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Present information technology is based on the laws of classical 
physics. However, advances in quantum physics have stimulated 
interest in its potential impact on such technology. This article 

is a reasonably introductory review of three aspects of quantum 
information processing, cryptography, computation, and felepor

tation. In order to give a level of self-containment, I serve up hors 
d' oeuvres on the relevant parts of quantum physics and the sorts of 

quantum systems which might form the building blocks for quantum 

processors. 

Quantum cryptography utilizes states of individual quantum sys

tems for the transfer of conventional classical bits of information. 

The impossibility of measuring quantum systems without disturb

ing them guarantees the detection of eavesdropping and hence 
secure information transfer is possible. In a sense, tdeportation 

is the inverse of cryptography, using more robust classical bits to 
faithfully transfer a quantum state through a noisy environment. 

Quantum computation utilizes the evolving quantum state of a 

complex system. which consists of many interacting individuals. If 
such a machine could be built, it would be capable of solving some 

problems which are intractable on any conventional computer; I 

illustrate this with Shor's quantum factoring algorithm. 

I give some details of the current experimental achievements, 

proposals, and prospects for the future and of the patents granted 

to date. 

L INTRODUCTION 

Quantum mechanics [1]-[8] was developed originally as 

a theory to explain the behavior of large numbers (ensem

bles) of microscopic objects, such as atoms or electrons. 

However, over the last decade or so, considerable interest 

has developed in the application of quantum theory to 

individual systems and to physically larger (mesoscopic 

or even macroscopic) systems where a small number of 

collective degrees of freedom show genuine quantum be

havior. In part, this interest has been stimulated by the 

tremendous advances which have occurred in experimental 

physics and the relevant engineering. For example, it is 

now possible to fabricate very sophisticated semiconducting 

or superconducting devices in which quantum effects play 

the dominant role. The behavior of some of these devices 

is governed by the motion of single electrons or single 
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quanta of magnetic flux [9]-[11]. In addition, considerable 

progress has been made in atomic and laser physics [12]. 

Single atoms or ions can be trapped and probed with electro

magnetic fields. Correspondingly, single photons (quantized 

excitations of the electromagnetic field) can be produced 

trapped in cavities or as traveling quanta. 

One exciting aspect of this developing fundamental re

search is its technological potential. It could spawn what 

might be tenned quantum information technology, In such 

a scenario, machines would process and exchange in

fonnation according to the laws of quantum physics, in 

contrast to the workings of conventional infonnation tech

nology, where all this is done classically. Infonnation 

processing now plays a significant role in all of our lives. 

We communicate, for example, by telephone and over 

the Internet. We carry and use an increasing number of 

cards containing magnetically stored data. Many household 

and workplace appliances contain processing power, from 

simple microprocessors through to powerful computers. It 

is obvious that quantum physics is not going to make 

significant inroads into this huge technology spectrum in the 

foreseeable future. Nevertheless, even if quantum machines 

could outperform their classical counterparts (or, better still, 

open up completely new avenues) in just a few useful 

applications, there would be real excitement. Quantum 

engineering would begin to evolve. 

Although the fundamental research is still in its infancy, 

interesting and promising ideas for applications of quantum 

infonnation processing [13] have started to develop. I 

discuss three of them in this article. 

• Quantum cryptography: Here the exchange of indi

vidual quantum systems between two correspondents 

enables them to establish a shared random bit (binary 

digit) string, or key, which can then be used for the 

encryption of a secret message. The use of quantum 

states by the correspondents, who have become known 

in the literature as Alice and Bob, means that they can 

be sure as to whether or not an eavesdropper, Eve, has 

been listening. No such guarantee exists if Alice and 

Bob exchange their key classically because classical 

information can be read without disturbing it in any 

way. 
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• Quantum computation: A classical computer processes 

its input according to its program to produce the output. 

Any classical system is always in one of a defined 

set of states. For example, a perfect classical bit is 

actually in state zero or state one at any time; the two 

possibilities are mutually exclusive. However, as will 

be seen, a quantum system can exist in what might be 

termed a schizophrenic state, known as a superposition 

state. At all times during its existence, such a quantum 

state possesses components corresponding to each of 

(or at least some of) the different classical possibilities. 

For example, a superposition state of a quantum bit 

(qubit), would contain a component corresponding to 

the value zero and a component corresponding to one 

at the same time. The state is neither wholly zero nor 

wholly one, as must apply for a classical bit. This 

superposition phenomenon means that if a computer 

is built which evolves according to quantum rules, it 

could be prepared in a superposition of the possible 

classical input states. In a sense it then processes the 

different inputs in parallel, to produce a superposition 

of outputs. It is known already that this parallelism 

would enable a quantum computer to attack some prob

lems which are intractable on any classical machine. 

Quantum teleportation: Quantum states are often ex

tremely interactions with other systems disrupt 

and eventually destroy their subtle superposition prop

erties. On the other hand, classical bits are more robust 

and can easily be checked for errors, which must 

involve an interaction with some other system, in a 

nondisruptive way. Quantum teleportation effects the 

faithful transfer of an unknown quantum state through a 

potentially hostile environment by using classical bits. 

If quantum computers become a reality, there could be 

a real demand for such a facility, as outputs from some 

machines might be needed as input for others. 

I devote a section to each of the above. In each case I 

will give the basic idea and discuss some of the practical 

problems which have to be addressed to turn the theory 

into experiment, the first step toward the technological 

goal. I describe the current status of experiments; actual, 

preliminary, or proposed. As will be seen, quantum in

formation processing is not simply a theoretician's dream. 

Working prototype quantum cryptosystems actually exist 

and practical quantum gates which could form the building 

blocks for a quantum computer are just about with us. 

The bibliography contains a broad spectrum of references, 

from articles at a similar level to this one through to the 

full-blown technical research papers. Additional references, 

articles, and information can be accessed at the following 

World Wide Web (WWW) sites: 

• http://vesta.physics.ucla.edul''-'smoliulindex.htrnl 

• http;//eve.physics.ox.ac.uklQChome.html 

• http://feynman.stanford.edulqcomp/ 

• http://xxx.lanLgov/archive/quant-ph 

(The quant-ph/numbers given for some of the references 

locate them at the Los Alamos e-print server, the fourth 
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of these addresses.) The closing section of this article 

is devoted to comments on the future prospects for and 

potential value of quantum information processing. It is 

hard to draw any firm conclusions about a fast developing 

subject; however, this does not matter. My aim, indeed the 

aim of the whole paper, is to promote thought, interaction, 

and discussion. 

Before turning to the main subject of this report and in 

an attempt to make it somewhat self-contained, I give two 

other sections. The first discusses some of the important 

features of quantum mechanics, those which are essential 

for understanding the later sections. The second discusses 

various simple quantum systems which could be deemed 

to be candidate building blocks for more complex quantum 

machines. As will be seen, there is a consensus that photons 

are probably best for transporting quantum information. 

However, there is no clear favorite when it comes to 

building quantum gates for manipulating the information. 

There are a few possibilities which warrant consideration, 

along with their good and bad features. 

There are a few footnotes in this paper and an appendix. 

These contain items which may be slightly off the main 

theme or raise technical points which deserve a bit more 

than a mere reference. They can be ignored at first reading. 

II. QUANTUM MECHANICS 

A. Quantum Systems and States 

The motion of a classical object such as a billiard 

ball or a planet is described by giving the trajectory, the 

position as a function of time, of its center of mass. It is 

known empirically that such a trajectory can be observed 

with insignificant disturbance to or modification of the 

motion. Similarly, the value of a classical bit can be read 

without changing its value. It is therefore natural to assume 

that classical objects follow their trajectories whether or 

not they are observed. Of course, interactions with other 

systems (collectively called the environment) can be made 

so severe that the motion of the object of interest is 

. disrupted. However, in principle, within classical physics 

this disruption can be reduced arbitrarily. For the case of 

quantum systems, things are rather different. An of this 

breaks down. In general, it is impossible even in principle 

to observe a quantum system without irreversibly disturbing 

it. Correspondingly, it is incorrect to assume that a quantum 

system follows something akin to a classical trajectory, 

essentially independent of its environment. What a quantum 

system does depends dramatically on how you choose to 

interact with it. Worse than this, at the individual level, 

what you see as a result of this interaction does not enable 

you to infer what the system was doing before you looked. 

The interaction is irreversible. 

The behavior of a quantum system is described by giving 

its quantum state, often denoted by 11,b), as a function of 

time. Mathematically speaking, I1/J} is a vector in an abstract 

Hilbert space of possible states for the system. However, 

in order to discuss and perform calculations for a quantum 
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system, it is often convenient to choose a particular (and 

more familiar) representation of its state. For example, in 

the case of a single qubit, the state one (denoted generally 

by 11)) could be represented by the column vector (~) 

and the state zero (denoted generally by 10)) by (~). 

Observables, properties of a quantum system which may be 

observed, are given by operators. These act on the quantum 

state to give the value of the observable for the system in 

that state. For example, with the qubit states represented by 

the vectors, the "bit value operator" (i.e., B) is represented 

by the matrix (~ g). In the general notation 

B11) = til) 
BID) =010) (1) 

so the operation of B on the state yields the bit value. 

These results drop out simply in the vector and matrix 

representation. 

The states 11) and 10) are eigenstates of the operator B. A 

system in an eigenstate has a definite bit value known as the 

eigenvalue; these are obviously one and zero, respectively, 

for the qubit example. In quantum mechanics, the set of all 

possible eigenstates of an operator such as B form a basis. 

The qubit basis contains just two states. Any state of a 

quantum system may be expanded as a linear combination, 

a superposition, of a set of basis states. For example, an 

arbitrary qubit state 1'Ij;} can be expanded as 

(2) 

for some coefficients a and b. In vector form this would read 

(!). Such expansions are analogous to the decomposition 

of a musical note, created, for example, by a plucked guitar 

string. Here the basis consists of the vibrational state of the 

string at its fundamental frequency, along with those at all 

the higher harmonics. Any note may be expanded as a linear 

combination of the basis notes with appropriate coefficients. 

It is well known that the relative phases between the 

harmonics must be given, in addition to the magnitudes 

of the harmonics present, to completely specify a note. 

Exactly the same holds true in quantum mechanics. To 

achieve this, the coefficients in a superposition, a and b 
in (2) for example, are generally complex numbers, so they 

carry a magnitude and a phase. The complex coefficients 

in a superposition state are often called the amplitudes for 

the basis states to which they pertain. 

The precise meaning of the quantum state of a system 

is still a debating point today, 70 years after the birth of 

the theory! However, one thing that is certainly true, the 

minimum statement that can be made about the physical 

meaning of 1'Ij;), is that the state of a quantum system 

just before its interaction with (classical) measurement 

apparatus can be used to predict the probabilities of the 

possible results that the apparatus will record. This is the 

orthodox interpretation of I~)). It is also often called the 

Copenhagen interpretation because its foremost advocate 

was Neils Bohr. In a nutshell, Bohr's view was that 

since quantum systems only express themselves through 

the results recorded by measurement apparatus-there is 
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no other way to see them-this was all that the theory, 

quantum mechanics, had to predict. The fact that the 

predictions are only probabilistic simply had to be accepted 

as a property of nature. Albert Einstein never accepted this 

essentially pragmatic viewpoint and he and Bohr discussed 

it over many years. For an excellent account, see [8]. 

The outcome of any' individual measurement is a truly 

random process, with a distribution set by I,¢). The prob

abilities of the measurement results for an observable are 

given by the squared moduli of the amplitudes of the basis 

states for that observable, when 1'Ij;) is expanded in that 

basis. For example, a measurement of the bit value B for 

a qubit in the state (2) would yield one with probability 

Ibl 2 
::::: b*b (* denotes complex conjugation) and zero with 

probability lal 2
• In the general notation these probabilities 

can be respectively written as I(II'Ij;)12 and 1(01'¢)12, where 

(xl'if') denotes the inner product between the two Hilbert 

space states. In the vector representation, a state (xl is 

found from its counterpaIt Ix) by transpose and complex 

conjugation; the two operations together are known as 

Hermitian conjugation and are denoted by t. Thus ('¢I for 

the qubit state (2) is represented by the row vector (b* a*). 
The inner product is then simply a familiar dot (or scalar) 

product between the vectors. 

Given the probability interpretation for I'¢), quantum 

states are normalized to ('Ij; I 'if' > = I so all the probabilities 

sum to unity. This yields the constraint (b* a*). (~) = IW+ 
lal 2 = 1 on the amplitudes for the qubit, and an analogous 

condition for the amplitudes of any quantum system. The 

basis states corresponding to any operator are (or can be 

constructed to be) mutually orthogonal, so any pair have 

zero inner product. They are also normalized. (It is easy to 

see from the vector representation that {lII) (010) 1 

and (lID) ::::: (0Il) ::::: 0 for the qubit.) 

Although individual measurements of a qubit value will 

always yield one or zero, one of the eigenvalues of B, it is 

clear that (apart from the special cases when 11/)) is actually 

equal to an eigenstate of B) the average bit value for a 

large number of measurements will lie somewhere between 

zero and one. This average, known in quantum mechanics 

as the expectation value of B, is given by ('Ij;IBI'Ij;). For 

the simple qubit example (2), it is easy to show that 

this is IW. Operators corresponding to observables in 

quantum mechanics are equal to their Hermitian conjugate, 

so B. This ensures that all the eigenvalues of such 

operators (the outcomes of individual measurements) and 

the expectation value (the average over many identical 

measurements) for any state of the system are real numbers, 

as they must be if they are to correspond to actual measured 

results. 

The point which quantum folk still debate is the physical 

interpretation of 1'Ij;) above and beyond that of giving the 

statistical behavior of ensembles of quantum systems, of 

giving the probability distributions of measurement results 

and the expectation values [5]-[8], [14, ch. 20], [J5]. The 

minimal pragmatic viewpoint is certainly not wrong; the 

question is as to whether or not it can be bettered by 

something more illuminating and precise. It is probably 
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fair to say that the recent advances in experimental physics 

which now give access to individual quantum systems have 

heightened this debate. The Copenhagen interpretation is 

now being squeezed. 

B. The Two Vital Points 

There are two important aspects to the time evolution 

of a quantum state These embody the famous wave

particle duality associated with quantum systems. Basically, 

when a quantum system evolves unhindered it exhibits 

smooth wave-like properties. On the other hand, when a 

it interacts with some form of environment or apparatus, so 

it is prepared (emitted) or measured (detected), it exhibits 

discrete particle-like properties. For example, this is where 

the well-known "collapse" of quantum states comes into 

play. Both of these aspects of the evolution play important 

roles in the field of quantum information processing. 

• Reversible wavelike behavior. When it is isolated from 

its environment, including measurement apparatus, the 

state of a quantum system evolves coherently and 

reversibly according to the Schrodinger equation 

(3) 

H is the Hamiltonian operator of the system, which 

represents its energy. The vital point here is that if 

and l'tfl2) are each solutions to (3), then it is clear 

that cll1fll) + c211fl2) is also a solution, for arbitrary 

coefficients q and cz. Thus superposition states are 

preserved in time.! This property is crucial for quantum 

computation. 

Irreversible particle-like behavior. When it is coupled 

to an environment the evolution of a quantum state 

is modified. Such coupling could be deliberate; it 

could be to an apparatus designed to measure some 

property of the quantum system. However, it could be 

inadvertent; for example there could be a frictional 

(energy removing) force acting on the system. In 

either situation the state evolves irreversibly. Fragile 

but often desirable superposition states get destroyed 

or at least partially scrambled as time goes on; they 

decohere. Often this can be viewed as some sort of 

localization of the state; the interaction with the envi

ronment causes the quantum system to resemble more 

closely a classical system localized in a definite state. 

