a
factor q2. By isolating the contribution of the pole (p2zl − p−2zm) in the Gaudin
determinant, we factorize a term

∏
i(qz − zi) coming from the Cauchy denomina-

tor, and this enables to conclude that F ′
ω(zi1 = qa1z, zi2 = qa2z, zi3 = qa3z) = 0

in all the other cases.

3Notice that for this six vertex model, Δ = a2+b2−c2

ab
= p + 1

p
�= τ .
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Arguing as in 4.3 we conclude that Mn is an irreducible module over the
affine T.L. algebra and that it coincides with the module obtained upon acting
with the generators on F ′

ω.
We verify again that the eigenvalue of the central operators y (18) is given

by (23). Now, s = q3 instead of q6 in 4.3, but the degree 2λ (19) of the highest
polynomial in Mn is doubled and c keeps the same value c = q3(1−

n
2 ).

In the nonsemisimple case q2 + q+ 1 = 0, using the result of [25] we see that
the components F ′

π are given by the product of the components Fπ of the last
section with the Schur function sλ: F ′

π = sλFπ , and therefore,
∑

π F
′
π = s2λ.

5 Conclusion

Let us conclude with a few comments and questions.
On the mathematical side, this work provides a unification ground around

the conjectures relating the eigenvector components of a loop model transfer ma-
trix, the six vertex model domain wall boundary condition partition function and
other mathematical objects. It opens the possibility to deform the polynomials
underlying these conjectures by presenting them from the algebra representation
point of view. We believe that these conjectures are related to incompressibility,
and we hope to return to this point in a future publication.

From a technical point of view, it would be interesting to repeat the Jones
construction of Appendix A.2 on the polynomials directly. This would allow to
recover in a direct way the product structure which they carry since they are
associated to elements of the T.L. algebra.

The precise correspondence between the polynomial obtained here and the
Macdonald polynomials needs to be clarified.

Finally, do the deformed wave functions considered here have anything to do
with physics? At this moment, we have no answer to this question. A step towards
a physical interpretation would be to identify a scalar product and a Hermitian
Hamiltonian for which these wave functions are the ground states. This could also
be useful to access to the excited states (polynomials of higher degree obeying the
constraint (P)) which play an important role in the Quantum Hall Effect.

Acknowledgments. I wish to thank Philippe di Francesco for generously explaining
me his works and for discussions.

I am greatly indebted to Kirone Mallick, Gregoire Misguich and particularly
Bertrand Duplantier for their help during the course of this work.

A Word representation

A.1 Reduced words

The module Hn is obtained by acting with the T.L. generators of An on the lowest
state α = e1e3 . . . en−1. Using the relations (5), we obtain a basis of Hn given by
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reduced words π:

π = (ean−1ean−1+1 . . . en−1) . . . (ea2p+1ea2p+1+1 . . . e2p+1) . . . (ea3ea3+1 . . . e3)e1,
(41)

with, a2p+1 ≤ 2p+ 1, and 1 < a3 < · · · < a2p+1 < · · · < an−1. So, a word is fully
characterized by the sequence (a2p+1).

On reduced words there is a natural order relation: π > π′ if π is written bπ′

with b a monomial. One has π ≥ π′ if a2p+1 ≤ a′2p+1 for all p.
Another way to represent a reduced word is in terms of paths. Let mi be the

number of times the generator ei appears in the reduced expression of π. One has
m2i = m2i−1 or m2i−1 − 1 and m2i+1 = m2i or m2i+1. We define h2i = 2m2i− 1,
h2i−1 = 2m2i−1 − 2 and h0 = hn = 0 by convention. We can describe the words π
by the paths π = [hi] where h0 = hn = 0, hi ≥ 0 and hi+1 − hi = ±1. Using the
path representation, one has π ≥ π′, if [hi] ≥ [h′i] ∀i.

