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Quantum information and relativity theory
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This article discusses the intimate relationship between quantum mechanics, information theory, and
relativity theory. Taken together these are the foundations of present-day theoretical physics, and
their interrelationship is an essential part of the theory. The acquisition of information from a
quantum system by an observer occurs at the interface of classical and quantum physics. The authors
review the essential tools needed to describe this interface, i.e., Kraus matrices and
positive-operator-valued measures. They then discuss how special relativity imposes severe
restrictions on the transfer of information between distant systems and the implications of the fact that
quantum entropy is not a Lorentz-covariant concept. This leads to a discussion of how it comes about
that Lorentz transformations of reduced density matrices for entangled systems may not be
completely positive maps. Quantum field theory is, of course, necessary for a consistent description of
interactions. Its structure implies a fundamental tradeoff between detector reliability and
localizability. Moreover, general relativity produces new and counterintuitive effects, particularly
when black holes (or, more generally, event horizons) are involved. In this more general context the
authors discuss how most of the current concepts in quantum information theory may require a
reassessment.
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I. THREE INSEPARABLE THEORIES

Quantum theory and relativity theory emerged at the
beginning of the twentieth century to give answers to
unexplained issues in physics: the blackbody spectrum,
the structure of atoms and nuclei, the electrodynamics of
moving bodies. Many years later, information theory
was developed by Claude Shannon (1948) for analyzing
the efficiency of communication methods. How do these
seemingly disparate disciplines relate to each other? In
this review, we shall show that they are inseparably
linked.

A. Relativity and information

Common presentations of relativity theory employ
fictitious observers who send and receive signals. These
‘‘observers’’ should not be thought of as human beings,
but rather as ordinary physical emitters and detectors.
Their role is to label and locate events in spacetime. The
speed of transmission of these signals is bounded by
c—the velocity of light—because information needs a
material carrier, and the latter must obey the laws of
physics. Information is physical (Landauer, 1991).

However, the mere existence of an upper bound on
the speed of propagation of physical effects does not do
justice to the fundamentally new concepts that were in-
troduced by Albert Einstein (one could as well imagine
communications limited by the speed of sound, or that
of the postal service). Einstein showed that simultaneity
had no absolute meaning, and that distant events might
©2004 The American Physical Society
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have different time orderings when referred to observers
in relative motion. Relativistic kinematics is all about
information transfer between observers in relative mo-
tion.

Classical information theory involves concepts such as
the rates of emission and detection of signals, and the
noise power spectrum. These variables have well-
defined relativistic transformation properties, indepen-
dent of the actual physical implementation of the com-
munication system. A detailed analysis by Jarett and
Cover (1981) showed that the transmission rates for ob-
servers with relative velocity v were altered by a factor
(c1v)/(c2v), namely, the square of the familiar Dop-
pler factor for frequencies of periodic phenomena. We
shall later derive the same factor from classical electro-
magnetic theory [see Eq. (36) below]. Physics has a re-
markably rigid theoretical structure: you cannot alter
any part of it without having to change everything
(Weinberg, 1992).

B. Quantum mechanics and information

Einstein’s theory elicited strong opposition when it
was proposed, but it is generally accepted by now. On
the other hand, the revolution caused by quantum
theory still produces uneasy feelings among some
physicists.1 Standard texbooks on quantum mechanics
tell you that observable quantities are represented by
Hermitian operators, that their possible values are the
eigenvalues of these operators, and that the probability
of detecting eigenvalue ln , corresponding to eigenvec-
tor un , is z^unuc& z2, where c is the (pure) state of the
quantum system that is observed. With a bit more so-
phistication to include mixed states, the probability can
be written in a general way ^unuruun&.

This is nice and neat, but it does not describe what
happens in real life. Quantum phenomena do not occur
in Hilbert space; they occur in a laboratory. If you visit a
real laboratory, you will never find Hermitian operators
there. All you can see are emitters (lasers, ion guns, syn-
chrotrons, and the like) and appropriate detectors. In
the latter, the time required for the irreversible act of
amplification (the formation of a microscopic bubble in
a bubble chamber, or the initial stage of an electric dis-
charge) is extremely brief, typically of the order of an
atomic radius divided by the velocity of light. Once irre-
versibility has set in, the rest of the amplification process
is essentially classical. It is noteworthy that the time and
space needed for initiating the irreversible processes are

1The theory of relativity did not cause as much misunder-
standing and controversy as quantum theory, because people
were careful to avoid using the same nomenclature as in non-
relativistic physics. For example, elementary textbooks on
relativity theory distinguish ‘‘rest mass’’ from ‘‘relativistic
mass’’ (hard-core relativists call them simply ‘‘mass’’ and ‘‘en-
ergy’’).
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incomparably smaller than the macroscopic resolution
of the detecting equipment.2

The experimenter controls the emission process and
observes detection events. The theorist’s problem is to
predict the probability of response of this or that detec-
tor, for a given emission procedure. It often happens
that the preparation is unknown to the experimenter,
and then the theory can be used for discriminating be-
tween different preparation hypotheses, once the detec-
tion outcomes are known.

Quantum mechanics tells us that whatever comes
from the emitter is represented by a state r (a positive
operator,3 usually normalized to unit trace). Detectors
are represented by positive operators Em , where m is an
arbitrary label that identifies the detector. The probabil-
ity that detector m will be excited is tr(rEm). A com-
plete set of Em , including the possibility of no detection,
sums up to the unit matrix and is called a positive-
operator-valued measure (POVM). The various Em do
not in general commute, and therefore a detection event
does not correspond to what is commonly called the
‘‘measurement of an observable.’’ Still, the activation of
a particular detector is a macroscopic, objective phe-
nomenon. There is no uncertainty as to which detector
actually clicked.

Many physicists, perhaps a majority, have an intuitive,
realistic worldview and consider a quantum state as a
physical entity. Its value may not be known, but in prin-
ciple the quantum state of a physical system would be
well defined. However, there is no experimental evi-
dence whatsoever to support this naive belief. On the
contrary, if this view is taken seriously, it may lead to
bizarre consequences, called ‘‘quantum paradoxes.’’
These so-called paradoxes originate solely from an in-
correct interpretation of quantum theory, which is thor-
oughly pragmatic and, when correctly used, never yields
two contradictory answers to a well-posed question. It is
only the misuse of quantum concepts, guided by a pseu-
dorealistic philosophy, that leads to paradoxical results.

In this review we shall adhere to the view that r is
only a mathematical expression which encodes informa-
tion about the potential results of our experimental in-
terventions. The latter are commonly called
‘‘measurements’’—an unfortunate terminology, which
gives the impression that there exists in the real world
some unknown property that we are measuring. Even
the very existence of particles depends on the context of
our experiments. In a classic article, Mott (1929) wrote
‘‘Until the final interpretation is made, no mention
should be made of the a ray being a particle at all.’’
Drell (1978a, 1978b) provocatively asked ‘‘When is a
particle?’’ In particular, observers whose world lines are

2The ‘‘irreversible act of amplification’’ is part of quantum
folklore, but it is not essential to physics. Amplification is
needed solely to facilitate the work of the experimenter.

3Positive operators are those having the property that
^curuc&>0 for any state c. These operators are always Her-
mitian.
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accelerated record different numbers of particles, as will
be explained in Sec. V.D (Unruh, 1976; Wald, 1994).

C. Relativity and quantum theory

The theory of relativity deals with the geometric
structure of a four-dimensional spacetime. Quantum me-
chanics describes properties of matter. Combining these
two theoretical edifices is a difficult proposition. For ex-
ample, there is no way of defining a relativistic proper
time for a quantum system which is spread all over
space. A proper time can in principle be defined for a
massive apparatus (‘‘observer’’) whose Compton wave-
length is so small that its center of mass has classical
coordinates and follows a continuous world line. How-
ever, when there is more than one apparatus, there is no
role for the private proper times that might be attached
to the observers’ world lines. Therefore a physical situ-
ation involving several observers in relative motion can-
not be described by a wave function with a relativistic
transformation law (Aharonov and Albert, 1981; Peres,
1995, and references therein). This should not be sur-
prising because a wave function is not a physical object.
It is only a tool for computing the probabilities of objec-
tive macroscopic events.

Einstein’s principle of relativity asserts that there are
no privileged inertial frames. This does not imply the
necessity or even the possibility of using manifestly sym-
metric four-dimensional notations. This is not a peculiar-
ity of relativistic quantum mechanics. Likewise, in clas-
sical canonical theories, time has a special role in the
equations of motion.

The relativity principle is extraordinarily restrictive.
For example, in ordinary classical mechanics with a fi-
nite number of degrees of freedom, the requirement that
the canonical coordinates q have the meaning of posi-
tions, so that particle trajectories q(t) transform like
four-dimensional world lines, implies that these lines
consist of straight segments. Long-range interactions are
forbidden; there can be only contact interactions be-
tween point particles (Currie, Jordan, and Sudarshan,
1963; Leutwyler, 1965). Nontrivial relativistic dynamics
requires an infinite number of degrees of freedom,
which are labeled by the spacetime coordinates (this is
called a field theory).

Combining relativity and quantum theory is not only a
difficult technical question on how to formulate dynami-
cal laws. The ontologies of these theories are radically
different. Classical theory asserts that fields, velocities,
etc., transform in a definite way and that the equations
of motion of particles and fields behave covariantly. For
example, if the expression for the Lorentz force is writ-
ten fm5Fmnun in one frame, the same expression is valid
in any other frame. These symbols (fm , etc.) have objec-
tive values. They represent entities that really exist, ac-
cording to the theory. On the other hand, wave functions
are not defined in spacetime, but in a multidimensional
Hilbert space. They do not transform covariantly when
there are interventions by external agents, as will be
seen in Sec. III. Only the classical parameters attached
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
to each intervention transform covariantly. Yet, in spite
of the noncovariance of r, the final results of the calcu-
lations (the probabilities of specified sets of events) must
be Lorentz invariant.

As a simple example, consider our two observers, con-
ventionally called Alice and Bob,4 holding a pair of spin-
1
2 particles in a singlet state. Alice measures sz and finds
11, say. This tells her what the state of Bob’s particle is,
namely, the probabilities that Bob would obtain 61 if he
measures (or has measured, or will measure) s along
any direction he chooses. This is purely counterfactual
information: nothing changes at Bob’s location until he
performs the experiment himself, or receives a message
from Alice telling him the result that she found. In par-
ticular, no experiment performed by Bob can tell him
whether Alice has measured (or will measure) her half
of the singlet.

A seemingly paradoxical way of presenting these re-
sults is to ask the following naive question. Suppose that
Alice finds that sz51 while Bob does nothing. When
does the state of Bob’s particle, far away, become the
one for which sz521 with certainty? Although this
question is meaningless, it may be given a definite an-
swer: Bob’s particle state changes instantaneously. In
which Lorentz frame is this instantaneous? In any
frame! Whatever frame is chosen for defining simultane-
ity, the experimentally observable result is the same, as
can be shown in a formal way (Peres, 2000b). Einstein
himself was puzzled by what seemed to be the instanta-
neous transmission of quantum information. In his auto-
biography, he used the words ‘‘telepathically’’ and
‘‘spook’’ (Einstein, 1949).

Examples like the above, taken from relativistic quan-
tum mechanics, manifestly have an informational na-
ture. We cannot separate the three disciplines: relativity,
quantum mechanics, and information theory.

D. The meaning of probability

In this review, we shall often invoke the notion of
probability. Quantum mechanics is fundamentally statis-
tical (Ballentine, 1970). In the laboratory, any experi-
ment has to be repeated many times in order to infer a
law; in a theoretical discussion, we may imagine an infi-
nite number of replicas of our gedanken experiment, so
as to have a genuine statistical ensemble. Yet the validity
of the statistical nature of quantum theory is not re-
stricted to situations in which there are a large number
of similar systems. Statistical predictions do apply to
single events. When we are told that the probability of
precipitation tomorrow is 35%, there is only one tomor-
row. This tells us that it may be advisable to carry an
umbrella. Probability theory is simply the quantitative
formulation of how to make rational decisions in the

4Alice and Bob joined the quantum information community
after a distinguished service in classical cryptography. For ex-
ample, they appeared in the historic RSA paper (Rivest,
Shamir, and Adleman, 1978).
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face of uncertainty (Fuchs and Peres, 2000). A lucid
analysis of how probabilistic concepts are incorporated
into physical theories is given by Emch and Liu (2002).

E. The role of topology

Physicists often tend to ignore the topological struc-
ture of the concepts that they use, or turn to it only as a
last resort. Actually, there is a bewildering multitude of
topologies (Reed and Simon, 1980). Many of them have
a direct physical meaning (Emch, 1972; Haag, 1996;
Araki, 1999). In particular, since measurements can ac-
tually be performed only with a finite accuracy, with a
finite number of outcomes, and a finite number of times,
only bounded ranges of values are ever registered. Sup-
pose that we measure N times the value q of an observ-
able Q , and a value qj is obtained nj times. The relative
frequency wj5nj /N is either used to extract a probabil-
ity estimate or taken at face value and interpreted as the
estimate. Thus the information about a state r can be
formulated as (Peres and Terno, 1998; Araki, 1999)

upr
Q~qj!2wju,e j , (1)

for some positive e j . These inequalities induce a natural
topology on the space of states, which is called a physical
topology (Emch, 1972; Araki, 1999). More precisely,
they define a weak-* topology on the observables and a
weak topology on the states. This is a trace-norm
topology5 (Reed and Simon, 1980). These structures are
naturally accommodated in the algebraic approach to
quantum theory. That approach consists in the charac-
terization of the theory by a net of algebras of local
observables and is especially suited for the analysis of
infinite systems in quantum statistical mechanics and
quantum field theory. We shall use results based on al-
gebraic field theory in Secs. V and VI.6

F. The essence of quantum information

In an early review of quantum information theory, In-
garden (1976) distinguished two fundamental aspects:

‘‘Information theory, as it is understood in this paper
and as it usually understood by mathematicians and
engineers following the pioneer paper of Shannon, is
not only a theory of the entropy concept itself (in this

5Since probabilities in quantum mechanics are given by the
expression tr(rEm), and physically acceptable states are trace
class positive operators, the trace norm topology is the con-
crete realization of the physical topology.

6References whose primary interest is field theory include
Bogoliubov et al. (1990), Haag (1996), and Araki (1999). On
the other hand, Davies (1976), Bratteli and Robinson (1987),
and Ingarden, Kossakowski, and Ohaya (1997) consider
mainly applications to open quantum systems, statistical me-
chanics, and thermodynamics. Emch (1972) is concerned with
both. Emch (1972), Bratelli and Robinson (1987), and Baum-
gartel and Wollenberg (1992) give a rigorous and yet readable
exposition of the subject.
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aspect information theory is most interesting for physi-
cists), but also a theory of transmission and coding of
information, i.e., a theory of information sources and
channels.’’

In other words, the goals of quantum information theory
are at the intersection of those of quantum mechanics
and information theory, while its tools combine those of
these two theories. Actually, the tools belonging to
quantum theory were developed under the influence of
nascent quantum information, ‘‘when it was necessary to
consider communication problems for the needs of
quantum of quantum electronic and optics’’ (Ingarden,
1976). The work of Sudarshan et al. (1961), and later
that of Davies, Kossakowski, Kraus, Lindblad, and
Lewis established the formalism of quantum mechanics
of open systems, expressed by POVM’s and completely
positive maps, while the work of Helstrom, Holevo,
Lebedev, and Levitin produced important results in
what became quantum information theory.7 We shall dis-
cuss these subjects in Sec. II of this review.

Some trends in modern quantum information theory
may be traced to security problems in quantum commu-
nication. A very early contribution was Wiesner’s semi-
nal paper ‘‘Conjugate Coding,’’ which was submitted
circa 1970 to IEEE Transactions on Information Theory
and promptly rejected because it was written in a jargon
incomprehensible to computer scientists (this was actu-
ally a paper about physics, but it had been submitted to
a computer science journal). Wiesner’s article was finally
published (Wiesner, 1983) in the newsletter of ACM
SIGACT (Association for Computing Machinery, Spe-
cial Interest Group in Algorithms and Computation
Theory). That article tacitly assumed that exact duplica-
tion of an unknown quantum state was impossible, well
before the no-cloning theorem (Dieks, 1982; Wootters
and Zurek, 1982) became common knowledge. Another
early article, ‘‘Unforgeable Subway Tokens’’ (Bennett
et al., 1983) also tacitly assumed the same.

