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Abstract

The unique features of quantum theory offer a powerful new paradigm for information
processing. Translating these mathematical abstractions into useful algorithms and applications
requires quantum systems with significant complexity and sufficiently low error rates. Such
quantum systems must be made from robust hardware that can coherently store, process, and
extract the encoded information, as well as possess effective quantum error correction (QEC)
protocols to detect and correct errors. Circuit quantum electrodynamics (cQED) provides a
promising hardware platform for implementing robust quantum devices. In particular, bosonic
encodings in cQED that use multi-photon states of superconducting cavities to encode
information have shown success in realizing hardware-efficient QEC. Here, we review recent
developments in the theory and implementation of QEC with bosonic codes and report the
progress made toward realizing fault-tolerant quantum information processing with cQED
devices.

1. Introduction

A quantum computer harnesses unique features of quantum theory, such as superposition and

entanglement, to tackle classically challenging tasks. To perform faithful computation, quantum

information must be protected against errors due to decoherence mechanisms and operational

imperfections. While these errors are relatively insignificant individually, they can quickly accumulate to

completely scramble the information.

To protect quantum information from scrambling, the theoretical frameworks of quantum error

correction (QEC) [1, 2] and fault-tolerant quantum computation [3] were developed in the early days of

quantum computing. Essentially, these frameworks devise encodings which map a collection of physical

elements onto a single ‘logical’ bit of quantum information. Such a logical qubit is endowed with cleverly

chosen symmetry properties that allow us to extract error syndromes and enact error correction without

disturbing the encoded information.

An important metric for evaluating the effectiveness of QEC implementations is the break-even point,

which is achieved when the lifetime of a logical qubit exceeds that of the best single physical element in the

system. Achieving the break-even point entails that additional physical elements and operations introduced

to a QEC process do not cause more degradation than the protection they afford. Hence, reaching the

break-even point is a critical pre-requisite for implementing fault-tolerant gates and eventually performing

robust quantum information processing on a large scale.

In the conventional approach to QEC, the physical elements are realized by discrete two-level systems. In

this approach, even a simple QEC scheme designed to correct single errors, such as the Steane code [2],

requires tens of two-level systems, ancillary qubits, and measurement elements. Constructing physical

devices that contain these many interconnected elements can be a significant engineering challenge. More
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crucially, having many interconnected elements often degrades the device performance and introduces new

uncorrectable errors such as cross-talk due to undesired couplings between the elements. Over the last

decade, many proof-of-principle demonstrations of QEC schemes have been realized with encoding

schemes based on two-level systems [4–10]. However, given the practical challenges described above, these

demonstrations have not deterministically extended the performance of the logical qubits beyond that of

the best available physical qubit in the system.

A promising alternative with the potential to realize robust universal quantum computing with effective

QEC beyond the break-even point involves encoding logical qubits in continuous variables [11–13]. In

particular, superconducting microwave cavities coupled to one or more anharmonic elements in the circuit

quantum electrodynamics (cQED) architecture provide a valuable resource for the hardware-efficient

encoding of logical qubits [14, 15]. These cavities have a large Hilbert space for encoding information in

multi-photon states compactly and thus form a logical qubit in a single piece of hardware. The anharmonic

element, typically in the form of a transmon and henceforth referred to as the ‘ancilla’, provides the

necessary non-linearity to control and measure cavity states. This strategy of using multi-photon states of

superconducting cavities to encode logical information is also known as bosonic codes. Implementations of

bosonic codes in cQED have thus far not only demonstrated QEC at the break-even point [16], but also

robust operations [17–21] and fault-tolerant measurement of error syndromes [22], thus making rapid

progress in recent years.

In this article, we review the recent developments in bosonic codes in the cQED setting. In particular, we

highlight the progress made in demonstrating effective QEC and information processing with logical

elements implemented using bosonic codes. These recent works provide compelling evidence for the vast

potential of bosonic codes in cQED as the fundamental building blocks for robust universal quantum

computing.

1.1. Organization of the article

In section 2, we begin by outlining the basic principles of QEC as well as bosonic codes. Here, we highlight

their nature by comparing a bosonic code with a multi-qubit code in the presence of similar errors. In

section 3, we present various bosonic encoding schemes proposed in literature and compare their respective

strengths and limitations. In particular, we wish to emphasize crucial considerations for constructing these

codes and evaluating their performance in the presence of naturally-occurring errors.

In section 4, we introduce the key hardware building blocks required for cQED implementations of

bosonic encoding schemes. In this section, we also consolidate the progress made in improving the intrinsic

quality factors of superconducting microwave cavities over the last decade. Subsequently, in section 5, we

explore the latest developments in implementing robust universal control on bosonic qubits encoded in

superconducting cavities, both in terms of single-mode gates as well as novel two-mode operations. We then

describe the different strategies for detecting and correcting quantum errors on bosonic logical qubits

encoded in superconducting cavities.

In section 6, we discuss the concept of fault-tolerance and how that might be realized with protected

bosonic qubits. Here, we also feature some novel schemes that concatenate bosonic codes with other QEC

codes to protect against quantum errors more comprehensively. Finally, in section 7, we provide some

perspectives for achieving QEC on a larger scale. We conclude by remarking on the appeal of the modular

architecture, which offers a promising path for practical and robust quantum information processing with

individually protected bosonic logical elements.

2. Concepts of bosonic quantum error correction

The general principle of QEC is to encode logical quantum information redundantly in a large Hilbert space

with certain symmetry properties, which can be used to detect errors. In particular, logical code states are

designed such that they can be mapped onto orthogonal subspaces under distinct errors. Crucially, the

logical information can be recovered faithfully only if the mapping between the logical and the error states

does not distort the code words.

Mathematically, these requirements can be succinctly described by the Knill–Laflamme condition [23],

which states that an error-correcting code C can correct any error operators in the span of an error set

E ≡ {Ê1, . . . , Ê|E|} if and only if it satisfies:

P̂C Ê
†
ℓÊℓ’ P̂C = αℓℓ’ P̂C , (1)

for all ℓ, ℓ′ ∈ {1, . . . , |E|}, where |E| is the size of the error set, P̂C is the projection operator to the code

space C, and αℓℓ′ are matrix elements of a Hermitian and positive semi-definite matrix. A derivation of the

Knill–Laflamme condition is given in reference [24].
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Figure 1. Hardware comparison between the kitten code and the four-qubit code. (a) Encoding a single logical qubit using
multiple energy levels of a single harmonic oscillator, where the only dominant error channel is photon loss. (b) The four-qubit
scheme based on a collection of two-level systems. Individually, each two-level system can experience errors due to spontaneous
absorption and emission. Moreover, additional errors can be introduced due to undesired couplings between these systems. (c)
The typical hardware for implementing a bosonic logical qubit. The logical information is encoded in a single superconducting
cavity (orange) in the kitten code, which can be fully controlled by a single non-linear ancilla (green) and read out via another
cavity (gray). (d) Example of a system designed to implement the four-qubit code, where the logical information is spread out
across four data qubits (orange) checked by three ancillary ones (green). The interactions between each two-level system are
mediated by coupling cavities (teal), and their respective states are read out via seven planar cavities (gray).

Bosonic codes achieve these requirements by cleverly configuring the excitations in a harmonic oscillator

mode. For instance, in the cQED architecture, information is encoded in multi-photon states of

superconducting microwave cavities. We will illustrate how bosonic QEC codes work by describing the

simplest binomial code [25], also known as the ‘kitten’ code. We will then compare this code with its

multi-qubit cousin, the ‘four-qubit code’ (or the [[4, 1, 2]] code or the distance-2 surface code) [26], in the

presence of similar errors in the cQED architecture. This comparison, adapted from reference [27],

emphasizes the hardware-efficient nature of the bosonic QEC approach.