If π′ is a non reduced word, by reducing it, one decreases the number of times
the generator ei appears in its expression. We thus see that the order relation can
be presented in a weaker form valid for non reduced words: If π′ is a word, not
necessarily reduced and π is a reduced word, π > π′ if π′ can be obtained by
erasing letters ek from the (reduced) expression of π.

Finally, there is way to characterize this representation in terms of link pat-
terns. It is convenient to dispose the n points cyclically around a circle. A link pat-
tern is obtained by pairing all the points in the set {1, 2, . . . , n}: π = {[i1, i2], [i3, i4],
. . . , [in−1, in]}, in such a way that two links never cross. In practice, if [i, j] is a link,
then the other links [k, l] are either inside, or outside the interval [i, j]. The action
of ei,i+1 is given by: ei,i+1{[i, i+1], . . . , [in−1, in]} = τ{[i, i+1], . . . , [in−1, in]}, and
ei,i+1{[i, j], [i+ 1, k] . . . , [in−1, in]} = {[i, i+ 1], [j, k], . . . }. In this representation,
α = {[1, 2], [3, 4], . . . , [n− 1, n]}, and ω = {[1, n], [2, n− 1], . . . , [n2 − 1, n2 + 1]}.

These representations are illustrated in Fig. 1.

A.2 Identifying Hn with An
2

The link pattern representation allows to identify in a natural way Hn with An
2
.

If we split {1, 2, . . . , n} into two subsets: {1, 2, . . . , n2 } and {n2 , . . . , n}, the product
π ∗ π′ is defined on the link patterns by identifying the last n

2 points of π with the
first n

2 points of π′ through i ≡ n+ 1 − i and concatenating the links obtained in
this way. The link pattern π ∗ π′ is obtained by removing the loops which appear
in this concatenating operation by giving them a weight τ .

Another identification can be achieved on paths by folding a path of length n
into a loop of length n

2 . In this way, we realize An
2

as the algebra of double paths
acting on Bratteli diagrams [26][17][18].

In this identification, An
2

is a bimodule over itself. The first n
2 − 1 generators

ei ∈ An are identified with the generators of An
2

acting to the left, while the last
n
2 − 1 generators are identified with en+1−i acting to the right.
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Figure 1. The three different ways to represent a word illustrated in the case of H6.

The state ω is the identity in An
2
, and the trace in An

2
coincides with the

scalar product with ω in An:

tr(x) = τ−
n
2 〈ω|x〉. (42)

The projection: En
2

= σ− n
2 +1Eσ

n
2 −1, with E given by (24) can be rein-

terpreted as a conditional expectation value [18], En
2

: An
2
→ An

2 −1. Jones con-
struction enables then to construct en

2
∈ An

2 +1 algebraically from the knowledge
of En

2
.

A.3 Triangularity of ym

Let us show that the affine generators ym+1 = t−1
m t−1

m−1 . . . t
−2
1 . . . t−1

m are triangular
in the word representation. It is obvious for y1 = 1 and y2 = t−2

1 since e1 is
triangular. We proceed by recursion and assume that yk are triangular for k <
m+ 1. Using these hypotheses, we show that ym+1 is also triangular.

First we show that ym+1 acts diagonally on α. To study the action of ym+1

on α, we distinguish the two cases m odd or even. If m is odd, then:

ym+1α = t−1
m ymt

−1
m em · · · = −qt−1

m ymem · · · = −λmqt−1
m em · · · = q2λmα, (43)

where λm is the eigenvalue of ym on α. If m is even, we make use of the fact that
t−1
m−1t

−1
m em−1 = 1

q emem−1 and the same relation with the indices m and m − 1
exchanged to obtain:
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ym+1α = t−1
m t−1

m−1ym−1t
−1
m−1t

−1
m em · · · =

1
q
t−1
m ym−1emem−1 . . .