The standard method for quantum cryptography was
invented by Bennett and Brassard (1984), using two mu-
tually unbiased bases, namely, two bases such that
^umuvm&51/Ad , where d is the number of Hilbert space
dimensions. Security may be improved by using three
bases (Bruß, 1998; Bechmann-Pasquinucci and Gisin,
1999), and even more by going to higher dimensions
(Bechmann-Pasquinucci and Peres, 2000; Bruß and
Macchiavello, 2002). Gisin, Ribordy, Tittel, and Zbinden
(2002) recently reviewed theoretical and experimental
results in quantum cryptography.

A spectacular discovery was that of quantum telepor-
tation (Bennett et al., 1993), which effectively turned
quantum entanglement into a communication resource.
Soon afterward, it also became a computational re-
source (Shor, 1994), and since then it has continued to

7The books of Davies (1976), Holevo (1982), and Ingarden,
Kossakowski, and Ohaya (1997) contain historical surveys and
exhaustive lists of references.
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attract considerable attention. Various aspects of en-
tanglement theory are reviewed in special issues of
Quantum Information and Computation [1 (1) (2001)]
and Journal of Mathematical Physics [43 (9) (2002)]. Ex-
perimental results were reviewed by Zeilinger (1999).

Quantum binary channels were introduced by Schu-
macher (1995), who also generalized Shannon’s coding
theorems to the quantum domain and coined the word
qubit (quantum bit) for elementary carriers of quantum
information. Quantum channels are discussed by Holevo
(1999), Amosov, Holevo, and Werner (2000), King and
Ruskai (2001), and in a special issue of Journal of Math-
ematical Physics [43 (9) (2002)]. An extensive review of
the mathematical aspects of quantum information
theory was given by Keyl (2002).

Our review deals with many interrelated issues. Cau-
sality constraints on POVM’s are discussed in Sec. II.E.
Relativistic extensions of the formalism appear in Secs.
III and VI.A. In Sec. IV we discuss how relativistic con-
siderations modify basic notions of quantum informa-
tion theory: qubits, entanglement, and quantum chan-
nels. In Sec. V we investigate the implications of
quantum field theory for the construction of POVM’s
and the detection of entanglement. Section VI.A deals
with relativistic extensions of quantum information
theory, and in Sec. VI.B we discuss its applications to
black-hole physics.

II. THE ACQUISITION OF INFORMATION

A. The ambivalent quantum observer

Quantum mechanics is used by theorists in two differ-
ent ways. It is a tool for computing accurate relation-
ships between physical constants, such as energy levels,
cross sections, transition rates, etc. These calculations
are technically difficult, but they are not controversial.
In addition to this, quantum mechanics also provides
statistical predictions for results of measurements per-
formed on physical systems that have been prepared in a
specified way. The quantum measuring process is the in-
terface of classical and quantum phenomena. The prepa-
ration and measurement are performed by macroscopic
devices, and these are described in classical terms. The
necessity of using a classical terminology was empha-
sized by Niels Bohr (1927) from the very early days of
quantum mechanics. Bohr’s insistence on a classical de-
scription was very strict. He wrote (1949)

‘‘ . . . by the word ‘experiment’ we refer to a situation
where we can tell others what we have done and what
we have learned and that, therefore, the account of the
experimental arrangement and of the results of the ob-
servations must be expressed in unambiguous lan-
guage, with suitable application of the terminology of
classical physics.’’

Note the words ‘‘we can tell.’’ Bohr was concerned
with information, in the broadest sense of this term. He
never said that there were classical systems or quantum
systems. There were physical systems, for which it was
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
appropriate to use the classical language or the quantum
language. There is no guarantee that either language
gives a perfect description, but in a well-designed experi-
ment it should be at least a good approximation.

Bohr’s approach divides the physical world into ‘‘en-
dosystems’’ (Finkelstein, 1988), which are described by
quantum dynamics, and ‘‘exosystems’’ (such as measur-
ing apparatuses), which are not described by the dy-
namical formalism of the endosystem under consider-
ation. A physical system is called ‘‘open’’ when parts of
the universe are excluded from its description. In differ-
ent Lorentz frames used by observers in relative motion,
different parts of the universe may be excluded. The
systems considered by these observers are then essen-
tially different, and no Lorentz transformation exists
that can relate them (Peres and Terno, 2002).

It is noteworthy that Bohr never described the mea-
suring process as a dynamical interaction between an
exophysical apparatus and the system under observa-
tion. He was, of course, fully aware that measuring ap-
paratuses are made of the same kind of matter as every-
thing else, and they obey the same physical laws. It is
therefore tempting to use quantum theory in order to
investigate their behavior during a measurement. How-
ever, if this is done, the quantized apparatus loses its
status as a measuring instrument. It becomes a mere in-
termediate system in the measuring process, and there
must still be a final instrument that has a purely classical
description (Bohr, 1939).

Measurement was understood by Bohr as a primitive
notion. He could thereby elude questions which caused
considerable controversy among other authors. A
quantum-dynamical description of the measuring pro-
cess was first attempted by John von Neumann in his
treatise on the mathematical foundations of quantum
theory (1932). In the last section of that book, as in an
afterthought, von Neumann represented the apparatus
by a single degree of freedom, whose value was corre-
lated with that of the dynamical variable being mea-
sured. Such an apparatus is not, in general, left in a defi-
nite pure state, and it does not admit a classical
description. Therefore von Neumann introduced a sec-
ond apparatus which observes the first one, and possibly
a third apparatus, and so on, until there is a final mea-
surement, which is not described by quantum dynamics
and has a definite result (for which quantum mechanics
can give only statistical predictions). The essential point
that was suggested, but not proved by von Neumann, is
that the introduction of this sequence of apparatuses is
irrelevant: the final result is the same, irrespective of the
location of the ‘‘cut’’ between classical and quantum
physics.8

These different approaches of Bohr and von Neu-
mann were reconciled by Hay and Peres (1998), who

8At this point, von Neumann also speculated that the final
step involves the consciousness of the observer—a bizarre
statement in a mathematically rigorous monograph (von Neu-
mann, 1955).
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introduced a dual description for the measuring appara-
tus. It obeys quantum mechanics while it interacts with
the system under observation, and then it is ‘‘dequan-
tized’’ and is described by a classical Liouville density
which provides the probability distribution for the re-
sults of the measurement. Alternatively, the apparatus
may always be treated by quantum mechanics and be
measured by a second apparatus which has such a dual
description. The question raised by Hay and Peres is
whether these two different methods of calculation give
the same result or at least asymptotically agree under
suitable conditions. They showed that a sufficient condi-
tion for agreement between the two methods is that the
dynamical variable used as a ‘‘pointer’’ by the first appa-
ratus be represented by a ‘‘quasiclassical’’ operator of
the Weyl-Wigner type (Hillery et al., 1984).

To avoid any misunderstanding, we emphasize that
the classical description of a pointer is not by means of a
point in phase space, but by a Liouville density. Quan-
tum theory makes only statistical predictions, and any
semiclassical treatment that simulates it must also be
statistical.

B. The measuring process

Dirac (1947) wrote that ‘‘a measurement always
causes the system to jump into an eigenstate of the dy-
namical variable being measured.’’ Here, we must be
careful: a quantum jump (also called a collapse) is some-
thing that happens in our description of the system, not
to the system itself. Likewise, the time dependence of
the wave function does not represent the evolution of a
physical system. It only gives the evolution of probabili-
ties for the outcomes of potential experiments on that
system (Fuchs and Peres, 2000).

Let us examine more closely the measuring process.
First, we must refine the notion of measurement and
extend it to a more general one: an intervention. An
intervention is described by a set of parameters which
include the location of the intervention in spacetime, re-
ferred to an arbitrary coordinate system. We also have
to specify the speed and orientation of the apparatus in
the coordinate system that we are using as well as vari-
ous other input parameters that control the apparatus,
such as the strength of a magnetic field or that of a rf
pulse used in the experiment. The input parameters are
determined by classical information received from past
interventions, or they may be chosen arbitrarily by the
observer who prepares that intervention or by a local
random device acting in lieu of the observer.

An intervention has two consequences. One is the ac-
quisition of information by means of an apparatus that
produces a record. This is the ‘‘measurement.’’ Its out-
come, which is in general unpredictable, is the output of
the intervention. The other consequence is a change of
the environment in which the quantum system will
evolve after completion of the intervention. For ex-
ample, the intervening apparatus may generate a new
Hamiltonian that depends on the recorded result. In par-
ticular, classical signals may be emitted for controlling
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
the execution of further interventions. These signals are,
of course, limited to the velocity of light.

The experimental protocols that we consider all start
in the same way, with the same initial state r0 , and the
first intervention is the same. However, later stages of
the experiment may involve different types of interven-
tions, possibly with different spacetime locations, de-
pending on the outcomes of the preceding events. Yet,
assuming that each intervention has only a finite number
of outcomes, there is for the entire experiment only a
finite number of possible records. (Here, the word
record means the complete list of outcomes that oc-
curred during the experiment. We do not want to use the
word history, which has acquired a different meaning in
the writings of some quantum theorists.)

Each one of these records has a definite probability in
the statistical ensemble. In the laboratory, experimenters
can observe its relative frequency among all the records
that were obtained; when the number of records tends
to infinity, this relative frequency is expected to tend to
the true probability. The aim of theory is to predict the
probability of each record, given the inputs of the vari-
ous interventions (both the inputs that are actually con-
trolled by the local experimenter and those determined
by the outputs of earlier interventions). Each record is
objective: everyone agrees on what happened (e.g.,
which detectors clicked). Therefore, everyone agrees on
what the various relative frequencies are, and the theo-
retical probabilities are also the same for everyone.

Interventions are localized in spacetime, but quantum
systems are pervasive. In each experiment, irrespective
of its history, there is only one quantum system, which
may consist of several particles or other subsystems, cre-
ated or annihilated at the various interventions. Note
that all these properties still hold if the measurement
outcome is the absence of a detector click. It does not
matter whether this is due to an imperfection of the de-
tector or to a probability less than 1 that a perfect de-
tector would be excited. The state of the quantum sys-
tem does not remain unchanged. It has to change to
respect unitarity. The mere presence of a detector that
could have been excited implies that there has been an
interaction between that detector and the quantum sys-
tem. Even if the detector has a finite probability of re-
maining in its initial state, the quantum system corre-
lated to the latter acquires a different state (Dicke,
1981). The absence of a click, when there could have
been one, is also an event.

Interventions, as defined above, start by an interaction
with a measuring apparatus, called premeasurement
(Peres, 1980). The quantum system and the apparatus
are initially in a state (scsus& ^ uA& and become en-
tangled into a single composite system C,

(
s

csus& ^ uA&→(
s ,l

csUslul&, (2)

where $ul&% is a complete basis for the states of C. It is the
choice of the unitary matrix Usl that determines which
property of the system under study is correlated to the
apparatus and therefore is measured. When writing the
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above equation, we tacitly assumed that the quantum
system and the measuring apparatus were initially in a
pure state. Since a mixed state is a convex combination
of pure states, no new feature can result from taking
mixed states (which would admittedly be more realistic).
Relativistic restrictions on the allowed forms of Usl will
be discussed in Sec. III.

The measuring process involves not only the physical
system under study and a measuring apparatus (which
together form the composite system C) but also their
environment, which includes unspecified degrees of free-
dom of the apparatus and the rest of the world. These
unknown degrees of freedom interact with the relevant
ones, but they are not under the control of the experi-
menter and cannot be explicitly described. Our partial
ignorance is not a sign of weakness. It is fundamental. If
everything were known, acquisition of information
would be a meaningless concept.

A complete description of C involves both macro-
scopic and microscopic variables. The difference be-
tween them is that the environment can be considered as
adequately isolated from the microscopic degrees of
freedom for the duration of the experiment and is not
influenced by them, while the environment is not isolated
from the macroscopic degrees of freedom. For example,
if there is a macroscopic pointer, air molecules bounce
from it in a way that depends on the position of that
pointer. Even if we can neglect the Brownian motion of
a massive pointer, its influence on the environment leads
to the phenomenon of decoherence, which is inherent to
the measuring process.

An essential property of the composite system C,
which is necessary to produce a meaningful measure-
ment, is that its states form a finite number of orthogo-
nal subspaces which are distinguishable by the observer.
Each macroscopically distinguishable subspace corre-
sponds to one of the outcomes of the intervention and
defines a POVM element Em , given explicitly by Eq. (8)
below. Let us therefore introduce a complete basis for C,
namely, $um,j&%, where m labels a macroscopic subspace
and j labels microscopic states in that subspace.

C. Decoherence

Up to now, quantum evolution is well defined and it is
in principle reversible. It would remain so if the environ-
ment could be perfectly isolated from the macroscopic
degrees of freedom of the apparatus. This demand is of
course self-contradictory, since we have to read the re-
sult of the measurement if we wish to make any use of it.
A detailed analysis of the interaction with the environ-
ment, together with plausible hypotheses (Peres, 2000a),
shows that states of the environment that are correlated
with subspaces of C with different labels m can be treated
as if they were orthogonal. This is an excellent approxi-
mation (physics is not an exact science, it is a science of
approximations). The resulting theoretical predictions
will almost always be correct, and if any rare small de-
viation from them is ever observed, it will be considered
as a statistical quirk or an experimental error.
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The density matrix of the quantum system is thus ef-
fectively block diagonal, and all our statistical predic-
tions are identical to those obtained for an ordinary mix-
ture of (unnormalized) pure states

ucm&5(
s ,j

csUsmjum ,j&, (3)

where the statistical weight of each state is the square of
its norm. This process is called decoherence. Each sub-
space m is stable under decoherence—it is their relative
phase that decoheres. From this moment on, the macro-
scopic degrees of freedom of C have entered into the
classical domain. We can safely observe them and ‘‘lay
on them our grubby hands’’ (Caves, 1982). In particular,
they can be used to trigger amplification mechanisms
(the so-called detector clicks) for the convenience of the
experimenter.

Some authors claim that decoherence may provide a
solution of the ‘‘measurement problem,’’ with the par-
ticular meaning that they attribute to that problem
(Zurek, 1991). Others dispute this point of view in their
comments on the above article (Zurek, 1993). A reas-
sessment of this issue and many important technical de-
tails were recently published by Zurek (2002, 2003). Yet
decoherence has an essential role, as explained above. It
is essential that we distinguish decoherence, which re-
sults from the disturbance of the environment by the
apparatus (and is a quantum effect), from noise, which
would result from the disturbance of the system or the
apparatus by the environment and would cause errors.
Noise is a mundane classical phenomenon, which we ig-
nore in this review.9

D. Kraus matrices and positive-operator-valued measures
(POVM’s)

The final step of the intervention is to discard part of
the composite system C. The discarded part may depend
on the outcome m. We therefore introduce in the sub-
space m two sets of basis vectors um,s& and um ,m& for the
new system and the part that is discarded, respectively.
We thus obtain for the new system a reduced density
matrix

~rm8 !st5(
m

(
s ,t

~Amm!ssrst~Amm* !tt , (4)

where rst[csct* is the initial state, and the notation

~Amm!ss[Usmsm (5)

is introduced for later convenience. Recall that the indi-
ces s and s refer to the original system under study and
to the final one, respectively. Omitting these indices, Eq.
(4) takes the familiar form

9The so-called quantum noise that is discussed in Sec. IV.C
has a different nature.
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r→rm8 5(
m

AmmrAmm
† , (6)

where m is a label that indicates which detector was in-
volved, and the label m refers to any subsystem that was
discarded at the conclusion of the interaction. Clearly,
the ‘‘quantum jump’’ r→rm8 is not a dynamical process
that occurs in the quantum system by itself. It results
from the introduction of an apparatus, followed by its
deletion or that of another subsystem. A jump in the
quantum state occurs even when there is no detector
click or other macroscopic amplification, because we im-
pose abrupt changes in our way of delimiting the object
that we consider as the quantum system under study.