Such irreversible behavior is vital in two respects. 

Firstly, in the case of cryptography, any eavesdropper 

who measures a quantum system to try and determine 

its state cannot avoid changing this state, which is 

1 This follows from the the solution may 

be written as 11/;(t)) ::::: where U is unitary evolution 
operator U [-(ijli) so it is clear that superpositions 

are preserved as applies term by term. A operator is 
one whose Hermitian conjugate is inverse, UtU = I where J 
is the identity operator; in a matrix J would be the 
appropliate dimension identity matrix. evolution operator unitary 

the Hamiltonian. being an observable corresponding to the energy, 
is Hermitian. 80 Ht H. Reversible time evolution as generated by (3) 

is often called unitary evolution. 
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the key to the whole approach. Secondly and more 

generally, irreversibility may mean trouble. Any aspect 

of quantum information processing which relies on 

the reversible Schrodinger evolution of some quan

tum state must be protected from any environmental 

disruption. Practical realizations of quantum machines 

have to address this crucial issue. 

The ternlS reversible and irreversible used here do carry 

their usual statistical mechanical connotation. The con

ventional and most widely used approach for discussing 

irreversibility in quantum physics is the density operator 

formalism, which describes a large number, an ensem

ble, of quantum systems in direct statistical terms [3], 

[15]-[17]. An excellent account of quantum measurement 

viewed this way is given in [18]. The entropy [19] of an 

ensemble of quantum systems is defined in terms of its 

density operator. This entropy is preserved for reversible 

Schr6dinger evolution but changes when the environment 

acts to introduce irreversibility. (A more detailed discussion 

of density operators and irreversibility is given in the 

Appendix.) 

The recent interest in individual quantum systems has 

lead to new approaches for putting irreversibility into 

quantum mechanics. These can describe the behavior of 

the state of a single quantum system as it interacts with 

an environment, as well as producing the usual statistical 

results [15], [20]-[22]. In such models superposition states 

are typically destroyed; a state can evolve into a localized 

classical one through the effect of the environment. Given 

the importance of individual systems for quantum informa

tion processing, I choose to talk deliberately in terms· of the 

irreversible evolution of the states of single systems, rather 

than in terms of density operators. 

C. An Example-Photon Polarization 

A simple example, which will also be useful later on, 

should help to clarify some of this formalism. One way of 

characterizing a photon, a quantum of light, is by its linear 

polarization. Rotating a polarizcr by 1800 has no effect as 

far as the light is concerned. (Of course, your sunglasses 

will no longer fit on your nose or hook behind your ears, 

but photons do not care about this!) Specifying the plane 

of polarization somewhere between 0° and 1800 covers the 

full range of possibilities and so it is customary to denote 

the polarization state of a photon by a double-headed arrow 

which defines this plane. 

The superposition principle is demonstrated by the state 

1/). This can be decomposed into veltical (11)) and 

horizontal polarization states as 

(4) 

Provided that there is insignificant coupling to any sort of 

environment, this superposition state is preserved as the 

photons evolve, whether this is through free space or down 

a perfect optical fiber. The original polarization state 1/) 
is preserved. 
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An example of an unwanted and unavoidable environ

ment effect might arise if the propagate down an 

imperfect optical fiber, Any real fiber will interact with 

photons to some extent. Consider a model example where 

an interaction modifies the amplitudes in the superposition 

introducing a relative ¢ between them, so that the 

state becomes 

1-;), (5) 

Such a phase difference could arise if the two rectilinear 

polarizations 1 and f-t travel with different speeds in the 

fiber, an effect known as This in itself is not 

an irreversible interaction, Clearly, although the state has 

changed, the original one could be recovered by introducing 

another change of or a further shift to make the total a 

multiple of (27r), perhaps another piece of fiber, 

However, if the environment contains fluctuations, with the 

result that '/> ends up with a random component, then the 

interaction is irreversible, If the propagation distance is 

sufficient for the (root mean random piece of ¢ to be 

of the order of 211', then the final plane of polarization will 

be random in whichever basis it is measured. For example, 

using (4) and the relationship = 2- the 

state (5) can be rewritten as 

isin (6) 

Measuring the diagonal polarization would thus yield 

/ with probability (<1>12) and"\. with probability 
sin2 (¢/2), For random ¢ these both average to 112, in 

sharp contrast to the initial state (4) which would yield / 

with unit probability. The final random state contains no 

memory of the initial state it could equally well have 
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been Such an interaction with the environment is 

therefore irreversible. (See the Appendix for more details.) 

It cannot be unwound by another piece of fiber, or by 

any other means, as will be mentioned later, 

it is possible to fight irreversibility by building 

redundancy into states of more complex quantum systems.) 

A similar dramatic effect occurs if the polarization of 

the photons is measured; this also serves to illustrate the 

somewhat strange and counterintuitive nature of superpo

sition states. Although (some) act as polarizers, 

they are not very good for making measurements as they 

absorb one plane of polarization, A calcite crystal is much 

better [23], [24] as it between two orthogonal 

polarization states without either of them, For a 

suitable orientation, the crystal permits photons 

in state to pass through, while photons in 

state m emerge This is illustrated in Fig. L 

Putting photon detectors in both of the emergent paths 

means that the polarization of each photon that comes in 

can be measured. I must emphasize that the production of 

genuine single photon states is now an experimental reality 

[12], [251. [26]. Such measurements really can be done, 

So what happens if photons in state I/}, given by (4), 

are sent one by one into an apparatus aligned to measure 

vertical and horizontal polarizations (henceforth called the 

rectilinear basis)? The answer is that event by event one or 

other of the detectors fires. 

Conventional quantum mechanics simply predicts the 
statistical results averaged over many events. The prob

abilities can be read off as the squared (moduli) of the 

amplitudes in the incoming superposition state (4). As these 

are both 1/2, the average detector count rates will be equal. 
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However, if you wish to say something about the individual 

events, and I certainly do, then the interpretation is that 

in each event a photon is projected at random from 1/; 
to 11) or by the measurement process. Note that you 

cannot shrug this off as due to half of the photons being 

in state Il) and the other half being in state before 

entering the erystaL This is not the correct interpretation 

of a state such as (4). Any state decomposition, such as 

in (4), is a mathematical one. You can please yourself as 

to whether or not you make it, or make some different 

one instead. The point is that the decomposition into a 

basis defined by some observable enables you to read 

off the probabilities for the results should you choose to 

measure that observable for the photons. However, each 

individual photon in the ensemble is capable of generating 

any of the possible outcomes, any of the eigenvalues of 

the observable, according to these probabilities. Thus the 

different amplitudes in a superposition exist for each photon 

and cannot be put down to a lack of classical knowledge 

about the initial ensemble. This latter case is described by 

a mixture and not a superposition; this is illustrated in the 

Appendix. A very striking example of superposition states 

applying to individuals one by one has been provided by 

neutron interference experiments [271, [28]. An interference 

pattern, which relies crucially on amplitUdes for different 

paths in a superposition state, can be built up over a period 

of time with neutrons from a reactor. The beam intensity 

can be so low that, on average, one neutron has been 

detected well before the next one has left the reactor pile! 

It is also important to appreciate that the result of an 

individual measurement does not tell you the state of that 

photon before it entered your apparatus. If you 11), 
the state could have been 11). However, it could also have 

been 1/; which happened to project to Il). You can be 

confident that it was not but that is all, until you mea

sure other identically prepared photons and build up some 

statistics. This uncertainty regarding an individual incoming 

state is the key to quantum cryptography, where individual 

quantum systems are used to carry bits of information. 

The photon detectors are an integral part of the measure

ment apparatus. If they are removed, the beams from the 

calcite crystal could be recombined to form the original 

state. A difference in optical path length for the two 

routes would produce a different final state, controllable 

by the path difference. This is, of course, an example 

of interference. Although interference is also a familiar 

classical wave phenomenon, the point is that it can occur 

for quantum systems even when they are sent tln'ough 
the apparatus one at a time. There is thus no problem in 

spatially separating the components of a superposition state 

such as (4). Separation alone does not destroy the superpo

sition; this happens only when some irreversible interaction 

occurs, like a detection of one of the components. 

D. Entangled States 

Possibly the most counterintuitive aspect of quantum 

mechanics is that of entangled states. These playa part in 

some areas of quantum information processing, but not all. 
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They are used in some cryptography schemes, but are not 

essential for an understanding of the basic idea. However, 

they are essential for teleportation and do crop up in the 

field of computation. 

Two quantum systems together can be regarded as one 

combined system; mathematically this is described by a 

state in a larger Hilbert space which is the tensor product 

of the Hilbert spaces of the individual systems. If the 

two quantum systems have had no past interaction, simply 

declaring them to be a combined system cannot have any 

significant implications. The combined state is just a single 

(tensor) product of their individual states. For example, if 

you have two qubits (labeled one and two) with qubit one 

in state Ilh and qubit two in state IOh, the combined state 

is denoted by 

11hIO}2. (7) 

Operators also need to carry a subscript indicating the 

subspace in which they operate. They only operate on 

the piece(s) of the combined state which carry the same 

labeL For example, the bit value opcrator B 1 only operates 

on the 11 h part of Ix 112 and similarly for B2 . The total 

bit value for the system is given by B t = Bl + B2 . 

IX/12 is an of B t with eigenvalue one. There 

are three other eigenstates which make up the two-qubit 

basis: Ilhl 10h and IOhIOlz' Four basis states 
are required; this is the product of two for qubit one and 

two for qubit two. A two-qubil state could therefore be 

represented a column vector containing four amplitudes, 

one for each basis state. Correspondingly, operators would 

be 4 x 4 matrices. I will stick to the general notation. 

(Going further, a system of n qubits has a basis of 2n states 

and an analogous vector and matrix representation.) In the 

general state and operator description, iuner products and 

expectation values are evaluated by matching up subscripts. 

It is customary to drop repeated ones so Ixh2 is 

denoted by (X IB1Ixh2' Evaluating this expectation value 

Note that in a single product state such as the 

expectation value of Bl is independent of the state of qubit 

two. could be replaced by an arbitrary state with no 

effect on qubit one. Each qubit can be deemed as being 

in a well defined state independent of its pa,.'tner when the 

combined state is a single product. 

Things get stranger (some say spooky) if the combined 
state is a superposition of two or more of the basis states, 

each of which is a single product. For example, consider 

the combined state of two photons given by 

ilh+ (9) 

I have switched to the concrete example of photon polar

izations because such states really can be prepared in a 

laboratory; however, there is an obvious correspondence 

between photons and qubits as individually both have two

state bases. Slates such as (9) cannot be rewritten as a 
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product of a state for photon one with a state for photon 

two [analogous to the two qubit state (7)], for any crafty 

choice of states. Thus neither photon can be said to be "in 

some definite state" independent from its partner! The two 

form a single entangled system. The spooky aspect of such 

states is that the two subsystems may well be far apart. 

Indeed, to prepare photons in a state such as (9) they must 

have a common origin and, once prepared, they clearly then 

fly apart at the speed of light. Despite such separation, the 

two subsystems in a state like (9) can retain their intimate 

entanglement until some irreversible interaction occurs. 

One consequence of entanglement is perfect correlation 

between the results of measurements made on the sub

systems using the same basis. For example, if you measure 

the polarization of photon one in the rectilinear basis and 

find L then you can be sure that a similar measurement 

made on photon two will have yielded the same result. The 

outcomes ~ correlate in the same way. 

Einstein was one of the first to worry about the effective 

lack of identity of either subsystem in an entangled state and 

raised the problem in a famous paper with Boris Podolsky 

and Nathan Rosen [29], [8]. States like (8) are therefore 

often referred to as EPR pairs. Almost 30 years later, lohn 

Bell developed the ideas of EPR and proved a remarkable 

result [30], [31], [14J, [8], [6], [32], [33]. Basically, Bell 

proved that quantum mechanics, as a theory, is nonlocal. 

The correlations between the results of measurements made 

on the two subsystems of an EPR pair simply cannot be 

mimicked by any scheme which assumes that the behavior 

of one subsystem is determined only by things local to it. 

There really is an intimate nonlocal connection to its distant 

partner. Bell's result has been investigated in some equally 

remarkable experiments by Alain Aspect and his group 

[32], [34]-[36]. Their results continn the predictions of 

quantum mechanics and thus demonstrate that nonlocality 

actually exists in nature. 

The perfect correlations between photon polarizations 

measured using the same basis do not in fact demonstrate. 

a disagreement between the predictions of quantum me

chanics and results constrained by locality. There is no 

disagreement for this case; this develops only when the 

polarization detector bases for photons one and two have 

a relative angle between them, reaching its maximum for 

an angle of 22.50 [61, [32], [33J. (Bell is reputed to have 

remarked that only an Irishman would have looked for 

maximum quantum correl~tions at an angle of 22.5°!) I will 

not go into the details of Bell's theorem here. However, 

it is worth noting that the state (9) can be rewritten in 

the diagonal basis using (4) and the relationship I'\,.) 

2-1/ 2 (1+-+) - I!)) to give 

= rl/2(I/hl/h + l'\,.hl'\,.)2). (10) 

Perfect correlations between the photon polarizations also 

occur when they are both measured in the diagonal basis, or 

indeed any other one. The fact that the perfect correlations 

occur for any basis indicates that there is rather more to the 

correlations in an entangled state, compared to the classical 

ones present between, for example, two halves of a tom 
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bank note. Classically, the tear has to be made at the outset 

in order to separate the two systems. In the quantum case it 

is as if the bank note is stretched out. The tear is only made 

when the first measurement is perfonned and it is made in a 

direction across the note determined by this measurement! 

It should also be stressed that the nonlocal connections 

embodied in EPR pairs cannot be used to send messages 

arbitrarily fast. This would be in conflict with Einstein's 

theory of special relativity. The irreversible and random 

nature of individual quantum measurements prevents such 

faster than light signaling. Although perfect correlations 

exist between the results recorded by two well separated 

observers (using the same basis), it is impossible for either 

of them to twist the arm of any individual. EPR pair 

and enforce a chosen outcome. If this could be achieved, 

essentially instantaneous signaling would be possible. The 

idea fails because the individual outcomes occur at random. 

Nevertheless, entangled states do possess spooky nonlocal 

connections and these can be utilized for aspects of quantum 

infonnation processing. 

III. CANDIDATE QUANTUM SYSTEMS 

This section considers different quantum systems which 

might be usable as components of quantum infonnation 

processors. Classical data is usually stored, processed, 

and transmitted digitally, in terms of bits. The quantum 

scenarios considered to date also possess this digital aspect 

and so therefor~ need systems with a discrete basis of 

states. Qubits, two-state basis quantum systems, are the 

most obvious choice and research to date has concentrated 

on these systems. I have therefore focused on these and will 

continue to do so. However, simple quantum systems with 

larger. discrete bases do exist and these may prove useful 

In the future. It is also worth emphasising that even with a 

"digital" basis, a nonclassical "analog" aspect rears its head 

for quantum systems. Superpositions of discrete basis states, 

such as the qubit state (2), contain continuously variable 

amplitudes. 

A single discrete basis is inadequate for cryptography. 

To keep Eve guessing, an alternative must exist like in 

the case of rectilinear and diagonal polarizations for pho

tons. Measurements made in the alternative bases do not 

commute; the order in which they are made matters. (The 

operators corresponding to the observables, A and B say, 

are such that AB =f:. B A.) Quantum systems used for any 

fonn of communication must also propagate well and hold 

their quantum coherence for the time elapsed during trans

mission. Alice and Bob must be able to send and receive 

them easily, which suggests using fundamental microscopic 

systems rather than anything bigger or fabricated. Entangled 

states are not a must, but they can be used. 

