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Abstract In this paper we have showed that the qubit can be expressed through the co-
herent states. Consequently, a message, i.e. a sequence of qubits, is expressed as a tensor
product of coherent states. In the quantum information theory and practice, only the code
and key message are expressed as a sequence of qubits, i.e. through a quantum channel, the
properly information will be transmitted by using a classical channel. Even if the most used
coherent states in the quantum information theory are the coherent states of the harmonic
oscillator (particularly, expressing by them the Schrödinger “cat states” and the Bell states),
several authors have been demonstrated that other kind of coherent states may be used in
quantum information theory. For the ensembles of qubits, we must use the density operator,
in order to describe the informational content of the ensemble. The diagonal representation
of the density operator, in the coherent state representation, is also useful to examine the
entanglement of the states.

Keywords Quantum information · Qubit · Coherent state · Density operator

1 Introduction

Even if the quantum mechanics (QM) is a theoretical framework with which physicists are
able to describe the world of subatomic particles, the usual formulation of the QM princi-
ples becomes in contradiction with our intuition. This formulation is based on some negative
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points of view which evinced some facts that we are not able to realize: (a) we cannot per-
form a quantum measurement without perturbing the state of the measured system; (b) we
cannot determine the particle position and momentum simultaneously and with any preci-
sion; (c) we cannot perform a simultaneously measurement of polarization of the photon
in a vertical and diagonal basis; (d) we cannot represent the image (or “photography”) of
individual quantum processes; (e) we cannot be able to reproduce an unknown quantum
state.

As a consequence of the tasks to transform these nonintuitive points of view into positive
results, it was created the quantum information theory (QIT). The QIT is a new field that
attempts to quantify and describe resources of QM and processes that act on them. In other
words, QIT addresses how fundamental QM laws can be used in order to improve the ac-
quisition, transmission, and procession of information. One of the fundamental challenges
of QIT is to identify and quantify the basic resources that can be used for communication in
quantum theory, i.e.: classical communication (in bits), quantum communication (in qubits)
and entanglement (in ebits).

The primary motivation for exploring the quantum mechanical impact on the QIT is very
practical: quantum computing and quantum communication devices are on the horizon and
in the near future these devices become useful and very usual.

2 Qubits and Coherent States

As well as the fundamental unit of information in classical information theory (CIT) is a bit,
in QIT the fundamental unit of information is a qubit (i.e. quantum bit) or, generally, a multi-
qubit (or N -qubit).

A qubit is a state (vector) in a two-dimensional Hilbert space of the form:

|�〉 = a0|0〉 + a1|1〉 =
(

a0

a1

)
, (1)

where a0 and a1 are the complex numbers and |0〉 ≡ ( 1
0

)
, respectively |1〉 ≡ ( 0

1

)
are arbitrary

base vectors from the state space. The normalization condition require that
∑1

n=0 |an|2 = 1.
Analogously, a state with many qubits, called a multi-qubit or N -qubit can be written as:

|�〉 =
∑

n1,n2,...,nN =0,1

an1n2...nN
|n1n2 . . . nN 〉, (2)

where the 2N basis vectors are:

|n1n2 . . . nN 〉 ≡

⎛
⎜⎜⎜⎜⎝

n1

n2

n3
...

nN

⎞
⎟⎟⎟⎟⎠ , n1, n2, . . . , nN = 0,1, (3)

with the normalization relation:
∑

n1,n2,...,nN =0,1 |an1n2...nN
|2 = 1.