The initial r is usually assumed to be normalized to
unit trace, and the trace of rm8 is the probability of oc-
currence of outcome m. Note that each symbol Amm in
the above equation represents a matrix (not a matrix
element). Explicitly, the Kraus operators Amm (Kraus,
1983) are given by Eq. (5), where Usmsm is the matrix
element for the unitary interaction between the system
under study and the apparatus, including any auxiliary
systems that are subsequently discarded (Peres, 2000a).

Equation (6) is sometimes written rm8 5Sr , where S is
a linear superoperator which acts on density matrices as
ordinary operators act on pure states. Note, however,
that these superoperators have a very special structure,
explicitly given by Eq. (6).

It is also noteworthy that Eq. (6) is the most general
completely positive linear map (Stinespring, 1955;
Davies, 1976; Kraus, 1983). This is a crucial property: a
linear map T(r) is called positive if it transforms any
positive matrix r (namely, one without negative eigen-
values) into another positive matrix. It is called com-
pletely positive if (T ^ 1) acting on a bipartite r produces
a valid bipartite r. For instance, complex conjugation of
r (whose meaning is time reversal) is a positive map.
However, it is not completely positive. If we have two
systems, it is physically meaningless to reverse the direc-
tion of time for only one of them. One can write a for-
mal expression for this impossible process, but the re-
sulting ‘‘density matrix’’ is unphysical because it may
have negative eigenvalues (Peres, 1996). The case for
consideration of completely positive maps was made by
Kraus (1971), Davies (1976), and Lindblad (1976), and
since then these maps have become part of the toolbox
of quantum information. In Sec. IV.E we discuss appar-
ent exceptions to this approach.

It follows from Eq. (6) that the probability of occur-
rence of outcome m is

pm5(
m

tr~AmmrAmm
† !5tr~rEm!. (7)

The positive operators

Em5(
m

Amm
† Amm , (8)

whose dimensions are the same as those of the initial r,
satisfy (mEm51 owing to the unitarity of Usmsm . There-
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fore they are the elements of a POVM. Conversely,
given Em (a positive matrix of order k) it is always pos-
sible to split it in infinitely many ways, as in the above
equation.

In the special case where the POVM elements Em
commute, they are orthogonal projection operators, and
the POVM becomes a projection-valued measure
(PVM). The corresponding intervention is sometimes
called a von Neumann measurement. A rigorous treat-
ment of the POVM formalism can be found in the books
of Davies (1976), Holevo (1982), and Kraus (1983). The
relationship to actual experiments is discussed by Busch,
Grabowski, and Lahti (1995).

E. The no-communication theorem

We now derive a sufficient condition that no instanta-
neous information transfer can result from a distant in-
tervention. We shall show that the condition is

@Amm ,Bnn#50, (9)

where Amm and Bnn are Kraus matrices for the observa-
tion of outcomes m by Alice and n by Bob. Indeed, the
probability that Bob gets a result n, irrespective of what
Alice found, is

pn5(
m

trS (
m ,n

BnnAmmrAmm
† Bnn

† D . (10)

We now make use of Eq. (9) to exchange the positions
of Amm and Bnn , and likewise those of Amm

† and Bnn
† ,

and then we move Amm from the first position to the last
one in the product of operators in the traced parenthe-
ses. We thereby obtain expressions like Eq. (8). These
are elements of a POVM that satisfy (mEm51. There-
fore Eq. (10) reduces to

pn5trS (
n

BnnrBnn
† D , (11)

from which all expressions involving Alice’s operators
Amm have totally disappeared. The statistics of Bob’s re-
sult are not affected at all by what Alice may simulta-
neously do somewhere else. This proves that Eq. (9)
indeed is a sufficient condition for no instantaneous in-
formation transfer.10

Note that any classical communication between dis-
tant observers can be considered as a kind of long-range
interaction. Indeed, it is always possible to treat their
apparatuses as quantum systems (von Neumann, 1932;
Bohr, 1939); then any signals that propagate between
these apparatuses are a manifestation of their mutual
interaction. The propagation of signals is of course
bounded by the velocity of light. As a result, there exists
a partial time ordering of the various interventions in an

10An algebraic approach to statistical independence and to
related topics is discussed by Florig and Summers (1997), while
Neumann and Werner (1983) specifically address the issue of
causality between the preparation and registration processes.
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experiment, which defines the notions ‘‘earlier’’ and
‘‘later’’ (we assume that there are no closed causal
loops). The input parameters of an intervention are de-
terministic (or possibly stochastic) functions of the pa-
rameters of earlier interventions, but not of the stochas-
tic outcomes resulting from later or mutually spacelike
interventions (Blanchard and Jadczyk, 1996, 1998; Per-
cival, 1998).

Even these apparently simple notions lead to non-
trivial results. Consider a separable bipartite superop-
erator T ,

T~r!5(
k

MkrMk
† , Mk5Ak ^ Bk , (12)

where the operators Ak represent operations of Alice
and Bk those of Bob. It was shown by Bennett et al.
(1999) that not all such superoperators can be imple-
mented by local transformations and classical communi-
cation (LOCC). For more on this subject, see Walgate
and Hardy (2002).

A classification of bipartite state transformations was
introduced by Beckman et al. (2001). It consists of the
following categories. There are localizable operations
that can be implemented locally by Alice and Bob, pos-
sibly with the help of prearranged entangled auxiliary
systems (ancillas), but without classical comunication.
Ideally, local operations are instantaneous, and the
whole process can be viewed as performed at a definite
time. For semilocalizable operations, the requirement of
no communication is relaxed and one-way classical com-
munication is possible. It is obvious that any tensor-
product operation TA^ TB is localizable. The converse is
not always true; for example, in Bell measurements
(Braunstein, Mann, and Revzen, 1992) which distinguish
between the four standard bipartite entangled states,

uC6&ª
1

&
~ u0&u1&6u1&u0&), (13)

uF6&ª
1

&
~ u0&u0&6u1&u1&). (14)

Other classes of bipartite operations are defined as
follows. Bob performs a local operation TB just before
the global operation T . If no local operation of Alice
can reveal any information about TB , i.e., Bob cannot
signal to Alice, then the operation T is semicausal. If the
operation is semicausal in both directions, it is called
causal.

In many cases it is easier to prove causality than lo-
calizability. To check the causality of an operation T
whose outcomes are the states rm5Tm(r)/pm with prob-
abilities pm5trTm(r), it is enough to consider the corre-
sponding superoperator

T8~r!ª(
m

Tm~r!. (15)

Indeed, assume that Bob’s action prior to the global op-
eration leads to one of the two different states r1 and
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r2 . Then the states T8(r1) and T8(r2) are distinguish-
able if and only if some of the pairs of states Tm(r1)/pm1
and Tm(r2)/pm2 are distinguishable. Such probabilistic
distinguishability shows that the operation T is not semi-
causal. These definitions of causal and localizable opera-
tors appear equivalent. It is easily proved that localiz-
able operators are causal. It was shown that semicausal
operators are always semilocalizable (Eggeling,
Schlingemann, and Werner, 2002). However, there are
causal operations that are not localizable (Beckman
et al., 2001).

It is curious that, while a complete Bell measurement
is causal, a two-outcome incomplete Bell measurement
is not (Sorkin, 1993). Indeed, consider a two-outcome
PVM

E15uF1&^F1u, E2512E1 , (16)

where uF1&5(u00&1u11&)/& (and the Kraus matrices
are the projectors Em themselves). If the initial state is
u01&AB , then the outcome that is associated with E2 al-
ways occurs and Alice’s reduced density matrix after the
measurement is rA5u0&^0u. On the other hand, if before
the joint measurement Bob performs a unitary opera-
tion that transforms the state into u00&AB , then the two
outcomes are equiprobable, the resulting states after the
measurement are maximally entangled, and Alice’s re-

duced density matrix is rA5 1
2 1. It can be shown that

two input states u00&AB and u01&AB after this incomplete
Bell measurement are distinguished by Alice with a
probability of 0.75.

Here is another example of a semicausal and semilo-
calizable measurement which can be executed with one-
way classical communication from Alice to Bob. Con-
sider a projection-valued measurement, whose complete
orthogonal projectors are

u0& ^ u0& , u0& ^ u1&, u1& ^ u1& , u1& ^ u2&, (17)

where u6&5(u0&6u1&)/& . The Kraus matrices are

Amj5Emd j0 . (18)

From the properties of complete orthogonal measure-
ments (Beckman et al., 2001), it follows that this opera-
tion cannot be performed without Alice’s talking to Bob.
A protocol to realize this measurement is the following.
Alice measures her qubit in the basis $u0&,u1&% and tells
her result to Bob. If Alice’s outcome was u0&, Bob mea-
sures his qubit in the basis $u0&,u1&%, and if it was u1&, in the
basis $u1&, u2&%.

Beckman et al. (2001) derived necessary and sufficient
conditions to check the semicausality (and therefore, the
causality) of projection-valued measurements. Groisman
and Reznik (2002) allowed for more complicated condi-
tional state evolutions. In particular, they were inter-
ested in verification measurements, i.e., those yielding m
with certainty if the state prior to the classical interven-
tion is r}Em , but without making any specific demand
on the resulting state rm8 . They showed that all PVM
verifications on 232 dimensional systems are localiz-
able.
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Vaidman (2003) proposed a realization of verification
measurements by means of a shared entangled ancilla
and Bell-type measurements by one of the parties. A
verification measurement of the states in Eq. (17) will
illustrate his construction. Alice and Bob share a Bell
state uC2& and, contrary to the scheme of Beckman
et al. (2001), they do not have to coordinate their moves.
Alice and Bob perform their tasks independently and
convey their results to a common center, where the final
analysis is made. In the first step of this measurement,
Alice performs a Bell measurement as in the teleporta-
tion of a state uC& from her site to Bob’s (see below).
However, Alice and Bob do not perform the full telepor-
tation which requires a classical communication between
them. The second step of the verification is executed by
Bob. He measures the spin of his particle in the z direc-
tion. According to whether that spin is up or down, he
measures the spin of his ancilla in the z or x direction,
respectively. This completes the measurement and it
only remains to combine the local outcomes to get the
result of the nonlocal measurement (Vaidman, 2003).
This method can be extended to arbitrary Hilbert-space
dimensions.

In the teleportation of an unknown state uC&0 of a
spin-1/2 particle located at Alice’s site, Alice and Bob
use a prearranged pair in a singlet state, namely,
uC2&125(u0&1u1&22u1&1u0&2)/& . The procedure is
based on the identity (Bennett et al., 1993)

uC&0uC2&125~1/2!~ uC2&01uC&21uC1&01uC̃(z)&2

1uF2&01uC̃(x)&21uF1&01uC̃(y)&2), (19)

where the four Bell states are given by Eqs. (13) and
(14), and the symbol uC̃(z)& means the state uC& rotated
by p around the z axis, etc. Thus the Bell measurement
performed on the two particles at Alice’s site leads to
one of the branches of the superposition on the right-
hand side of Eq. (19). To complete the teleportation,
Bob performs a rotation by p around one of the axes
according to the classical information he gets from Al-
ice.

Gauge theories also lead to interesting questions
about measurability. Wilson loops, which are nonlocal
objects by definition, are often invoked in their presen-
tation (Peskin and Schroeder, 1995) and are the back-
bone of lattice gauge theories (Makeenko, 2002). Beck-
man et al. (2002) investigated the measurability of the
Wilson-loop operators.

The impossibility of instantaneous communication al-
lows us to circumvent the theoretical impossibility of
quantum bit commitment (Lo and Chau, 1997; Mayers,
1997). Kent (1999, 2003) developed protocols based on
the finite speed of communication and evaluated their
communication costs and security. In particular, Kent’s
RBC2 protocol allows a bit commitment to be indefi-
nitely maintained with unconditional security against all
classical attacks, and at least for some finite amount of
time against quantum attacks (Kent, 2003).
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III. THE RELATIVISTIC MEASURING PROCESS

A. General properties

Quantum measurements are usually considered as
quasi-instantaneous processes. In particular, they affect
the wave function instantaneously throughout the entire
configuration space. Measurements of finite duration
(Peres and Wootters, 1985) make no essential difference
in this respect. Is this quasi-instantaneous change of the
quantum state, caused by a local intervention of an exo-
physical agent, consistent with relativity theory? The an-
swer is not obvious. The wave function itself is not a
material object forbidden to travel faster than light, but
we may still ask how the dynamical evolution of an ex-
tended quantum system that undergoes several mea-
surements in distant spacetime regions is described in
different Lorentz frames.

Difficulties were pointed out long ago by Bloch
(1967), Aharonov and Albert (1981, 1984), and many
others (Peres, 1995, and references therein). Even ear-
lier, in the very early years of quantum mechanics, Bohr
and Rosenfeld (1933) had given a complete relativistic
theory of the measurement of quantum fields, but these
authors were not concerned about the properties of the
new quantum states that resulted from these measure-
ments, and their work does not answer the question that
was raised above. Other authors (Scarani et al., 2000;
Zbinden et al., 2001) considered detectors in relative
motion and therefore at rest in different Lorentz frames.
These works also do not give an explicit answer to the
above question: a detector in uniform motion is just as
good as one that has undergone an ordinary spatial ro-
tation. (Accelerated detectors involve new physical phe-
nomena; see Sec. V.D.) The point is not how individual
detectors happen to move, but how the effects due to
these detectors are described in different ways in one
Lorentz frame or another.

To become fully relativistic, the notion of intervention
requires some refinement. The precise location of an in-
tervention, which is important in a relativistic discussion,
is the point from which classical information is sent that
may affect the input of other interventions. More pre-
cisely, it is the earliest small region of spacetime from
which classical information could have been sent. More-
over, in the conventional presentation of nonrelativistic
quantum mechanics, each intervention has a (finite)
number of outcomes, for example, this or that detector
clicks. In a relativistic treatment, the spatial separation
of the detectors is essential and each detector corre-
sponds to a different intervention. The reason is that, if
several detectors are set up so that they act at a given
time in one Lorentz frame, they would act at different
times in another Lorentz frame. However, a knowledge
of the time ordering of events is essential in our dynami-
cal calculations, so that we want the parameters of an
intervention to refer unambiguously to only one time
(indeed to only one spacetime ‘‘point’’). Therefore an
intervention can involve only one detector, and it can
have only two possible outcomes: either there was a
‘‘click’’ or there was not.
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What is the role of relativity theory here? We may
likewise ask what is the role of translation and/or rota-
tion invariance in a nonrelativistic theory. The point is
that the rules for computing quantum probabilities ex-
plicitly involve the spacetime coordinates of the inter-
ventions. Lorentz invariance (or rotational invariance,
as a special case) says that, if the classical spacetime
coordinates are subjected to a particular linear transfor-
mation, then the probabilities remain the same. This in-
variance is not trivial because the rule for computing the
probability of occurrence of a given record involves a
sequence of mathematical operations corresponding to
the time-ordered set of all the relevant interventions.

If we consider only the Euclidean group, all we have
to know is how to transform the classical parameters,
and the wave function, and the various operators, under
translations and rotations of the coordinates. However,
when we consider genuine Lorentz transformations, not
only do we have to Lorentz-transform the above sym-
bols, but we are faced with a new problem: the natural
way of calculating the result of a sequence of interven-
tions, namely, by considering them in chronological or-
der, is different for different inertial frames. The issue is
not only a matter of covariance of the symbols at each
intervention and between consecutive interventions.
There are genuinely different prescriptions for choosing
the sequence of mathematical operations in our calcula-
tion. Therefore these different orderings ought to give
the same set of probabilities, and this demand is not
trivial.