One discrete basis will do for computation. The important 

point here is that a number of systems must be able 

to interact in a specified manner, while maintaining the 

quantum coherence of the whole coupled system. 

Teleportation needs entangled states. As the idea is to 

be able to transport on demand an unknown quantum state 
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across a hostile environment, the underlying assumption is 

that the EPR pairs used are spatially separated beforehand. 

The communication aspect requires ease of propagation. 

However, in addition, it must be possible to store the EPR 

pairs in some way which preserves the entanglement. This 

is certainly a nontrivial requirement. 

In all these cases, there will be assorted (classical) 

hardware to support the quantum systems in the execution 

of their tasks. For example, the systems may need careful 

positioning and subjection to well-timed and well-shaped 

external electromagnetic pulses, in order to follow the 

desired quantum evolution. One potential problem is that, 

even if the whole coupled system evolves in a reversible 

quantum fashion, according to the SchrOdinger equation 

(3), it may not perform the desired evolution because of 

imperfections. These can be thought of as errors in the full 

system Hamiltonian H which determines the SchrOdinger 

evolution; the experimental H may not be exactly what it 

is supposed to be. This problem is clearly worse for more 

complex systems; more than likely it will be a real headache 

for quantum computation. 

The classical hardware, what might be termed the "local" 

environment of the full quantum system, may also intro

duce unwanted irreversibility, so the evolution is not even 

Schrodinger in nature. Some irreversibility will be deliber

ate, measurements are bound to be made at certain times. 

However, unwanted irreversibilty means that superposition 

states will also get destroyed between such times, instead 

of persisting and evolving as they should. In addition and 

unfortunately, there are also bound to be other facets to 

the environment such as noise from further afield. The 

irreversibility introduced by the total environment seen by 

the full quantum system has to be kept small. This problem 

of decoherence is also worse for more complex systems, 

so it forms a second huge barrier against the realization of 

quantum computation. 

Basically, then, quantum information processing in gen

eral needs discrete quantum states which are somewhat 

robust. Five possibilities are introduced here; their actual 

or potential use in the appropriate cases is discussed later 

in the relevant sections. 

A. Photons 

As seen in Section II-C, photons have discrete poJlanza

tion states and alternative bases. Phase can be used 

instead of polarization. There is a direct analogy but the 

physical implementation is different. Interferometers are 

used to separate different states, rather than calcite crystals. 

Single photon states can be created, as can entangled states. 

In fact, a popular method for producing genuine single 

photon states [25], [26] is to use one half of an EPR 

pair. The perfect correlations in such pairs means that a 

measurement on the retained partner can be used to infer 

a property of the propagating one, thus preparing a single 

photon in a known state. In the original Aspect experiments 

[32J, [34]-[36] such pairs were produced by the cascade 

decay of calcium-40 atoms. However, these days parametric 

down-conversion [25], [26J has taken over. A 

1726 

laser beam is fed into a nonlinear crystal such as potassium 

dihydrogen phosphate. Single beam photons get converted 

into entangled pairs, the partners heading off in different di

rections. Obviously traveling photon states propagate well, 

through the vacuum or down optical fibers. This is due to 

the weakness of their interactions with other systems. Such 

photons, propagating down fibers, are thus !!OIJU--llJ.mOSI 

certainly the best-candidates for use in cryptography. 

However, their weakness of interaction renders them as 

poor candidates for interacting computational qubits. 

Photons can also be trapped in high-Q cavities [121. 

High-Q (quality factor) means low dissipation, 80 coher

ence times can be as long as a hundredth or a tenth of 

a second. The coherence time tc of an oscillator such as 

a cavity relates to the resonant Wres through 

the dimensionless quality factor, so tc '" For 

superconducting microwave cavities with rv 10-100 

GHz, quality factors can be as high as 1010 [40]. 

In a cavity the discrete basis used is not the photon 

polarization, but the actual number of photons present. 

Clearly such photons do not propagate, but they can interact 

with other quantum systems in a coherent fashion, so are 

good candidates for use in computation. 

B. Atoms or Ions 

Individual atoms, ions or molecules can be trapped in 

electromagnetic fields, or controlled in beams [12], [41]. 

A single atom has discrete (quantized) energy levels, but 

no alternative discrete basis. However, these states can 

be coupled to trapped photons (see Section III-A) and 

with coherence times of sufficient length to demonstrate 

reversible quantum interactions [12J, [41]-[44J which could 

be used for computation. As the trapped photons usu

ally have microwave frequencies, highly excited (almost 

ionized) atoms, often called Rydberg atoms, are used to 

achieve comparable energy level difference frequencies. 

Optical photons and much higher energy atomic transitions 

are another possibility [12], [45]; the important factor is 

the frequency matching. 

A number of ions placed together symmetrically in a trap 

[46J, [47J could be thought of as a very small crystal, with 

discrete vibrational excitations called phonons. The ions in 

such a system can be probed with lasers and the coherence 

time of the whole crystal may long enough to perform many 

reversible quantum interactions [48J. Such crystals might be 

very useful for computation [49], [50]. 

C. Quantum Dots 

Progress in techniques such as epitaxy and lithography 

have lead to the fabrication of sophisticated microscopic (at 

the .....,10-8 m scale) structures whose quantum behavior is 

determined by one or a few fundamental charges. These are 

electrons in metals, electrons and holes in semiconductors 

and electron pairs in superconductors. In superconductors 

the electrons bind into pairs which then condense into a 

macroscopic quantum state. A good textbook on this is 

[51]: it also contains an extensive list of references. The 
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simplest fabricated structure might be a single confining 

box, but channels, coupled boxes and even arrays are 

possible (9]-[11]. Various terms are used in the literature; 

quantum dots, boxes, wires and wells, ultrasmall capaci

tance devices, nanostructures, and mesoscopic systems, for 

example. There are two ways to achieve discrete quantum 

states in such systems. A single charge in a box can 

occupy different energy eigenstates (rather as if it is in an 

artificial atom), or the discrete number of charges in the box 

can be varied.2 Clearly, fabricated systems are not easily 

transportable; they generally need very low temperatures 

to operate and so are surrounded by cryogenic equipment. 

However, they can be fabricated close enough together to 

interact electrostatically and they can be coupled to external 

electromagnetic fields. Although dissipative irreversible ef

fects do come into play, such coupled systems can remain 

coherent for long enough to exhibit interesting quantum 

phenomena [9]-[11]. They are thus good candidates for 

use in computation [54]. 

D. Magnetic Moments or Spins 

Fundamental particles such as electrons, neutrons, or, 

at a slightly larger scale, atomic nuclei or whole atoms, 

possess an intrinsic spin angular momentum, which givcs 

rise to a magnetic moment. This spin in a defined di

rection has a discrete basis and alternative bases can be 

generated by rotating the direction, rather like the photon 

polarization example. There is a real analogy between the 

two-state bases of photon polarization states and spin-I12 

particles like electrons. (For example. many discussions of 

EPR pairs and Bell's theorem use spin-112 language even 

though the experiments use entangled photons.) Beams 

of particles with spin can be made r 41], these can be 

polarized with magnetic fields and, in principle, EPR pairs 

of spins can also be made. Such systems might be usable for 

communications. However, in comparison to photons, they 

are rather more sensitive to scattering and electromagnetic 

noise. Shielded vacuum tubes would be needed for their 

propagation, instead of optical fibers, so photons look to 

be a better bet. 

Trapped magnetic moments (due to nuclear or perhaps 

atomic spins) in close proximity would interact magneti

cally in a similar fashion to the electrostatic interactions 

between charges in adjacent quantum dots. Such systems 

are thus candidates for use in computation [55]. Trapped 

spins can certainly exhibit coherent quantum behavior, so 

it is known that the decoherence from the trapping aspect 

of their environment can be made smalL Consideration 

must be given to the level of irreversible spin relaxation 

introduced by the additional environment that would be 

needed to implement useful computational interactions, but 

2 In this latter case, alternative discrete bases could be established. Two 
adjacent boxes can be thought of as a tiny capacitor. If charges can 

tunnel between the boxes in a reversible manner (first considered by Brian 

Josephson for the superconducting case [52], [51]) then it is possible 

to arrange for the discrete charge and energy states each to decompose 
into superpositions of the other [531, just like the photon polarizations of 

Section II-C. 
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such systems are certainly decent candidates for quantum 

computation. 

E. Superconducting Rings 

It is well known that the magnetic flux threading a closed 

superconducting ring is quantized. Its allowed values are 

integer multiples of h/2e. This follows from matching 

the superconducting state around the orbit of the ring, 

rather in the way that matching an electron state around 

an atomic orbit leads to discrete states of the atom [51, 

ch. 6]. To hold quantized flux, a ring must be everywhere 

thick compared to the magnetic penetration depth for super

conductors (around 10-7 m [SID. Rings are thus typically 

much larger than microscopic quantum dots and somewhat 

larger than so-called mesoscopic systems, where a whole 

device is at the rv 10-6 m scale. Hence the terminology 

of macroscopic quantum phenomena, frequently used in 

connection with such superconducting ring systems and 

circuits. Unfortunately, to date the discrete quantized flux 

states of a superconducting ring have not been shown to be 

genuine quantum states. Experiments designed to demon

strate superpositions of such states-the true test-have yet 

to show success [56]-[59].3 However, some evidence has 

been seen [53], [60]-[62] for discrete energy eigenstates 

of superconducting rings containing Josephson junctions 

[52], [51]. These states seem to have good stability against 

irreversible environment effects and they do couple to 

external magnetic fields. Experimental work on the quan

tum behavior of coupled ring systems is probably not as 

advanced as that for quantum dots. As with dots, these 

systems are not really transportable and they need cryogenic 

cooling. While more fundamental research is needed, such 

superconducting systems could have potential for use in 

quantum computation. 

High temperature superconductors-so-called because 

they only need dunking in liquid nitrogen to work, 

rather than the liquid helium needed for traditional 

superconducting metals and alloys-have yet to make any 

real research inroads in macroscopic quantum phenomena. 

However, this could change if the quality, fabric ability, 

and transition temperatures continue to improve, so such 

materials could be useful in the future. Clearly. an 

emergence of usable room temperature superconductivity 

would impact broadly on technology in general, not just 

on quantum information technology. 

IV. QUANTUM CRYPTOGRAPHY 

A. The Idea 

Cryptography in general has developed to satisfy a num

ber of basic needs. Examples are the enabling of two 

entities to exchange confidential information, the provision 

of authentication (so users can assure one another of 

3 If such experiments succeed. they will demonstrate the existence 

of alternative discrete bases, lIux and energy states in this case. The 

experiments aim to observe oscillations of lIux for an energy state 
superposition:' this would demonstrate that flux and energy fonn altemative 
bases like the rectilinear and diagonal photon polarizations. 
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their identity) and the guarantee that a nonconfidential 

message has not been altered in transit. The usual example 

discussed for quantum cryptography, which I will adopt 

here, is confidential communication between two people, 

Alice and Bob. However, data exchange between two 

computers belonging to banks, companies or governments 

often requires secrecy and many other examples spring 

to mind. Here, information or data means conventional 

classical information, a string of bits in definite states. The 

problem with such information is that in principle it can 

be read by an eavesdropper, Eve, without any disturbance 

whatsoever. Alice and Bob cannot be sure whether or not 

Eve has read their private message. Hence the need for 

encryption, to make the message incomprehensible to Eve 

even if she intercepts it. However, is the incomprehen

sible message indecipherable? Can Eve crack the code 

and determine the true message? (She may have the use 

of a very powerful computer.) The answer depends on 

the encryption technique. One very desirable feature of a 

modern cipher is the ability to communicate secretly from 

scratch, initiated by public exchange of details about the 

encryption procedure. (Such ciphers are called· public key 

cryptosystems.) Alice and Bob may not know each other. 

They may not have met, nor even have communicated 

before. Increasingly many mail, business, and financial 

transactions are being carried out electronically between 

people who have little or no anticipation of the need for 

secret communication. Public key cryptosystems are very 

suitable for such situations. The most well known system is 

RSA, named after its inventors Ronald Rivest, Adi Shamir, 

and Leonard Adleman. It is based on the difficulty of 

factorizing large composite integers [63], [64]. The trouble 

is that public key cryptosystems have not been proven 

to be secure! Mathematically speaking, cracking such a 

cryptosystem with a classical algorithm is a very hard 

problem, but it has not been proven to be impossible. 

One system which is known to be secure is the Vemam 

cipher (after Gilbert Vernam) [24]. It is also called a one

time pad because it requires a key as long as the message 

that Alice sends to Bob; the key is used only once and 

then carefully destroyed. This system is secure in the sense 

that Eve cannot crack the code provided that she has no 

information about the key. However, this has really just 

shifted the problem. If Alice and Bob share the key as 

classical information, they cannot be sure that Eve did not 

intercept and read it. This is where quantum mechanics is 

put to use. If the key is distributed using individual quan

tum systems, the irreversibility of quantum measurements 

ensures that Eve cannot determine the key without leaving 

behind some evidence of her tampering. This, then, is the 

basis for quantum cryptography. Physically secure quantum 

key distribution is combined with the mathematical security 

of the Vernam cipher to produce a fully secure system. 

As a theoretical subject, quantum cryptography was es

tablished in the early 1980's by Bennett and Brassard 

[65]-[67] with some notable input by Wiesner [68]. A very 

complete account of the subject is given in [69] and a useful 

and more reeent eollection of papers in [70]. Some notable 
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popular articles are [24], [71], [72]. (A more extensive 

bibliography can be found via the WWW addresses given 

in the introduction.) 

As in [24], I shall use the linear photon polarizations 

introduced in Section II-C to explain the key distribution 

technique. However, one of these bases could be replaced 

by a left/right circular polarization basis [69], or both could 

be replaced by phase angle hases [26]; the principle is 

unchanged. (The methods used in the real experiments will 

be specified in Section IV-C.) The assumption is that Alice 

and Bob have access to two channels, one quantum and 

one public. Individual polarized photons are sent down the 

quantum channel; these are what Eve may try to intercept. 

On the other hand, Eve hears everything that Alice and 

Bob declare publicly, but cannot corrupt these messages. 

If Eve could interfere with the public messages, she could 

impersonate Bob to Alice and vice versa, and so trick them 

into sharing their key information with her instead of each 

other [73]. 

The key is distributed in the follOWing way. Alice sends 

photons one by one, in states which she chooses at random 

from 11), 1/), and 1"'-:,)· Bob randomly chooses to 

measure the polarization in either the rectilinear basis or the 

diagonal basis. He records his results and keeps them secret. 

He then announces publicly the list of bases he used for 

the measurements, but not the results. (He also declares the 

events for which there was a clear malfunction and he got 

no count, or both of his detectors fired. Alice discards these 

data without further ado.) Alice then tells Bob which data 

to keep, which are those for which he used the rectilinear 

basis when she sent It) or I H) and those for which he used 

the diagonal basis when she sent or I'). They agree 

a protocol for converting the retained data into bits, which 

could be II) = 11), = 10), 1/) 11), and 1"'-:,) = 10). 
They now have a shared random bit string, which is often 

called the raw quantum transmission (RQT). 

B. Errors and Eavesdropping 

The problem with the RQT is that it will contain errors, 

from two sources. First, errors always occur in any real 

system. These can be viewed as due to unwanted aspects 

of the system environment which eannot be decoupled any 

further. Even with no eavesdropping and when Bob chooses 

the correct basis, his apparatus may on occasion register a 

when Alice sent a for example. Some of the shared 

bits will therefore disagree because of these system errors. 