The basis vectors of an N -qubit can be assimilated with 2J + 1 eigenvectors of a spin J

particle, i.e. |J ;J − m〉, where m = −J,−J + 1, . . . , J . Particularly, for J = 1
2 , the basis

states are: | 1
2 ;− 1

2 〉 ≡ |0〉 and | 1
2 ;+ 1

2 〉 ≡ |1〉.
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Generally, a qubit can be represented, through a phase factor, as well [1]:

|θ;ϕ〉 = exp

[
−θ

2
(σ+e−iϕ − σ−eiϕ)

]
|1〉 = cos

θ

2
|0〉 + eiϕ sin

θ

2
|1〉, (4)

where σ± = σx ± iσy , and σx and σx are the Pauli matrices, while θ and ϕ are real parameters.
One can demonstrate that the above expression is just a coherent state (CS) belonging

to the SU(2) quantum group. This may be realized by beginning from the definition of the
Klauder–Perelomov CSs [2] (for a finite dimensional quantum system), e.g. for a particle
with spin J :

|z;J 〉 = exp (η(z)J+ − η∗(z)J−)|0;J 〉 = ezJ+eln (1+|z|2)J3e−z∗J−|0;J 〉, (5)

where η(z) = z
|z| tan(|z|). We obtain the following expansion of CSs in the Fock vectors

basis:

|z;J 〉 = 1

(1 + |z|2)J

2J∑
m=0

zm

√
ρ(J ;m)

|m;J 〉, (6)

where:

ρ(J ;m) = �(m + 1)�(2J − m + 1)

�(2J + 1)
(7)

are the structure (real) functions of the CSs.
Particularly, for the electron spin J = 1

2 one gets:

|z;1/2〉 = 1√
1 + |z|2

1∑
m=0

zm√
�(m+1)�(2−m)

�(2)

|m;1/2〉

= 1√
1 + |z|2 (|0;1/2〉 + z|1;1/2〉). (8)

If we choose the complex parameter z so that z = θ
|θ | tan( θ

2 ) = tan( θ
2 )eiϕ , finally we ob-

tain:

|z〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉. (9)

This result is identical with those from [1] and shows that the storage of information can
be performed by using CSs. So, the CSs are useful elements for the storage and transmission
of information.

If we consider that, generally, a state of a quantum system is dependent on a real or
complex parameter λ, i.e. their Fock vector is |λ;n〉, then the corresponding CS may be
written as:

|z;λ〉 =
N−1∑
n=0

〈λ;n|z;λ〉|λ;n〉 ≡
N−1∑
n=0

cn(z;λ)|λ;n〉

= c0(z;λ)

⎛
⎜⎜⎜⎜⎝

1
0
0
...

0

⎞
⎟⎟⎟⎟⎠ + c1(z;λ)

⎛
⎜⎜⎜⎜⎝

0
1
0
...

0

⎞
⎟⎟⎟⎟⎠ + · · · + cN−1(z;λ)

⎛
⎜⎜⎜⎜⎝

0
0
0
...

1

⎞
⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎝

c0(z;λ)

c1(z;λ)

c2(z;λ)
...

cN−1(z;λ)

⎞
⎟⎟⎟⎟⎠ . (10)

In this manner the CSs may be represented as the column matrices whose elements are
the complex functions. This manner to express the CSs will be useful in QIT.

The completion relation or the unity decomposition is, then:

∫
dμ(z;λ)|z;λ〉〈z;λ| = IN =

N−1∑
n=0

|λ;n〉〈λ;n|, (11)

where IN is the projector on the subspace HN . This relation allows the expansion of a
state vector from the subspace HN (usually, there are identical with the eigenvectors of the
Hamilton operator H of the quantum system) as a superposition of CSs over the complex
z-space:

|λ;n〉 =
∫

dμ(z;λ)〈z;λ|λ;n〉|z;λ〉 =
∫

dμ(z;λ)c∗
n(z;λ)|z;λ〉, (12)

〈λ;n| =
∫

dμ(z;λ)〈λ;n|z;λ〉〈z;λ| =
∫

dμ(z;λ)cn(z;λ)〈z;λ|, (13)

or, more explicitly:

⎛
⎜⎜⎜⎜⎜⎝

0
...

1
...