The kitten code is designed to correct only single photon loss events, or â, which are the dominant error

channel in superconducting cavities. This scheme encodes logical information in the even photon number

parity subspace of a harmonic oscillator (figure 1(a)):

|0L〉 =
1√
2

(|0〉+ |4〉), |1L〉 = |2〉. (2)

With these code words, a single photon loss event maps an even parity logical state |ψL〉 = α|0L〉+ β|1L〉 to

an odd parity error state â|ψL〉 =
√

2(α|3〉+ β|1〉). Because of the parity difference, the code space and the

error space are mutually orthogonal. Therefore, single photon loss events can be detected by measuring the

photon number parity operator Π̂2 = (−1)n̂. Importantly, since the error states â|0L〉 and â|1L〉 have the

same normalization constant,

〈0L|â†â|0L〉 = 〈1L|â†â|1L〉 = 2, (3)

or equivalently, the logical states |0L〉 and |1L〉 have the same average photon number, a single photon loss

event does not distort the encoded information. In other words, by mapping the normalized error states |3〉
and |1〉 back to the original code states |0L〉 and |1L〉, we can recover the input logical state up to an overall

normalization constant:

â|ψL〉 =
√

2(α|3〉+ β|1〉) recovery−−−−−→
√

2(α|0L〉+ β|1L〉) ∝ |ψL〉. (4)

Note that we cannot faithfully recover logical information if the logical states have different average

photon numbers. For instance, with |0L〉 = 1
2
|0〉+

√
3

2
|4〉, which has 3 photons on average, as opposed to 2

photons for |1L〉 = |2〉, a single photon loss and recovery event yields a state which is not proportional to

3
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|ψL〉:
â|ψL〉 =

√
3α|3〉 +

√
2β|1〉 recovery−−−−−→

√
3α|0L〉+

√
2β|1L〉. (5)

Specifically, the error and recovery process distorts the relative phase between |0L〉 and |1L〉. An intuitive

way to understand such a phase distortion is by considering the role of the environment. When |0L〉 and

|1L〉 have different average photon numbers, the environment gains partial information on whether |ψL〉
was in |0L〉 or in |1L〉. In the example above, |0L〉 has more photons than |1L〉 and hence has a higher

probability of losing a photon. When one photon is lost, the environment knows that the encoded state was

more likely to be |0L〉 than |1L〉 and the weights in equation (5) are therefore adjusted accordingly.

Alternatively, we can say that the environment performs a weak measurement on the logical state in the

|0L/1L〉 basis, thus leading to the dephasing of |ψL〉 in the |0L/1L〉 basis.

Hence, while the even parity structure allows the detection of single photon loss events, it does not

guarantee the recoverability of the logical information without any distortion. Faithful recovery is ensured

by selecting |0L〉 and |1L〉 to have the same average photon number. In the case of the kitten code, average

photon numbers are matched by choosing equal coefficients for the vacuum and the four photon state

components in the logical zero state.

More generally, a code C can correct single photon loss events if it satisfies the Knill–Laflamme

condition for the error set {Î, â}. That is, the projection operator to the code space should satisfy

P̂C x̂P̂C ∝ P̂C for all x̂ ∈ {Î, â, â†, â†â}. The first condition with x̂ = Î is trivially satisfied for any code. For

even parity codes, which are composed of logical states of even photon number parity, the second and the

third conditions with x̂ = â and x̂ = â† are satisfied due to the parity structure. This implies that even

parity codes are capable of detecting, but not necessarily correcting, any single photon loss and gain events.

Single photon loss events can be corrected if the fourth condition is met, that is, P̂C â†âP̂C ∝ P̂C , or

equivalently, if all logical states have the same average photon number.

Now, using an example inspired by reference [27], we compare the kitten code with its multi-qubit

cousin, the four-qubit code, whose logical states consist of four distinct two-level systems (figure 1(b)):

|0L〉 =
1√
2

(|0000〉+ |1111〉), |1L〉 =
1√
2

(|0101〉+ |1010〉). (6)

The four-qubit code is stabilized by three stabilizers: Ŝ1 = Ẑ1Ẑ3, Ŝ2 = Ẑ2Ẑ4, and Ŝ3 = X̂1X̂2X̂3X̂4. This

scheme is capable of detecting any arbitrary single-qubit errors. Moreover, it can correct single excitation

loss errors, {σ̂−
1 , σ̂−

2 , σ̂−
3 , σ̂−

4 }, via approximate QEC [26], which happens when the Knill–Laflamme

condition is approximately satisfied only to a certain low order in the error parameters. This capability is

comparable to the protection afforded by the kitten code against single photon loss errors.

Despite their comparable error-correcting capability, the four-qubit code and the kitten code incur

significantly different hardware overheads. A cQED implementation of the kitten code (figure 1(c)) requires

a single bosonic mode to store logical information, a single ancilla (typically a transmon) to measure and

control the cavity state, and a single readout cavity mode to measure the ancilla state. In contrast, a cQED

realization of the four-qubit code (figure 1(d)) uses four data qubits to encode logical information, 3

ancillae to measure the three stabilizers, and additional cavity modes to connect and measure all 7 physical

qubits. Apart from the pure complexity of realizing such a device, the presence of additional elements

introduces other error channels such as cross-talk arising from spurious couplings between the physical

qubits. While these effects can be calibrated and mitigated on a small scale with clever techniques [28, 29],

they can quickly become intractable for more complex devices. This comparison thus illustrates the

advantage of using the multiple levels of a single bosonic mode over using multiple two-level systems as a

redundant resource for QEC.

While we focus on bosonic codes that encode a qubit in a single bosonic mode, there are proposals for

encoding a qubit in many bosonic modes, namely permutation-invariant codes [30–33]. These codes are

tailored for excitation loss errors and generalize the simple four-qubit code. Other codes of a similar nature

have also been studied in references [34–37].

3. Performance of bosonic codes for loss and dephasing errors

In general, bosonic modes in cQED systems typically undergo both photon loss and dephasing errors.

Photon loss is considered to be the dominant error-channel. The rate of photon loss is determined by the

internal quality factor (Qint) of the superconducting cavity. Intrinsic dephasing is usually insignificant for

such cavities [38].

However, as the cavity is dispersively coupled to a non-linear ancilla, if the ancilla experiences undesired

absorption (Γ↑) or emission (Γ↓) of excitations due to stray radiation, then the encoded logical information

4
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Figure 2. Visualization and performance of different bosonic codes. (a)–(d) Wigner functions of the code words for the
four-component cat, binomial kitten, GKP square lattice, and two-component cat code, respectively. (e) A qualitative description
of the robustness of various classes of bosonic codes against dephasing and photon loss errors. Note that for the four-component
cat code and the binomial kitten code, the logical states in the |0/1L〉 basis are invariant under a 90◦ rotation, up to a global
phase. However, a general code state, that is, an arbitrary superposition of |0L〉 and |1L〉), is invariant only under the 180◦

rotation.

undergoes induced dephasing. The rate of this dephasing depends on Γ↑, Γ↓, and the coupling strength χ.