Seeond, Eve cannot listen in without causing errors. All she 

can do is the same as Bob and guess the basis in which to 

measure, event by event.4 To learn anything about the key, 

Eve must make quantum measurements and the irreversibil

ity of such measurements means that she cannot tell what 

the incoming state was; all she can do is record a result and 

then send an identical photon on to Bob, who is waiting for 

one. So, for half (on average) of the data which Alice and 

4This oversimplifies the situation a little. In fact, Eve can try more subtle 

forms of intercepting measurements even in this single photon case [69], 

such as measuring in some intermediate basis, partway between rectilinear 

and diagonal. However, her actions are always detectable. 
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Bob choose to keep, Eve will have guessed wrong and sent 

on an alternative basis photon to Bob. Out of these, he will 

project half back to the original polarization sent by Alice 

and half to the wrong one. (Remember, this is for events 

where Alice and Bob are using the same basis.) Eve there

fore corrupts one quarter of the RQT that she intercepts. 

Alice and Bob now have two problems. Firstly, they must 

somehow find and remove the errors in the RQT if it is to 

be used as a cryptographic key. Second, if in the light of 

this they believe that some eavesdropping has occurred, 

they have to face the fact that Eve will know the values 

of some of the correct bits. Alice and Bob can deal with 

both of these problems, but at the expense of reducing 

the RQT. Nevertheless, it is worth it because after they 

have done so the result will be certifiably secret. Eve's 

expected information about the final key can be reduced to 

an exponentially small fraction of one bit [69]. I outline the 

so-called key distillation procedure; details can be found in 

[69], [74]. 

From laboratory tests on the equipment, Alice and Bob 

should have some idea of the expected system errors. They 

can estimate the errors in the RQT by public comparison 

of a small amount of it (which is then discarded). If these 

errors exceed their expectations, it is likely that Eve has 

been at work. If there is an error rate of about 25%, she has 

probably read the whole RQT. Alice and Bob therefore have 

to bin it and try again. However, at least they know that this 

must be done. (Note that any realistic cryptosystem must 

have a no-eavesdropping system error rate well below one 

quarter to be of any use.) This is why it is best to establish a 

key with the quantum channel, rather than send the actual 

message. With the former approach, if eavesdropping is 

occurring then Alice and Bob can find out before they 

release the message. With an error rate well under 25%, 

Alice and Bob have a usable RQT and can proceed to isolate 

and eliminate the errors. This they do [69] by randomly 

permuting the RQT (to randomize error positions) and then 

block dividing. Bisective parity checks on the blocks can 

isolate the bits in error. The parity of a string of bits can be 

defined as its sum, modulo two. It is therefore zero if the 

string contains an even number of I' s and one if it contains 

an odd number. A block of size "'2k requires the disclosure 

of "'k parities for such a bisective check. Publicly chosen 

random string parities can be compared to check that all the 

errors have all been found. The probability of a remaining 

error showing up through a comparison of a random string 

parity is 112. If one does, Alice and Bob do another bisective 

search. Throughout the distillation procedure, for every bit 

of information (parity value) revealed publicly, Alice and 

Bob discard one bit of the string used to create it, so as to 

avoid increasing Eve's information. 

Having removed all the errors, Alice and Bob can then 

decrease Eve's knowledge of the remaining correct RQT. 

This process is called privacy amplification [74]. From the 

initial RQT error rate, Eve's information on the corrected 

RQT, the number of its bits she knows, can be estimated. If 

Alice and Bob agree on a random subset of bit positions in 

the corrected RQT, then it is clear that Eve will only know 
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the parity of that subset if she knows the values of all the 

bits it contains, which is extremely unlikely. Thus Alice 

and Bob can use this parity as the first bit of a new, almost 

totally secret, final key. Indeed, by choosing a number of 

independent subsets approximately equal to the corrected 

RQT size minus the number of its bits that they estimate 

Eve knows, Alice and Bob obtain a corresponding number 

of shared bits, the final almost perfectly secret key. Privacy 

amplification mixes up what Eye does know with what she 

does not, effectively diluting her knowledge. 

To give you a feel for the numbers [69], with 4% RQT 

errors (taken to be dominated by eavesdropping) Alice and 

Bob could distill 2000 biits down to 754, about which Eve 

could be expected to know less than 10-6 of one bit. With 

a higher RQT error rate of 8%, 2000 bits distil down to 

105, with an even better secrecy. 

C. Practical Considerations and Experiments 

One important practical! issue is that at present most of the 

experiments use very weak light pulses, rather than single 

photons. Although on average these pulses only contain 

about 1110 of a photon, this does mean that they give a small 

probability for finding two or more photons.5 This opens up 

another eavesdropping possibility. Eve could use a beam

splitter (a half-silvered angled mirror) to take some of the 

light pulse, while the remainder propagates on to Bob. This 

cannot be done for genuine single photon states as then only 

she or Bob could detect, but not both of them. The reason 

such weak pulses of light are employed in the transmission 

is that this keeps the probability of successful beam-splitting 

small. At this level it can be dealt with comfortably as 

part of the key distillation process [69]. Note that if much 

stronger light pulses are used, these can be split easily; in 

such a case the transmitted information is then classical 

rather than quantum. 

Weak light pulses are currently preferred to photons 

because they are easy to produce and transmit. A laser 

or light emitting diode siimply has to be filtered down to 

the appropriate level. A detailed discussion of the relative 

merits of the two approaches and problems common to both 

of them is given in [39].. 

The main comparison points to note are that with current 

detectors the throughput (which limits the bit rate) of single 

photon systems is less than 10% of that for weak light 

pulse systems. Worse, on top of this, photon systems have 

fiber launch losses of approximately 80%. These arise in 

attempting to propagate the photons produced in a nonlinear 

crystal down an optical fiber; no such losses occur with 

5 An example state is a coherent state 11, c) coh 

~;;O=ocn(n!)-1/2exp(-lcI2/2)ILn). This is a superposit!on of 

states containing different numbers (n ) of photons each With the 

same polarization, in this case 1. c is the small and experimentally 

controllable parameter that governs the average number of photons 

present. the expectation value of the photon number. The probability 

of measuring alight pulse in state It, C)coh and finding one photon is 
the squared modulus of the one photon amplitude in the coherent state. 

PI = 1(t,1ILc)cohI2 ~ Icl 2 and it is this which is fixed at about 
1110 in the experiments. The probability of two or more photons IS 

Pn>2 = 2::x,'=2 Pn ~ pU2; this is much less than PI when PI is much 
less than unity. 
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weak light pulses because for them the full systems can be 

in fiber. (A nonlinear fiber section which effects parametric 

down conversion of photons would help overcome launch 

losses.) On the plus side, though, photons do offer better 

security; no eavesdropping by beam-splitting is possible. 

This advantage is heightened if EPR pairs of photons 

are used [76]-[781. It is also worth noting that if EPR 

pairs entangled in polarization (or in phase) are used, the 

randomness of basis can be generated passively with beam 

splitters; these make the random selection of basis to be 

measured [75J. If Alice generates EPR pairs, measures one 

passively and sends the other to Bob who does the same, 

then neither of them needs to choose randomly between 

the polarization (or phase) measurement bases; this can be 

arranged to occur as part of the measurement process. This 

could be imp01tant in the future as the lack of active basis 

switching might pennit considerable increases in bit rate. 

However, the present state of things is that weak light pulses 

win out over photons. 

Problems common to both approaches are those of trans

mission and detection, which have an unfortunate link at the 

moment. Optical fibers, the obvious way to send photons 

with decent but not perfect environmental protection, work 

pretty well at wavelengths of 1.55 j),m, with losses less than 

0.2 dB kill-I. The losses are 0.3 dB kill-I at 1.3 j),m; both 

of these are standard telecommunication wavelengths. The 

losses climb to 2 dB kill-I at 600-900 nm. The trouble is 

that photon detectors work best at these latter wavelengths. 

(Silicon avalanche diodes can give subnanosecond time 

resolution and better than 70% quantum efficiency.) The 

lack of good photon detectors at the longer wavelengths 

where fibers work well is probably the dominant practical 

problem at this time [75J. 

Despite all the problems, experimenters in the field have 

made good progress. This list is not exhaustive, but cites 

the first success and some recent experiments. 

• The first successful prototype ran in 1989 [79], L24], 

[69]. Subsequent improved versions were run, but the 

apparatus was designed merely to demonstrate the 

principle. Weak polarized light pulses were transmitted 

over a quantum channel length rv30 cm, at a very slow 

bit rate and with about 4% system errors. However, 

error elimination and privacy amplification protocols 

were implemented to show that secret keys could be 

distilled. 

• These experiments ran an all fiber system built using 

only commercially available components [80]. Weak 

polarized light pulses at 800 nm were used, so a 

good detector could be employed. However, this meant 

tolerating increased fiber problems in comparison to 

those which occur at the longer standard telecommu

nication wavelengths. A raw data rate rv 10 kbitls- 1 

was achieved, with system errors of 0.35% for 300 m 

of fiber and 0.54% for l100 ID. The authors discuss 

three separate fiber environment problems: 
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Topological phase: "When the wave vector (or 

k-vector) of a photon, which defines its di-

rection of propagation and its wavelength, is 

transported around a topologically nontrivial 

circuit this gives rise to a geometric, or Berry. 

phase [81]-[83]. Fibers must therefore be fixed; 

fluctuations in the orientation of a cable could 

translate into photon phase fluctuations. 

Polarization mode dispersion: Dispersion is the 

spread of a pulse due to its different fre

quency components having different speeds; 

this can cause a pulse to lose coherence. For 

polarization modes propagating down standard 

fibers this can be rvO.l-1 ps km- 1/ 2 . The total 

coherence loss down the fiber must be kept less 

than the coherence time of the laser providing 

the pulses and the latter can now be as long 

as a few nanoseconds [80]. Dispersion is thus 

not the main problem at current operational 

distances. 

Intrinsic birefringence: Birefringence means 

that the two different modes of polarization 

have different speeds, which introduces a 

relative phase between the modes like in 

the model example of Section II-C. A fixed 

birefringence can be compensated for; the 

problems of irreversibility arise when it 

fluctuates and makes the polarization of a 

pulse unstable. Such fluctuations occur due 

to changes in thennal or mechanical stresses. 

At present tens of k:n1 of fiber can be stabilized 

for rv 20 min against such fluctuations [80]. 

• Birefringence is identified as the dominant problem. 

The experiments employed manual polarization com

pensators to adjust for the nonfluctuating parts of these 

environment effects. 

Recent experiments by the same research group [841 

have demonstrated the prinCiple of quantum cryptog

raphy under Lake Geneva. Polarization states of weak 

light pulses (with average photon number 0.12) were 

transmitted down 23 kill of standard installed 'Swiss 

Telecom PTT fiber, most of which is buried under Lake 

Geneva. System errors ofless than 3.4% were obtained 

working at the standard telecom wavelength of 1300 

nm. (Similar results were found using 26 kill of coiled 

fiber in the laboratory.) Good polarization stability 

over periods up to '" 1 h was achieved. However, 

the authors note that at certain times high instability 

occurred which they believe could have been due to 

nearby civil engineering works. This illustrates the sort 

of problems which will need careful consideration for 

systems operating in the outside world, rather than 

under laboratory test conditions. 

• These experiments used weak polarized light pulses at 

633 nm, with a low data rate of 1 bitls -1 and system 

errors of less than 0.5% for 10 m of fiber. However, 

the interesting feature is that polarization compensation 

was perfonned electronically, rather than manually. 

The authors state that they plan to use longer wave-
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lengths in the future and that a system with a raw data 

rate of 100 kbitis- 1 (also to include error removal and 

privacy compensation) is under construction [85]. 

• These experiments ran a system based on standard 

optical communication fiber and components. Rather 

than polarization, phase states of weak light pulses at 

1.3 11m were employed, with system errors of 5% for 

10 km of fiber. Sequences of "-' 150 bits were sent in 

0.002 s long bursts; this would equate to a raw data 

rate of about 75 kbitis- 1 if continuous transmission is 

achieved [86]. 

• Reference [75], cited earlier for a number of practi

cal considerations, is predominantly a review paper. 

However, in addition the authors discuss preliminary 

EPR pair phase interferometry experiments. High vis

ibility nonlocal interference fringes were seen with 

interferometers separated by 4.3 km of standard com

munication fiber. The EPR pairs were produced by 

downconversion of a laser i.n a nonlinear crystal. 

This produces two photons (of different wavelength) 

entangled in phase rather than polarization. (However, 

the form of the state is still that of (9), simply with a 

change of label.) The photon wavelength relates to its 

angle from the initial laser beam, so the two different 

photons can be selected according to their direction 

of propagation. The short wavelength 820 nm photons 

were measured local to production (by Alice) and their 

longer wavelength 1.3 /J,m partners, which propagate 

better, were sent down the fiber (to Bob). The fact that 

good fringes were seen corresponds to a verification 

of the perfect correlations present in an entangled 

state, both photons in state 11) or both in I f--+) in the 

language of (9). These perfect correlations alone do 

not imply a violation of Bell's locality constraint; see 

Section II-D. However, they are strongly suggestive of 

entanglement and they are the necessary ingredient for 

use in cryptography. All this therefore bodes well for 

future EPR pair cryptosystems. 

D. Patents 

Three patents have been granted in this area and others 

may well be pending. 

• With respect to current experimental systems, this is 

the main patent. The implementation described uses 

phase bases of weak coherent light pulses and inter

ferometers. The examination of the RQT for eaves

dropping, the error elimination technique and privacy 

amplification are mentioned [871. 

• This patent is concerned with a different eavesdropping 

detection technique. Although Alice and Bob do not 

use data taken with different bases in the RQT, they can 

examine these data for evidence of eavesdropping [89], 

rather than use some of the RQT. The implementation 

described uses polarization bases of single photons 

[88]. 

• This patent covers the use of the nonlocal correlations 

between EPR pairs for key transmission. The imp le-
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mentation described uses phase bases of entangled 

photon pairs and interferometers. Polarization bases of 

weak pulses of light are mentioned as an alternative 

realization [90]. 

V. QUANTUM COMPUTATION 

A. The Idea 

There are two significant aspects of classical computation 

which feed into the idea of quantum computation, the 

Church-Turing hypothesis [91], [92J and the concept of 

reversible computation [93], [94]. 

The first is embodied in Turing's proposal of a simple 

model computer (the Universal Turing Machine) which 

could be programmed to perform any operation that might 

be regarded as computable. The machine consists of a 

potentially infinite tape on which resides a sequence of 

bits and a head which executes the computation. The head 

processes the bit value at its location together with the 

finite state of its internal memory, following some specified 

logical operation. According to the results, it resets the tape 

bit (to one or zero), resets its internal memory and hops 

one bit to the left or right on the tape, or stays where it 

is. (All this is repeated. The sequence mayor may not 

terminate; this depends on the computation.) According 

to the Church-Turing hypothesis, such a machine can 

execute any algorithm and so is able to model any classical 

computer. In this mathematical sense, all existing computers 

are equivalent. Of course, this says nothing about speed, 

memory capacity, fancy graphics capabilities and suchlike, 

which are the quantities that continue to improve and thus 

sell new machines. 

The idea of reversible computation was introduced math

ematically by Yves Lecerf [93] in 1963 and placed on a 

more physical footing by Charles Bennett [94J in 1973. 

Conventional operations like AND or OR are irreversible. 

They must be because with two inputs and one output, 

the inputs cannot be inferred uniquely from the output. 