0

⎞
⎟⎟⎟⎟⎟⎠

=
∫

dμ(z;λ)c∗
n(z;λ)

⎛
⎜⎜⎜⎜⎜⎝

c0(z;λ)
...

cn(z;λ)
...

cN−1(z;λ)

⎞
⎟⎟⎟⎟⎟⎠

=
∫

dμ(z;λ)

⎛
⎜⎜⎜⎜⎜⎝

0
...

|cn(z;λ)|2
...

0

⎞
⎟⎟⎟⎟⎟⎠

(14)

and similarly for the corresponding bra-vectors.
We observe that the following relation holds:

∫
dμ(z;λ)c∗

n(z;λ)cj (z;λ) = δnj . (15)

Consequently, a state of N -qubits may be written as follows:

|�〉 =
2N −1∑
n=0

an

∫
dμ(z;λ)c∗

n(z;λ)|z;λ〉 ≡
∫

dμ(z;λ)f ∗(z;λ)|z;λ〉, (16)

〈�| =
2N −1∑
n=0

an

∫
dμ(z;λ)cn(z;λ)〈z;λ| ≡

∫
dμ(z;λ)f (z;λ)〈z;λ|, (17)

where we have used the following notations:

f ∗(z;λ) =
2N −1∑
n=0

anc
∗
n(z;λ), (18)
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f (z;λ) =
2N −1∑
n=0

ancn(z;λ), (19)

and where, on the one hand, for the simplicity of notation, we have used the index n that
signify in fact the number sequence n1n2 . . . nN . . . , each of them may bring values 0 or 1
and, on the other hand, generally, f (z;λ) and f ∗(z;λ) are known complex functions [3].

So, in fact we have passed from the discrete-variable (dv) to continuous variable (cv) QIT.
The main motivation to deal with continuous variables in QIT is of practical reasons: the
essential steps in quantum communication protocols (preparing, unitary manipulating, and
measuring entangled quantum states) is achievable in quantum optics by using continuous
amplitudes of the quantized electromagnetic field [4].

The above relation is in fact the quintessence of the synergetic connection between the
quantum information (represented here by N -qubit |�〉) and the quantum mechanics (rep-
resented by coherent state |z;λ〉).

As it is well-known, the properly information is transmitted through a message through
a classical channel. In QIT it is used also a quantum channel, but only for transmission of
the lock-message. Evidently, the key-message, used by the receptor, is also of the quantum
nature, identical with the lock-message.

The message is in fact a sequence of n qubits each with a probability pi to be in a pure
state |�i〉, i.e.:

|Mn〉 = |�1〉 ⊗ |�2〉 ⊗ · · · ⊗ |�n〉 =
n⊗

i=1

|�i〉. (20)

This message is in a Hilbert space H⊗, that is, it is obtained as the tensor product of the
individual Hilbert spaces of the qubits that compose it: H⊗ = H1 ⊗H2 ⊗ · · · ⊗Hn.

Due to the connection between the Fock vectors |λ;n〉 and the CSs |z;λ〉, it is evident
that a message finally may be expressed through the tensor product of CSs:

|Mn〉 ∼ |z1;λ〉 ⊗ |z2;λ〉 ⊗ · · · ⊗ |zn;λ〉 ≡
n⊗

i=1

|zi;λ〉. (21)

In quantum theory of information (QIT) this kind of tensorial products, composed only
of the CSs |zi;λ〉 can constitute a quantum key |Mn〉Q-key, which can be experimentally
realized (see, e.g. [5]). Of course, each quantum key must be associated with a unique lock
state |Mn〉Q-lock which is composed by an identical tensorial product of CSs, i.e. we must
have |Mn〉Q-lock = |Mn〉Q-key. So, the first system (Alice) posses |Mn〉Q-lock and the second
system (Bob) |Mn〉Q-key and the last must compare their key string of CSs with the lock
string.

The fundamental advantage of the CSs use in QIT is their non-demolition character. For
example, if Bob compare they key-state with the lock-state of Alice, then the later state will
not be destroyed [5].

3 Density Operators

In order to represent ensembles of quantum states or mixed quantum states instead of state
vectors we must use the density operator ρ. Given n qubits (or N -qubits) each in a pure state
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|�j 〉, j = 1,2, . . . , n and each with the probability wj of being selected from the ensemble,
we can define the associated density operator ρ.