In general, a transition of the ancilla state leads to a rotation on the logical qubit by an angle ∼ χt, where t

is the time the ancilla spends in the resulting state after the transition. In the limit where this rotation is

small, we can apply the Markovian approximation and use the following Lindblad master equation to

describe the evolution of the encoded qubit:

dρ̂(t)

dt
=

(
κD[â] + κφD[â†â]

)
ρ̂(t), (7)

where κ and κφ are the photon loss and dephasing rates respectively, and D[Â](ρ̂) ≡ Âρ̂Â† − 1
2
{Â†Â, ρ̂} is

the dissipation superoperator. Note that loss and dephasing errors are generated by the jump operators â

and n̂ = â†â respectively. We say that a system is loss dominated if κ ≫ κφ and dephasing dominated if

κ ≪ κφ. Importantly, in typical experimental regimes, dephasing errors induced by transitions of the ancilla

state are generally non-Markovian. This limits the performance of some current implementations [39] of

bosonic QEC codes.

In this section, we review the various single-mode bosonic codes, namely, cat (figure 2(a)) and binomial

(figure 2(b)) codes (rotation-symmetric), Gottesman–Kitaev–Preskill (GKP) codes (translation-symmetric)

(figure 2(c)), and two-component cat codes (biased-noise bosonic qubits) (figure 2(d)), and discuss their

error-correcting capability against both photon loss and dephasing errors.

3.1. Rotation-symmetric codes: binomial and cat codes

The class of rotation-symmetric bosonic codes [40] refers to encodings that remain invariant under a set of

discrete rotations in phase space. Encoding schemes with rotation-symmetry, such as the cat and binomial

codes, are stabilized by a photon number super-parity operator Π̂N = ei(2π/N)n̂ (N ∈ {2, 3, · · · }), which is

equivalent to the 360/N◦ rotation operator. As such, these codes are, by design, capable of detecting N − 1

photon loss events.

Furthermore, these rotation-symmetric codes can also be made robust against dephasing errors in

addition to photon loss errors [41]. For instance, the kitten code may be modified to have the following

logical states:

|0L〉 =
1

2
(|0〉+

√
3|4〉), |1L〉 =

1

2
(
√

3|2〉+ |6〉). (8)

This version of the binomial code is also stabilized by the parity operator and is invariant under the 180◦

rotation, thus making it robust against single photon loss errors. However, the modified code is now also

higher in energy as its logical states have 3 photons on average, as opposed to 2 in the case of the kitten

code. This additional redundancy makes the modified binomial code robust against single dephasing events

as well. In other words, the logical states of the modified binomial code satisfy the Knill–Laflamme

condition for an extended error set {Î, â, â†â}where â†â describes single dephasing errors in the cavity. This

means that the two logical code words also have the same second moment of the photon number

probability distribution besides having the same average photon number. Note that when more moments of

5
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the photon number probability distribution are the same for the two code words, distinguishing them

becomes more difficult for the environment, which enhances the error-correcting capability of the code.

Another way to generalize rotation-symmetric codes is by considering different rotation angles. For

instance, we can design codes that are invariant under a 120◦ rotation instead of a 180◦ rotation and are

thus stabilized by the super-parity modulo 3 operator Π̂3 = ei(2π/3)n̂. By taking advantage of a larger spacing

in the photon number basis, 120◦-rotation-symmetric codes can detect two-photon loss events as well as

single photon loss events, thus providing enhanced protection to the logical information. For instance, a

variant of the binomial code with the logical states

|0L〉 =
1

2
(|0〉+

√
3|6〉), |1L〉 =

1

2
(
√

3|3〉+ |9〉), (9)

is invariant under the 120◦ rotation, or equivalently, has photon numbers that are integer multiples of 3.

Moreover, the particular coefficients associated with each photon number state in the code words, which are

derived from the binomial coefficients (hence the name ‘binomial’ code), ensure that the code satisfies the

Knill–Laflamme condition for an error set {Î, â, â2, â†â}. This indicates that the code is robust against both

single and two-photon loss events, as well as single dephasing errors. The binomial code can be further

generalized to protect against higher-order effects of loss and dephasing errors [25] as well as used for

autonomous QEC [42].

Cat codes are another important example of rotation-symmetric bosonic codes. The four-component

cat codes (or four-cat codes), which are composed of four coherent states | ± α〉, | ± iα〉, are the simplest

variants of the cat codes that are robust against photon loss errors [43, 44]. In this encoding, the logical

states are defined by superpositions of coherent states:

|0L〉 ∝ |α〉+ |iα〉+ | − α〉+ | − iα〉 ∝
∞∑

n=0

α4n

√
(4n)!

|4n〉,

|1L〉 ∝ |α〉 − |iα〉+ | − α〉 − | − iα〉 ∝
∞∑

n=0

α4n+2

√
(4n + 2)!

|4n + 2〉. (10)

Note that the amplitude of the coherent states |α| determines the size of the cat code. Similar to the kitten

code (equation (2)), the logical states of the four-cat code have an even number of photons. Thus, the

four-cat code is invariant under the 180◦ rotation and is able to detect single photon loss events. Here, we

reinforce that the parity (or rotation-symmetry) alone does not ensure the recoverability of logical

information against single photon loss errors, which is only guaranteed when the Knill–Laflamme

condition is satisfied for the error set {Î, â}. For even parity codes, as explained in section 2, recoverability

requires the two logical states to have the same number of photons on average.

For large cat codes with |α| ≫ 1, the average photon number is approximately given by n̄ ≃ |α|2 for

both logical states, and the Knill–Laflamme condition is approximately fulfilled. More importantly, the

average photon numbers of the two logical states are exactly the same for certain values of |α| (also known

as ‘sweet spots’ [45]) such that:

tan |α|2 = − tanh |α|2. (11)

The smallest such |α| is given by |α| = 1.538, which corresponds to the average photon number n̄ = 2.324.

By increasing the size of the cat codes, we can construct logical states that are robust against both single

photon loss and dephasing errors. In particular, cat codes with a large average photon number |α|2 satisfy

the Knill–Laflamme condition for the dephasing error set {Î, n̂, n̂2, · · ·} approximately modulo an

inaccuracy that scales as e−2|α|2 [46]. However, an extra error-correcting mechanism, such as a

multi-photon engineered dissipation [44], is required to exploit the intrinsic error-correcting capability of

the cat codes against dephasing errors. Moreover, increasing the number of coherent state components in

the cat code introduces further protection [36, 47]. For instance, with six coherent state components, the

code words become 120◦-rotation-symmetric and can thus detect up to two-photon loss events.

Generalizations of cat codes and analyses of their performance can be found in reference [45], while a

multi-mode generalization is available in reference [48].

3.2. Translation-symmetric codes: GKP codes

Another class of bosonic codes are translation-symmetric, with the GKP codes [49] being a prominent

example. The simplest variant of the GKP codes is the square lattice GKP code, which encodes a logical

qubit in the phase space of a harmonic oscillator stabilized by two commuting displacement operators:

Ŝq ≡ exp[i2
√
πq̂] = D̂(i

√
2π), Ŝp ≡ exp[−i2

√
πp̂] = D̂(

√
2π), (12)

6
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where q̂ and p̂ are the position and momentum operators respectively.

A key motivation for choosing these stabilizers is to circumvent the Heisenberg uncertainty principle,

which dictates that the position and momentum operators cannot be measured simultaneously as they do

not commute. Since the two displacement operators in equation (12) commute with each other, we can

measure them simultaneously. Measuring the displacement operators exp[i2
√
πq̂] and exp[−i2

√
πp̂] is

equivalent to measuring their phases 2
√
πq̂ and −2

√
πp̂ modulo 2π, which is in turn the same as

simultaneously measuring q̂ and p̂ modulo
√
π. Therefore, the square lattice GKP code is, by design,

capable of addressing two non-commuting quadrature operators by simultaneously measuring them within

a unit cell of a square lattice. The uncertainty now lies in the fact that we do not know which unit cell the

state is in.