Even at the classical level this irreversibility cannot be 

ignored. Any physical realizations of such processes will 

cost. They will dissipate energy somewhere; the Second 

Law of Thermodynamics cannot be beaten. The entropy 

change associated with the erasure of a bit is ;;18 = kIn 2 

(see the Appendix). At a temperature T, this costs an energy 

IlE = T 118 = kT In 2 [95]. 

To avoid this dissipation, reversible operations must have 

the same number of outputs as inputs. Since throwing 

away your garbage costs, you have to keep it [95]. An 

example of a reversible operation is the controlled-NOT, or 

exclusive-OR (XOR), denoted by C12. This has two inputs 

and outputs; bit one (with value Ed is the control and bit 

two (with value ('2) is the target. The operation negates 1"2 

if t1 = 1 and leaves it alone if t1 O. Expressed in state 

notation (ready for the quantum case), this operation is 

CdElh1E2}2 = hhl(El + mod 2h. (11) 

For classical computation, when the bits are classical and 

thus exist in definite states (zero or one), there are four 
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possible inputs each of which has a unique output. (For 

example, 01211h10)2 = 11hI1h.) The point about elemen

tary gates such as classical XOR is that many of them can 

be combined to perform reversible c.lassical computations; 

they can be used to construct a reversible Turing machine 

[96], [97]. 

Suppose that such a machine is employed to calculate a 

function of a variable x, which ranges 0 2m
-

I
. This 

function, f (x), ranges 0 2n-l, so the computer needs a 

register of size (m + n) bits to hold all the data. (It will 

almost certainly need some additional bits for processing.) 

As far as the calculation is concerned m bits can be deemed 

the input register (i) and n bits the output (0). However, 

as far as the physical evolution is concerned, the whole 

register is updated reversibly to its new set of values. The 

function calculation, denoted by the operator F applied to 

the decomposed register state, is represented by 

(12) 

In this symbolic reversible classical computation one of 

the 2m possible inputs IX)i is prepared and F generates 

the corresponding output, .f (x), putting this in the output 

part of the register which was set initially to zero. In this 

example the input value x has been kept in its register. This 

is not always necessary to ensure reversibility. If f (x) is a 

simple monatonic function of x (for the range of interest), 

there is then a one-to-one relationship between f (x) and x 
and there is no need to keep x. However, if there is no such 

one-to-one relationship and the definition of the inverse of f 
is ambiguous, it is necessary to keep a record of x to ensure 

reversibility. Shor's quantum factoring algorithm utilizes a 

periodic function f (;r; ). Anticipating this, I have kept the 

input x in (12). 

The subject of quantum computation began its develop

ment about 15 years ago. Notable contributions came from 

Paul Benioff [98J, Richard Feynman [99], [100J, David 

Albert [101], and David Deutsch [102]. Good discussions 

are given at an introductory level in [13J, [55J, [95J, [103J, 

[104] and at a higher level in [105]-[107]. (Further work 

can be accessed via the WWW addresses given in the 

introduction. ) 

In his work, Deutsch basically modified the 

Church-Turing hypothesis to allow for physics [102]. 

This is, of course, an eminently reasonable thing to do 

since any computer which is ever built will be made out of 

stuff which obeys the laws of physics. Deutsch's version 

of the Church-Turing hypothesis is [102J: 

Every finitely realizable physical system can be per

fectly simulated by a universal model computing ma

chine operating by finite means. 

Here, in cases when the physical system demonstrates 

some intrinsically quantum mechanical property, such as 

superposition of states, the Universal Turing Machine 

(UTM) cannot perform the simulation since it is based 

on the classical tenet of systems being in definite states. A 

generalization, the Universal Quantum Computer (UQC) 

[102J, is needed. In the same sense that any classical 

computer is equivalent to the UTM, it is thought that any 
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possible quantum computer will be equivalent to the UQC. 

However, this is not known; it is still an open problem 

[106]. 

Analogous to the construction of classical computers 

from a number of elementary classical logic gates, the 

idea is that qua.'1tum computers could be constructed from 

elementary reversible quantum logic gates [108]-[112]. 

This is why reversible classical gates are of such interest, 

for it is quantum versions of these which form the potential 

building blocks for quantum machines. (There is clearly no 

point in trying to construct a quantum version of a process 

which by its definition is irreversible even at the classical 

level.) The quantum XOR operation forms a very important 

elementary quantum gate [13J, [105J. Superposition of 

states is the key phenomenon exhibitable by qubits but not 

by classical bits. The quantum XOR process can utilize this 

in a highly nontrivial fashion. It therefore forms a good 

centerpiece for a discussion of quantum computation. 

In the classical case, the input to XOR must be one of 

four possible combinations of bit one and bit two values. 

In the quantum case, the superposition property makes this 

range of choice infinite. For instance, bit one alone can be 

in an arbitrary superposition of 10h and 11h, as in (2). 

This is the crucial point because it enables XOR to tum 

single product states of the two qubits into entanglements; 

for example 

0122- 1
/
2(IOh + \l)dO}z 2-1

/
2(IOhIO)2 + I Il}z). 

(13) 

(Note that there is no change in the operation defined by 

(11), it is just that now it must be applied tern1 by term to the 

quantum states.) As will be seen, it is the ability to produce 

entangled final states which gives quantum computers their 

crucial advantage over classical ones. The reversibility of 

XOR also means that it can be used for disentangling states: 

012T1/
2
(IOhIOh ± 11h11)2) T

1
/
2(IOh ± 11h)IOh 

(14) 

C122-1/2(IOhilh ± 10)2) = 2- 1j2 (IOh Ilh)ll)z. 

(15) 

A pictorial representation of the XOR gate is given in 

2. State swapping is also possible [105]. Three XOR 

operations yield 

for arbitrary states ]1/J) and ] q,). I reiterate that the qubits 

in these examples must be quantum systems, so they can 

be placed in superpositions or entanglements and that the 

operation of XOR must be a reversible quantum evolution 

according to the SchrOdinger equation (3); must be 

realized by the Hamiltonian of the physical XOR gate. 

The irreversible effects of the gate environment, including 

any measurement apparatus, must be negligible during the 

operation. 

However, this is not all. To construct a quantum computer 

from such reversible quantum logic gates [108J, [111J 
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Fig. 2. The XOR gate applied to two qubits. The right hand state is entangled; it is not possible 
10 associate a definite statt! with one qubit independent of the other one. the case for the left 
hand side. The reversibility of the gate means that il can be run left 10 right right to left. 

and to utilize the superposition principle, the effects of 

the environment must be small enough so that the whole 

computer evolves in reversible Schrodinger fashion, as 

dictated by the Hamiltonian of the complete machine. Fur

thermore, this must be the correct Hamiltonian; it must not 

contain imperfections which generate the wrong reversible 

evolution. These are both extremely tough requirements 

and they are considered in Section V -C. For the moment, 

assuming that they can be met, consider the of 

a quantum calculation of [analogous to the classical 

version of (12)]. Suppose that this is with the 

initial state of the m-qubit part (the calculation of 

the (m + n )-qubit register prepared as a superposition 

all possible classical inputs 

(17) 

The is for normalization; there are 2m terms in 

the sum. This preparation is not as daunting as it might 

appear. If each of the m qubits is simply prepared in the 

superposition state 2-1/2 (10) + II}), the single product of 

all these contains the 2m states IX)i with equal amplitude 

, as required. The calculation of f gives 

(18) 

The final state is an entanglement of the so-called input 

and output parts of the (m + n )-qubit It looks as 

if the computation has evaluated all 2m possible values of 

f(x) in one run! 
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B. Possible Uses 

In fact, computing functions is an example for which 

quantum machines do no better than classical ones. Despite 

the final entangled state in (18), you cannot access all the 

different values of f(x). The only way to get information 

out of the quantum computer is to perform a measurement, 

of f in this "ase. For example, if all the 2m values of f 
are a measurement of f will yield one of these at 

random, each with a probability of 1/2m for the state (18). 

At the same time the state will be projected to the single 

term in the superposition corresponding to this outcome, 

The irreversibility of the measurement process destroys the 

information about all the other values of f(:r). 

In a sense, simply quantum computing a function is 

a challenge to classical machines on thejr own patch. 

However, quantum has the potential to expand 

this patch and access to solutions of some problems 

which are intractable with classical machines. A difficult 

problem is deemed tractable if the time taken 

to solve it scales only a polynomial function of the 

size of the input It is deemed intractable if this 

scaling is an function. This is where 

quantum machines can come into their own. Examples of 

such problems might be the evaluation of some property 

of f, or the verification of a statement about f. For either 

problem, an the for the case above) individual values of 

f do not form part of the answer. Nevertheless, the classical 

approach involves calculating all (or possibly most) of them 

one by one in order to distil the actual answer On 
the other hand, the superposition state (18) of the quantum 

computer contains amplitudes for all the f values. 1f this 

can be manipulated in some way so that some chosen 

measurement on the new final state will answer the problem 
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posed, then clearly the solution can be found much more 

quickly via the quantum route. The manipulation followed 

by the irreversible measurement will certainly destroy the 

information on all the f values, but this does not matter as 

they are not the answe~s Another way of viewing 

this exponential speeding up of the calculation is to regard 

the 2m calculations as running in parallel, producing the 

solution through quantum interference [13], [106]. 

1) Period Finding: One very useful problem which can 

be solved this way is finding the period of f(x) when it 

is a periodic function of its argument x [105J-[107J. To 

achieve this, three further stages of manipulation must be 

applied to the state (18) of the quantum register: 1) an 

irreversible measurement (of f), followed by 2) a reversible 

quantum operation (a Fourier transform), followed by 3) a 

final irreversible measurement. The periodicity means that 

a measurement of f must leave the calculational input part 

of the register state as a superposition of I x) i states where 

the x values are spaced out by r, the period being sought. 

A discrete quantum Fourier transform then takes this state 

into a new basis in the space of possible (reciprocal) periods 

and in this basis the amplitude of the state peaks sharply 

around multiples of 11,. This is analogous to the Fourier 

decomposition of a (time-dependent) musical note in the 

frequency, or reciprocal period, domain. When analyzed 

in the latter domain, the note exhibits peaks around its 

fundamental frequency (reciprocal period) and the higher 

harmonics, which are multiples of this. The final problem 

solving measurement on the quantum register is done in the 

reciprocal period basis. From this result (or, more correctly, 

the results of a few runs), the period r may be determined. 

Here is a simplified outline, based on the assumption 

that r divides the input register range 2m q) exactly 

[105]-[107]. 

1) A measurement of f applied to the state (18) removes 

the entanglement. It gives some result fo and projects 

the state of the register to a single product of an input 

and an output state. The output part of the register 

state is I fo) 0 and the input part is a superposition of 

all the states whose x-value satisfies = fo. 
This can be written as 

(19) 

x=o 

where the coefficient g(:r) is simply defined to pick 

out the (q / r) values of x for which f (x) = This 

can be expressed mathematically as 

(qjr)-l 

g(x) (r/q)l j 2 2: (20) 

j=o 

where l is some unknown offset and is zero if 

a =/: b and unity if a b. As the entanglement has 

gone and no further interaction occurs with the output 

part of the register, this can now be ignored. 

2) The next stage is a (discrete) Fourier transform, which 

effects a change of basis from the q states IX)i to the 
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q new ones Ikk These relate to each other by 

q-l 

IXli q-l/22:exp(271'ikxlq)lk)i 
k=O 

(21) 

x=o 

Physically, this requires reversible quantum opera

tions to be applied to the m qubits of the Z-r(~!!1Eiter 

so that the final q (= binary register possibilities 

correspond to the q different states Ik/i in the same 

way that the initial ones cOlTesponded to the 

It is worth that this transform can be applied 

to the register through a series of simple one- and 

two-qubit operations [113]. A good approximation 

to it is also possible, with a significant reduction in 

the required number of simple operations [113], If 

the qubit operations to effect the transform are made 

when the register state is I¢)i of (19), this will end 

up expanded in the Ik)i basis (denoted by a tilde) as 

l.p/i = g(k)lk/i where the amplitude ij(k) is 

q-l 

g(k) = 2: exp (271'ikx/q)g(~r;). (22) 

x=O 

Given the form (20) of g( x), it follows that g( k) = 

exp (271'ilk/q) if k == >..(q/r) for the r possible 

values of >.. = 0,1, ... 'r 1, and zero otherwise. 

3) The tlnal "problem solving" measurement of k will 

therefore yield one of the J..( q/ r), a multiple of 

each one OCCUlTing randomly with a probability 

Note that the unknown offset l has no effect on this. 

Given that q 2m
) is known, the desired period r 

can be found from q and a few values of J..(q/r). 

2) Factorization: Being able to find the period of a 

function is a very handy facility to have because other 

problems can be reduced to this one. The most spectacular 

usc for a quantum computer which has been proposed to 

date is based on such a reduction. There is no known 

efficient classical algorithm for factorizing large composite 

integers. However, Peter Shor has shown how a quantum 

computer could potentially perform such a task [114], [13], 

[105J, [106]. The quantum part involves finding a period 

as outlined above; the rest is number theory, with these 

calculations being tractable on a conventional classical 

computer. If the (large) number to be factorized is N, 

another number y, coprime with N, is chosen at random. 

The periodic function is defined by 

fN(x) = modN. (23) 

This means evaluate modulo N, so f only takes valnes 

between zero and N 1. The way to check the coprime 

condition is to verify that the greatest common divisor of 

y and N is unity, gcd (y, N) = 1. This can be done easily 

with Euclid's algorithm for finding gcd of two numbers 

[106]. Of course, if, having chosen a y at random, you find 

that gcd N) =/: 1, this is not a problem as you will have 
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found a factor of N anyway. Choosing ;II coprime with N 

guarantees that f is periodic; otherwise it may not be. 

A nontrivial factor of N can be deduced from r, 
the period of Here is a sketch of the argument 

[105)-[107]. If y is coprime with N it is possible to define 

an exponent r so that yr mod N 1. From the form of 

(23) it is then clear that r) = so r is the 

desired period. Setting z (which requires an even r) 

means that finding r, the result of the quantum computation, 

finds solutions to mod N 1. These be trivially 

by mod N = 1, N 1; if so they are no use. 

HClwe:ver, if the solutions are nontrivial and so take the 

form modN = c,N - c with c> 1, they can be used 

to find factors of N. In this case it is certainly true that 

c-l =I 0 and c+1 =I N, but that(c+ 1)(c-1) mod O. 

Thus (c + - 1) is a multiple of N, although neither 

(c + 1) nor are on their own. The common 

divisor of N and ± 1) therefore cannot be instead it 

will be a nontrivial factor of N. So, r (by quantum 

computation) which c which gives factors 

of N from (c L N). Clearly, the method fails ifr 

is odd or if c turns out to be one or N 1. In such a 

case a different random y must be chosen. However, the 

probability of failure is small for random y [106]. 

A simple example should help. To factorize N 15, 

not exactly a difficult task:, a coprime y is needed so 

gcd (y, 15) = L This means that y can be picked from 

the set {2, 4, 7, 8, II, 13, 14}. Take y 8. The 

values of 8'" mod 15 for x = 1,2,3,4,5,6,7 ... are 

8,4,2, L 8, 4, 2 . ", so the period is r 4. This is what 

the quantum computer would find; for a useful calculation 

using a very large N the period would also be very large. 

Here, y,'/2 gives z 64 and thus c modN 4. In 

this case c ± 1 are the two factors of 15. Altematively, 

y 11 yields c 11 and the factors follow from simple 

calculations of and (12,15). The only 

choice ofy which fails is 14, illustrating the good chance 

of the method being successful. 