Generally, a quantum information source X is defined as a set or sequence {wj ; |�j 〉},
where any use of the source has as a result the production of a quantum state |�j 〉 with the
probability wj .

Then, the density operator ρ associated with the source X = {wnj ; |�j 〉} is:

ρ =
∑

j

wj |�j 〉〈�j |. (22)

It may be showed that the density operator can be represented as the diagonal expansion
over the CSs projectors:

ρ =
∫

dμ(z;λ)|z;λ〉P (|z|2;λ)〈z;λ|, (23)

where P (|z|2;λ) is a quasi distribution function or P-quasi distribution function, which is
independent on the phase of CSs variable z, but dependent on the parameter λ.

In addition, a message has a density operator as the tensor product of the density operators
of the individual qubits:

ρ =
⊗

i

ρi =
⊗

i

[∫
dμ(zi;λ)P (|zi |2;λ)|zi;λ〉〈zi;λ|

]
. (24)

As well as in CIT we use the formalism of the informational sources and the distribution
functions of probability, in QIT one uses the formalism of the informational sources and the
density operator, for the pure states, as well as for the mixed quantum states.

In the classical information theory (CIT) the Shannon entropy plays an important role,
while in quantum information theory (QIT) this role is assumed by the von Neumann en-
tropy. For a pair quantum source–density operator {X;ρ}, the von Neumann entropy is de-
fined as:

S(ρ) = −〈lnρ〉 = −Trρ(lnρ). (25)

In the representation of CSs this expression becomes:

S(ρ) = −
∫

dμ(z;λ)P (|z|, λ)〈z;λ| lnρ|z;λ〉. (26)

For a quantum system which is characterized by the Hamiltonian H , with a quantum
canonical distribution, for which the density operator is

ρ = 1

Z(β)
e−βH , (27)

where Z(β) is the partition function, this expression becomes:

S(ρ) = lnZ(β) − β

∫
dμ(z;λ)P (|z|, λ)〈z;λ|H |z;λ〉. (28)

We evince here that the canonical distribution may be useful e.g. in the transmission
of the qubits through long optical fiber. In this case the P-quasi distribution function is a
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Gaussian which depend on absolute temperature T through the mean occupation number of
photons

n = (exp (β�ω) − 1)−1. (29)

The von Neumann entropy is always nonnegative, S(ρ) ≥ 0. It is equal to zero only if ρ

corresponds to a pure state, ρ = |�〉〈�|.
If we consider a system of two parts A and B , with the whole density operator ρ(AB), the

entropy of the joint system is:

SAB = −Tr[ρ(AB) lnρ(AB], (30)

while the entropies of their individual parts (subsystems) is determined via the reduced
density operators:

SA;B = −TrA;B [ρ(AB) lnρ(AB]. (31)

It is always available the Araki and Lieb inequality [6]:

|SA − SB | ≤ SAB ≤ SA + SB, (32)

which shows the limits of the joint entropy and, particularly, that if the total system is in a
pure state, then SA = SB . From the QIT point of view, the entropy can be regarded as the
amount of uncertainty contained within the density operator.

4 Different Kinds of CSs

The most used CSs in QIT are the harmonic oscillator (HO) CSs, which are defined as
eigenstates of the annihilation operator a:

a|z;λ〉 = z|z;λ〉. (33)

Instead of HO-CSs, one may define some other kinds of CSs, so called generalized CSs,
in order to use them in QIT [1, 7], for finite, as well as for infinite dimensional represen-
tations of the quantum systems. We have also constructed and examined the properties of
CSs for different oscillators: Morse oscillator (MO) [8–10] and pseudoharmonic oscillator
(PHO) [11–13].

We reproduce here only the main results obtained for PHO CSs, i.e. the definition of CSs,
the expansion of CSs in the Fock vectors basis and the integration measure.