=
1
q
λm−1t

−1
m t−1

m−1emem−1 · · · =
1
q2
λm−1α. (44)

We deduce that α is an eigenstate of ym with the eigenvalue λm obeying the
recursion relations λ2m = q2λ2m−1, λ2m+1 = 1

q2 λ2m−1. Together with the fact
that λ1 = 1, we deduce (18).

To show that ym+1 is triangular on words �= α. We proceed by recursion
and assume that ym+1 acts in a triangular way on words < π and show that the
property is also true for π.

Let us consider the action of ym+1 on a reduced word π �= α. This word
can be put under the form π = eiπ

′ where π′ < π. We consider the three cases,
i �= m,m+ 1, i = m, i = m+ 1. In the third case, either the word can be written
in the form em+1emπ

′ with π′ reduced, or it can be written epπ
′ with p < m.

The second possibility reduces to the first case and we need only consider the first
possibility.

We observe that ym+1 commutes with ei: ym+1ei = eiym+1 if i > m+ 1 or if
i < m. It is obvious if i > m+ 1 and follows from the braid relations if i < m. In
the three cases we can thus write:

ym+1eiπ
′ = ei(ym+1π

′) for i �= m,m+ 1,

ym+1emπ
′ = t−1

m ymt
−1
m emπ

′ = −qt−1
m (ymemπ′),

ym+1em+1emπ
′ = t−1

m ymt
−1
m em+1emπ

′ = t−1
m (ymemπ′ +

1
q
ymem+1emπ

′). (45)

It follows from the hypothesis that the terms in brackets are less than π. In the
first case because π′ < π, and in the two others because ym is assumed to be
triangular.

To conclude that ym+1 is triangular, we must show that the action of ei in
the first case and em in the two other cases preserves the triangularity: If eiπ is a
reduced word and π′ ≤ π, then, eiπ′ ≤ eiπ. If emπ is a reduced word and π′ ≤ emπ,
then emπ′ ≤ emπ. Finally, if em+1emπ is a reduced word and π′ ≤ em+1emπ, then
emπ

′ ≤ em+1emπ. These properties follow from the weak form of the order relation.
This concludes the proof of triangularity of ym+1.

A.4 Action of σ on words

The action of σ = −q n2 −2t−1
n−1 . . . t

−1
1 on words can be computed similarly. First,

using the braid relation (2), one sees that σei = ei−1σ for i > 1. To fully charac-
terize its action, we must compute (σα). Using t−1

1 e1 = −qe1 and t−1
m+1t

−1
m em+1 =

1
q emem+1 we obtain:

σα =

n
2 −1∏
i=1

e2iα. (46)
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Thus, (σα) can be characterized by the property:

e2i(σα) = τ(σα), (47)

for 1 ≤ i ≤ n
2 . (σα) can then be used as a lowest state to construct a canonical

basis by acting on it with the generators e2, . . . , en.

B Explicit construction of M4

Let us construct M4 the dual of H4. The basis of H4 is given by the words
e1e3 = α, e2e1e3 = ω. So we search for a vector Ψ of the form:

Ψ = Fα(z1, . . . , z4)α+ Fω(z1, . . . , z4)ω, (48)

where Fα, Fω are polynomials of degree (1, 1) in the variables zi. The action of the
T.L. affine algebra is given by the matrices:

e1 = e3 =
(
τ 1
0 0

)
, e2 = e4 =

(
0 0
1 τ

)
, σ =

(
0 1
1 0

)
. (49)

We can obtain the dual representation by acting with the generators on Fω ≡
(0, 1) annihilated by e1, e3. The minimum degree polynomial annihilated by e1, e3
is given by:

Fω = (qz1 − q−1z2)(qz3 − q−1z4). (50)

Let us take σ of the form:

F (z1, z2, z3, z4)σ = cF (z2, z3, z4, sz1). (51)

We obtain two different expression for Fα ≡ (1, 0) which we must equate. One
results from the cyclic property: Fα = Fωσ̄, the other given by: Fα = Fω(ē2 − τ).