It should be noted that the quantum manipulations needed 

for this period finding are not simply assumed to be 

implementable. As well as those for the discrete Fourier 

transform, the elementary quantum gate layou1s and oper

ations for the modular exponentiation have actually been 

worked out, so, in the blueprint for a quantum fac-

toring machine exists [115], [116]. [113], [117J. The 

factorization of is dearly a very important 

issue. RSA, the most popular public key cryptosystem [63], 

[64], is based on this being a very hard problem. The 

construction of a quantum computer capable of rendering 

such factorization tractable would ruin RSA as a cryp

tosystem. This might even generate a market for quantum 

cryptosystems! 

Since the central manoeuvre in the quantum period 

finding procedure is a Fourier transform, it is interesting 

to ponder on the possibility of perfonning this transform 

by classical wave means, or by a simulation of such an 

approach. Is a quantum machine really needed? In fact it 

is, because to solve a realistic problem, to factorize a large 
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composite number, the period sought will be exponentially 

large. This can only be handled in some internal abstract 

Hilbert space of a quantum machine; to deal with such a 

period in the physical space of a classical wave experiment, 

or a simulation thereof. is totally implausible [13]. 

The discrete logarithm problem-for integers y, and 

a, find x such that yX mod N = a-----can be reduced to 

a period finding problem [131 in a similar fashion to 

the factorization problem, and so forms another ex<~mple 

amenable to quantum computation. Further suggestions and 

discussion can be found in [102], [103], and [118], for 

example. However, probably the most important point to 

note is that, despite the early days, such suggestions are 

made. It seems likely that more will follow. 

C. Practicalities and Possible Realizations 

Hypothetically, there is no problem in putting together 

elementary quantum components, or gates, to form a com

puter [108], [109]. On paper, it should be possible to devise 

complex systems, or networks, whose total Hamiltonian 

gives a SchrMinger evolution [see (3)] which will perform 

a desired quantum computation. As already mentioned, this 

has been done for the quantum factoring case. However. 

the physical construction of these systems is a different 

matter. This should not be as a very difficult but 

definitely tractable problem. Theoreticians should not sit 

around with their feet up drinking coffee simply waiting 

for the experimenters and engineers to crack this one, and 

many do not. . 

In this context, the nature of all information 

processors and indeed the physical nature of information 

has long been stressed by Rolf Landauer. (For a 

recent paper, see [119], which cites some of his earlier work 

and many other useful With respect to quantum 

computation, there are two main problems, mentioned at the 

start of Section III and now considered in a bit more detail 

in the next two subsubsections. 

1) Incorrect Reversible Evolution: The continuously 

variable and numerous amplitudes in complex quantum 

states of a system containing many qubits), while 

giving great power to computers based on quantum 

parallelism, may also be a reason for them never 

being built. In a sense, the continuous amplitudes 

give quantum computation the same problem [120] as 

analog computation: more power, but more susceptibility 

to imperfections. An unwanted piece in the system 

Hamiltonian will generate an unwanted "error" piece in 

the evolved state. 

A trivial example of this is the fixed birefringence for a 

photon; if 1> is a small (-~1) nonrandom phase in (5) the 

error piece is approximately 2~1/2i1>l!). Here it is obvious 

that such an error can be removed. Quantum cryptography 

eXI)erilme~nts can deal with a fixed birefringence. However, 

while these experiments may deal with a large number of 

photons, these are qubits; they do not interact. 

In a complex system like a computer, containing many 

interacting qubits, the error problem is greatly amplified. 
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There are many more starting points for such errors.6 As 

well as effects like fixed birefringence, which could be 

deemed as due to errors in the construction of the system, 

external electromagnetic pulses applied to the system could 

be incorrectly shaped or timed. These errors build and 

interact in time. In &'1 extreme case, such errors can actually 

conspire to cause a reversal of the intended evolution [119J; 

dramatic erroneous quantum interference occurs. 

2) Decoherence: In general, the bigger a system gets, the 

harder it becomes to keep the environment at bay. Large 

and complex quantum systems can usually only keep their 

coherence for short times. Then their evolution becomes 

irreversible and superposition states are destroyed. This 

is, of course, why the macroscopic world looks classical 

rather than quantum. One obviously important example 

of a decohering environment is a heat bath, or reservoir; 

for discussions in the context of quantum computation see 

[106], [121], [122]. The state of a quantum system coupled 

to such an environment gets scrambled and the system 

acquires a finite entropy as it reaches thermal eqUilibrium. 

(See the appendix.) To avoid (or at least to minimize) such 

irreversibility, thermal decoupling is necessary. 

If the time taken for a system to perform some typi

cal simple reversible quantum process [such as the XOR 

operation given by (13)-(15)] is t e , and the time taken 

for the environment to mess up the quantum state is td, 

then the bottom line is that td » tc must hold for the 

process to be able to occur. The decoherence time must be 

long compared to the clock time; this is true for quantum 

processes in general and a quantum computation would be 

no exception [106], [107J, [121]-[124]. 

This condition can certainly hold true for the candidate 

quantum systems given in Section III, as they execute a 

single logic operation; indeed, this is why they made the 

list. (Detailed discussion, including numerical estimates 

of td and tc for certain candidates, is given in [123], 

for example.) However, the problem is that for complex 

systems containing many elementary quantum gates, te 
increases and td decreases. The former is due to the facts 

that many gates are required to carry out a number of logic 

operations [117] and that the time for a single operation will 

generally increase for a gate which is part of a larger system 

[124]. For the latter, simple theoretical models [122], [125] 

suggest that td for n coupled systems is n times smaller 

than that for one. This is all a big worry. Will it be possible 

to make quantum machines for which td is still in excess 

of the tc value for any useful task, such as factorizing a 

large composite number? This is a question currently under 
debate [121], [124J, [126]. While no clear cut answer exists, 

I think it is fair to say that achieving practical success will 

be extremely difficult in the near future. For example, the 

clock time for the factoring of an L-bit number could scale 

like L6 up to L8 (dependent upon the precise realization of 

6The general form of a single one, due to a small error term He in 

the Hamiltonian, foHows from footnote one. If H = He + He, where 
FIe is what H is supposed to be, the evolved state is approximately 
Iw(t)) ~ IWe(t)) (i/h)Uc f~ dt' Hel¢(O)). The first term is the 
intended state and Uc is the intended evolution operator. The second term 
is the unwanted "error" amplitude. 
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device considered) [124J; this would compete fiercely with 

the decoherence time of the device as L is increased. 

A point on which there is some consensus is that a real 

thorn could be the spontaneous emission of photons-in 

fact one could be enough-from any quantum computer 

which utilizes excited states of elementary systems [124], 

[126], (127]. While other environment effects may be down 

directly to the skill of the quantum engineers, fundamental 

decohering effects like spontaneous emission are rather 

harder to control. 

Problems may also arise if what could be termed intrinsic 

state collapse or localization exists. State collapse might 

possibly occur in nature as a fundamental process. If 80, 

reversible quantum theory is only. ever an approximation 

to what happens in the irreversible real world, good when 

the irreversibility is very small. Intrinsic collapse could be 

regarded as an essentially uncontrollable decohering effect 

on a quantum computer [128]. 

3) Error Correction: One interesting idea, which might 

assist a quantum computation by staving off the effects of 

errors and decoherence, is the possibility of error correction. 

The concept is the same as in classical error correction, 

or the operation of a refrigerator. As the system of interest 

suffers an unwanted increase in entropy (see the Appendix), 

this is extracted, but at the expense of increasing the entropy 

somewhere else. It is clear that for quantum systems this 

must be a tricky procedure, unlike typical error correction 

applied to classical data. In the case of quantum cryptogra

phy, Eve has already found to her cost that it is impossible 

to simply inspect a qubit without irreversibly changing it. 

Nevertheless, this does not preclude aU forms of tinkering. 

The "Zeno" or "watchdog" effect, where repeated mea

surements keep projecting a system state back into some 

chosen basis, might be usable as a technique for eliminating 

small errors as they creep into a quantum state [121]. The 

"Zeno" effect is a statistical one; on average, repeated 

measurements could be arranged to retard the unwanted 

evolution of a system away from its intended state. In terms 

of the behavior of individual systems [129], this means that 

the actual state would irreversibly project onto the intended 

one with a probability close to unity. Occasionally, though, 

the projection would be to a totally unwanted orthogonal 

one. In such cases the attempted correction completely ruins 

the computation! However, on average the procedure would 

be beneficial. 

Another possibility is to build in redundancy, in the same 

spirit as is done in classical error correcting theory. The 

extra qubits, along with judiciously choscn interactions and 

measurements, can then be used to stabilize the ·<important" 

qubit states against errors. Many papers have appeared 

recently on this subject; some examples are [130]-[135] 

and many more can be found at the WWW addresses given 

in the introduction. Here are some interesting points. 

• If decoherence simply acts to dephase the amplitudes 

in a qubit state, like in the example of (5) with a 

random phase 4;, this error can be corrected if the 

state is ~ncoded into a state of three qubits [134]. 

Loosely speaking, this is because a phase error looks 

PROCEEDINGS OF THE IEEE. VOL 84. NO. 12. DECEMBER 1996 



like an amplitude error in a rotated basis, the diagonal 

decomposition of (6). (The extreme case is a phase 

error of 11" in the rectilinear basis; this gives a complete 

amplitude error in the diagonal basis as it flips the 

qubit from 1/) to I"',).) Three qubits is the minimum 

number required to correct such an error [134]. 

• A general decoherence error in a qubit state can be 

thought of as a random phase error and a random 

amplitude error in the same basis. Two extra qubits 

are needed to cope with each of these, so the mini

mum encoding of a single qubit against an arbitrary 

decoherence error needs five qubits [135]. 

• Provided that the error correction procedures do not 

themselves introduce too much additional decoherence, 

it seems possible that an exponential decrease in de

coherence can be achieved with only a polynomial 

increase in resources, at least in certain model systems 

[132]. 

• When a qubit state is encoded into a number of qubits, 
these are also all assumed to decohere in a similar 

fashion. (It would be unrealistic to assume anything 

less and it would perhaps be more realistic to assume 

even more.) Any correction ideas, even for encoding 

much more complicated states with some redundancy, 

have to confront the additional decohering onslaught 

and win out. 

Most of the work on quantum error correction to date has 

focused on preserving the state of a number of qubits. 

This may well be all that is needed to make use of error 

correction for "memory" qubits in a quantum computer, or 

to extend transmission distances for states being used in 

quantum cryptography. Correction of evolving and inter

acting "processor" qubits in a computer is dearly going 

to be rather more tricky, if at all possible. People have 

begun work in this direction, considering logical operations 

applied to encoded qubits [136] and correction applied to 

entangled qubits [137]. However, it is not clear that the 

current error correction approaches can deal with incorrect 

reversible evolution of a complex quantum computer [119]. 

Indeed, they could make it worse because a lot more 

qubits (for redundancy) and hardware (to support them) 

introduced to correct errors due to decoherence could 

introduce more Hamiltonian imperfections. Quantum errors 

and their correction are very interesting and active areas of 

debate and research. 

4) Experimental Possibilities: The construction of an ex

perimental prototype, even just a simple one, to examine 

the viability of useful quantum computation, is still some 

way off. The current state of play is that proposals for 

physical realizations of individual quantum gates have been 

and are being made. Many fundamental experiments on 

these systems have been done, many more are underway 

and there are reports of a successful implementation of a 

single two-bit logic gate [127]. The coupling together of a 

number of such gates is the next experimental challenge; 

theoretical work on this is already in progress. This is 

why the example of the factorization of 15, given earlier, 

is not quite as daft as it might seem! The first quantum 
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machines are likely to consist of a nontrivial but not large 

number (perhaps 20 rv 30) of qubits, so will only be 

capable of this level of task. Similarly, the simulation 

of such a machine on a classical computer, including 

physically realistic decohering effects and measurements, 

will be limited to this sort of scale. 

I will outline some proposals for quantum gates and 

give references where more detail can be found. Section ill 

identified that candidates for gates should have discrete 

quantum states which are somewhat robust against their 

environment. In the light of the Section V-A consideration 

of a model quantum gate (the XOR), another requirement 

c'an be added. The systems must be able to exhibit condi

tional and controllable dynamics. The behavior of the target 

qubit must follow from the control qubit. 

• Atoms and Photons [12], [41]-:-[45], [l05], [106]. To 

make an XOR gate, the target qubit states are two 

relevant Rydberg atom states (Section III-B) and the 

control qubit is a mode in a cavity (Section III-A) 

whose photon number is zero or one. The atom 

interacts with the photon as it passes through the 

cavity. This interaction is purely dispersive and 

generates a phase shift for the overall quantum state. 

The additional application of classical microwave 

pulses either side of this can fix it so that the atomic 

state flips or is unchanged dependent upon the pllOton 

number and without changing this number, as must 

happen for the control bit. 

A schematic illustration goes as follows. The 

microwave pulses, Mr./2' are so-called 11" /2-pulses 

which partially rotate the atom states into each other: 

2vI7r / 2 [0)2 = 2- 1
/

2 ([0)2 + and Mr.j211)2 = 

2-1
/

2(II)z - 10)2). (Two consecutive 1I"/2-pulses 

form a 1I"-pulse, which completely flips the state; 

Mr.[O)2 [1)2 and Mr.II}z = -IO}z.) The dispersive 

atom-photon interaction in the cavity simply performs 

a phase shift P:P[OhII)z = -IOhll}z with all other 

combinations unchanged. Sandwiching P between 

two 11" /2-pulses implements an XOR process; C12 I'V 

(Therc~ are a couple of sign changes 

compared to the earlier definition of C12 , but these do 

not affect the basic idea.) 

In effect, the phase shift enables the second 

microwave pulse to undo the first when the control 

bit is zero, otherwise the two pulses combine to 

produce a flip. The operations of (13)-(15) are thus 

realizable. The current state of play with experiments 

is that they are just about there. The microwave pulses 

are old hat; the phase shift for very weakly excited 

cavities is rather harder but is now possible [43]. An 

experimentally feasible implementation of the XOR 

process using atomic beams and cavities is discussed 

in [44] (in the context of teleportation). It seems clear 

that the environment can be kept at bay sufficiently for 

individual atomic quantum gates to operate. However, 

what is not clear at present is the number of such gates 

which might be able to sustain a useful reversible 
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quantum interaction within the coherence time td of 

the whole coupled system. No doubt this will be a 

topic of future research. ~ 

Progress has also been made up at optical frequen

cies [45]. Conditional phase shifts for a coupled cesium 

atom and high-Q optical cavity (with a photon number 

less than unity) have been measured [45]. These could 

fonn the basis for a quantum-phase logic gate. 

• Interacting Dipoles [55], [105], [106], [138]-[141]. 

The dipoles could be electric or magnetic. In the 

electric case, an electron trapped in a quantum dot 

(Section III-C) fonns a dipole moment (along with its 

image hole charge). This interacts with the moment 

of a similar adjacent dot. Each dot fonns a qubit if 

only the lowest two energy levels come into play. This 

should not be a problem. An electron in a dot is similar 

to the model quantum problem of a particle in a box. 

Here the energy level spacing increases with increasing 

energy, so the lowest two levels are closer to each 

other than they are to any of the higher levels. The 

key is that the qubit levels are shifted by the dipolar 

coupling, so that the separation between the two levels 

of the target dot two depends on the state ofthe control 

dot one. Thus an external classical electromagnetic 

pulse (a 1f-pulse A17r defined above) from a laser will 

flip the state of dot two, or not, dependent upon the 

state of dot one, which is unaffected by the pulse. 