The two logical states of the square lattice GKP code are explicitly given by:

|0L〉 ∝
∑

n∈Z
|q̂ = (2n)

√
π〉 ∝

∑

n∈Z
|p̂ = n

√
π〉,

|1L〉 ∝
∑

n∈Z
|q̂ = (2n + 1)

√
π〉 ∝

∑

n∈Z
(−1)n|p̂ = n

√
π〉, (13)

and satisfy q̂ = p̂ = 0 modulo
√
π, thus clearly illustrating that a periodic simultaneous quadrature

measurement is indeed possible if the spacing is chosen appropriately. Additionally, the code states are

invariant under discrete translations of length 2
√
π in both the position and momentum directions, which

makes the code symmetric under translations.

Conceptually, ideal GKP code states consist of infinitely many infinitely squeezed states where each

component is described by a Dirac delta function. However, precisely implementing these ideal states is not

feasible in realistic quantum systems. In practice, only approximate GKP states can be realized where each

position or momentum eigenstate is replaced by a finitely squeezed state and large position and momentum

components are suppressed by a Gaussian envelope [49–51]. Many proposals to realize approximate GKP

states in various physical platforms [49, 50, 52–65] and ways to simulate approximate states efficiently

[66–71] have been explored in the field. The quality of such states can be characterized by the degree of

squeezing in both the position and momentum quadratures. As the squeezing, and hence the average

photon number, increases, the approximate state will converge toward an ideal code state. Recently,

approximate states of squeezing 5.5–9.5 dB have been realized in trapped ion [72, 73] and cQED [74]

systems. The cQED realization is discussed further in section 5.

With a discrete translation-symmetry, GKP codes are naturally robust against random displacement

errors as long as the size of the displacement is small compared to the separation between distinct logical

states. For instance, the square lattice GKP code is robust against any displacements of size less than
√
π/2

as they can be identified via the quadrature measurements modulo
√
π and then countered accordingly. For

moderately squeezed approximate GKP states that contain a small number of photons, photon loss errors

can be decomposed as small shift errors and therefore can be effectively addressed by the code [49, 50]. On

the other hand, for large approximate GKP states that are highly squeezed, even a tiny fraction of photon

loss results in large shift errors which cannot be corrected by the code. Thus, naively using the standard

GKP error correction protocol to decode does not work for large GKP states under photon loss errors.

Nevertheless, studies have observed that if an optimal decoding scheme is adopted, excellent performance

against photon loss errors can be achieved even with large GKP states [46, 75]. This improvement happens

because photon loss errors can be converted into random displacement errors via amplification. This

implies that for highly squeezed large GKP codes, a suitable decoding strategy is to first amplify the

contracted states and then correct the resulting random shift errors by measuring the quadrature operators

modulo
√
π [76]. We note that at present, no analogous techniques are known for dephasing errors. Thus,

highly squeezed GKP codes are not robust against dephasing errors since even a small random rotation can

result in large shift errors [50].

While the preparation of GKP states is challenging, implementing logical operations on GKP states is

relatively straightforward. Any logical Pauli or Clifford operation on GKP states can be realized by a

displacement or Gaussian operation (via a linear drive or a bilinear coupling). Moreover, magic states [77]

encoded in the GKP code, which are necessary for implementing non-Clifford operations, can be prepared

with only Gaussian operations and GKP states [50, 78]. Thus, the preparation of code words is the only

required non-Gaussian operation for performing universal quantum computation with the GKP code.

Non-Clifford operations can be directly enacted on GKP qubits [49], although the cubic phase gate

suggested in the original proposal has been recently shown to perform poorly for this purpose [79].

Furthermore, GKP states can be defined over lattices other than the square lattice. For instance,

hexagonal GKP codes can correct any shift errors of size less than (2/
√

3)1/2
√
π/2 ≃ 1.07

√
π/2, which is
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larger than the size of shifts that are correctable by the square lattice GKP code [49, 75]. A recent work has

also explored the rectangular GKP code [80]. More generally, a multi-mode GKP code can be defined over

any symplectic lattice [81]. Lastly, the GKP code may also be used for building robust quantum repeaters

for long-distance quantum communication [82, 83].

3.3. Biased-noise bosonic qubits: two-component cat codes

Recently, there has been growing interest in biased-noise bosonic qubits, where a quantum system is

engineered to have one type of error occur with a much higher probability than other types of errors. This

noise bias can simplify the next layer of error correction [84]. For instance, we can design a biased-noise

code that suppresses bit-flips and then correct the dominant phase-flip errors by using repetition codes

[85, 86]. Alternatively, we can also tailor the surface code to leverage the advantages of biased-noise models

to increase fault-tolerance thresholds and reduce resource overheads [87–90].

A promising candidate for biased-noise bosonic qubits is the two-component cat code [91–95], or

two-cat code, whose logical code words are given by:

|+L〉 ∝ |α〉+ | − α〉 ∝
∞∑

n=0

α2n

√
(2n)!

|2n〉,

|−L〉 ∝ |α〉 − | − α〉 ∝
∞∑

n=0

α2n+1

√
(2n + 1)!

|2n + 1〉. (14)

If α is large enough, two-cat codes are capable of correcting dephasing errors. One way to implement

two-cat codes is by autonomously stabilizing them via an engineered dissipation of the form κ2D[â2 − α2]

[44]. This engineered two-photon dissipation can exponentially suppress the logical bit-flip error in the

code states due to dephasing in superconducting cavities (κφD[â†â]), i.e.,

γbit−flip ≃ 2κφ|α|2 e−2|α|2 if κφ ≪ κ2, (15)

where |α|2 is the size of the cat code, κ2 is the two-photon dissipation rate, and κφ is the dephasing rate.

However, the dominant error source in superconducting cavities is photon loss. While dephasing of the

cavity does not change the photon number parity, a single photon loss can directly flip the photon number

parity of the state. In other words, a single photon loss maps an even parity state |+L〉 to an odd parity state

|−L〉, thus causing a phase-flip error. As such, phase-flip errors due to single photon loss cannot be

mitigated by the two-cat code. Nevertheless, bit-flip errors due to single photon loss can be suppressed

exponentially in the photon number α2 provided that the two-photon dissipation is strong enough. Once

bit-flip errors are countered, the next layer of QEC will only need to tackle the phase-flip errors, which can

be induced by spurious transitions of the ancilla states. In particular, in the stabilized two-cat codes,

thermal excitation of the ancilla during idle times can result in a significant rotation of the cavity state and

complete dephasing of the encoded qubit. Currently, such events cannot be corrected by the code and are

observed to be a limiting factor for the logical lifetime of the encoded qubit [39].

Biased-noise two-cat qubits can also be realized by using an engineered Hamiltonian

Ĥ = −K(â† − (α∗)2)(â2 − α2), which has two coherent states | ± α〉 as degenerate eigenstates [96–98]. A

crucial general consideration for these biased-noise bosonic codes is that the asymmetry in the noise must

be preserved during the implementation of gates. The theoretical framework to achieve a universal gate set

on the two-cat codes in a bias-preserving manner has been proposed recently [85, 98].

3.4. Comparison of various bosonic codes for loss and dephasing errors

In summary, rotation-symmetric codes (e.g., four-cat codes and binomial codes) are robust against both

photon loss and dephasing errors. Translation-symmetric codes such as the GKP codes can be made highly

robust against photon loss errors but are susceptible to dephasing errors. Thus, translation-symmetric codes

are suited for loss dominated systems. In contrast, two-cat codes can correct dephasing errors well if they

are stabilized by an engineered two-photon dissipation, but are not capable of correcting photon loss errors.