We get the equation:

(qz1 − q−1z2)(qz3 − q−1z4) − (qz1 − q−1z3)(qz2 − q−1z4)
z2 − z3

= c(qz4 − q−1sz1),

(52)

which determines s = q6, c = q−3, and:

Fα = (qz2 − q−1z3)(q−2z4 − q2z1). (53)

C Module Fω

Let us define a T.L. module M defined in terms of a state Fω satisfying Fωei = 0
for i �= n

2 . The module is obtained by acting with the T.L. generators and reducing
words using the T.L. relations (5). In this module, a canonical basis is:

ψ̄ = Fω(en
2
en

2 −1 . . . ean
2

+1ean
2
) . . . (epep−1 . . . eap) . . . (en−1 . . . ean−1), (54)
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where the p take the all the values between n
2 and n− 1 and the ap are restricted

by the conditions: ap ≤ p+1, an
2
< an

2 +1 · · · < ap < · · · < an−1. The convention is
that if ap = p+1, the sequence (ep . . . eap) is empty. A word ψ̄ is fully characterized
by the sequence (ap). The word can also be associated to the Young diagram
[μp+1−n

2
] = [p− ap + 1].

There is a reflection symmetry, i → n − i, and an alternative description of
the module in terms of reflected words:

ψ̄ = Fω(en
2
. . . ebn

2
−1ebn

2
) . . . (ep . . . ebp−1ebp) . . . (e1 . . . eb1), (55)

1 ≤ p ≤ n
2 , bp ≥ p− 1, bn

2
> · · · > b1. It is associated to the dual Young diagram

[μ′
n
2 −p+1] = [bp − p+ 1].

A similar order relation as defined earlier holds for reduced words, ψ̄′ < ψ̄ if
ψ̄ can be written ψ̄ = ψ̄′a. For non reduced words ψ̄′, it is sufficient that ψ̄′ can
be obtained by erasing letters ek from the (reduced) expression of ψ̄.

In general, the module Fω is reducible, it will be irreducible if Fω satisfies
the Fock condition:

Fω(1 +

n
2 −1∑
m=0

qm+1tn
2
. . . tn

2 −m) = 0. (56)

In this case, the only allowed words ψ̄ (54) can be associated to their com-
plementary πψ in such a way that one can write without reducing the expression:

ψπψ = ω. (57)

Thus, we get the supplementary constraint ap > 2p+ 1 − n, bp < 2p− 1.

C.1 Reducing the Hecke Module to its T.L. form

Let us consider a module M ′ over the Hecke algebra defined by acting with the
Hecke algebra generators satisfying (4) on the state Fω satisfying Fωei = 0 for
i �= n

2 . We want to show that the Hecke algebra acts as a T.L. algebra on this
module. For this, we first show that the Hecke relations (4) are sufficient to reduce
the word basis of M ′ to be of the T.L. form (54). Thus, M ′ and M can be identified
as vector spaces. From this, we will deduce that M ′ = M as modules. In other
words, the projectors U−

i,i+1 = eiei+1ei − ei are null in M ′.
Let us assume that it is not true. Since all the basis elements of M ′ are

obtained upon acting on Fω with letters ek, there is a basis element ψ̄ei which
cannot be expressed as a linear combination of words of the form (54) although ψ̄
is of the form (54). Among all the ψ̄ which verify this property, we can take the
smallest possible for the order relation, so that that ψ̄′ei is of the form (54) when
ψ̄′ < ψ̄. We show that this leads to a contradiction.