For a quantum system, a resonant transition between 

two energy levels can occur if the external pulse 

frequency equals that set by the difference between the 

levels. Transitions are strongly suppressed if these are 

unequal. Dot one thus dictates whether or not dot two is 

resonant with the external pulse. T11is realizes the XOR 

process. Current dot and laser technology is such that 

up to 104 individual dot operations might be possible 

before decoherence takes over [106]. However, as 

for atomic gates, it is not clear just how many dots 

could be coupled together in a controlled and coherent 

manner. Once again, this is work for the future. 

In the magnetic case [55] the two interacting dipoles 

could be those of fundamental particles such as atomic 

nuclei (Section III-D) or those of small superconduct

ing circuits (Section III-E). The implementation of the 

XOR process is analogous to the electric case but 

with magnetic dipole interactions generating the level 

shifts. For nuclei, fabrication of controllable systems 

may not be so easy and decoherence in such fabricated 

arrangements might be a problem. These two problems 

can probably be overcome in the superconducting 

circuit case. Here, however, the interaction between 

two circuits might be tricky.7 Experimental work on 

the application of controlled microwave to 

7 The dominant interaction tenn between the two dipoles needs to be 
diagonal in the unperturbed energy eigenstate basis [105], [106]. This 
means that the unperturbed eigenstates must remain as eigenstates when 
the interaction is present. To a approximation, this condition can be 
satisfied for the quantum dot nuclear moment interactions, but it may 

not be for the conventional current-current magnetic interaction between 
two superconducting circuits. 
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superconducting quantum circuits is also much less 

advanced than say that on atoms in beams. 

At present, quantum dot nanotechnology looks to be 

the best bet for interacting dipole systems. 

• Ionic Crystal [49], [50], [127]. Rather than just couple 

two qubits to fonn an XOR gate, n qubits could 

be interconnected if these are ions in a tiny crystal 

(Section ill-B). One such system could even form a 

computer if n is big enough! The lowest two energy 

eigenstates of each ion represent the bit values. The 

ions interact via the crystal vibrations. Within the 

crystal, the average ionic separation is a few optical 

wavelengths (the appropriate wavelengths for coupling 

between the two energy levels of an ion) and so it 

is realistic to consider targeting individual ions with 

laser pulses fed in from outside. In a similar manner 

to the atom and dipole cases, the conditional dynamics 

arises from Laser pulses in combination with ion-ion 

interactions. In principle, the XOR operation can be 

implemented, where the target ion state flips only 

if the control ion is excited [50]. In addition, more 

complicated n-bit operations can be performed [50J. 

In current experiments decoherence times for ions in 

traps can be very long and single ions can be probed 

accurately with external lasers. The extension to the n

ion case thus looks to be feasible; [50] discusses some 

model calculations for eight Ba + ions in a trap. The 

adaptation of an ion trap experiment to demonstrate 

the conditional dynamics of the XOR process has 

recently been reported [127J. In fact, this used the 

internal and external degrees of freedom of one ion 

for the two qubits. The next steps forward from this 

would appear to be the extensions to more qubits and 

more operations. This is also a very promising research 

avenue. 

D. Patents 

A current search reveals just one patent specifically 

for quantum computers [142J. It is extremely brief and 

indicates that such machines could be electronic, optical, 

chemical or biological in nature. No detailed description of 

a realization is given and (rather surprisingly) no reference 

is made to any published papers. At the individual quantum 

gate or device level there exists a vast array of patents. 

VI. QUANTUM TELEPORTATION 

Teleportation is just one aspect of an area of quantum 

communication whose realization is somewhat further into 

the future, compared to basic cryptography. It relies cru

cially on Alice and Bob being able to share and store 

EPR pairs of quantum systems, such as the photon pair 

example of (9). Access to this facility would enable Alice 

and Bob to expand their cryptography business and offer 

other possibilities, such as teleportation and superdense 

coding. A short introduction to these phenomena is given 

in [143] and further discussion may be found in [13]. 
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The original reference for teleportation is [144] and for 

superdense coding is [145]. 

A. Teleportation 

At a teleport, a customer would deliver to Alice a 

system-for simplicity assume that this is a single qubit-in 

an arbitrary quantum state. This state can be reproduced 

faithfully some distance away by Bob, assuming that he 

and Alice have previously shared an EPR pair of qubits. 

Only classical data is sent from Alice to Bob at this 

time; the customer's quantum state is teleported. This is 

a nontrivial feat, for note that Alice cannot simply make 

some measurement on the system and send the result to 

Bob. This would only work if the state is known to be 

one of a given basis set, if it is known to be an eigenstate 

of some operator. In this special case a measurement of 

the observable defining the basis will yield the appropriate 

eigenvalue, thus identifying the state. However, an arbitrary 

state would be a superposition in this basis. It would 

experience an irreversible projection upon measurement and 

the result of the single measurement will not identify the 

initial state. 

This means that generally Alice is unable to infer by 

direct measurement the state of the system she is given. 

More than likely, she will have already destroyed this 

information. The damage to the customer's property would 

happen before transit, let alone during it! (Trying to do 

things this way, Alice is in effect playing the role acted by 

Eve in the cryptography situation.) The use of EPR pairs 

enables this problem to be avoided. 

Suppose that Alice has qubit one of a pair and Bob has 

qubit two, for the state given by (9) with the notation m = 

II} and I+-+} = 10). The unknown state of the customer's 

qubit three can be decomposed as in (2), alOh + bll}3 for 

some amplitudes a and b. The full state of the three particles 

is therefore the single product of quhit three with the EPR 

pair 

14))123 2-1/2Cllhll)2 + IOhIOh)(aIO)3 + bll)3)' (24) 

Alice performs a joint measurement (sometimes called a 

Bell measurement) on qubits one and three which involves 

use of the quantum XOR process of (13)-(15). This mea

surement can have one of four outcomes. These occur at 

random; however, this does not matter. Alice communicates 

the outcome to Bob using two classical bits. (Conventional 

classical error checking can be used to make sure that no 

mistakes occur.) Dependent upon Alice's message, Bob 

chooses one of four reversible quantum operations and 
applies it to his qubit two. This leaves qubit two in the 

unknown original state, ready to be handed over to the 

receiving customer at his end. 

With the notation IW±h3 2-1/2 (llhl0)a ± IOhI1)3) 
and 1<;I>±h3 = 2-1/2(11hI1)3 ± IOhIO)3) the state (24) can 

be rewritten as 

= ~ 1<;I>+h3(aIOh + bllh) + ~ 1<;1>-)1.3 

. (-aIO)2 + bllh) + ~ Iw+h3(bIOh + allh) 

+ ~ Iw-)d-bl0)z +allh)· (25) 
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Alice's Bell measurement is arranged to project onto one 

of these four terms; each happens with probability 1/4. 

In each case, Bob's quhit two is left in the appropriate 

state in that term. A simple reversible quantum operation 

on this state, the operation being chosen in the light of 

the results transmitted by Alice, can then leave qubit two 

in the original state of qubit three. For example, if Alice 

happens to project to the first term, Bob does nothing! If 

the projection is to one of the other terms then clearly a 

sign change and/or an interchange of the amplitudes a and 

b is required. In the case of photon polarizations, these 

operations can be achieved easily with combinations of 

half-wave plates [144]. 

Alice-performs her Bell measurement by using the quan

tum XOR process of (14) and (15). She first applies the 

XOR to qubits one and three to disentangle them. In the 

polarization language, Alice then measures qubit one in the 

diagonal basis and qubit three in the rectilinear basis. This 

yields one of four unique results, enabling her to identify 

to which of the terms in (25) her action has projected the 

state l'¢h23. 
The initial nonlocal entanglement between qubits one 

and two is crucial to the success of the teleportation. 

This ensures that whatever outcome Alice's irreversible 

measurement causes at the transmitting station, there occurs 

a sympathetic change to qubit two which enables Bob to 

reform the original state upon receiving Alice's data. Note 

that although Bob already has his EPR qubit, he cannot 

recreate the state in advance of receiving Alice's data and 

so there is no instantaneous transfer of information. In 

addition, no record of the transmitting customer's state is 

left with Alice; the state is not copied or cloned. Alice 

must be left empty-handed because it is in fact impossible 

to clone a quantum state [146]. 

B. Superdense Coding 

If there exists a good quantum channel between Alice 

and Bob-either the environment is quiet at the time, or 

they have a heavily shielded link-then they can also offer 

their customers superdense coding [145], [147]. Here, for 

every subsequent quantum system sent down the link two 

classical bits can be delivered. 

Alice and Bob do things the other way around for coding. 

Alice uses the four possible reversible quantum operations 

Bob used in the teleportation. She applies one of these 

to her EPR qubit one, in order to encode two classical 

bits. She then sends this qubit to Bob. He performs a 

Bell measurement on this and his own EPR qubit two 

and from this extracts the two' bits of classical data. The 

underlying physics for superdense coding is clearly the 

same as that for cryptography with EPR pairs; it is really 

just the application which differs. If secrecy is required, it 

is probably best to employ the cryptographic scheme and 

to use the EPR pairs to establish a key. rather than for 

actual data transmission. However, when there is no need 

for security, the coding is potentially useful if the pairs 

are shared in advance. Then, in effect, a doubling of the 

data rate can be achieved. There is no magic here, this 
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doubling is only possible because of the pr'iorsharing of the 

EPR pairs. In a sense, the spatial nonlocality between the 

entangled qubits translates into temporal nonlocality. It is as 

if the one data bit gets sent before it is encoded, or perhaps 

even before it exists! Stated more fonually, the channel 

capacity for communication using entanglement does not 

violate the Kholevo bound for a quantum communication 

channeL For a proper discussion relating coding 

to the standard results on channel capacity, see 

If a pennanent quantum channel exists between Alice 

and Bob, then it might be that teleportation is 

unnecessary. If it is transportable, the customer's quantum 

system can be sent straight down the channel. Teleportation 

is safer, of course, since the loss of the classical bits can be 

rectified whereas the loss of the actual quantum state can 

not. However, it is also amusing to note that if teleportation 

is used, Alice does not even have to know Bob's location! If 

she broadcasts the two classical bits publicly, then, provided 

that Bob picks up the message and as long as his qubit 

two is still quantum coherent, he is able to reconstruct 

the original quantum state. If Alice sends the individual 

quantum state directly. she has to know where to mail it as 

she cannot clone it and broadcast it publicly. 

As something of an aside, it is worth mentioning the 

situation where the the customers provide quantum states 

which are transportable and where there exists a pennanent 

good quality quantum channeL Even in this case Alice 

and Bob may still be able to do business, by providing a 

quantum data compression service. Benjamin Schumacher 

has shown how a number of quantum states which 

contain some redundancy can be compressed [148J, [149], 

[13]. An example is long sequence of states, each one 

being or 1,/). Each of these contains a component of the 

other; they are not onhogonal. Hence the redundancy in the 

encoded infonnation. The compression is accomplished by 

Alice performing a reversible (unitary) quantum operation 

on the data set and then discarding a chunk 

which contains almost no infonnation. Upon receiving 

this compressed of quantum states, Bob adds a 
chtmk which in effect contains no information and then 

reverses the unitary quantum operation. This reproduces 

the customer's full data set with an extremely high fideliry. 

There is one final point concerning tbe transmission of 

quantum states, whether it be via teleportatioll Of direct 

The state be that of a system which is in no way 

traltlsj:forlablle and the requirement might be to place an 

inml0bile system in this state at the receiving end. 

These could be the output and input quantum registers 

of different computers, for or even spatially 

sepfarated re~;isters within the same machine. Provided that 

these systems are able to interact with mobil.e systems like 

prurtic:les and in a reversible quantum manner, aU is not It)st. 

Quantum state as by (16). can be employed 

to move the states of interest between different systems. 

C. Practicalities 

There are two main problems which must be 

overcome in order to make teleportation and superdense 
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viable in the laboratory. These are the perfonnance 

of Bell measurements on appropriate quantum systems and 

the distribution and storage of EPR pairs. 

The crux of a Bell measurement is the operation of a 

quantum XOR gate. The remainder simply needs (good 

conventional projective quantum measurements 

applied to the twt) systems. As discussed in Section V-C, 

individual XOR gates are feasible with celiain quantum 

systems. The Bell measurement problem is therefore Ull-

to be the major one. However, whether or not 

the XOR gates which are suitable as components of a 

quantum computer are also suitable for teleportation is 

not completely clear cut. This will depend on the sort of 

palrtlcles chosen for the EPR pairs, which relates to the 

second problem. 

There is no doubt that photons (Section III-A) are ex

tremely good for stretching out quantum entangJement. For 

eXil.D1J?le, the reported in [75J show evidence 

for this down 4.3 km of optical fiber. However, the capture 

and storage of such photons is at present an 

unsolved It is hard to see how this might be done. 

Recall that any irreversible interaction with either photon 

of an EPR will the entanglement and render 

the great ingenuity to devise 

a method for stopping a photon in its tracks and 

then it, all done in a reversible quantum mechanical 

manner. It is nt)t clear to me that this is possible in princi1ple. 

let alone in Even if the photons were to be used as 

they am ve, in an attempt to bypass the problem, it 

is still not clear how to involve them in Ben measurements 

made jointly with some other system. It is notable that none 

of the XOR gates discussed in Section V-C use 

states of photons qubits. 

The balance of if cavity 

tons (Section lII-A) and atoms are contem-

plated. Bell measurements should be one of the 

proposed XOR gates uses Rydberg atoms and mi-

crowave photons. Storage of systems of this type, 

at least for short times, looks to be feasible. The bil!, nr'oblem 

here is the sharing of the over signifi.callt 

distances. Compared to photons down fibers, 

atoms in a beam are extremely delicate. They also travel 

rather more slowly than photons. (A thermal velocity of 

a Rydberg att)m might be arOlmd 70 rns- 1
.) It is certainly 

the case that teleportation might soon be a reality over short 

distances and under laboratory conditions. Reference [44J 

discusses a feasible experimental arrangement to teleport 

an atomic state using entangled trapped cavity photons for 

the EPR pair. Remarkable though this would be, it is hard 

to see how sneh experiments might be stretched out over 

potentially useful distanees. 

Until the problems raised above are solved, teleportation 

and superdense eoding should be regarded as still very 

much on the drawing board. Even if these problems are 

overcome. there is another potential worry because any real 

set of shared EPR pairs will never be perfect. Some of them 

are bound to have been corrupted by their environment. 

However, the theoretical problem of distilling a smaller set 
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of good pairs, in effect weeding out the corrupted ones, 

has been solved [150], [13]. This is similar in spirit to the 

error detection and privacy amplification of cryptography 

(Section IV-B), although here, of course, all the operations 

on the retained pairs must be reversible to maintain the 

entanglement. If teleportation ever gets off the drawing 

board and to the practical level, this distillation technique 

will be invaluable. 

D. Patents 

To date one patent has been granted in this area [151]. 

This patent covers a scheme closely related to the super

dense coding arrangement, where both partners of entangled 

pairs are used to carry information from a sender to a 

receiver. To function, an eavesdropper must intercept and 

recombine both channels and such an action is detectable. 

The receiver must clearly also recombine both channels to 

produce the original input. The implementation described 

uses photons. 

VII. COMMENTS 

I have tried to give a reasonably comprehensive view 

of the current state of quantum information processing. 

However, what is to be made of all this? Is quantum 

information technology feasible and, if so, can it offer 

significant gains over its existing classical counterpart? 