B. The role of relativity

A typical example of relativistic measurement is the
detection system in the experimental facility of a mod-
ern high-energy accelerator. Following a high-energy
collision, thousands of detection events occur in loca-
tions that may be mutually spacelike. Yet some of the
detection events are mutually timelike, for example,
when the world line of a charged particle is recorded in
an array of wire chambers. In a relativistic context, the
term ‘‘detector’’ strictly means an elementary detecting
element, such as a bubble in a bubble chamber or a
small segment of wire in a wire chamber.11

A much simpler example of spacelike separated inter-
ventions, which is amenable to a complete analysis, is
Bohm’s version of the Einstein-Podolsky-Rosen ‘‘para-
dox’’ (hereafter EPRB; Einstein, Podolsky, and Rosen,
1935; Bohm, 1951) which is sketched in Fig. 1, with two
coordinate systems in relative motion (Peres, 1993). In
that experiment, a pair of spin-1/2 particles, prepared in

11High-energy physicists use a different language. For them,
an ‘‘event’’ is one high-energy collision together with all the
subsequent detections that are recorded. This ‘‘event’’ is what
we call here an experiment (while they call the ‘‘experiment’’
the complete experimental setup that may be run for many
months). And their ‘‘detector’’ is a huge machine weighing
thousands of tons.
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a singlet state, move apart and are detected by two ob-
servers. Each observer measures a spin component
along an arbitrarily chosen direction. The two interven-
tions are mutually spacelike as shown in the figure. The
test of S1x occurs first when recorded in t1 time, and the
test of S2y is the first one in t2 time. The evolution of the
quantum state of this bipartite system appears to be
genuinely different when recorded in two Lorentz
frames in relative motion. The quantum states are not
Lorentz transforms of each other. Yet all the observable
results are the same. Consistency of the theoretical for-
malism imposes definite relationships between the vari-
ous operators used in the calculations (Peres, 2000b). In
particular, it is sufficient for consistency that the Kraus
operators satisfy an equal-time commutation relation as
in Eq. (9). The analogy with relativistic quantum field
theory is manifest.

In general, consider the quantum evolution from an
initial state r0 to a final state r f . It is a completely posi-
tive map,

r f5(
n

Anr0An
† . (20)

The Lorentz transformation of the Kraus matrices An
can be obtained as follows. We have r085Ur0U† and
r f85Vr fV

†, where U and V are unitary representations
of Lorentz transformations for the systems represented
by r0 and r f (which may be of different nature and even
of different dimensions).

Lorentz invariance means that, in another frame, the
Kraus matrices An8 satisfy

r f85(
n

An8r08An8
† . (21)

A simple solution is

An85VAnU†, (22)

but this is not the most general one. The latter is

An85(
m

Wn
mVAmU†, (23)

FIG. 1. Spacetime diagram in which the origins of the coordi-
nate systems are the locations of the two tests. The t1 and t2
axes are the world lines of the observers, who are receding
from each other. In each Lorentz frame, the z1 and z2 axes are
isochronous: t150 and t250, respectively.
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where Wn
m is a unitary matrix that acts on the labels m ,n

(not on the Hilbert spaces of r0 and r f ). This arbitrari-
ness is a kind of gauge freedom and can be resolved only
by a complete dynamical description of the intervention
process. This, however, is an arduous problem. Relativ-
istic interactions necessarily involve field theory, and the
question is how to generalize the quantum information
tools (POVM’s, completely positive maps) into objects
that are described by quantum field theories (Terno,
2002).

At this stage we consider only field theories in
Minkowski spacetime where a unique vacuum state uV&
is defined. The discrete indices that appear in the above
equations can still be used, owing to the fact that the
underlying Hilbert space is separable (Streater and
Wightman, 1964). Therefore the formalism is valid with-
out change in the relativistic domain.12 However, not ev-
ery measurement-induced state transformation that can
be written in the Kraus form is permitted or makes
sense. Relativity theory prohibits superluminal velocity
for material objects. Consistency with the requirements
of covariance and causality is an intrinsic feature of
quantum field theories. Nevertheless, to make problems
solvable, a patchwork of relativistic and nonrelativistic
theories is employed. For example, a measurement on
relativistic systems is usually treated by introducing de-
tectors that are described by nonrelativistic quantum
mechanics. Often these detectors are stripped to only a
few discrete degrees of freedom (Unruh and Wald, 1984;
Levin, Peleg, and Peres, 1992; Wald, 1994).

An external probe that is not described by field theory
and whose coupling to the fields of interest is arbitrarily
adjustable is obviously an idealization. Beckman et al.
(2001) assert that, if the probe variables are ‘‘heavy,’’
with rapidly decaying correlations, and the field vari-
ables are ‘‘light,’’ then this idealization is credible. Still,
causality requirements like the absence of signaling
should be checked for any proposed measurement
scheme (Sec. II.E also discusses causality requirements).

Consider again the descriptions of the EPRB gedan-
ken experiment in two coordinate systems in relative
motion. There exists a Lorentz transformation connect-
ing the initial states r0 and r08 before the two interven-
tions, and likewise there is a Lorentz transformation
connecting the final states r f and r f8 after completion of
the two interventions. On the other hand, there is no
Lorentz transformation relating the states at intermedi-
ate times that are not in the past or future of both inter-
ventions (Peres, 2000b). The various Kraus operators,
acting at different times, appear in different orders. Nev-
ertheless the overall transition from initial to final state
is Lorentz invariant (Peres, 2001).

12The fact that the values of classical parameters (‘‘measur-
able quantities’’) are finite real numbers is sufficient to con-
struct probability measures. For the exact formulation see
Davies (1976) and Holevo (1982). Similar arguments justify
the inclusion of only bounded operators in algebras of local
observables (Haag, 1996; Araki, 1999).
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In the time interval between the two interventions,
nothing actually happens in the real world. It is only in
our mathematical calculations that there is a determin-
istic evolution of the state of the quantum system. This
evolution is not a physical process.13 What distinguishes
the intermediate evolution between interventions from
the one occurring at an intervention is the unpredictabil-
ity of the outcome of the latter: either there is a click or
there is no click of the detector. This unpredictable mac-
roscopic event starts a new chapter in the history of the
quantum system, which acquires a new state, according
to Eq. (6).

C. Quantum nonlocality?

Phenomena like those illustrated in Fig. 1 are often
attributed to ‘‘quantum nonlocality’’ and have led some
authors to speculate on the possibility of superluminal
communication (actually, instantaneous communica-
tion). One of these proposals (Herbert, 1981) looked
reasonably serious and aroused enough interest to lead
to investigations disproving its possibility (Glauber,
1986) and in particular to the discovery of the no-cloning
theorem (Dieks, 1982; Wootters and Zurek, 1982). Let
us examine more closely the origin of these claims of
nonlocality.

Bell’s theorem (1964) asserts that it is impossible to
mimic quantum theory by introducing a set of objective
local ‘‘hidden’’ variables. It follows that any classical imi-
tation of quantum mechanics is necessarily nonlocal.
However Bell’s theorem does not imply the existence of
any nonlocality in quantum theory itself. In particular,
relativistic quantum field theory is manifestly local. The
simple and obvious fact is that information has to be
carried by material objects, quantized or not. Therefore
quantum measurements do not allow any information to
be transmitted faster than the characteristic velocity that
appears in the Green’s functions of the particles emitted
in the experiment. In a Lorentz-invariant theory, this
limit is the velocity of light.

In summary, relativistic causality cannot be violated
by quantum measurements. The only physical assump-
tion that is needed to prove this assertion is that Lorentz
transformations of the spacetime coordinates are imple-
mented in quantum theory by unitary transformations of
the various operators. This is the same as saying that the
Lorentz group is a valid symmetry of the physical system
(Weinberg, 1995).

13Likewise, the quantum state of Schrödinger’s legendary cat,
doomed to be killed by an automatic device triggered by the
decay of a radioactive atom, evolves into a superposition of
‘‘live’’ and ‘‘dead’’ states. This is a manifestly absurd situation
for a real cat. The only meaning that such a quantum state can
have is that of a mathematical tool for statistical predictions on
the fates of numerous cats subjected to the same cruel experi-
ment.
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D. Classical analogies

Are relativity and quantum theory really involved in
these issues? The matter of information transfer by
means of distant measurements is essentially nonrelativ-
istic. Replace ‘‘superluminal’’ by ‘‘supersonic’’ and the
argument is exactly the same. The maximal speed of
communication is determined by the dynamical laws
that govern the physical infrastructure. In quantum field
theory, the field excitations are called ‘‘particles,’’ and
their speed over macroscopic distances cannot exceed
the speed of light. In condensed-matter physics, linear
excitations are called phonons, and the maximal speed is
that of sound.

As to the EPRB setup, consider an analogous classical
situation. A bomb, initially at rest, explodes into two
fragments carrying opposite angular momenta. Alice
and Bob, far away from each other, measure arbitrarily
chosen components of J1 and J2 . (They can measure all
the components, since these have objective values.) Yet
Bob’s measurement tells him nothing of what Alice did,
or even whether she did anything at all. He can only
know with certainty what would be the result found by
Alice if she measured her J along the same direction as
he did and make statistical inferences for other possible
directions of Alice’s measurement.

The classical-quantum analogy becomes complete if
we use classical statistical mechanics. The distribution of
bomb fragments is given by a Liouville function in phase
space. When Alice measures J1 , the Liouville function
for J2 is instantly altered, however far Bob is from Alice.
No one finds this surprising, since it is universally agreed
that a Liouville function is only a mathematical tool rep-
resenting our statistical knowledge. Likewise, the wave
function c, or the corresponding Wigner function
(Wigner, 1932), which is the quantum analog of a Liou-
ville function, is no more than a mathematical tool for
computing probabilities. It is only when they are re-
garded as physical objects that superluminal paradoxes
arise.

The essential difference between the classical and
quantum functions which change instantaneously as the
result of measurements is that the classical Liouville
function is attached to objective properties that are only
imperfectly known. On the other hand, in the quantum
case, the probabilities are attached to potential out-
comes of mutually incompatible experiments, and these
outcomes do not exist ‘‘out there’’ without the actual
interventions. Unperformed experiments have no re-
sults.

IV. QUANTUM ENTROPY AND SPECIAL RELATIVITY

A. Reduced density matrices

In our discussion of the measuring process, decoher-
ence was attributed to the inability to account explicitly
for the degrees of freedom of the environment. The en-
vironment thus behaves as an exosystem (Finkelstein,
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1988) and the system of interest is ‘‘open’’ because parts
of the universe are excluded from its description.

This leads to the introduction of reduced density ma-
trices: let us use latin indices for the description of the
exosystem (that is, if we were able to give it a descrip-
tion) and greek indices for the subsystem that we can
actually describe. The components of a state vector
would thus be written Vmm and those of a density matrix
rmm ,nn . The reduced density matrix of the system of in-
terest is given by

tmn5(
m

rmm ,mn . (24)

Even if r is a pure state (a matrix of rank 1), t is in
general a mixed state. Its entropy is defined as

S52tr~t log t!. (25)

In a relativistic system, whatever is outside the past
light cone of the observer is unknown to him, but also
cannot affect his system and therefore does not lead to
decoherence (here, we assume that no particle emitted
by an exosystem located outside the past cone pen-
etrates into the future cone). Since observers located at
different points have different past light cones, they ex-
clude from their descriptions different parts of space-
time. Therefore any transformation law between them
must tacitly assume that the part excluded by one ob-
server is irrelevant to the system of the other observer.

Another consequence of relativity is that there is a
hierarchy of dynamical variables. Primary variables have
relativistic transformation laws that depend only on the
Lorentz transformation matrix L that acts on the space-
time coordinates. For example, momentum components
are primary variables. On the other hand, secondary
variables, such as spin and polarization, have transfor-
mation laws that depend not only on L but also on the
momentum of the particle. As a consequence, the re-
duced density matrix for secondary variables, which may
be well defined in any coordinate system, has no trans-
formation law relating its values in different Lorentz
frames. A simple example is given in Sec. IV.B. Appen-
dix A gives a summary of the relativistic state transfor-
mations for free particles.

Moreover, an unambiguous definition of the reduced
density matrix by means of Eq. (24) is possible only if
the secondary variables are unconstrained. For gauge
field theories, that equation may be meaningless if it
conflicts with constraints imposed on the physical states
(Beckman et al., 2002; Peres and Terno, 2003). In the
absence of a general prescription, a case-by-case treat-
ment is required. A particular construction, valid with
respect to a certain class of tests, is given in Sec. IV.C. A
general way of defining reduced density matrices for
physical states in gauge theories is an open problem.

B. Massive particles

We first consider the relativistic properties of the spin
entropy for a single, free particle of spin 1

2 and mass m
.0. We shall show that the usual definition of quantum
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entropy has no invariant meaning. The reason is that
under a Lorentz boost the spin undergoes a Wigner ro-
tation (Wigner, 1939; Halpern, 1968) whose direction
and magnitude depend on the momentum of the par-
ticle. Even if the initial state is a direct product of a
function of momentum and a function of spin, the trans-
formed state is not a direct product. Spin and momen-
tum appear to be entangled. (This is not the familiar
type of entanglement which can be used for quantum
communication, because both degrees of freedom be-
long to the same particle, not to distinct subsystems that
could be widely separated.)

The quantum state of a spin-1
2 particle can be written,

in the momentum representation, as a two-component
spinor,

c~p!5S a1~p!

a2~p! D , (26)

where the amplitudes ar satisfy (r* uar(p)u2dp51. The
normalization of these amplitudes is a matter of conve-
nience, depending on whether we prefer to include a
factor p05(m21p2)1/2 in it, or to have such factors in
the transformation law (29) below. Following Halpern
(1968), we shall use the second alternative, because it is
closer to the nonrelativistic notation that appears in the
usual definition of entropy. In this section, we use natu-
ral units: c51.

Here we emphasize that we consider normalizable
states in the momentum representation, not momentum
eigenstates as is usual in textbooks on particle physics.
The latter are chiefly concerned with the computation of
^inuout& matrix elements needed to obtain cross sections
and other asymptotic properties. However, in general a
particle has no definite momentum. For example, if an
electron is elastically scattered by some target, the elec-
tron state after the scattering is a superposition that in-
volves momenta in all directions.

In that case, it still is formally possible to ask, in any
Lorentz frame, what is the value of a spin component in
a given direction (this is a legitimate Hermitian opera-
tor). In quantum information theory, the important issue
does not reside in asymptotic properties, but in how en-
tanglement (a communication resource) is defined by
different observers. Early papers on this subject used
momentum eigenstates, just as in particle physics (Cza-
chor, 1997). However, radically new properties arise
when localized quantum states are considered.

Let us define a reduced density matrix t
5*dpc(p)c†(p), giving statistical predictions for the
results of measurements of spin components by an ideal
apparatus which is not affected by the momentum of the
particle. The spin entropy is

S52tr~t log t!52( l j log l j , (27)

where l j are the eigenvalues of t.
As usual, ignoring some degrees of freedom leaves the

others in a mixed state. What is not obvious is that in the
present case the amount of mixing depends on the Lor-
entz frame used by the observer. Indeed, consider an-
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other observer (Bob) who moves with a constant veloc-
ity with respect to Alice, who prepared state (26). In the
Lorentz frame where Bob is at rest, the same spin-1

2

particle has a state

c8~p!5S a18~p!

a28~p! D . (28)

The transformation law is (Weinberg, 1995)

a8~p!5@~L21p !0 /p0#1/2

3(
s

Drs@L ,~L21p !# as~L21p !, (29)

where Drs is the Wigner rotation matrix for a Lorentz
transformation L. Further details of this transformation
and its representation by a quantum circuit are given in
Appendix A.

As an example, take a particle prepared by Alice with
spin in the z direction, so that a2(p)50. Spin and mo-
mentum are not entangled, and the spin entropy is zero.
When that particle is described in Bob’s Lorentz frame,
moving with velocity b in a direction at an angle u with
Alice’s z axis, a detailed calculation shows that both a18
and a28 are nonzero, so that the spin entropy is positive
(Peres, Scudo, and Terno, 2002). This phenomenon is
illustrated in Fig. 2. A relevant parameter, apart from
the angle u, is, in the leading order in momentum
spread,

G5
D

m

12A12b2

b
, (30)

where D is the momentum spread in Alice’s frame. The
entropy has no invariant meaning, because the reduced
density matrix t has no covariant transformation law,
except in the limiting case of sharp momenta. Only the
complete density matrix transforms covariantly.

How is the linearity of the transformation laws lost in
this purely quantum-mechanical problem? The mo-
menta p do transform linearly, but the law of transfor-
mation of spin depends explicitly on p. When we evalu-
ate t by summing over momenta in r, all knowledge of
these momenta is lost and it is then impossible to obtain
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FIG. 2. Dependence of the spin entropy S , in Bob’s frame, on
the values of the angle u and a parameter G'@12(1
2b2)1/2#D/mb , where D is the momentum spread in Alice’s
frame.
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t8 by transforming t. Not only is linearity lost, but the
result is not nonlinearity in the usual sense of this term.
It is the absence of any definite transformation law that
depends only on the Lorentz matrix.