(a) Barut–Girardello CSs (BG-CSs)—as the eigenvectors of the lowering operator K−—
only for the infinite dimensional representations of the SU(1,1) quantum group [14]:

K−|z; k〉 = z|z; k〉. (34)

The solution of this equation is [11, 14]:

|z; k〉 =
√

|z|2
I2k−1(2|z|)

∞∑
n=0

zn

√
n!�(n + 2k)

|n; k〉, (35)

and the integration measure:

dμ(z; k) = d2z

π
K2k−1(2|z|)I2k−1(2|z|), (36)
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where �(x) is gamma Euler function, I2k−1(2|z|), K2k−1(2|z|)—the Bessel functions. The
BG-CSs are definite on the whole complex plane.

(b) Klauder–Perelomov CSs (KP-CSs)—by the action of the generalized displacement
operator on the vacuum state—for the infinite and finite dimensional representations of the
SU(1,1) and SU(2) quantum groups [2].

For the infinite dimensional systems (CSs based on the SU(1,1)):

|z; k〉 = exp (η(z)K+ − η∗(z)K−)|0; k〉w = ezK+eln (1−|z|2)K3e−z∗K−|0; k〉, (37)

where η(z) = z
|z| tan(|z|). The solution of this equation is [2, 13]:

|z; k〉 = (1 − |z|2)k

∞∑
n=0

zn√
�(n+1)�(2k)

�(2k+n)

|n; k〉, (38)

and the integration measure:

dμ(z; k) = (2k − 1)
d2z

π

1

(1 − |z|2)2
. (39)

These CSs are definite only on a unit ray disc of the complex plane.
For the finite dimensional systems (CSs based on the SU(2)):

|z;J 〉 = exp (η(z)J+ − η∗(z)J−)|0;J 〉 = ezJ+eln (1+|z|2)J3e−z∗J−|0;J 〉, (40)

where η(z) = z
|z| tan(|z|). The solution of this equation is [7]:

|z;J 〉 = 1

(1 + |z|2)J

2J∑
m=0

zm√
�(m+1)�(2J−m+1)

�(2J+1)

|m;J 〉, (41)

and the integration measure:

dμ(z;J ) = (2J + 1)
d2z

π

1

(1 + |z|2)2
. (42)

These CSs are definite on the whole complex plane.
(c) Gazeau–Klauder CSs (GK-CSs)—are a set of normalized vectors {|ζ ;γ ; k〉,

ζ ≥ 0, γ ∈ (−∞, +∞)}, defined as follows [15, 16]:

|ζ ;γ ; k〉 = c0(ζ ; k)

∞∑
n=0

ζ
n
2√

ρ(n; k)
e−iγ en(k)|n; k〉, (43)

where en(k) are the eigenvalues of the dimensionless Hamiltonian H̃ :

H̃ |n; k〉 = en(k)|n; k〉, ρ(n; k) =
n∏

j=0

ej (k), ρ(0; k) = 1. (44)

Besides this definition, the GK-CSs can be obtained also algebrically, by acting with the
Hamiltonian exponential operator on the BG-CSs [13]:
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|ζ ;γ ; k〉 = exp (ηH̃ )|z; k〉 (45)

and, by the variable change z = √
ζ , η = −iγ , we pass to the above expression.

5 Entanglement in the Frame of CSs Representation

Quantum entanglement is a quantum mechanical phenomenon, without any classical coun-
terpart, in which the quantum states of two or more systems have to be described with refer-
ence to each other, even though the individual systems may be spatially separated. Quantum
entanglement make it possible to realize quantum-information processing including quan-
tum teleportation, cryptography and quantum computation [17–19].