Quantum cryptography currently works in laboratory 

prototype form, with the potential for reasonable distances 

('" 10 km) and bit rates (rv 10 kbitls -1). Very weak pulses 

of light are used for these devices. The possibility of using 

genuine single photons, or even entangled pairs of photons, 

exists. At present, no other types of quantum system 

seem to be realistic contenders for use in cryptosystems. 

The main obstacle impairing the improvement of current 

cryptosystems is the lack of good single photon detectors 

for the wavelengths at which optical. fibers work best. Con

tinuing fundamental research on this problem is certainly 

worthwhile; no doubt such detectors would find useful 

employment in others areas as well. I assume that research 

to improve optical fibers, given their vast use in classical 

communications systems, will continue in any case. 

However, probably the main point to mull over regard

ing quantum cryptography is the advantage it offers over 

conventional classical methods. It certainly has one, in that 

it provides verifiably secure cryptographic key exchange 

because quantum information cannot be read without dis

turbing it whereas classical information can. Nevertheless, 

it is not clear to me that this advantage is sufficient to 

generate a market. The ruination of conventional public 

key cryptosystems could well strengthen the case. (Recall 

that the construction of a quantum computer capable of 

factorizing large composite integers would ruin RSA! This 

is a long way off, though.) However. even then, any invest

ment in quantum cryptography could equally well be put 

into making a similar classical data transmission physically 

more secure. Surrounding a communication fiber with a 

jacket whose penetration would be extremely difficult to 
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disguise is one such example. Improvements in bit rate 

and propagation distance for the quantum approach, up 

to those achievable classically, would make this a more 

even contest. Until such progress is made, it is not clear to 

me that a quantum cryptosystem will constitute a saleable 

product. 

It is likely that even the fundamental researchers in the 

field, both theoretical and experimental, share, or at least ac

knowledge, this view. They have made a point of stressing 

that cryptosystems have other uses [24], such as in message 

authentication or in the provision of genuine secret ballots. 

In the former example, if the messages are short financial 

transactions this might ease the demand on bit rate, but not 

on the operating distance. (The actual transmission speed 

is the speed of light, of course.) In the latter example, a 

public decision can be reached in effect by quantum voting. 

No intermediary is needed to collect votes; these are input 

into a (more complicated derivative of a) eryptosystem 

which arrives at the result and keeps no record of the 

individual opinions. This example could ease the demand 

on bit rate and on operating distance. It should also be 

noted, however, that the absolute security of some of these 

additional applications is questionable. UnscrupUlous users 

can potentially cheat them using quantum entanglement 

[152]. I am thus not convinced that quantum cryptosystems 

are marketable at this point in time. 

The whole situation is somewhat different for quantum 

computers. They are much further away from realization, 

even as prototypes. However, if they can ever be built, and 

it is a big "if," there will undoubtedly be a demand for them. 

Over the next couple of years it seems likely that a variety 

of quantum gates, suitable as building blocks for quantum 

computers, will come into existence. Atoms interacting 

with cavities, ions in traps, and coupled nanostructures 

seem to be the best candidates. It looks like the disruptive 

effects of the environment can be held back sufficiently for 

these systems to perform the required quantum operations 

and it may well be possible to connect a few of them 

together. If so, an encoding of a single qubit to protect 

it against decoherence will be achievable. However, the 

big problems are in connecting sufficient (something like 

1000, perhaps [l3]) gat<~s together. This construction has 

to be accurate enough for them to perform the evolution 

that they are supposed to. The environment also has to be 

held back to maintain quantum coherence for long enough 

to perform the desired tasks. It is harder to construct more 

complex systems and to keep them decoupled from their 

environment. Certainly it will not be possible to make 

perfect complex systems, so the questions to address will 

be whether or not useful tasks can be perfonned within the 

shorter of their decoherence time [121] and the time it takes 

construction imperfections to bite [119J. Quantum error 

correction [130]-[135] might be employed to buy more 

time, but will it be enough? This is still an open question. 

Nevertheless, I believe that fundamental research in this 

whole area (both experimental and theoretical) should be 

strongly encouraged. Successful construction of quantum 

computers would generate a significant payback. 
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It is very nice that problems intractable to any classical 

computer but soluble by quantum means have already been 

identified. However, Shor's factorizing algorithm really just 

starts the ball rolling. Quantum computers go about their 

business in a fundamentally different way from classical 

machines. It should be stressed that machines which operate 

classically, but by some sort of probabilistic or "fuzzy" 

algorithm, are not equivalent. They cannot incorporate 

quantum parallelization due to superposition of states. The 

advantage of quantum machines looks to be in generating 

short sharp answers to big involved problems, or in finding 

anyone of a set of solutions to a problem, rather 

than generating masses of data. I believe that making such 

machines available to people would encourage them to 

think differently and to change their complete style of 

problem formulation. The impact could be enormous. If 

quantum computers can ever be built, I believe that they 

will form a whole new industry. 

Quantum teleportation is unlikely to be practicable in the 

near future. It may well function in a laboratory, transmit

ting elementary quantum states over short distances [44 J. 
However, I have yet to see proposals, even just in principle, 

for stretching out quantum entanglement over appreciable 

distances and storing it for reasonable times. This is what 

would be required to progress out of the laboratory. There 

is no doubt that teleportation could be useful in the very 

distant future. Connecting quantum computers together, to 

form quantum local area networks, would need the faithful 

transfer of quantum states from one machine to another. 

However, the machines have to be built first! 

VIII. SUMMARY 

Here are three bullets, for those of you who read only 

the first and last paragraphs of articles. 

• Quantum cryptography works in prototype form, over 

distances ~ 10 km and with bit rates rv 10 kbitfs-1 

It does provide verifiably secure exchange of infor

mation, because quantum information cannot be read 

without disturbing it whereas classical data can, How

ever,' even if we could quantize our credit cards, for 

example, it is not clear that the additonal security 

benefit could justify the investment required. 

• Prototype quantum computers are a long way off. 

However, individual gates which would form their 

buildings blocks are just about with us. The accurate 

construction of complex machines containing many 

such gates, keeping the disruptive effect of the en

vironment at bay, win be at best a truly formidable 

task. Nevertheless, the incentive is there; it would be 

a quantum leap forward for the computer industry. 

• None of us will ever utter that immortal phrase: "Beam 

me up, Scotty." "Beam me that elementary state down 

the quantum teleport, Scotty," perhaps, but even this 

is some way off. Laboratory teleportation of an atomic 

state over a short distance may soon be possible; 

however, it is hard to see how this might be scaled 

up to be of use, 
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APPENDIX 

DENSITY OPERATORS AND IRREVERSIBILITY 

To illustrate the crucial difference between a superpo

sition state and a lack of classical knowledge about the 

members of an ensemble of quantum systems, suppose that 

you are given two different ensembles of qubits. In the 

first, every member of the ensemble is describable by the 

superposition state (2), In the second, a fraction lal 2 are 

definitely in the state 10) and a fraction 1 -

are definitely in the state but you are not told which 

qubits are in which states, This latter case is what I mean 

by a lack of classical knowledge about the ensemble. 

The two ensembles are clearly physically different. The 

first is called pure and the second mixed. The density 

operator (or matrix) P is the standard tool in quantum 

mechanics for dealing with both of these cases, It provides 

a direct description of ensembles of systems and is used to 

define familiar statistical quantities such as the entropy, 

The pure density operator for the first ensemble, with 

every member in state liP), is defined as the outer product 

of the state and its Hermitian conjugate, P liP) (iP I. In the 

vector and matrix representation of states and operators p is 

a simple matrix, constructed from products of pairs of the 

state amplitudes with I¢) dictating the row and ('if; I dictating 

the column. Thus with I 'if;) represented by (~), the first en-

. , (b)(b* (lbI2) semble has a denslty matnx PI a ab* lal2 . 
In this approach, expectation values are calculated by matrix 

multiplication between p and the matrix for the observable, 

followed by tracing (summing the diagonal elements). For 

ensemble one, the expectation value of the bit value B is 

simply Trace (PI B) Trace (~~~ ~) = I W, in agreement 

with ('if;IBliPl evaluated in Section II-A. The members of 

a pure ensemble are always each describable by the same 

state I'if;), whatever that happens to be, so any pure density 

operator can always be written in the form 1'¢){'if;I. It 

follows that p2 = P identically in the pure case. The nor

malization of I 'if;) is equivalent to the condition Trace (p) 
1, which must hold given the probability interpretation of 

the (modulus squared) amplitudes in quantum physics. 

A mixed density operator incorporating a lack of classical 

knowledge about an ensemble cannot be written as one such 

outer product. As the ensemble is a mixture of a number 

of pure ensembles, p is written as a sum of the appropriate 

pure operators weighted with the appropriate classical prob

abilities. (The weighting ensures that Trace (p) = 1 even in 

this mixed situation.) A mixed density operator is not equal 

to its own square. For ensemble two the density operator is 

the weighted sum P2 laI 2 10)(Oi + IWll)(ll; as a matrix 

this reads P2 = (Ibt 1~2)' This clearly diff~rs from PI 

as it lacks the off-diagonal terms. However, It possesses 

the same diagonal ones and so, for example, does give the 

same expectation value for B as ensemble one. This is 

why confusion can sometimes arise about the distinction 

between such ensembles. 

A clear-cut way to show the distinction between pure and 

mixed ensembles is through the entropy S, defined as [19] 

S = -k Trace (pIn p). (26) 
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S is the entropy per system in the ensemble and k is 

Boltzmann's constant. In statistical physics the entropy is 

used as a measure of the disorder, or lack of knowledge 

about, an ensemble. The fact that p2 = P for any pure 

ensemble yields S = O. (The natural logarithm, or any 

such mathematical function, of an operator or matrix can 

be thought of as an expansion in powers of the operator; 

the In in (26) can be expanded to show that S = 0 when 

p2 = p.) A pure ensemble has zero entropy; there is 

no lack of knowledge or "missing information" as every 

member of the ensemble is in the same quantum state. A 

mixed ensemble always has finite entropy S > O. A simple 

calculation for ensemble two yields S = -k(laI 2 In lal 2 + 
IW In For the case lal 2 = IW = 1/2 the entropy 

(per qubit) is S = kIn 2, its largest possible value for an 

ensemble of qubits. This case is the most disordered one, 

your lackof knowledge about a qubit is greatest when you 

choose it from this example of ensemble two. 

Applying the SchrOdinger equation (3) to a pure density 

operator 17,b}(7,bI, or term by term to a mixed one, gives the 

equivalent equation for the quantum evolution of a density 

operator 

ap 
at 

-i 
[H,p] (27) 

where [H, p] H p - pH is the commutator between 

the two operators. In general the commutator between two 

operators does not vanish, as it would if they were mere 

numbers. This is clear from the matrix representation of 

operators because in general matrix multiplication is not 

commutative. It is a simple exercise to show that the 

SchrOdinger evolution (27) preserves the entropy S in 

time, that is as/at = o. (p) = 1 and the cyclic 

property of the Trace operation applied to any product 

of operators/matrices, Trace (ABC) Trace (CAB) = 
Trace (BCA), for example, are used in the derivation.) It 

is for this reason that unitary SchrOdinger evolution is called 

reversible. The meaning is the same as in thermodynamics; 

there is no change in entropy during reversible evolution. 

Things are different if each quantum system in the 

ensemble is coupled to some form of environment. A very 

simple example of this for the qubits can be described by 

the density operator evolution 

ap 
at 

(28) 

These terms, which should be thought of as additional to the 

evolution described by (27), generate nonunitary evolution 

of p. Coupling to an environment induces behavior fun

damentally different from the unitary evolution of isolated 

quantum systems. Although I consider only a few simple 

cases, this holds quite generally. It is instructive to examine 

the behavior of an ensemble of qubits described initially 

(at t = 0) by the pure density matrix Pi, ignoring the 

Schrodinger evolution (27), (so assume that H = 0). The 

1 · (28)" I ( IW ba* exp (-Itt) ) 
so utton to 18 SImp y p = ab* exp (-t<t) lul2 . 

The diagonal terms remain constant but the off-diagonal 

terms decay away at a rate set by the constant K, so at large 
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times our ensemble is described by the mixture P2! This 

evolution is called irreversible because a change in entropy 

occurs, in this case from zero to S -k(laI 2 In lal 2 + 
IW In IW). A physical interpretation of this particular 

irreversible evolution is that of a measurement of the bit 
value B, the operator which appears in (28). In this case, 

the environment coupled to each qubit in the ensemble is 

an apparatus which measures its value. The strength of the 

coupling is set by the parameter K; the characteristic time 

for the measurement process to occur is f'VK-
1

. 

The intuitive "picture" of what happens to an individual 

qubit during a measurement interaction is that the initial 

state 17,b} evolves randomly to 10} (with probability lal 2
) or 

to II} (with probability IW.) The state localizes into one 

of the two possible classical bit states. The recent interest 

in individual quantum systems has helped stimulate the 

development of theoretical models which actually describe 

measurement and other forms of irreversible environment 

interaction applied to single systems [15J, [20]-[22J. These 

basically involve modifications of the SchrOdinger equation 

(3), introducing nonlinear and stochastic terms due to the 

effect of the environment on the state of the system. While 

producing the correct statistical behavior, such as that 

generated in (28), the models actually produce results which 

correspond to intuitive "pictures" of individual quantum 

events. In the qubit measurement case, 17,b) really does 

project randomly to 10) or run by run. 

Another simple example of irreversible behavior is the 

photon polarization one from Section II -CO The state of an 

individual photon which has interacted with the model fiber 

is given by (5). If the interaction is irreversible it introduces 

a random phase cp. Assuming that all possible cp are equally 

likely, the density operator corresponding to an ensemble of 

such photons is found by summing l1,b}(7,bI over all possible 

angles and with equal weight, leading to 

1 10
27r 

P dCPI 7,b}(7,b I 2 
.0 

= ~(I/,)(/,I + 1\,)('\1)· (29) 

Whichever way it is decomposed, this is clearly a mixture 

with a finite entropy of k In 2, the maximum value possible 

for a system with just two basis states. As the initial 

density operator 1/)(/1 is pure and has zero entropy, 

the irreversible action of the environment in randomizing 

the plane of polarization has increased the photon entropy 

by kin 2. This process could also be viewed as a model 

example of the erasure of a bit and shows that there is 

a characteristic entropy change of f).S = kin 2 associated 

with such an erasure. 

A final example of irreversibility is thermal equilibrium. 

The energy eigenstates of a system, denoted by IEj), are 

eigenstates of the Hamiltonian, so HIEj} IEj} and 

the eigenvalues are Ej. The index j runs over the number 

of states in this basis. There are only two for a qubit; these 

may well correspond directly to the bit value eigenstates 

IO} and 11), although they could be superpositions of them 

instead. For a large complex system j runs over a much 
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bigger range. Independent of how it starts, an ensemble of 

distinguishable systems which attain thermal equilibrium 

with a heat bath at temperature T can be described by the 

thermal density operator 

Pth ~ L exp (-EjlkT)IEj)(Ejl· (30) 

j 

The exponential probabilities are the famous Boltzmann 

factors and Z is the normalizing partition fnnction 

2:;j exp (-EjlkT). Pth is clearly mixed and has a nonzero 

entropy of S = E IT where E is the average system 

energy, the expectation value Trace (pthH). The thermal 

"equilibrium" state of any individual member of the 

ensemble fluctuates randomly, but with a Boltzmann time 

average [153]. Thus any well-defined initial state, an energy 

eigenstate or a superposition, is destroyed and forgotten by 

the time thermal eqUilibrium is reached. This form of 

decoherence clearly needs to be avoided, or at least kept 

at bay for as long as possible, in all aspects of quantum 

information processing. 
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