It is noteworthy that a similar situation arises for a
classical system whose state is given in any Lorentz
frame by a Liouville function (Balescu and Kotera,
1967). Recall that a Liouville function expresses our
probabilistic description of a classical system—what we
can predict before we perform an actual observation—
just as a quantum state is a mathematical expression
used for computing probabilities of events.

To avoid any misunderstanding, we emphasize that
there is no consistent relativistic statistical mechanics for
N interacting particles, with a 6N-dimensional phase
space defined by the canonical coordinates pn and qn
(n51,.. . ,N). Any relativistic interaction must be medi-
ated by fields, having an infinity of degrees of freedom.
A complete Liouville function, or rather Liouville func-
tional, must therefore contain not only all the canonical
variables pn and qn , but also all the fields. However,
once this Liouville functional is known (in principle), we
can define from it a reduced Liouville function, by inte-
grating the functional over all the degrees of freedom of
the fields. The result is a function of pn and qn only (just
as we compute reduced density matrices in quantum
theory). The time evolution of such reduced Liouville
functions cannot be obtained directly from canonical
Hamiltonian dynamics without explicitly mentioning the
fields. These functions are well defined in any Lorentz
frame, but they have no relativistic transformation law.
Only the complete Liouville functional, including the
fields, has one.

Consider now a pair of orthogonal states that were
prepared by Alice. How well can moving Bob distin-
guish them, if he is restricted to measuring discrete de-
grees of freedom? We shall use the simplest criterion,
namely, the probability of error PE , defined as follows.
An observer receives a single copy of one of the two
known states and performs any operation permitted by
quantum theory in order to decide which state was sup-
plied. The probability of a wrong answer for an optimal
measurement is (Fuchs and van de Graaf, 1999)

PE~r1 ,r2!5
1
2

2
1
4

trA~r12r2!2. (31)

In Alice’s frame PE50. It can be shown that in Bob’s
frame PE8 }G2, where the proportionality factor depends
on the angle u defined above. Of course, the opposite
Lorentz transformation induces a change from a positive
PE in Bob’s frame to PE50 in Alice’s frame. We discuss
the resulting effective quantum channel in Sec. IV.E.

C. Photons

The long-range propagation of polarized photons is an
essential tool of quantum cryptography (Gisin et al.,
2002). Usually, optical fibers are used, and the photons
may be absorbed or depolarized due to imperfections. In
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some cases, such as communication with space stations,
the photons propagate in vacuo (Buttler et al., 2000).
The beam then has a finite diffraction angle of order
l/a , where a is the aperture size, and new deleterious
effects appear. In particular, a polarization detector can-
not be rigorously perpendicular to the wave vector, and
the transmission is never faithful, even with perfect de-
tectors. Moreover, this ‘‘vacuum noise’’ depends on the
relative motion of the observer with respect to the
source.

These relativistic effects are essentially different from
those for massive particles discussed above, because
photons have only two linearly independent polarization
states. The properties that we discuss are kinematical,
not dynamical. At the statistical level, it is not even nec-
essary to involve quantum electrodynamics. Most for-
mulas can be derived by elementary classical methods
(Peres and Terno, 2003). It is only when we consider
individual photons, for cryptographic applications, that
quantum theory becomes essential. The diffraction ef-
fects mentioned above lead to superselection rules
which make it impossible to define a reduced density
matrix for polarization. As shown below, it is still pos-
sible to have ‘‘effective’’ density matrices; however, the
latter depend not only on the preparation process, but
also on the method of detection that is used by the ob-
server.

Assume for simplicity that the electromagnetic signal
is monochromatic. In a Fourier decomposition, the Car-
tesian components of the wave vector km (with m
50,1,2,3) can be written in terms of polar angles:

km5~1,sin u cos f ,sin u sin f ,cos u!, (32)

where we use units such that c51 and k051. Let us
choose the z axis so that a well-collimated beam has a
large amplitude only for small u.

In a real experiment, the angles u and f are distrib-
uted in a continuous way around the z axis (exactly how
depends on the properties of the laser), and one has to
take a suitable average over them. As the definition of
polarization explicitly depends on the direction of k, tak-
ing the average over many values of k leads to an im-
pure polarization and may cause transmission errors.

Let us consider the effect of a motion of the detector
relative to the emitter, with a constant velocity v
5(0,0,v). The Lorentz transformation of km in Eq. (32)
yields new components,

k085g~12v cos u! and kz85g~cos u2v !, (33)

where g5(12v2)21/2. Considering again a single Fou-
rier component, we have, instead of the unit vector k, a
new unit vector

k85S sin u

g~12v cos u!
,0,

cos u2v
12v cos u D . (34)

In other words, there is a new tilt angle u8 given by

sin u85sin u/g~12v cos u!. (35)

For small u, such that u2!uvu, we have
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u85uA11v
12v

. (36)

The square root is the familiar relativistic Doppler fac-
tor. For large negative v , the diffraction angle becomes
arbitrarily small, and sideways losses (which are propor-
tional to u82) can be reduced to zero.

It is noteworthy that the same Doppler factor was ob-
tained by Jarett and Cover (1981), who considered only
the relativistic transformations of bit rate and noise in-
tensity, without any specific physical model. This re-
markable agreement shows that information theory
should properly be considered as a branch of physics.

In applications to secure communication, the ideal
scenario is that isolated photons (single-particle Fock
states) are emitted. In a more realistic setup, the trans-
mission is by means of weak coherent pulses containing
on average less than one photon each. A basis of the
one-photon space is spanned by states of definite mo-
mentum and helicity,

uk,ek
6&[uk& ^ uek

6& , (37)

where the momentum basis is normalized by ^quk&
5(2p)3(2k0)d(3)(q2k), and helicity states uek

6& are ex-
plicitly defined by Eq. (40) below.

As we know, polarization is a secondary variable:
states that correspond to different momenta belong to
distinct Hilbert spaces and cannot be superposed (an
expression such as uek

6&1ueq
6& is meaningless if kÞq).

The complete basis (37) does not violate this superselec-
tion rule, owing to the othogonality of the momentum
basis. Therefore a generic one-photon state is given by a
wave packet

uC&5E dm~k!f~k!uk,a~k!& . (38)

The Lorentz-invariant measure is dm(k)
5d3k/(2p)32k0, and normalized states satisfy
*dm(k)uf(k)u251. The generic polarization state ua(k)&
corresponds to the geometrical three-vector

a~k!5a1~k!ek
11a2~k!ek

2 , (39)

where ua1u21ua2u251, and the explicit form of ek
6 is

given below.
Lorentz transformations of quantum states are most

easily computed by referring to some standard momen-
tum, which for photons is pn5(1,0,0,1). Accordingly,
standard right and left circular polarization vectors are
ep

65(1,6i ,0)/& . For linear polarization, we take Eq.
(39) with a15(a2)* , so that the three-vectors a(k) are
real. In general, complex a(k) correspond to elliptic po-
larization.

Under a Lorentz transformation L, these states be-
come ukL ,a(kL)&, where kL is the spatial part of a four-
vector kL5Lk , and the new polarization vector can be
obtained by an appropriate rotation given by Eq. (42)
below. For each k a polarization basis consists of the
helicity vectors,

ek
65R~ k̂!ep

6 , (40)
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and the corresponding quantum states are uk,ek
6&.

As usual, k̂ denotes the unit three-vector in the direc-
tion of k. The standard matrix (Weinberg, 1995) that
rotates the standard direction (0,0,1) to k̂
5(sin u cos f,sin u sin f,cos u) is

R~ k̂!5S cos u cos f 2sin f cos f sin u

cos u sin f cos f sin f sin u

2sin u 0 cos u
D , (41)

and likewise for k̂L .
Under a general Lorentz transformation, be it a rota-

tion or a boost, helicity is preserved, but quantum states
and the corresponding geometric vectors acquire
helicity-dependent phases (see Appendix A for more
details):

a1ek
11a2ek

2→a1eij(L ,k̂)ekL

1 1a2e2ij(L ,k̂)ekL

2 , (42)

where the explicit expressions for j(L ,k̂) are given by
Lindner, Peres, and Terno (2003) and Bergou, Gingrich,
and Adami (2003).

The superselection rule that was mentioned above
makes it impossible to define a reduced density matrix in
the usual way (Lindner, Peres, and Terno, 2003; Peres
and Terno, 2003). We can, however, define an ‘‘effec-
tive’’ reduced density matrix for polarization, as follows.
The labeling of polarization states by Euclidean vectors
ek

n , and the fact that photons are spin-1 particles, suggest
the use of a 333 matrix with entries labeled x , y , and z .
Classically, they correspond to different directions of the
electric field. For example, when k̂5 ẑ, only rxx , rxy ,
and ryy are nonzero. For a generic photon state uC& , let
us try to construct a reduced density matrix rxx that
gives the expectation value of an operator representing
the polarization in the x direction, irrespective of the
particle’s momentum.

To have a momentum-independent polarization is to
tacitly admit longitudinal photons. Unphysical concepts
are often used in intermediate steps in theoretical phys-
ics. Momentum-independent polarization states thus
consist of physical (transversal) and unphysical (longitu-
dinal) parts, the latter corresponding to a polarization
vector e,5k̂. For example, a generalized polarization
state along the x axis is

ux̂&5x1~k!uek
1&1x2~k!uek

2&1x,~k!uek
,&, (43)

where x6(k)5ek
6
• x̂, and x,(k)5 x̂•k̂5sin u cos f. It fol-

lows that ux1u21ux2u21ux,u251, and we thus define

ex~k!5
x1~k!ek

11x2~k!ek
2

Ax1
2 1x2

2 (44)

as the polarization vector associated with the x direc-
tion. It follows from Eq. (43) that ^x̂ux̂&51 and ^x̂uŷ&
5 x̂• ŷ50, and likewise for the other directions, so that

ux̂&^x̂u1uŷ&^ŷu1u ẑ&^ ẑu51. (45)

To the direction x̂ corresponds a projection operator
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Px5ux̂&^x̂u ^ 1p5ux̂&^x̂u ^ E dm~k!uk&^ku, (46)

where 1p is the unit operator in momentum space. The
action of Px on uC& follows from Eq. (43) and ^ek

6uek
,&

50. Only the transversal part of ux̂& appears in the ex-
pectation value:

^CuPxuC&5E dm~k!uf~k!u2ux1~k!a1* ~k!

1x2~k!a2* ~k!u2. (47)

It is convenient to write the transversal part of ux̂& as

ubx~k!&[~ uek
1&^ek

1u1uek
2&^ek

2u!ux̂&, (48)

5x1~k!uek
1&1x2~k!uek

2&. (49)

Likewise define uby(k)& and ubz(k)&. These three state
vectors are neither of unit length nor mutually orthogo-
nal. For k5(sin u cos f,sin u sin f,cos u) we have

ubx~k!&5
1

&
~cos u cos f1i sin f!uek

1&

1
1

&
~cos u cos f2i sin f!uek

2& (50)

[c~u ,f!uk,ex~k!&, (51)

where ex(k) is given by Eq. (44), and c(u ,f)
5Ax1

2 1x2
2 .

Finally, a POVM element Ex , which is the physical
part of Px , that is, equivalent to Px for physical states
(without longitudinal photons), is

Ex5E dm~k!uk,bx~k!&^k,bx~k!u, (52)

and likewise for the other directions. The operators Ex ,
Ey , and Ez indeed form a POVM in the space of physi-
cal states, owing to Eq. (45). The above derivation was,
admittedly, a rather circuitous route for obtaining a
POVM for polarization. This is due to the fact that the
latter is a secondary variable, subject to superselection
rules. Unfortunately, this is the generic situation.

The entire effective density matrix is reconstructed us-
ing the techniques of Chuang and Nielsen (1997), and
we get a simple expression for the reduced density ma-
trix corresponding to the state uC& of Eq. (38):

rmn5E dm~k!uf~k!u2^a~k!ubn~k!&^bm~k!ua~k!& . (53)

Using the definitions of ubm(k)& [Eq. (49) and its ana-
logs] and of the geometric three-vectors, [Eq. (39)], we
can express this density matrix with the components of
a(k) alone,

rmn5E dm~k!uf~k !u2am~k!an* ~k!. (54)

Since polarization three-vectors transform under rota-
tions regardless of momentum, the effective 333 polar-
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ization density matrix has a standard transformation law
under rotation R as well, r→RrRT.

Our basis states uk,ek& are direct products of momen-
tum and polarization. Owing to the transversality re-
quirement ek•k50, they remain direct products under
Lorentz transformations. All the other states have their
polarization and momentum degrees of freedom en-
tangled. As a result, if one is restricted to polarization
measurements as described by the POVM elements
(52), two orthogonal polarization states do not exist. It
follows that photon polarization states cannot be cloned
perfectly, because the no-cloning theorem (Dieks, 1982;
Wootters and Zurek, 1982) forbids an exact copying of
unknown nonorthogonal states. In general, any mea-
surement procedure with finite momentum sensitivity
will lead to errors in identification.

Our present problem is the distinguishability by our
observer, Bob, of a pair of different quantum states that
were prepared by Alice. The probability of an error by
Bob is given by Eq. (31). The distinguishability of polar-
ization density matrices depends on the observer’s mo-
tion. We again assume that Bob moves along the z axis
with a velocity v . Let us calculate his reduced density
matrix. Recall that reduced density matrices have no
transformation law (only the complete density matrix
has one) except in the limiting case of sharp momenta.
To calculate Bob’s reduced density matrix, we must
transform the complete state and only then take a par-
tial trace. A detailed calculation (Peres and Terno, 2003)
leads to

PE8 5
11v
12v

PE , (55)

which may be either larger or smaller than PE . As ex-
pected, we obtain for one-photon states the same Dop-
pler effect as in the classical equation (36).

D. Entanglement

An important problem is the relativistic nature of
quantum entanglement when there are several particles.
For two particles, an invariant definition of the entangle-
ment of their spins would be to compute it in the Lor-
entz ‘‘rest frame’’ where ^(p&50. However, this simple
definition is not adequate when there are more than two
particles, because there appears a problem of cluster de-
composition: each subset of particles may have a differ-
ent rest frame. This is a difficult problem, still awaiting a
solution. We shall mention only a few partial results.

First, we have to define a convenient measure of en-
tanglement. For two spin- 1

2 particles, the concurrence

C(r) is defined as follows (Wootters, 1998). Introduce a
spin-flipped state r̃5(sy ^ sy)r* (sy ^ sy). The concur-
rence is

C~r!5max~0,l12l22l32l4!, (56)

where l i are the eigenvalues, in decreasing order, of the
Hermitian matrix @Arr̃Ar#1/2. The larger the concur-
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rence, the stronger the entanglement: for maximally en-
tangled states C51, while for nonentangled states C
50.

Alsing and Milburn (2002) considered bipartite states
with well-defined momenta. They showed that while
Lorentz transformations change the appearance of the
state in different inertial frames and the spin directions
are Wigner rotated, the amount of entanglement re-
mains intact. The reason is that Lorentz boosts do not
create spin-momentum entanglement when acting on
eigenstates of momentum, and the effect of a boost on a
pair is implemented on both particles by local unitary
transformations, which are known to preserve entangle-
ment. The same conclusion is valid for photon pairs.

In particular, Hacyan (2001) showed that, since the
polarization angle remains constant in the polarization
plane, the directions of perfect correlation for two pho-
tons still exist in any reference frame, even if they are
different from the laboratory directions. Terashima and
Ueda (2003) showed that in a quite general setting for
both massive and massless particles, allowing for relative
motion, it is always possible to find directions of perfect
(anti)correlations.

However, realistic situations involve wave packets.
For example, a state of two spin-1

2 particles is

uY12&5 (
s1 ,s2

E dm~p1!dm~p2!