Let’s be a quantum bipartite system containing two disjoint parts A (Alice) and B (Bob),
with the Fock basis |n(A)

i 〉 and |n(B)
j 〉 respectively. A typical correlated state of the joint

system may be expanded using these basis:

|�(AB)
k 〉 =

∑
i,j

C
(k)
ij |n(A)

i 〉 ⊗ |n(B)
j 〉. (46)

For the joint system, in the mixed state, the density operator may be defined as:

ρ(AB) =
∑

k

w
(AB)
k |�(AB)

k 〉〈�(AB)
k |, (47)

where w
(AB)
k are the weights or the probabilities to find the joint system in the state |�(AB)

k 〉.
The weights satisfy 0 ≤ w

(AB)
k ≤ 1 and

∑
k w

(AB)
k = 1. This operator contains complete

information about the joint system.
One of individual parts is characterized through the reduced density operator, by calcu-

lating the trace over the variables of the other part, e.g.:

ρ(A) = TrB ρ(AB) =
∑

l

〈n(B)
l |ρ(AB)|n(B)

l 〉

=
∑

k

w
(AB)
k

∑
i,j,l

C
(k)
il C

(k)∗
j l |n(A)

i 〉〈n(A)
j |. (48)

So, the reduced density operator ρ(A) contains information about the part A, when the
result of measurement on part B is discarded.

A bipartite (or, generally, N -partite) mixed state acting on the joint Hilbert space H =⊗N≥2
i=1 Hi is separable (or fully separable) if it can be written as a mixture or convex sum of

tensor products of subsystem states [20]:

ρ(AB...Z) =
∑

k

wkρ
(A)
k ⊗ ρ

(B)
k ⊗ · · · ⊗ ρ

(Z)
k =

∑
k

wk

N⊗
s=1

ρ
(S)
k , (49)

where S = A,B, . . . ,Z are N disjoint subsets of the joint set.
Any state that cannot be cast into the above mentioned form (or appropriately approx-

imated by such a state for infinite dimensional joint systems) will be called entangled
state [21].
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Generally, on the one hand, a pure state of a bipartite system |�(AB)〉 is said to be unen-
tangled or separable if and only if it exists two pure states |�(A)〉 and |�(B)〉, so

|�(AB)〉 = |�(A)〉 ⊗ |�(B)〉. (50)

Otherwise, the pure state |�(AB)〉 is said to be entangled or inseparable.
If we used, for a bipartite system, the previously deduced CSs representation of a state

of N -qubits (16):

|�(A)〉 =
∫

dμ(z;λ)f ∗(z;λ)|z;λ〉, (51)

|�(B)〉 =
∫

dμ(σ ;λ)g∗(σ ;λ)|σ ;λ〉, (52)

where z and σ are complex variables, then the joint state become:

|�(AB)〉 =
∫ ∫

dμ(z;λ)dμ(σ ;λ)F ∗(z, σ ;λ)|z;λ〉 ⊗ |σ ;λ〉. (53)

It is evident that, depending on the structure of function F ∗(z, σ ;λ), it exists two situa-
tions:

(a) If the function F ∗(z, σ ;λ) allow the separate variable factorization:

F ∗(z, σ ;λ) = f ∗(z;λ)g∗(σ ;λ), (54)

then the state |�(AB)〉 is nonentangled or separable.
(b) Contrary, if the function F ∗(z, σ ;λ) not allow the separate variable factorization:

F ∗(z, σ ;λ) = f ∗(z;λ)g∗(σ ;λ), (55)

then the state |�(AB)〉 is entangled or inseparable.

In this manner we have transferred the entanglement problem from the eigenvectors to the
complex functions f ∗(z;λ) and g∗(σ ;λ). So, if the function F ∗(z, σ ;λ) admits a variable
separation, the state |�(AB)〉 is separable or unentangled, otherwise we have to deal with an
entangled or inseparable pure joint state.

On the other hand, for the mixed states, the entangled or unentangled character of the
joint state must be examined by using the diagonal representation of the density opera-
tor (23).

Let’s we consider that |α,β;λ〉 is a pure CS of the joint system. If we can find two CSs
|α;λ〉 and |β;λ〉, for the two individual parts A, respectively B , where α,β ∈ C are the
complex variables, so that:

|α,β;λ〉 = |α;λ〉 ⊗ |β;λ〉, (56)

then the CS |α,β;λ〉 is said to be separable or unentangled. Otherwise this CS is an entan-
gled or inseparable CS.