Hence, two-cat codes are naturally suited for dephasing dominated systems. However, as discussed in

section 3.3, two-cat codes can also be useful in the loss dominated regime as their large noise bias can

simplify any higher-level error correction schemes. In figure 2(e), we provide a qualitative schematic that

represents different regimes of photon loss and dephasing where each code is designed to perform well.

Note that if the loss and dephasing error probabilities are too high, the quantum capacity [99, 100] of the

corresponding quantum channel will vanish. When this happens, encoding logical quantum information in

a reliable way becomes impossible even with an optimal QEC code [101–105].
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While photon loss is the dominant error channel in typical cQED implementations, excitation gain

events do also occur, although at a much lower rate. In general, codes robust against photon loss errors tend

to be robust against photon gain as well. For rotation-symmetric codes, parity (or super-parity)

measurements can detect both photon loss and photon gain events. In the case of translation-symmetric

GKP codes, photon gain can be converted into a random shift error by applying a suitable photon loss

channel and hence be monitored with the modular quadrature measurement. On the other hand, since the

two-cat codes are not robust against photon loss, they are consequently susceptible to photon gain too,

which results in phase-flip errors. Nevertheless, in the presence of engineered dissipation, the stabilized

two-cat codes can still preserve their noise bias under both photon loss and gain errors.

Until now, we have focused only on the intrinsic error-correcting capability of various bosonic codes

without considering practical imperfections. In the following sections, we will discuss the implementation

of bosonic QEC in cQED systems and examine errors that occur in practical situations.

4. The cQED hardware for bosonic codes

In the preceding sections, we have discussed the concepts and merits of various bosonic QEC codes. These

ideas are brought to reality by developing robust quantum hardware with both coherent harmonic modes

for encoding information as well as non-linear ancillae for effective control and tomography of the encoded

information. Such systems have been realized with the motional degree of freedom in trapped ions [72, 73],

electromagnetic fields of microwave [106] and optical cavities [107], Rydberg atom arrays [108], and flying

photons [109], and there are proposals that use other physical systems [110, 111] as well. Among the

various platforms, the cQED architecture consisting of superconducting microwave cavities and Josephson

junction-based non-linear ancillae have enabled many prominent experimental milestones toward realizing

QEC using bosonic codes. In this section, we will introduce the key hardware building blocks necessary for

the successful realization of bosonic codes in cQED.

4.1. Components of the cQED architecture

cQED explores light–matter interactions by confining quantized electromagnetic fields in precisely

engineered compositions of superconducting inductors and capacitors [15]. These superconducting circuit

elements can be tailor-made by conventional fabrication techniques [112] and controlled by commercially

available microwave electronics and dilution refrigerators [113] to access strong coupling regimes

[114–116]. These characteristics make cQED a compelling platform for universal quantum computation, as

noted by several review articles [14, 117–123].

Quantum devices in the cQED framework are typically built by coupling two components, a linear

oscillator mode and an anharmonic mode, in different configurations [15]. The anharmonic modes are

discrete few-level systems that can be implemented using Josephson junctions. They can be designed to

interact with one or more harmonic modes, akin to atoms in an optical field in the cavity QED framework

[124]. Unlike naturally occurring atoms, the parameters of these anharmonic oscillators, or artificial atoms,

can be precisely engineered. For instance, they may be made to have a fixed resonance frequency in devices

with a single Josephson junction or have tunable frequencies by integrating multiple junctions in the

presence of an external magnetic flux. The lowest two or three energy levels of these artificial atoms,

typically in the form of transmons [125, 126], can be used to effectively encode and process quantum

information, as demonstrated by successful realizations of various NISQ era [127] processors

[128–134].

Linear oscillators are typically realized in cQED by superconducting microwave cavities. Commonly

used architectures include coplanar waveguide (CPW) [114], three-dimensional (3D) rectangular [135] and

cylindrical co-axial [136], and micromachined [137] cavities. These quantum harmonic oscillators have

well-defined but degenerate energy transitions. Therefore, to selectively address their transitions, we must

introduce some non-linearities in them. In cQED, non-linearities are introduced by coupling

superconducting cavities to artificial atoms in either the resonant or dispersive regimes.

Under resonant coupling, the transition frequencies of the artificial atom and the cavity coincide, which

allows the direct exchange of energy from one mode to the other. In this configuration, cavities can act as an

on-demand single photon source [138] or a quantum bus that mediates operations between two isolated

artificial atoms by sequentially interacting with each of them [139–141]. Dispersive coupling is achieved by

detuning the frequencies of the cavity, ωa, and the artificial atom, ωb, such that the detuning is much larger

than the direct interaction strength between them. In this regime, there is no resonant energy exchange

between the modes. Instead, the coupling translates into a state-dependent frequency shift, which can be
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Figure 3. Designs of superconducting cavities and their coherence. (a)–(c) Illustrations of 2D CPW, 2.5D micromachined, and
3D co-axial cavities respectively. (d) A selected set of Qint for four commonly used cavity designs in cQED extracted from the
literature. Overall, the coherence properties of superconducting cavities have been steadily increasing over the last decade, with
the 3D co-axial cavities currently being the main architecture for realizing bosonic QEC. The references for each cavity design, in
chronological order, are: 2D cavities: references [154, 159, 164, 170, 171]; 3D rectangular cavities: references [16, 135, 172, 173];
3D cylindrical co-axial cavities: references [21, 136, 163, 174]; 2.5D cavities: references [146, 167–169]. We have highlighted
studies that successfully integrated one or more non-linear ancillae with an asterisk(∗).

described by the following Hamiltonian:

Ĥ = ωaâ†â + ωbb̂†b̂ − χabb̂†b̂â†â − α

2
b̂†2b̂2 − K

2
â†2â2, (16)

where â, b̂ are the annihilation operators associated with cavity and artificial atom respectively, χab is the

dispersive coupling strength between them, α is the anharmonicity of the artificial atom, and K is the

non-linearity of the cavity inherited from the atom. Equation (16) further illustrates that the coupling

between the two modes is symmetric. In other words, the frequency of the cavity shifts conditioned on the

state of the artificial atom, and vice versa.

Superconducting cavities dispersively coupled to an artificial atom constitute a highly versatile tool that

can be employed to fulfill many different roles for quantum information processing. For instance, cavities

that are strongly coupled to a transmission line are useful for the efficient readout of the quantum state of

the artificial atom [114, 142, 143]. Conversely, cavities weakly coupled to the environment can be used as

quantum memories for storing information coherently [136]. Moreover, when the linewidth of the cavity is

narrow compared to the dispersive shift χab, we can selectively address the individual energy levels of the

cavity via the artificial atom [115]. In this case, the artificial atoms act as non-linear ancillae whose role is to

enable conditional operations and perform efficient tomography of the cavity state [144]. This

configuration where multi-photon states of the cavity encode logical information and the ancilla affords

universal control [145] has become an increasingly prevalent choice for implementing bosonic QEC.

4.2. Coherence of superconducting cavities

Superconducting microwave cavities may be realized in several geometries, with each having their respective

advantages. Typically, cavities are constructed in two main architectures, which are two-dimensional (2D)

and 3D, based on the dimensionality of the electric field distribution. A third possibility combines the

advantages of both the 2D and 3D designs to realize a compact and highly coherent ‘2.5D’ cavity structure,

for instance, using micromachining techniques [137, 146].