3g~s1s2 ,p1 ,p2!up1 ,s1 ;p2 ,s2&, (57)

where dm(p)5d3p/16p3p0 as usual.
For typical particle beams, g is sharply peaked at

some values p10 ,p20 . Again, a boost to any Lorentz
frame will result in a unitary U(L) ^ U(L) acting on
each particle separately, thus preserving the entangle-
ment. Nevertheless, since boosts can change entangle-
ment between different degrees of freedom of each par-
ticle, the spin-spin entanglement is frame dependent as
well.

Gingrich and Adami (2002) investigated the reduced
density matrix for uY12& and made explicit calculations
for the case in which g is a Gaussian, as in the work of
Peres, Scudo, and Terno (2002). They showed that if two
particles are maximally entangled in a common, ap-
proximate rest frame (Alice’s frame), then C(r), as seen
by a Lorentz-boosted Bob, decreases when the boost
velocity tends to c . Of course, the inverse transforma-
tion from Bob to Alice will increase the concurrence.
Thus we see that that spin-spin entanglement is not a
Lorentz-invariant quantity, exactly as spin entropy is not
a Lorentz scalar. Relativistic properties of the polariza-
tion entanglement were investigated by Bergou, Ging-
rich, and Adami (2003).

E. Communication channels

Although reduced polarization density matrices have
no general transformation rule, the above results show
that such rules can be established for particular classes
of experimental procedures. We can then ask how these
Rev. Mod. Phys., Vol. 76, No. 1, January 2004
effective transformation rules, t85T(t), fit into the
framework of general state transformations. Are they
completely positive, as in Eq. (6)? It can be proved that
distinguishability, as expressed by natural measures like
PE , cannot be improved by any completely positive
transformation (Fuchs and van de Graaf, 1999). How-
ever, the requirement that they be completely positive
may fail if there is a prior entanglement with another
system and the dynamics are not factorizable (Pechukas,
1994; Štelmachovič and Bužek, 2001; Salgado and
Sánchez-Gómez, 2002).

Since in Eq. (55) and in the discussion following Eq.
(31) we saw that distinguishability can be improved, we
conclude that these transformations are not completely
positive. The reason is that the Lorentz transformation
acts not only on the ‘‘interesting’’ discrete variables, but
also on the primary momentum variables that we
elected to ignore and to trace out, and its action on the
interesting degrees of freedom depends on the ‘‘hidden’’
primary ones. Of course, the complete state, with all the
variables, transforms unitarily, and distinguishability is
preserved.

This technicality has one important consequence. In
quantum information theory, quantum channels are de-
scribed by completely positive maps that act on qubit
states (Holevo, 1999; Keyl, 2002). Qubits themselves are
realized as discrete degrees of freedom of various par-
ticles. If relativistic motion is important, then not only
does the vacuum behave as a noisy quantum channel,
but the very representation of a channel by a completely
positive map fails.

V. THE ROLE OF QUANTUM FIELD THEORY

The POVM formalism is an essential tool of quantum
information theory. Entanglement is a major resource
for quantum communication and computation. In this
section we present results of quantum field theory that
are important for the relativistic generalization of these
concepts. Mathematical results are stated in an informal
way. Rigorous formulations and fine mathematical
points can be found in the references that are supplied
for each concept or theorem we introduce.

A. General theorems

First, we define the notions of local and quasilocal
operators (Emch, 1972; Bogoliubov et al., 1990; Haag,
1996; Araki, 1999). Local operators are associated with
bounded regions of spacetime. For example, they may
be field operators that are smeared with functions of
bounded support (that is, functions that vanish if their
argument is outside of a prescribed bounded region O of
spacetime). Smeared renormalized stress-energy tensors
also belong to this category. Quasilocal operators are
obtained when the smearing functions have exponen-
tially decaying tails.

Theorem. The set of states A(O)uV&, generated from
the vacuum uV& by the (polynomial) algebra of operators
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in any bounded region, is dense in the Hilbert space of
all field states.

This is the Reeh-Schlieder theorem (Reeh and
Schlieder, 1961; Streater and Wightman, 1964; Haag
1996; Araki, 1999). It asserts that there are local opera-
tors QPA(O) which, applied to the vacuum, produce a
state that is arbitrarily close to any arbitrary uY& (the
vacuum state can be replaced by any state of finite en-
ergy). Thus in principle any entangled state can be arbi-
trarily closely approximated by suitable local operations
on any other state.

The theorem reveals a surprising amount of entangle-
ment that is present in the vacuum state uV&. The corol-
lary below shows that, if a local operator is used to
model a detector, that detector must have ‘‘dark counts’’:
it has a finite probability to ‘‘click’’ in a vacuum.

Corollary. No operator that is localized in a bounded
spacetime region annihilates the vacuum (nor any other
physical state).

Another important theorem is due to Epstein, Glaser,
and Jaffe (1965):

Theorem. If a field Q(x) satisfies ^CuQ(x)uC&>0 for
all states, and if ^VuQ(x)uV&50 for the vacuum state,
then Q(x)50.

This implies that no POVM constructed from local or
quasilocal operators can have zero vacuum response.
The theorem predicts that, for any local field Q(x) that
has a zero vacuum expectation value, that is,
^VuQ(x)uV&50, there exists a state for which the expec-
tation value of Q(x) is negative. Further details can be
found in the original article and in Tippler (1978).

Another implication is a violation of the classical en-
ergy conditions (Hawking and Ellis, 1973; Wald, 1984).
Classically, energy density is always positive, and the
stress-energy tensor for all classical fields satisfies the
weak-energy condition Tmnumun>0, where um is any
timelike or null vector. The Epstein-Glaser-Jaffe theo-
rem shows that this is impossible for the renormalized
stress-energy tensor of quantum field theories. Since it
has by definition a null vacuum expectation value, there
are states uY& such that ^YuTmnumunuY&,0. For example,
squeezed states of the electromagnetic field (Mandel
and Wolf, 1995), or the scalar field (Borde, Ford, and
Roman, 2002), have locally negative energy densities.
The violation of the weak-energy condition raises
doubts about the use of energy density for the descrip-
tion of particle localization, as discussed in Sec. V.B.

While any entangled state can be approximated by the
action of local operators on uV&, the clustering property
of the vacuum14 asserts that states created by local op-
erations, namely, QuV&,QPA(O), tend to look almost
like a vacuum with respect to measurements in distant,
causally unconnected regions. The behavior of detectors
that are far away from each other is ruled by the follow-

14Its relation to the cluster property of the S matrix is dis-
cussed by Weinberg (1995).
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ing theorems, where, for a local operator BPA(O), we
denote by Bx its translation by a spatial vector x, i.e.,
Bx5U(x)BU†(x).

Theorem. If A ,BPA(O) are local operators and uV& is
the vacuum state, then

^VuABxuV& ——→
uxu→`

^VuAuV&^VuBxuV&. (58)

There are estimates on the rate of convergence of the
above expression as a function of spacelike separation
for the cases of massive and massless particles. The
asymptotic behavior depends on that of the Wightman
function W(x1 ,x2) for ux12x2u2→` (Streater and
Wightman, 1964; Bogoliubov et al., 1990; Haag, 1996).

Theorem. If APA(O1) and BPA(O2), where O1 and
O2 are mutually spacelike regions with a spacelike sepa-
ration r , then

z^VuABuV&2^VuAuV&^VuBuV& z (59)

for a massless theory is bounded by

f~O1 ,O2 ,A ,B !/r2, (60)

where f is a certain function that depends on the regions
and the operators, but not on the distance between the
regions; for a massive theory it is bounded by

e2mrg~A ,B !, (61)

where m is the relevant mass and g depends on the op-
erators only. In this case O1 ,O2 may be unbounded.

The explicit derivation of the coefficients requires a
more detailed treatment. Particular cases and values of
numerical constants are given by Emch (1972), Freden-
hagen (1985), Haag (1996), and Araki (1999).

While it seems that vacuum correlations for massless
fields decay much more slowly, the difference disappears
if the finite sensitivity of detectors for soft photons is
taken into account. It was shown by Summers and
Werner (1987a) that, if a detector has an energy thresh-
old e, the latter serves as an effective mass in correlation
estimates, and an additional e2er factor appears in Eq.
(60).

B. Particles and localization

Classical interventions in quantum systems are local-
ized in space and time. However, the principles of quan-
tum mechanics and relativity dictate that this localiza-
tion is only approximate. The notion of particles has an
operational meaning only because of their localization:
particles are what is registered by detectors.

When quantum mechanics was a new science, most
physicists wanted to preserve the notions with which
they were familiar, and considered particles as real ob-
jects having positions and momenta that were possibly
unknown, and/or subject to an ‘‘uncertainty principle.’’
Still, a few writers expressed critical opinions, for ex-
ample, ‘‘no scheme of operations can determine experi-
mentally whether physical quantities such as position
and momentum exist . . . we get into a maze of contra-
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dictions as soon as we inject into quantum mechanics
such concepts carried over from the language of our an-
cestors.’’ (Kemble, 1937).

More recently, Haag (1996) wrote,

‘‘ . . . it is not possible to assume that an electron has,
at a particular instant of time, any position in space; in
other words, the concept of position at a given time is
not a meaningful attribute of the electron. Rather, ‘po-
sition’ is an attribute of the interaction between the
electron and a suitable detection device.’’

We shall first briefly examine some aspects of the old-
fashioned approach to localization. First, we note that
even when we construct a local probability density (and,
possibly, a corresponding current) it is impossible to in-
terpret r(x,t)d3x as the probability to find a particle in
the volume d3x at the space point x. It was argued by
Landau and Peierls (1931) that a particle may be local-
ized only with uncertainty Dx.\c/^E&, where ^E& is the
particle’s expected energy. Intuitively, confinement of a
particle to a narrower domain by ‘‘high walls’’ requires a
very strong interaction, which leads to pair production.
Haag and Swieca (1965) have shown that restriction to a
compact region of spacetime makes any state impossible
to detect with certainty. Hegerfeldt (1985) proved that if
a one-particle POVM leads to probability distributions
such that the total probability of finding a particle out-
side a sphere of radius R at time t is bounded by

Prob¹R,C2 exp~22gR !, (62)

where C is some constant and g.m , then at later times
the probability distribution will spread faster than light.
Furthermore, Giannitrapani (1998) and Toller (1999)
proved that a spacetime localized POVM cannot be con-
structed even from quasilocal operators. General discus-
sions of localization from the point of view of algebraic
quantum field theory can be found in the works of Buch-
holz and Fredenhagen (1982), Roberts (1982), Neumann
and Werner (1983), Werner (1986), and Haag (1996).

Much earlier, Newton and Wigner (1949) had at-
tempted to define a position operator, whose spectral
decomposition (Wightman, 1962) gives a rough indica-
tion of the particle localization. However, it was shown
by Rosenstein and Usher (1987) that Gaussian-like
Newton-Wigner wave functions lead to superluminal
propagation of probability distributions. Busch (1999)
reviewed the problems involved in the construction of
POVM’s for particle localization.

Energy density is directly related to photon localiza-
tion in quantum optics (Mandel and Wolf, 1995;
Bialynicki-Birula, 1996). If the electrons in a detector
interact with the electric field of light, then in a simple
model the detection probability is proportional to the
expectation value of the normal-ordered electric-field-
intensity operator I(x,t) (Mandel, 1966), and the latter
is proportional to the energy density. This probability
distribution decays asymptotically as the seventh power
of distance, or even more slowly (Amrein, 1969). De-
spite its success in these examples, the notion of local-
ization based on the energy density cannot have univer-
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sal validity because the violation of the weak-energy
condition makes it unsuitable for the construction of
POVM’s.

The real physical problem is how localized detectors
can be. The idealization of ‘‘one detector per spacetime
point’’ is obviously impossible. How can we manage to
ensure that two detectors have zero probability of over-
lapping? There appears to be a fundamental tradeoff
between detector reliability and localizability. The bot-
tom line is how to formulate a relativistic interaction
between a detector and the detected system. A true de-
tector should be amenable to a dual quantum-classical
description, as in the Hay-Peres model (1998). This
problem seems to be very far from a solution. Com-
pletely new notions may have to be invented.

Although states with a definite number of particles
are a useful theoretical concept, a look at quantum op-
tics techniques or at the Table of Particle Properties
shows that experimentally accessible quantum states are
usually not eigenstates of particle number operators. In
general, any process that is not explicitly forbidden by
some conservation law has a nonzero amplitude (Peskin
and Schroeder, 1995; Weinberg, 1995; Haag, 1996).
There are multiple decay channels, and extra soft pho-
tons may always appear, so that the so-called one-
photon states are often accompanied by soft multipho-
ton components,

auV&1bu1v&1gu2v8v9&1¯ , ubu;1. (63)

Thus the physical realization of a single qubit is itself
necessarily an idealization.

C. Entanglement in quantum field theory

Recall that while the Reeh-Schlieder theorem ensures
that any state can be approximated by local operations,
the clustering property of the vacuum implies that lo-
cally created states look almost like a vacuum for distant
measurements. The Reeh-Schlieder and Epstein-Glaser-
Jaffe theorems entail dark counts for local detectors.
The responses of spatially separated detectors are corre-
lated, but these correlations decay fast due to cluster
properties.

We now consider correlation experiments with devices
a and b placed in spacelike separated regions OL and
OR , so all local operators pertaining to these regions
commute: @A(OL),A(OR)#50. In each region, there are
two such devices, labeled a1 ,a2 ,b1 ,b2 , which yield out-
comes ‘‘yes’’ or ‘‘no’’ in each individual experiment. We
denote the probabilities for positive outcomes as p(aj)
and p(bk), and by p(aj∧ bk) the probability of their
joint occurrence.

The measuring apparatus aj is described by a POVM
element FjPA(OL) and the probability of the ‘‘yes’’
outcome for a state r is tr(rFj). If Gk is the POVM for
apparatus bk then the probability of the ‘‘yes-yes’’ out-
come is tr(rFjGk). Let us to introduce operators Aj
52Fj21 and Bk52Gk21, and define
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z~a ,b ,r!5 1
2 tr $r@A1~B11B2!1A2~B12B2!#%. (64)

This quantity, which is experimentally measurable, has a
classical analog whose value is bounded: z<1. This is the
CHSH inequality (Clauser, Horne, Shimony, and Holt,
1969), which is one of the variants of the Bell inequality
(Bell, 1964).15

The above definition of z can be extended to

z~A,B,r!5supz~a ,b ,r!, (65)

where A5A(OL), B5A(OR), and the supremum is
taken over all operators Aj ,Bk . It was shown by
Cirel’son (1980) that there is also a quantum bound on
correlations: for commuting algebras A and B and any
state r,

z~A,B,r!<& . (66)

Further results of Summers and Werner (1985, 1987a,
1987b) and Landau (1987) establish that a violation of
Bell’s inequalities is generic in quantum field theory. For
any two spacelike separated regions and any pair of op-
erators a ,b , there is a state r such that the CHSH in-
equality is violated, that is, z(a ,b ,r).1. With additional
technical assumptions the existence of a maximally vio-
lating state rm can be proved:

z~a ,b ,rm!5& , (67)

for any spacelike separated regions OL and OR . It fol-
lows from convexity arguments that states that maxi-
mally violate Bell inequalities are pure. What then are
the operators that lead to maximal violation? Summers
and Werner (1987a) have shown that operators Aj and
Bk that give z5& satisfy Aj

251 and A1A21A2A150,
and likewise for Bk . If we define A3ª2i@A1 ,A2#/2,
then these three operators have the same algebra as
Pauli spin matrices (Summers, 1990). Even if we ignore
the problem of localization (Sec. V.B), a violation of Bell
inequalities is nontrivial, as the analysis of various rela-
tivistic spin operators shows (Terno, 2003). For example,
for moving observers, if the observables are constructed
by means of the Pauli-Lubanski operator, violation of
Bell’s inequality decreases with increasing velocity, and
the inequality is satisfied in the ultrarelativistic limit
(Czachor, 1997; Ahn et al., 2003).