Let us consider the word ψ̄ei. It is a word of the form (54) in the three
following cases. When ψ̄ei is a reduced word > ψ̄, for i = ap − 1 if ap − 1 > ap−1.
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When ψ̄ei = τψ̄ when i = ap and ap > ap+1 − 1. When ψ̄ei = 0 if i < an
2
− 1 or

i > bn
2

+ 1.
The two remaining cases to consider are: First, when ap < i < ap+1 − 1 for

some p. Second, when ap < i ≤ ap+k if ap+k = ap+k with k ≥ 1. The second case
can be studied similarly to the first one using the reflection symmetry i → n − i
and corresponds to bp′ > i > bp′−1 + 1.

In the first case, ψ̄ei = ψ̄′(ep . . . eap+1eap)ei(ep+1 . . . eap+1) . . . , and using the
relation (4), we see that:

ep . . . eap+1eapei = ei−1ep . . . eap+1eap + ep . . . ei+1(ei − ei−1)ei−2 . . . eap+1eap .

(58)

The second term is < ψ̄ and therefore of the T.L. form by the recursion hypothesis.
The first term can be eliminated by repeating this relation p − n

2 times to push
ei and then ei−1, . . . , ei+n

2 −p to the left of the word. The last application of the
relation gives a term Fωei+n

2 −p−1 = 0 since i+ n
2 − p− 1 < n

2 .
This exhaust all the possibilities and ψ̄ei can always be expressed as a linear

combination of reduced T.L. words (54) in contradiction with the hypothesis.
Therefore, the word basis of M ′ coincides with the word basis (54).

To conclude that M ′ = M , let us consider the projectors U−
i,i+1 = eiei+1ei −

ei, and the space M ′′ ⊂ M ′ annihilated by all the U−
i,i+1. The space M ′′ defines

a module for the T.L. algebra. Since Fω ∈ M ′′, this module can be identified
with M . Therefore, M is a subspace of M ′ with the same dimension, and thus,
M = M ′.

D Yang-Baxter Equation and Polynomials

D.1 Polynomial representation of the Hecke generators

In this section, we derive the expression of the Hecke generators t̄i (16) from the
Yang-Baxter equation.

The Yang-Baxter algebra [8] (also called RLL = LLR relation) can be ex-
pressed as:

R12(z1, z2)L1(z1)L2(z2) = L2(z2)L1(z1)R12(z1, z2), (59)

where R12(z1, z2) is a solution of the Yang-Baxter equation:

R12(z1, z2)R13(z1, z3)R23(z2, z3) = R23(z2, z3)R13(z1, z3)R12(z1, z2). (60)

If we assume that R12(z1, z2) = Y12(z1, z2)P12 where P12 acts in the natural
way on the spin indices, (P12t13 = t23P12), but commutes with zi, (59) rewrites as:

Y12(z1, z2)L2(z1)L1(z2) = L2(z2)L1(z1)Y12(z1, z2) = L2(z1)L1(z2)k12, (61)
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where k12 acts to the left by permuting the variables z1, z2. The normalization of
Y (z1, z2) is such that:

Y12(z1, z2)Y12(z2, z1) = 1. (62)

It is therefore consistent to demand that the Yii+1 act as a representation of the
permutation algebra on some wave function Ψ:

Y12(z1, z2)Ψ(z1, z2) = Ψ(z2, z1) = Ψ(z1, z2)k12. (63)

The Yij are called Yang’s operators in [8].
A well-known solution of (60) in terms of the Hecke algebra (3) is:

Y12(z) =
t12 − zt−1

12

zq − q−1
, (64)

where z = z1
z2

.
Substituting (64) in (63), we can also rewrite this relation as:

t12Ψ(z1, z2) = Ψ(z1, z2)t̄12, (65)

where t̄12 takes the form:

t̄12 = −q−1 + (1 − k12)
qz1 − q−1z2
z1 − z2

, (66)

and this coincides with (16).

D.2 Commutation relations of the affine generators yi

We motivate the commutation relation (7c) from the Yang-Baxter algebra (59)
point of view. This also reveals a complete symmetry between the spectral param-
eters zi and the generators yi.