In the 2D architecture, such as the CPW, the cavity is defined by gaps between circuit elements printed

on a substrate which is typically made from silicon or sapphire (figure 3(a)). In such planar structures, the

energy is mostly stored in the substrate, surfaces, and interfaces, all of which suffer from losses due to

spurious two-level systems in the resonator dielectrics [147–150]. Hence, the Qint of 2D cavities is currently

limited to ∼ 105 to106 but can potentially be improved with more sophisticated cavity design [151–154],

materials selection [155–158], and surface treatment [159–162]. Despite their limited coherence properties,

2D cavities are widely featured in cQED, and especially in NISQ processors, as they have a small footprint

and a straightforward fabrication process. Furthermore, in these processors, these cavities are typically used

as readout or bus modes, which do not require long coherence times.

In contrast, 3D cavities (figure 3(c)) achieve a higher Qint of ∼ 107 to108, at the cost of a much larger

footprint than their 2D counterparts, by storing energy in the vacuum between the walls of a

superconducting box. Among 3D designs, 3D co-axial cavities machined out of high-purity aluminum

(≃ 99.999%) have shown a Qint as high as 1.1 × 108 [163]. This is achieved by significantly suppressing the
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dissipation due to current flowing along the seams of the superconducting walls and imperfections on the

inner surfaces of the structure. Additionally, this design is particularly effective as a platform for

implementing bosonic codes as one or more ancillae and readout modes can be conveniently integrated into

the platform [164].

One strategy to take advantage of both the long lifetimes of 3D designs and the small footprint and

scalable fabrication of 2D geometries is to construct compact 2.5D cavities [137, 146, 164–168]. In

particular, the micromachining technique provides a promising method to fabricate lithographically defined

2.5D cavities etched out of silicon wafers [137]. In this configuration, the energy can be stored primarily in

the vacuum but the depth of the cavity is much smaller compared to the other dimensions (figure 3(b)).

Here, the key challenge is to realize a high-quality contact between the top wall and the etched region. With

carefully optimized indium bump-bonding methods, internal quality factors surpassing 300 million have

recently been achieved in the 2.5D architecture [169]. Moreover, the integration of a transmon ancilla in

this design has also been demonstrated [146], thus making these 2.5D cavities promising candidates for

realizing large-scale quantum devices based on bosonic modes.

Regardless of the architecture, the effective implementation of bosonic QEC schemes requires a careful

balance between the need for isolation and coherence as well as the ability to effectively manipulate and

characterize the cavity. The various loss channels [175, 176] as well as lossy interfaces [177–179] of

superconducting microwave cavities have been extensively studied and their intrinsic coherence properties

have been improving significantly over the last 15 years [176]. In figure 3(d), we compile a non-exhaustive

summary of the internal quality factors of cavities demonstrated in various geometries over the last decade.

Besides enhancing the Qint of the cavities, integrating them with ancillary mode(s) is crucial for realizing

bosonic logical qubits. However, note that introducing an ancilla results in the degradation of the Qint, as

the best ancilla coherence times (∼ 50–100 μs) are typically about 10–20 times lower than those of the

state-of-the-art superconducting cavities. Hence, while comparing the performance of the cavities in

figure 3(d), we have only included demonstrations that are compatible with being coupled to non-linear

ancillae in the cQED architecture. From the figure, the 3D co-axial cavities emerge as the leading design

currently used to realize bosonic qubits.

5. Realization of bosonic logical qubits

The remarkable improvements in the performance of cQED hardware components highlighted in section 4

have made realizing protected logical qubits using bosonic codes a realistic goal. Studies that encode a single

logical mode and protect it against dominant error channels have been reported for the four-component cat

[16], binomial kitten [173], and square and hexagonal GKP [74] codes. Moreover, robust operations on

both single [17, 21, 174] and two bosonic modes [19, 20, 180] have also been explored, thus paving the way

toward building a fault-tolerant universal quantum computer based on bosonic logical qubits. In this

section, we highlight recent efforts to implement universal control of as well as error correction protocols

with bosonic modes.

5.1. Operations on single bosonic modes

For processing quantum information encoded in multi-photon states of superconducting cavities, we must

be able to perform effective operations on and characterization of the cavity states. The only operation

available for a standalone cavity mode is a displacement, D̂(α) = eαâ†−α∗â, which displaces the position

and/or momentum of the harmonic oscillator depending on the value of the complex number α. Real

values of α correspond to pure position displacements, while imaginary values of α correspond to pure

momentum ones [181]. Displacements can only result in the generation of coherent states from vacuum

without the possibility to selectively address individual photon number states in the cavity. Therefore,

non-trivial operations on these bosonic logical qubits are implemented by dispersively coupling the bosonic

mode to a non-linear ancilla in combination with simple displacements.

A key capability enabled by this natural dispersive coupling is a controlled phase shift (CPS). CPS is a

unitary operation that imparts a well-defined ancilla state-dependent phase on arbitrary cavity states, and is

governed by ÛCPS(t) = |g〉〈g| ⊗ Î + |e〉〈e| ⊗ ein̂χt , where n̂ is the cavity photon number operator, χ is the

dispersive coupling strength, and t is the evolution time. With this unitary, we can efficiently implement

conditional phase operations by simply adjusting the evolution time. In particular, when t = π/χ, all the

odd photon number states acquire an overall π-phase while the even states get none. This allows us to

effectively map the photon number parity of the bosonic mode onto the state of the ancilla (figure 4(a)).

Note that the time required for the parity-mapping operation scales inversely with the dispersive

coupling strength, χ. Naively, one might want to minimize the operation time by engineering a large χ.

However, increasing χ can also result in a stronger inherited non-linearity in the cavity (also known as the
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Figure 4. Operations on single bosonic modes. (a) The sequence for mapping the photon number parity of a bosonic mode to
the states of its ancilla. (b) Creation of arbitrary quantum states via repeat SNAP operations on the bosonic mode. (c)
Implementing universal control on a single bosonic mode by concurrently driving the cavity and its ancilla with numerically
optimized pulses.

Kerr effect), which distorts the encoded information. Therefore, the coupling strength between the cavity

and its ancilla, as well as the type of the non-linear ancillary mode, such as the transmon or the SNAIL

design [182], are usually carefully optimized for each system to produce the desired Hamiltonian

configuration.

With ÛCPS, we can deterministically create complex bosonic encodings using analytically designed

protocols such as the qcMAP operation, which maps an arbitrary qubit state onto a superposition of

coherent states in the cavity [183]. This scheme is useful for preparing four-cat states in both single [172]

and multiple [184] cavities. Furthermore, ÛCPS(π/χ) is also employed as the parity-mapping operation

which is crucial for the characterization and tomography of the encoded bosonic qubits and the engineered

gates on these qubits.

In general, the quantum states encoded in a cavity can be fully characterized by probing the cavity’s

quasi-probability distributions, which is commonly achieved by performing Wigner tomography. The

Wigner function can be defined as the expectation value of the displaced photon number parity operator,

W(β) = 2
π Tr[D̂(β)†ρD̂(β)P̂]. In cQED, the Wigner functions of arbitrary quantum states can be measured

precisely with a well-defined sequence that uses only the cavity displacement, ancilla rotation, and CPS

operations [15]. From the results of the Wigner tomography, we can reconstruct the full density matrix and

characterize the action enacted on the cavity states in either the Pauli transfer matrix [185] or the process

matrix [24].