The violation of Bell’s inequalities by the vacuum
state does not mean that it is enough to have two detec-
tors and check their dark count coincidences. The clus-
ter theorem predicts a strong damping of the violations
with distance. When the lowest relevant mass is m.0,
clustering leads to the estimate

z„A~OL!,A~OR!,V)<114 exp@2mr~OL ,OR!# ,
(68)

where r(OL ,OR) is the separation between the regions
(Summers and Werner, 1985, 1987a, 1987b). For mass-

15Recall that the Bell inequalities are essentially classical
(Peres, 1993). Their violation by a quantum system is a suffi-
cient condition for entanglement, but not a necessary one.
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less particles, the energy threshold for photodetection
serves as an effective mass. Therefore a direct observa-
tion of vacuum entanglement should be extremely diffi-
cult. Reznik (2000) proposed a method to convert
vacuum entanglement into conventional bipartite en-
tanglement. It requires switching on and off in a control-
lable way the interaction between two-level systems and
a field. Appropriately tailored local interaction Hamilto-
nians can then transfer vacuum entanglement to atoms.

The classification of entangled states and their ma-
nipulation are current research topics in quantum infor-
mation theory. Up to now we have dealt with entangle-
ment of a finite number of degrees of freedom, or spin-
momentum entanglement. After introducing Lorentz
transformations, we were still able to use the standard
techniques of the nonrelativistic theory. However, in the
general case, infinite-dimensional Hilbert spaces are in-
volved. Recently Parker, Bose, and Plenio (2000), Eisert,
Simon, and Plenio (2002), and Keyl, Schlingemann, and
Werner (2003) investigated the entanglements of forma-
tion and of distillation in infinite-dimensional systems.

When the Hilbert space of a bipartite system is infinite
dimensional, some peculiarities arise. For pure states, a
natural measure of entanglement is the von Neumann
entropy S52tr r ln r of either one of the reduced den-
sity matrices. It can be shown (Eisert, Simon, and Ple-
nio, 2002) that in an arbitrarily small neighborhood of
any state there is an infinity of entangled states. The
reason is that in the neighborhood of any state with fi-
nite energy, there are states of infinite entropy (Wehrl,
1978).16 This seems paradoxical, but if we consider states
with bounded energy only, the continuity of the degree
of entanglement is restored.

Keyl, Schlingemann, and Werner (2003) applied tech-
niques of operator algebra to systems with an infinite
number of degrees of freedom. A usuful device in the
description of infinite sytems is the notion of singular
states, which cannot be represented by density opera-
tors: states are considered to be just positive linear func-
tionals on the space of POVM’s, and only nonsingular
states are represented by density operators (Emch, 1972;
Bratteli and Robinson, 1987). One of their results is a
rigorous description of the original Einstein-Podolsky-
Rosen (1935) state, which can be modeled as a sequence
of more and more squeezed two-mode states, and actu-
ally is a singular state.

Pachos and Solano (2003) discussed the generation of
entangled states and performed ab initio QED calcula-
tions for the case of two interacting spin-1

2 charged par-
ticles. They obtained particular results for low-energy
scattering, and more general situations are under inves-
tigation.

D. Accelerated detectors

In quantum field theory, the vacuum is defined as the
lowest energy state of a field. A free field with linear

16The set of states with infinite entropy is trace-norm dense in
the state space.
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equations of motion can be resolved into normal modes,
such as standing waves. Each mode has a fixed fre-
quency and behaves as a harmonic oscillator. The zero-
point motions of all these harmonic oscillators are called
‘‘vacuum fluctuations’’ and, under suitable conditions,
may excite a localized detector that follows a trajectory
xn(t) parametrized by its proper time t. The internal
structure of the detector is described by nonrelativistic
quantum mechanics, so that we can indeed assume that
it is approximately localized and has discrete energy lev-
els En . Furthermore, we assume the existence of a lin-
ear coupling of an internal degree of freedom m of the
detector, with the scalar field f„x(t)… at the position of
the detector. First-order perturbation theory gives the
following expression for the transition probability per
unit proper time:

g2(
n

z^EnumuE0& z2E dte2i(E2E0)tW~t!, (69)

where g is a coupling constant and

W~t![W„x~t1!,x~t2!…, t5t12t2 , (70)

is the Wightman function, defined by W(x1 ,x2)
5^Vuc(x1)c(x2)uV& for two arbitrary points on the de-
tector’s trajectory (Streater and Wightman, 1964). The
integral in Eq. (69) is the Fourier transform of the auto-
correlation. In other words, it gives the power spectrum
of the Wightman function.

For inertial detectors (that is, xn5vnt with a constant
four-velocity vn) the transition probability is zero, as one
should expect. However, the response rate does not van-
ish for more complicated trajectories. Consider, in par-
ticular, a trajectory with constant proper acceleration a .
With an appropriate choice of initial conditions, it cor-
responds to the hyperbola t21x251/a2, shown in Fig. 3.
Then the transition rate between levels appears to be
the same as for an inertial detector in equilibrium with

FIG. 3. World line of a uniformly accelerated detector. No
signal emitted by the detector may reach the region beyond
the past horizon; no signal originating in the region beyond the
future horizon can reach the detector.
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thermal radiation at temperature T5\a/2pckB . This
phenomenon is called the Unruh (1976) effect. It was
also discussed by Davies (1975) and it is related to the
fluctuation-dissipation theorem (Candelas and Sciama,
1977) and to the Hawking effect, which will be discussed
in the next section.17 A rigorous proof of the Unruh
effect in Minkowski spacetime was given by Bisognano
and Wichmann (1976) in the context of axiomatic quan-
tum field theory, thus establishing that the Unruh effect
is not limited to free field theory.

For any reasonable acceleration, the Unruh tempera-
ture is incomparably smaller than the blackbody tem-
perature of the cosmic background, or any temperature
ever attained in a laboratory, and is not observable.
Levin, Peleg, and Peres (1992) considered the effect of
shielding a hypothetical experiment from any parasitic
sources. This, however, creates a radically new situation,
because the presence of a boundary affects the dynami-
cal properties of the quantum field by altering the fre-
quencies of its normal modes. Finite-size effects on fields
have been known for a long time, both theoretically
(Casimir, 1948) and experimentally (Spaarnay, 1958).
Levin, Peleg, and Peres showed that if the detector is
accelerated together with the cavity that shields it, it will
not be excited by the vacuum fluctuations of the field.
On the other hand, an inertial detector freely falling
within such an accelerated cavity will be excited. The
relevant property in all these cases is the relative accel-
eration of the detector and the field normal modes.

We now consider the evolution of an arbitrary quan-
tum system. An observer at rest (Alice) can describe the
quantum evolution on consecutive parallel slices of
spacetime, t5const. What can Bob, the accelerated ob-
server, do? From Fig. 3, one sees that there is no com-
munication whatsoever between him and the region of
spacetime that lies beyond both horizons. Where Alice
sees a pure state, Bob has only a mixed state. Some
information is lost. We shall return to this subject in the
next, final section.

VI. BEYOND SPECIAL RELATIVITY

It took Einstein more than ten years of intensive work
to progress from special relativity to general relativity.
Despite its name, the latter is not a generalization of the
special theory, but a radically different construct: space-
time is not only a passive arena where dynamical pro-
cesses take place, but has itself a dynamical nature. At
this time, there is no satisfactory quantum theory of
gravitation (after 70 years of efforts by leading theoret-
ical physicists).

In the present review on quantum information theory,
we shall not attempt to use the full machinery of general

17Properties of detectors undergoing circular acceleration, as
in high-energy accelerators, were investigated by Bell and
Leinaas (1983), Levin, Peleg, and Peres (1993), and Davies,
Dray, and Manogue (1996).
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relativity, with Einstein’s equations.18 We still consider
spacetime as a passive arena, endowed with a Riemann-
ian metric, instead of the Minkowski metric of special
relativity. The difference between them is essential: it is
necessary to introduce notions of topology, because it
may be impossible to find a single coordinate system
that covers all of spacetime. To achieve that result, it
may be necessary to use several coordinate patches,
sewed to each other at their boundaries. Then in each
patch, the metric is not geodesically complete: a geode-
sic line stops after a finite length, although there is no
singularity there. The presence of singularities (points of
infinite curvature) is another consequence of Einstein’s
equations. It is likely that these equations, which were
derived and tested for the case of moderate curvature,
are no longer valid under such extreme conditions. We
shall not speculate on this issue, and we shall restrict our
attention to the behavior of quantum systems in the
presence of horizons, in particular of black holes. Before
we examine the latter, let us first return to entanglement,
now in curved spacetime, and to the Unruh effect, still in
flat spacetime, but described now in an accelerated co-
ordinate system.

A. Entanglement revisited

Calculations on EPRB correlations require a common
reference frame. Only then can statements such as ‘‘if
m1z5 1

2 , then m2z52 1
2 ’’ have an operational meaning.

In a curved space we can choose an arbitrary frame at
one spacetime point and then translate it parallel to it-
self along a geodesic path. For example, spin-1

2 particles
may be sent to Alice and Bob, far away. After a refer-
ence frame is chosen at the emission point, local frames
are established for them by parallel transport along the
particles’ trajectories. However, particles only approxi-
mately follow classical geodesic trajectories, and this in-
evitably introduces uncertainties in the definition of
directions. Using path-integral methods, von Borzesz-
kowski and Mensky (2000) have shown that if certain
conditions are met approximate EPR correlations still
exist, but ‘‘the longer the propagation and the stronger
the gravitational field, the poorer is the correlation.’’

One of the difficulties of quantum field theory in
curved spacetimes is the absence of a unique (or pre-
ferred) Hilbert space, the reason being that different
representations of canonical commutation or anticom-
mutation relations lead to unitarily inequivalent repre-
sentations (Emch, 1972; Bogoliubov et al., 1990; Haag,
1996). For the Minkowski spacetime, the existence of a
preferred vacuum state enables us to define a unique
Hilbert-space representation. A similar construction is
also possible in stationary curved spacetimes (Fulling,
1989; Wald, 1994). However, in a general globally hyper-

18Concepts of quantum information were recently invoked in
several problems of quantum gravity and quantum cosmology,
but we restrict ourselves to conventional black-hole physics.
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bolic spacetime this is impossible, and one is faced with
multiple inequivalent representations.

Genuinely different Hilbert spaces with different den-
sity operators and POVM’s apparently lead to predic-
tions that depend on the specific choice of the method of
calculation. The algebraic approach to field theory can
resolve this difficulty for PVM’s. The essential ingredient
is the notion of physical equivalence (Emch, 1972; Wald,
1994; Araki, 1999), which allows us to extend the for-
malism of POVM’s and completely positive maps to gen-
eral globally hyperbolic spacetimes (Terno, 2002).

The simplest example of inequivalent representations
occurs in the discussion of the Unruh effect, when we
wish to use quantum field theory in the Rindler wedge
x.utu where the detector moves, or in the opposite
wedge x,2utu, which is causally separated from it, or in
both wedges together. Each one of the two wedges, or
both together, can be considered as spacetimes in their
own right (Rindler spaces), where a global timelike field
is obtained from the set of all hyperbolas with different
values of the acceleration (Wald, 1984).

The transformation between Minkowski and Rindler
wedge descriptions is unitary only formally (Unruh and
Wald, 1984; Wald, 1994), and algebraic field theory
should be used to give a rigorous interpretation to these
formal expressions (Emch, 1972; Haag, 1996). A quan-
tum field theory can be defined in a standard way be-
cause the Rindler spaces are globally hyperbolic. They
admit a Cauchy surface for specifying initial values,
whose domain of development is the entire spacetime
(Hawking and Ellis, 1973; Wald, 1984, 1994). The
vacuum state u0R& obtained in this construction is called
a Rindler vacuum. It is a natural vacuum for observers
who move on orbits like the one in Fig. 3, with different
positive values of the acceleration a .

As a consequence of the Reeh-Schlieder theorem, it
follows that a Minkowski vacuum uV& corresponds to a
mixed state in the Rindler spacetime. To relate the
Minkowski and Rindler Hilbert spaces, fields in both
wedges are required. The relation between the standard
Minkowski Fock space and a tensor product of Rindler
Fock spaces is given by a formally unitary operator U ,
whose action on the Minkowski vacuum is

UuV&5)
i

(
n50

`

exp~2npv i /a !uniL& ^ uniR&, (71)

where v i denotes the frequencies of the modes of the
Rindler fields, and ni are the corresponding occupation
numbers. The above expression suggests that the
Minkowski vacuum has the structure of a maximally en-
tangled state when viewed by accelerated observers.
When restricted to only one wedge, the state becomes

r5)
i

(
n50

`

exp~2npv i /a !Zi
21uniR&^niRu, (72)

where the ith mode was normalized by Zi
5( i exp(2npvi /a). That state indeed produces a ther-
mal density matrix r}exp(2HR /T), where HR is the
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field Hamiltonian for region R , and T5a\/2pckB . We
can now calculate the entanglement of the Minkowski
vacuum as seen by an accelerated observer. A natural
reduced density matrix is r itself, which is a singular
state (in the sense of Sec. V.C) of an infinite thermal
bath. Its entropy is infinite, which is in agreement with
the previous discussion, since the energy of such a sys-
tem is also infinite.

The relationship between Minkowski and Rindler
wave packets was analyzed by Audretsch and Müller
(1994a). These authors also discussed local detection by
Rindler observers and EPR-like correlations (Audretsch
and Müller, 1994a, 1994b).

Alsing and Milburn (2002, 2003) examined the fidelity
of teleportation from Alice in an inertial frame to Bob,
who is uniformly accelerated. Assume that qubits are
realized by some mode v of the electromagnetic field,
and that Alice’s state is uC&5auV&1bu1&, where uV& is
the Minkowski vacuum. Then the best state that Bob
can hope to get is

uC8&5au0R&1bu1R&, (73)

where u0R& is the Rindler vacuum, and some mode v8
(as seen by Bob) was chosen for his realization of qubits.
The fidelity of teleportation uC&→uC8& then decreases
with Bob’s acceleration. It also depends on time: the fi-
delity of course vanishes when Alice is behind Bob’s ho-
rizon.

B. The thermodynamics of black holes

Black holes result from concentrations of matter so
large that their gravitational pull prevents the escape of
light (Michell, 1784; Laplace, 1795). In other words, a
future horizon is formed. While Unruh’s horizons were
for observers whose asymptotic speed approaches c , a
black-hole horizon affects every observer. We now
present some basic facts of black-hole physics, limiting
ourselves almost exclusively to spherically symmetric
spacetimes. The literature on black holes is voluminous,
and our sketch gives just a glimpse of this fascinating
subject. Our main sources for classical black-hole phys-
ics were Hawking and Ellis (1973), Landau and Lifshitz
(1975), Wald (1984), and Frolov and Novikov (1998).
For quantum aspects, we consulted Birrell and Davies
(1982), Wald (1994), Brout et al. (1995), and Frolov and
Novikov (1998). An extensive survey of black-hole ther-
modynamics was given by Wald (1999, 2001). In this sec-
tion, unless otherwise stated, c5G5\51.

Spacetime outside a spherically symmetric distribu-
tion of matter (and hence outside an incipient black hole
during all stages of its collapse) is described by the
Schwarzschild metric,

ds25~122M/r !dt22~122M/r !21dr22r2dV2. (74)

The proper time of a stationary observer is dt5Agttdt
5A122M/rdt , and the radial distance is dl5A2grrdr
5(122M/r)21/2dr . This metric has a coordinate singu-
larity at r52M , which can be removed by a transition to
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various alternative coordinate systems. As we shall see,
it is a kind of ‘‘boundary’’ of the black hole. On the
other hand, the singularity at r50 is physical: the space-
time curvature diverges there.

Spacetimes may have symmetries. If translation along
a family of curves leaves the metric invariant, the field of
tangent vectors to these curves is called a Killing field
(Killing, 1892). Killing vectors xm have many useful
properties.

For example, the Schwarzschild metric is invariant un-
der time translations t→t1t . The corresponding Killing
vector xm5(1,0,0,0) is timelike for r.2M and spacelike
for r,2M . It becomes null on the horizon. The surface
gravity k, which characterizes the strength of a gravita-
tional field near the horizon, is defined as

k5lim~aa!, (75)

where a is the norm of the proper four-acceleration of a
stationary object, and a is a redshift factor. For
Schwarzschild black holes, a5Agtt and k51/4M . Hawk-
ing and Ellis (1973), and Wald (1984, 1999) describe
many properties of the surface gravity. Bardeen, Carter,
and Hawking (1973) have shown that k is constant over
the horizon of any stationary black hole. This is known
as the zeroth law of black-hole mechanics.