Let us substitute the spectral parameters zi with the affine generators yi in
L(zi), and we require that the relation (65) are preserved under the action of the
algebra Li on Ψ:

t12L1(y1)L2(y2)Ψ = L1(y1)L2(y2)Ψt̄12, (67)

assuming that (65) holds for Ψ.
To avoid cumbersome expressions, we use here the transposed notation āX

for Xā. We must then transpose back the final algebraic relations we deduce. In
the transposed notations (67) is equivalent to:

(t12 − t̄12)L1(y1)L2(y2) = 0, (68)

under the hypothesis that t12 = t̄12 to the right of any expression. Let us for the
moment assume that t̄12 commutes with the symmetrical expressions in y1, y2.
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After substituting the expression of Li(yi) deduced from (64):

L1(y1) = (yt10 − y1t
−1
10 )P01, (69)

the term proportional to y0 requires that t̄12 commutes with y1y2, while the term
proportional to y imposes that:

(t12 − t̄12)(y2t01t−1
12 + y1t

−1
01 t12) = 0, (70)

under the hypothesis that t01 = t̄12 to the right of any expression. This gives:

y2t̄12 + (q − q−1)y1 − t̄12y1 = 0,

y1 − t̄12y2t̄12 = 0, (71)

which is equivalent to y2t̄12 = t̄−1
12 y1 and implies in particular that t̄12 commutes

with the symmetrical expressions in y1, y2. After transposition, it yields (7c) back.
Alternatively, we can substitute zi for yi in (7c) and verify that the relation

is obeyed when we use the expression (66) of t̄i.

D.3 Eigenvalues of the yj in the polynomial case

We show that the operators yj defined with the polynomial representation 2.2 are
triangular matrices. Let us recall the expression of yi:

yi = xii+1xii+2 . . . xinsixi1 . . . xii−1 (72)

where the operator xi,j takes the form for i < j:

xij = −q−1 + (q − q−1)(1 − kij)
zj

zi − zj
, (73)

and the operators si act as:

P (z1, . . . , zi . . . , zn)si = cP (z1 . . . , szi, . . . , zn). (74)

x12 commutes with z1z2 and with zk for k �= 1, 2. It acts triangularly on the
monomials zm1 , z

m
2 as follows:

zm1 x12 = −q−1zm1 + (q − q−1)(zm−1
1 z2 + zm−2

1 z2
2 + · · · + zm2 ) m ≥ 0

zm2 x12 = −qzm2 − (q − q−1)(zm−1
1 z2 + zm−2

1 z2
2 + · · · + z1z

m−1
2 ) m > 0. (75)

From these expressions, we determine which new monomials zλ
′
can appear when

one acts with x12 on the monomial zλ. First, all the λ′l for l �= 1, 2 are equal
to λl. Then, if {λ′iλ′j} �= {λiλj} with {i, j} = {1, 2} and λ′j ≤ λ′i, we must have
{λ′i, λ′j} = {λi − p, λj + p} for some integer p. Finally, if {λ′1λ′2} = {λ1λ2}, the
only possibility is that: (λ′1, λ

′
2) = (λ2, λ1) with λ1 > λ2.
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Let us define an order on the monomials by saying that zλ is larger than zλ
′

if either λ′ is obtained from λ by a sequence of squeezing operations {λi, λj} →
{λi − 1, λj + 1} with λi > λj + 1, or λ′ is a permutation of λ and can be obtained
from λ by a sequence of permutations (λi, λi+1) → (λi+1, λi) with λi > λi+1. It
follows from the above analysis that the action of yj on a monomial produces only
monomials which are smaller with respect to this order. Thus the eigenvalues of
the operators yj are given by the diagonal elements in the monomial basis.

It follows from this that, given the partition λ = (λ1, . . . , λn), the eigenvalues
corresponding to the monomials associated to it are all obtained by permutations
of the multiplet:

(yj) = c(−q)1−n(tλj q2(j−1)). (76)
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