For a mixed joint state of a bipartite system, the corresponding two-mode density opera-
tor can be written in terms of the diagonal CS representation as

ρ(AB) =
∫

dμ(α,β;λ)|α,β;λ〉P (|α|2, |β|2;λ)〈α,β;λ|. (57)
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Because of the fact that the P-quasi distribution function P (|α|2, |β|2;λ) can be measured
in experiments, in the next we will examine the properties of this function.

As it is well-known, the two-mode CSs |α,β;λ〉 for a bipartite system may be defined
in different manners, e.g. a family of CSs, called the pair CSs which are non-Gaussian
in nature [22], the q-deformed CSs related to suq(2)-algebra [23], or CSs for suq(1,1)-
algebra [24]. E.g., if the parts A and B have the SU(1,1) or SU(2) group symmetry, the
individual CSs (i.e. the CSs corresponding only to one of the part of system) may be defined
as Barut–Girardello [14] or Perelomov [2] coherent states, depending on the fact that the
corresponding Hilbert spaces HA or HB are infinite or finite dimensional spaces [1].

We will examine here only the CSs of the Barut–Girardello kind [14]. For example, if
the lowering operators for the su(1,1) algebras are K

(A)
− and K

(B)
− respectively, then we can

define the Barut–Girardello CSs as:

K
(A)
− |α,β;λ〉 = α|α,β;λ〉, (58)

K
(B)
− |α,β;λ〉 = β|α,β;λ〉, (59)

acting only on the subspaces HA, respectively HB .
By expressing the CSs |α,β;λ〉 as a development on the joint Fock basis |n(A)

i 〉 ⊗ |n(B)
j 〉,

i.e.:

|α,β;λ〉 =
∞∑

n
(A)
i

,n
(B)
j

=0

C
n
(A)
i

n
(B)
j

(α,β;λ)|n(A)
i 〉 ⊗ |n(B)

j 〉 (60)

and using the relations:

K
(A)
− |n(A)

i 〉 =
√

n
(A)
i (n

(A)
i + 2k − 1) |n(A)

i − 1〉 (61)

and similar for K
(B)
− , after the straightforward calculations, we obtain [24]:

|α,β; k〉 = N (|α|)N (|β|)
∞∑

n
(A)
i

,n
(B)
j

=0

αn
(A)
i√

ρ(n
(A)
i ; k)

βn
(A)
i√

ρ(n
(B)
j ; k)

|n(A)
i 〉 ⊗ |n(B)

j 〉, (62)

where we have used the following notations for the normalization factors N (|α|), respec-
tively for the structure constants ρ(n

(A)
i ; k):

N (|α|) ≡
√

|α|2
I2k−1(2|α|) , (63)

ρ(n
(A)
i ; k) = �(n

(A)
i + 1)�(n

(A)
i + 2k) (64)

and similar for the part B .
Here I2k−1(x) is the modified Bessel function of the first kind and k ∈ 1/2,1,3/2, . . . is

the Bargmann index labeling the irreducible representations, while k(k − 1) is the value of
the Casimir operator.

This equation immediately leads to the factorization form:

|α,β; k〉 = |α; k〉 ⊗ |β; k〉 (65)
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ensuring that the joint CSs |α,β; k〉 is separable.
We will point out here that the same result is obtained if the joint CSs |α,β; k〉 is defined

by using the primitive coproduct structure of the classical generators of SU(1,1) group, but
using the q-deformed su(1,1) algebra for the construction of CSs for a bipartite composite
system, these state becomes entangled [24].