Even in classical general relativity, there is a serious
difficulty with the second law of thermodynamics when a
black hole is present: if we drop ordinary matter into a
black hole, it will disappear into a spacetime singularity,
together with its entropy S . No compensating gain of
entropy occurs, so that the total entropy in the universe
decreases. One could attempt to salvage the second law
by invoking the bookkeeping rule that one must con-
tinue to count the entropy of matter dropped into a
black hole as still contributing to the total entropy of the
universe. However, the second law would then be obser-
vationally unverifiable.

It was noted by Bekenstein (1972, 1974) that proper-
ties of the horizon area of a stationary black hole re-
semble those of entropy. In the most general case, a sta-
tionary black hole is characterized by three parameters:
its mass M , angular momentum J , and charge Q . The
first law of black-hole dynamics (Bardeen, Carter, and
Hawking, 1973; Iyer and Wald, 1994) states that

dM5
k

8p
dA1VdJ1FdQ , (76)

where V is the angular velocity and F the electric poten-
tial. This relation is formally identical to the first law of
thermodynamics, if we identify temperature with surface
gravity and entropy with horizon area. We would then
have

T5
k

2p

\c3

GkB
, S5

A

4lP
2 , (77)

where lP5A\G/c3 is the Planck length, and ordinary
units are restored.

Bekenstein (1972, 1974) proposed to assign to a black
hole of area A an entropy
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SBH5Ac3/4\G , (78)

thus elevating a formal analogy to the status of a physi-
cal law. Hawking (1974) found that a black hole radiates
like a blackbody at temperature T and thereby put the
analogy between black-hole mechanics and thermody-
namics on firm ground.

There are many ways to explain Hawking radiation
(Hawking, 1975; Wald, 1975, 1994; Birrell and Davies,
1982; Fredenhagen and Haag, 1990; Brout et al., 1995).
Here, we follow the informal presentation of Frolov and
Novikov (1998), which is based on the analogy with pair
creation by an external static field. Actually, spacetime is
not static when a star collapses into a black hole and
later evaporates. However, it is usually an excellent ap-
proximation to treat it as static. A rigorous analysis
along these lines was made by Brout et al. (1995).

Similarities between pair production and Hawking ra-
diation were discussed by Müller, Greiner, and Rafeski
(1977). Let G be the field strength and g the charge. By
analogy with the tunnel effect, the probability that a vir-
tual pair of particles can be found at a distance l from
one another is approximately e2l/l, where l is the
Compton wavelength. A pair may turn out to be real if
gGl>2mc2. Thus the probability of particle creation is
w}exp(2zm2c3/\gG), where the numerical constant z
can be obtained by a more detailed calculation.

A naive application of this formula to particle cre-
ation in a static gravitational field turns out to give not
only the right result, but also some valuable insights. In
particular, conservation of energy implies that a static
gravitational field can create particles only if there are
regions with timelike Killing fields and others with
spacelike ones; a horizon is needed. A static gravita-
tional field without horizons cannot create particles (Bir-
rell and Davies, 1982; Wald, 1984). A black hole emits
particles as if it were a blackbody with temperature

T5k/2pkB , (79)

as in Eq. (77).
The generalized second law of thermodynamics (Bek-

enstein, 1974; Frolov and Page, 1993; Wald, 1994; Frolov
and Novikov, 1998) states that

DS1DSBH>0. (80)

An informational analysis of this law by Hosoya, Carlini,
and Shimomura (2001) clarified its relation to classical
bounds on accessible information (Levitin, 1969, 1987;
Holevo, 1973). Bekenstein and Mayo (2001) and Beken-
stein (2002) gave a description of the information ab-
sorption and emission by black holes in terms of quan-
tum channels.

A natural question is what (and where) are the de-
grees of freedom responsible for black-hole entropy?
On this issue, there are conflicting views. It is not clear
whether we should think of these degrees of freedom as
residing outside the black hole in its thermal atmo-
sphere, or on the horizon in Chern-Simons states, or
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inside the black hole, associated with what classically
corresponds to the singularity deep within it. Or perhaps
the microscopic origin of SBH is the entanglement be-
tween Hawking particles inside and outside the horizon
(Bombelli et al., 1986; Ashtekar et al., 1998; Iorio, Lam-
biase, and Vitiello, 2001). It is likely that in order to gain
a better understanding of the degrees of freedom re-
sponsible for black-hole entropy, it will be necessary to
achieve a deeper understanding of the notion of entropy
itself (Zurek, 1990).

Suppose now that the matter that has fallen inside the
horizon had quantum correlations with matter that re-
mained outside. How is such a state described by quan-
tum theory? Are these correlations observable? This
problem is not yet fully understood, although such cor-
relations play an essential role in giving to Hawking ra-
diation a nearly exact thermal character (Wald, 1975). It
is hard to imagine a mechanism for restoring the corre-
lations during the process of black-hole evaporation. On
the other hand, if the correlations between the inside
and the outside of a black hole are not restored during
the evaporation process, then by the time that the black
hole has evaporated completely, an initial pure state will
have evolved to a mixed state, and some ‘‘information’’
will have been lost.

Hawking’s radiation resolved the thermodynamic dif-
ficulty only to introduce another puzzle. An inevitable
result of that radiation is the evaporation of the black
hole after a finite time (see Appendix B). Since the emit-
ted particles are overwhelmingly massless, black-hole
evaporation leads to baryon number nonconservation.

Hawking (1976, 1982) also introduced a superoperator
to describe the quantum state evolution during black-
hole formation and evaporation (see Appendix B). A
detailed analysis of this superoperator was made by
Strominger (1996). It is (at least formally) completely
positive and as such it is a perfectly normal operation of
quantum information theory (Terno, 2002).

Yet, it has often been asserted that the evolution of an
initial pure state into a final mixed state conflicts with
quantum mechanics, and this issue is usually referred to
as the ‘‘black-hole information loss paradox.’’ These pes-
simistic views are groundless. When black-hole thermo-
dynamics appeared in the 1970s, notions such as
POVM’s and completely positive maps were unknown to
the relativistic community. Today, we know that the evo-
lution of pure states into mixtures is the general rule
when a classical intervention is imposed on a quantum
system, as we have seen in Sec. II. In the present case,
the classical agent is the spacetime metric itself, which is
borrowed from classical general relativity in the absence
of a consistent quantum gravity theory. Attempts to in-
troduce a hybrid quantum-classical dynamics by using
the Koopman (1931) formalism are not mathematically
inconsistent, but they violate the correspondence prin-
ciple and are physically unacceptable (Peres and Terno,
2001). In any case, the evolution of an initial pure state
into a final mixed state is naturally accommodated
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within the framework of the algebraic approach to quan-
tum theory (Wald, 1994) and that of a generalized quan-
tum theory (Hartle, 1998).

The final fate of black holes and its relation to the
information paradox were discussed by Preskill (1993), ’t
Hooft (1996, 1999), and Frolov and Novikov (1998).
However, this issue may be conclusively resolved only
after there is a consistent theory of quantum gravity, al-
lowing meanwhile for a number of tantalizing specula-
tions. Here we present five of the most popular alterna-
tives of what happens with the ‘‘information’’ when a
black hole evaporates.

• Information is lost: Hawking’s superscattering, de-
scribed above, is a fundamental feature of quantum
theory and not just an effective description.

• There is no information loss: if the spectrum is ana-
lyzed carefully, there may be enough nonthermal fea-
tures to encode all the information. Bekenstein (1993)
showed that deviations of the Hawking radiation from
the blackbody spectrum may help reconstruct part of
the information. Hod (2002) estimated that, under
suitable assumptions about black-hole quantization,
the maximal information emission rate may be suffi-
cient to recover all the information from the resulting
discrete spectrum of the radiation.

• Information comes out at the end, at the Planck scale
physics. Frolov and Vilkovisky (1981) constructed a
model that provides for this possibility.

• There is a stable black-hole remnant with about the
Planck mass (0.02 mg), and information is somehow
encoded in it (Aharonov, Casher, and Nussinov, 1987).

• Information escapes to baby universes, which are cre-
ated instead of true singularities (Zel’dovich, 1977;
Hawking, 1988). The overall evolution of the entire
multiverse is unitary, but since baby universes are
causally unconnected to our universe and the total
state is entangled, we perceive a loss of information.

A still different scenario is implied by the works of
Boulware (1976) and Gerlach (1976): a particle that falls
into an eternal black hole crosses the horizon after an
infinite amount of the coordinate time t , but only a finite
amount of its own proper time. On the other hand, the
evaporation of a black hole takes a finite amount of the
coordinate time, which is the physical time of a distant
observer (see Appendix B). From the point of view of
the infalling observer, the horizon always appears to re-
cede before her, until it finally disappears (or shrinks to
the Planck scale), and the region ‘‘beyond the horizon’’
is unattainable. The distant observer sees the infalling
observer quickly arrive arbitrarily close to the effective
horizon, then remain nearly ‘‘frozen’’ there for an ex-
ceedingly long time, and finally either the black hole
evaporates or the universe collapses. Therefore it makes
no sense to assert that states having (essential) support
on the part of Cauchy surface that lies beyond the hori-
zon would be correlated with an outgoing Hawking ra-
diation and then mysteriously disappear. There is no is-
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sue of information loss at all (Sonego, Almergren, and
Abramowitz, 2000; Alberghi et al., 2001).19

C. Open problems

The good news is that there is still plenty of work to
be done. Here we shall mention a few problems that
appear interesting and from which more physics can be
learned.

• As mentioned in Sec. V.B, quantum field theory im-
plies a tradeoff between the reliability of detectors
and their localization. This is an important practical
problem. A proper balance must be found between
the loss of undetected signals, false alarms (dark
counts), and our knowledge of the location of re-
corded events. A quantitative discussion of this prob-
lem would be most welcome.

• It is possible to indicate the approximate orientation
of a Cartesian frame by means of a few suitably pre-
pared spins (Bagan, Baig, and Muñoz-Tapia, 2001), or
even a single hydrogen atom (Peres and Scudo, 2001).
Likewise, the quantum transmission of the orientation
of a Lorentz frame should be possible. This problem is
much more difficult, because the Lorentz group is not
compact and has no finite-dimensional unitary repre-
sentations (Wigner, 1939).

• Progressing from special to general relativity, what is
the meaning of parallel transport of a spin? In a
curved spacetime, the result is obviously path depen-
dent. Then what does it mean to say that a pair of
distant particles is in a singlet state? As the rotation
group O(3) is not a valid symmetry, the classification
of particles, even the usefulness of the concept of a
particle, become doubtful. Methods are known for
quantization of higher-spin fields in a curved back-
ground (Birrell and Davies, 1982; Wald, 1994), but
what is the operational meaning of the resulting states
and POVMs?

• We still need a method for detection of relativistic
entanglement that involves the spacetime properties
of the quantum system, such as a combination of lo-
calization and spin POVM’s (in flat or curved metric
backgrounds).

• After all these problems have been solved, we shall
still have to find a theory of quantum dynamics for the
spacetime structure.
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APPENDIX A: RELATIVISTIC STATE TRANSFORMATIONS

In this appendix we list the conventions we used and
outline the transformation rules for free-particle states.
Details can be found in the treatises of Bogoliubov, Lo-
gunov, and Todorov (1975) and Weinberg (1995). Ex-
plicit forms of the transformation laws for massive par-
ticles are given by Halpern (1968), Bogoliubov et al.
(1990), and Ahn et al. (2003); for massless particles, see
Bergou, Gingrich, and Adami (2003) and Lindner,
Peres, and Terno (2003).

Unless stated otherwise, we chose the following con-
ventions for states and related operators:

us ,p&5 âsp
† uV& , (A1)

and

^s ,puj ,q&5~2p!3~2p0!dsjd
(3)~p2q!, (A2)

where p0[E(p)5Am21p2. One-particle states are

uC&5(
s

E
2`

`

cs~p !us ,p&dm~p !, (A3)

with the Lorentz-invariant measure

dm~p !5d3p/~2p!3~2p0!. (A4)

The wave functions uC& satisfy

^s ,puC&5cs~p !, (A5)

and

^CuF&5(
s

E cs* ~p !fs~p !dm~p !. (A6)

If we want to be more explicit about the spin degrees of
freedom, we use two-spinor notations: a pure state of
definite momentum and arbitrary spin is (b

a)up&. The
one-to-one correspondence with Dirac’s notation is ex-
plained by Bogoliubov, Logunov, and Todorov (1975).

Under a classical, geometric Lorentz transformation
ym5Ln

mxn, the unitary transformation of the basis vec-
tors [Eq. (A1)] is

U~L!us ,p&5(
j

Djs@W~L ,p !#uj ,Lp&, (A7)

where Djs are matrix elements of the unitary operator
D that corresponds to the Wigner rotation W(L ,p),
given by Eq. (A8) below.

Note that the spin rotation depends on the value of
the momentum (spin is a secondary variable, as defined
in Sec. IV). The quantum circuit in Fig. 4 gives a graphi-
cal representation of primary vs secondary variables.20

The Wigner rotation matrix is given by

20This representation was suggested to us by Barbara Terhal.
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W~L ,p !ªL21~Lp !LL~p !, (A8)

where L(p) is a ‘‘standard boost’’ which transforms a
‘‘standard four-momentum’’ kS into p . For massive par-
ticles kS5(m ,0,0,0), while for massless ones kS
5(1,0,0,1). Explicit formulas for L(p) in the massive
and massless cases are given in the books of Halpern
(1968), Bogoliubov et al. (1990), and Weinberg (1995).

Wave functions having a distribution of momenta
transform as

cj8~q !5^j ,quU~L!(
s

E dm~p !cs~p !us ,p& (A9)

5(
s ,x

E dm~p !cs~p !Dxs@W~L ,p !#^j ,qux ,Lp&

(A10)

5(
s

Djs@W~L ,L21p !#cs~L21p !, (A11)

so the same state in the boosted frame is

uC8&5(
s ,j

E
2`

`

Dsj@W~L ,L21p !#

3cj~L21p !us ,p&dm~p !. (A12)

Explicit expressions for D@W# are given in Sec. IV and
in the references cited above.

APPENDIX B: BLACK-HOLE RADIATION

The energy radiated by a black hole approximately
satisfies the Stefan-Boltzmann law (Brout et al., 1995;
Frolov and Novikov, 1998) so the rate of mass loss due
to energy conservation is

Ṁ}2T4A}2M22, (B1)

where A is the horizon area and time is that of a distant
observer. It can be shown that a relation T}M21 holds
in quasistatic changes of mass at all stages of evapora-
tion. Numerical coefficients were calculated by Page
(1976). A back hole of initial mass M0 (not too small)
evaporates after a time

tE5aM0
3 , (B2)

where a54.931029 s/kg3. Together with Eq. (B1), this
gives the following expression for the mass:

M~ t !5M0~12t/tE!1/3. (B3)

FIG. 4. Relativistic state transformation as a quantum circuit:
the gate D which represents the matrix Djs@W(L ,p)# is con-
trolled by both the classical information and the momentum p ,
which is itself subject to the classical information L
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The duration of the steady-state radiation buildup is in-
comparably shorter than tE (Wald, 1994; Brout et al.,
1995), so that the above expression is a good approxima-
tion. Hence it takes a time comparable to the age of the
universe for a black hole of mass 531014 g (and radius
of atomic size) to evaporate completely (Frolov and No-
vikov, 1998).

Hawking (1976, 1982) introduced a superoperator
(originally called a ‘‘superscattering operator’’), men-
tioned in Sec. VI.B, to describe the quantum-state evo-
lution during black-hole formation and evaporation. In
standard scattering theory, a unitary S matrix relates the
density matrix of final states with two of the incoming
states: rout5Sr inS†. For a spacetime with an evaporat-
ing black hole, S would map states from Hin (the states
in the distant past, when the black hole did not yet exist)
to the tensor product of Hout (the states that reach infin-
ity and are accessible to a distant observer) and the Hil-
bert space of states that fell into the black hole. This
splitting is a standard step in many derivations of Hawk-
ing radiation (Wald, 1994). Since only the states that
reach infinity are accessible to a distant observer, the
final density matrix is calculated by tracing out the black
hole,

rout5trBHSr inS†. (B4)
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