Another crucial operation arising from the natural dispersive coupling is the non-linear selective

number-dependent arbitrary phase (SNAP) gate [145, 186]. An SNAP gate (figure 4(b)), defined as

Ŝn(θn) = eiθn(|n〉〈n|), selectively imparts a phase θn to the number state |n〉. Due to the energy-preserving

nature of this operation, we can simultaneously perform Ŝn(θn) on multiple number states. By numerically

optimizing the linear displacement gates and the phases applied to each photon number state in the cavity,

we can effectively cancel out the undesired Fock components via destructive interference to obtain the

intended target state.

While schemes like qcMAP and SNAP are sufficient to realize universal control on the cavity state, they

quickly become impractical for handling more complex bosonic states. For instance, an operation on n

photons requires O(n2) gates using the SNAP protocol. To address this challenge, a fully numerical

approach using optimal control theory (OCT) has been developed and widely adopted in recent years. The

OCT framework provides an efficient general-purpose tool to implement arbitrary operations. In particular,

the gradient ascent pulse engineering method [187, 188] has been successfully deployed in other physical

systems [189, 190] to implement robust quantum control. By constructing an accurate model of the

time-dependent Hamiltonian of the system in the presence of arbitrary control fields, we can apply this

technique to cQED systems to realize high-fidelity universal gate sets on any bosonic qubit encoded in

cavities, as demonstrated in reference [17]. A typical example of a set of pulses obtained through the

gradient-based OCT framework is shown in figure 4(c).

More recently, various concepts from classical machine learning, such as automatic differentiation [191]

and reinforcement learning [192, 193], have been applied to enhance the efficiency of the numerical

optimization. Crucially, the success of these techniques does not only rely on the robustness of the

algorithms, but also depends on the choice of boundary conditions. Knowledge of these boundary
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conditions requires comprehensive investigations of the physics of the quantum system and the practical

constraints of the control and measurement apparatus.

5.2. Operations on multiple bosonic modes

Apart from robust single-mode operations, universal quantum computation using bosonic qubits also

requires at least one entangling gate between two modes. Realizing such an operation can be challenging

due to the lack of a natural coupling between cavities. Moreover, the individual coherence of each bosonic

qubit must be maintained while maximizing the rate of interactions between them. One promising strategy

to tackle this issue is to use the non-linear frequency conversion capability of the Josephson junction to

provide a driven coupling between two otherwise isolated cavities [194]. Such operations are fully activated

by external microwave drives which can be tuned on and off on-demand without modifying the hardware.

This arrangement ensures that the individual bosonic modes remain well-isolated during idle times and

undergo the engineered interaction only when an operation is enacted.

Using this strategy, a CNOT gate was the first logical gate enacted on two bosonic qubits [195]. This gate

is facilitated by a parametrically-driven sideband transition between the ancilla and the control mode

together with a carefully chosen conditional phase gate between the ancilla and the target cavity. By

achieving a gate fidelity above 98%, this study showcases the potential of such engineered quantum gates

between bosonic modes. More recently, a controlled-phase gate has been demonstrated between two

binomial logical qubits in reference [20]. Here, the microwave drives are tailored to induce a geometric

phase that depends on the joint state of the two bosonic modes. However, these two types of operations are

both customized for a selective set of code words and do not yet generalize readily to other bosonic

encoding schemes.

A code-independent coupling mechanism between two otherwise isolated bosonic modes is a crucial

ingredient for realizing universal control on these logical qubits. The isolated cavities must be sufficiently

detuned from each other to ensure the coherence of each mode and the absence of undesired cross-talk.

Reference [180] demonstrated how the four-wave mixing process in a Josephson junction can provide a

frequency converting bilinear coupling of the form Hint(t)/� = g(t)(eiϕâb̂† + e−iϕâ†b̂). Here, â, b̂ are the

annihilation operations associated with each of the cavities, the time-dependent coefficient g(t) is the

coupling strength, and ϕ is the relative phase between the two microwave drives. The coefficient g(t)

depends on the effective amplitudes of the drives, which satisfy the frequency matching condition

|ω2 − ω1| = |ωa − ωb|. Most notably, this coupling can be programmed to implement an identity, a 50:50

beamsplitter, or a full SWAP operation between the stationary microwave fields in the cavities by simply

adjusting the duration of the evolution. Such an engineered coupling provides a powerful tool for

implementing programmable interferometry between cavity states [180], which is a key building block for

realizing various continuous-variable information processing tasks such as boson sampling [196],

simulation of vibrational quantum dynamics of molecules [197–200], and distributed quantum sensing

[201–204].

Moreover, this bilinear coupling is also a valuable resource for enacting gates on two logical elements

encoded in GKP states [49]. As mentioned in section 3, GKP encodings rely on the non-linearity of the

code words and only require linear or bilinear operations for universal control [78]. Therefore, this

engineered bilinear coupling provides a simple and effective strategy for implementing a deterministic

entangling operation for the GKP code.

For other bosonic codes, this bilinear interaction is not alone sufficient to generate a universal gate set,

which requires at least one entangling gate. In this case, the exponential SWAP (eSWAP) operation can be

designed to provide deterministic and code-independent entanglement [205]. The eSWAP operation, akin

to an exchange operation between spins, implements a programmable unitary of the form:

Û(θ) = cos(θ)̂I + sin(θ)SWAP, (17)

where θ is the rotation angle on the ancilla and Î is the identity operation. Intuitively, this unitary

implements a weighted superposition of the identity and SWAP operations between two bosonic modes

regardless of their specific encodings. The eSWAP unitary has been realized in reference [19] between two

bosonic modes housed in 3D co-axial cavities bridged by an ancilla. In this demonstration, an additional

ancilla is introduced to one of the cavity modes and the resultant dispersive coupling is used to enact a ÛCPS

operation to provide the tunable rotation necessary for the eSWAP unitary. The eSWAP unitary is then

enacted on several encoding schemes in the Fock, coherent, and binomial basis. The availability of such a

deterministic and code-independent entangling operation is a crucial step toward universal quantum

computation using bosonic logical qubits. A recent study has shown that universal control and operations

on tens of bosonic qubits can be achieved in a novel architecture comprising a single transmon coupled

simultaneously to a multi-mode superconducting cavity [206].
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Figure 5. Four-component cat code under photon loss. Every photon loss event (â) changes not only the parity of the basis
states, but also changes the phase relationship between them. The encoded state cycles between the even (logical) and odd (error)
parity subspaces, while also rotating about the Z-axis by π/2. The decoding sequence must take both these effects into account to
correctly recover the logical information.

5.3. Implementations of QEC

In general, implementations of QEC with bosonic codes suffer from an initial rise in error rates due to the

presence of and need to control multi-photon states. Hence, the main experimental challenge is to achieve

an enhancement in the lifetime of the encoded qubit despite this initial penalty. In the context of bosonic

codes, the break-even point is defined relative to the |0, 1〉 Fock states, which are the longest-lived physical

elements in the cavity without error correction. Beyond the break-even point, we can be confident that the

chosen QEC protocol does not introduce more errors into the system, thus attaining an improvement in the

lifetime of the logical qubit. Till date, three studies have approached [74, 173] or achieved [16] the

‘break-even point’ for QEC with bosonic codes in cQED devices without any post-selection.

Broadly, QEC schemes fall into three categories based on how they afford protection to the logical qubit.

In active QEC, error syndromes are repeatedly measured during the state evolution of the logical qubit and

any errors detected are subsequently corrected based on the measurement outcomes. In autonomous QEC,

errors are removed by tailored dissipation or by coupling to an auxiliary system, without repeatedly probing

the logical qubit. In passive QEC, the logical information is intrinsically protected from decoherence

because of specifically designed physical symmetries [207]. In this discussion, we have opted to distinguish

between autonomous and passive QEC to highlight potential differences in system design. In the

autonomous approach, the environment is intentionally engineered to suppress or mitigate errors. Whereas

in the passive case, the system Hamiltonian itself is tailored to be robust against certain errors, which often

involves constructing a unique physical element in the hardware [208–210].