Therefore, for the separable CSs case, the density operator can be written as:

ρ(AB) =
∫

dμ(α;λ)dμ(β;λ)|α;λ〉 ⊗ |β;λ〉P (|α|2, |β|2;λ)〈α;λ| ⊗ 〈β;λ|. (66)

In order to fulfill the identity operator decomposition
∫

dμ(α,β;λ)|α,β;λ〉〈α,β;λ| = I, (67)

here we have considered that the integration measure must be split into a measure product
involving separate complex variables:

dμ(α,β;λ) = dμ(α;λ)dμ(β;λ). (68)

Consequently, in order to separate the density operators for parts A and B , the P-quasi
distribution function P (|α|2, |β|2;λ) must be also separable:

P (|α|2, |β|2;λ) = P (|α|2;λ)P (|β|2;λ). (69)

Finally, we obtain:

ρ(AB) = ρ(A) ⊗ ρ(B), (70)

with

ρ(A) =
∫

dμ(α;λ)|α;λ〉P (|α|2;λ)〈α;λ| (71)

and similarly for part B .
Then, the joint density operator ρ(AB) in CSs representation is separable or unentangled

if and only if the CSs and P-quasi distribution function of the joint system are simultaneous
separable. Otherwise, the joint density operator ρ(AB) (and, of course, their corresponding
mixed state) is inseparable or entangled.

From the point of view of the entropy of joint system (30) and their individual parts (31),
the correlation entropy of subsystems A and B is given by [25]

Icorr = SA + SB − SAB. (72)

It is showed that if the two parts A and B are uncorrelated or separable, then Icorr van-
ishes. For any bipartite pure state, the join entropy SAB becomes zero.

6 Concluding Remarks

Even if at their beginning, the quantum mechanics (QM) was applied to the phenomena at
the microscopic scale, in the last decades of XX century has been formulated idea that the
information itself may be quantified [26]. In this manner was born the quantum informa-
tion theory (QIT). The connection between the information and the QM is much simple. In
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essence, information is anything which can be stored or coded into a certain physical state
in order to be reproduced and transmitted to another physical system. As in QM the fun-
damental “stone” is the state of a certain physical system, in QIT this role is played by the
qubits (or N -qubits), i.e. the states of two (or N -) level physical systems. So, the connec-
tion between the QIT and QM is evident. One of the main entity of the QM is the coherent
state (CS). The reason for choosing CSs is that they are easy to generate and convenient to
use. On the other hand, CSs may be compared non-invasievly if they are identical. We have
showed how the CSs can be used in the storage of information, i.e. how the qubits can be
expressed through the CSs, using their main properties (normalization, non orthogonality,
the overlap, the identity resolution). We present a simple “lock and key” scheme [5], by con-
sidering a set of nonorthogonal states composed only of CSs to construct a message “lock”
and their counterpart—a message “key”. The fundamental idea of using the CSs is their
non-demolition character, i.e. when we compare the “key” string with the “lock” string, the
last is not destroyed and remain unalterated.

Finally, we have showed how the entanglement (another remarkable property of the quan-
tum states, without the classical counterpart), very useful in QIT (for teleportation, cryptog-
raphy and quantum computation) can be also expressed and analyzed through the CSs.

We have found that, on the one hand, a pure CS of a bipartite quantum system, defined in
the Barut–Girardello manner, can be separable or unentangled. On the other hand, a mixed
quantum state on the same system, described by the density operator ρ(AB) is unentangled
or separable if and only if, besides the separability condition referring to the correspond-
ing CSs, their P-quasi distribution is also a function which admit a factorization into two
functions of separate variables, each characterizing the individual parts of the quantum sys-
tem. In this manner we have extended the condition established in [22], i.e. if the P-quasi
distribution function has no classical character, then the state is entangled.

Finding the criteria of separability of density matrixes (in modern QM and especially in
QIT) is an important task. For multipartite qubit systems, this problem is very complex and,
even if was reported some success [27], the problem is afar to be solved. In this context, we
consider that our work, using the CSs representation of the density operator, is a little step
in solving this problem.

In conclusion, we consider that the CSs may play an important role in the QIT and that
the use of CSs formalism is not only of theoretical, but also of some practical importance,
having in mind their experimental accessibility.
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