Typically, active QEC requires robust measurements of the error syndrome and real-time feedback. In

superconducting cavities, the dominant source of error is single photon loss. For encoding schemes with

rotational symmetries, such as the cat and binomial codes, single photon loss results in a flip in the parity of

the code words. Therefore, measuring the parity operator tells us whether a photon jump has taken place,

thus allowing us to detect the error syndrome of these logical qubits [211]. In reference [16], which

corrected a four-component cat state under photon loss (figure 5), the correct logical state was recovered by

making appropriate adjustments in the decoding step based on the number of parity flips detected with

real-time feedback. The corrected logical qubit showed an improved lifetime compared to both the

uncorrected state and the |0, 1〉 Fock state encoding, thereby achieving the break-even point. However, this

error correction strategy is not suitable for protecting bosonic qubits for timescales exceeding the intrinsic

cavity lifetime as the loss of energy from the system is accounted for but not physically rectified. Thus, such

energy attenuation should be physically compensated to significantly surpass the break-even point.

In contrast, reference [173] admits a photon pumping operation to achieve QEC on a logical qubit

encoded in the binomial code. The errors are detected by photon number parity measurements, as in

reference [16]. The errors occurring on the logical state are then corrected by an appropriate recovery

operation as soon as they are detected. An approximated recovery operation is still required in case no

errors are detected as the system evolves under the no-parity-jump operator [25]. In this experiment, the
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lifetime of the logical qubit was greater than that of the uncorrected binomial code state, but was marginally

below that of the |0, 1〉 Fock state.

In addition to the cat and binomial encodings, active QEC has also been recently demonstrated on a

high-quality GKP state stored in a superconducting cavity [74]. As explained in section 3.2, errors occurring

on a moderately squeezed GKP state simply manifest as displacements of the cavity state, and are revealed

and mitigated by measuring the displacement stabilizers. While mitigating errors is relatively

straightforward, experimental challenges in implementing the GKP code lie in preparing finitely squeezed

approximate GKP states and performing modulo quadrature measurement of stabilizers. The QEC protocol

used in reference [74] suppresses all logical errors for a GKP state by alternating between two

peak-sharpening and envelope-trimming rounds, each consisting of different conditional displacements on

the cavity. The magnitude of these conditional displacements is dependent on the measured state of the

ancilla onto which displacement stabilizers are mapped. This sharpen-and-trim technique can be

generalized based on the second-order Trotter formula [65].

An alternative strategy for QEC that does not require real-time feedback based on measurement

outcomes involves engineering the dynamics of the system to correct errors autonomously. In practice,

autonomous QEC can be achieved by introducing a tailored dissipation [212] such that the logical subspace

is stabilized via controlled interactions with the environment. In references [212, 213], the desired

dissipation process subtracts photons in pairs from the bosonic mode via four-wave mixing in the

Josephson junction of the ancilla. This process defines a stabilized manifold of steady states spanned by

superpositions of coherent states (two-component cat states). The relative strength between the engineered

two-photon dissipation and the intrinsic single photon loss of the cavity defines the separation of the two

components of the cat state, which determines the extent of protection against bit-flip errors. In a more

recent study, significant improvements in the suppression of bit-flip errors were demonstrated by using a

tailored multi-junction ancilla to enact the two-photon dissipation process [39].

Similarly, an engineered four-photon dissipation achieved by an eight-wave mixing process, can protect

four-component cat codes against dephasing [214]. However, this strategy only accounts for dephasing

errors and does not recover logical errors caused by photon loss. In contrast, in another autonomous QEC

implementation with a truncated four-cat state [215], a photon was added to the cavity upon detecting a

photon loss using a synthetic dissipation operator. This work effectively corrects photon loss events but does

not account for dephasing errors. Similarly, another study performed autonomous QEC against photon loss

with the kitten code by triggering an engineered jump operation [174]. This operation recovered the code

states whenever the system entered an error state without the need for any external probing. Although these

current state-of-the-art demonstrations of autonomous QEC techniques only address one type of errors,

they provide convincing evidence for the viability of the respective bosonic encoding schemes, thus paving

the way for higher-order QEC protocols that can protect logical information against both photon loss and

dephasing errors.

Finally, QEC with bosonic codes can also be realized using a passive approach, for instance, by designing

logical qubits with highly biased-noise channels to provide intrinsic protection without the need for

probing any error syndromes. Very recently, two studies [39, 209] verified that the bias between phase and

bit-flip errors increases exponentially with α, the size of the coherent state components of the two-cat code.

This strong asymmetry between the different types of errors can be exploited to significantly reduce the

hardware overhead for fault-tolerant quantum computation [87–89].

6. Toward fault-tolerant quantum computation with bosonic modes

A crucial consideration for a successful QEC implementation is that even the attempts to correct errors can

themselves be erroneous. Thus, a key requirement for realizing ‘fault-tolerant’ quantum computation is to

carefully design error correction circuits such that faults that occur during the execution of a QEC protocol

are also tolerated [216]. A simple example of fault-tolerant circuit design is the transversal implementation

of logical operations in the conventional paradigm of QEC with multiple two-level systems. For instance, by

implementing logical gates transversally for distance-3 codes that can correct any single qubit errors, one

can ensure that a single fault in the circuit induces at most a single qubit error in any logical code block

which remains correctable by the code [217].

One key challenge in achieving fault-tolerant operations on bosonic qubits in the cat and binomial

encodings is the propagation of uncorrectable errors due to ancilla decoherence [16, 173]. The ancilla, often

in the form of a transmon, is employed during state preparation, gates, measurements, and error correction

on the encoded qubit via the natural dispersive coupling. Spontaneous emission of the ancilla during these

processes induces dephasing on the logical qubit, thus irreversibly corrupting the encoded information.

Furthermore, two-photon loss and Kerr effects also limit the effectiveness of these QEC implementations.
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One technique used to mitigate these imperfections is to optimize the cadence of the parity measurements

[16]. Frequent parity measurements allow more accurate tracking of the error syndrome but increase the

likelihood of the ancilla relaxing during measurement and thereby dephasing the cavity. On the other hand,

a larger interval between two measurements not only increases the probability of two-photon loss, but also

results in a higher phase accumulation due to self-Kerr interactions. As the self-Kerr operator does not

commute with the annihilation operator, photon jumps cause cavity dephasing. In reference [16], the phase

accumulated due to the self-Kerr effect was first estimated and then accounted for by adjusting the phase of

subsequent drive pulses.

Several approaches have been devised to reduce the propagation of uncorrectable errors from the ancilla

to the encoded information. In reference [22], the third energy level of the ancilla is employed in the

parity-mapping process to suppress the dephasing of the bosonic mode. A similar strategy can also be

applied to general cavity operations, as shown in reference [21]. In these schemes, additional levels of the

ancilla as well as carefully engineered cavity-ancilla interactions are introduced to prevent incoherent

evolution of the bosonic mode in the event of ancilla decay [218]. Alternatively, error-transparent gates have

been realized for binomial encodings [174] by cleverly engineering the evolution of the bosonic qubit in

both the code and error space.

For GKP codes, early discussions on fault-tolerance were focused on whether a small shift error

occurring in the middle of an error correction circuit remains small throughout the entire circuit [49, 219].

Recently, numerous studies have approached fault-tolerant quantum computation with the GKP code by

combining the GKP code with conventional error correction schemes based on multiple two-level systems

that are already shown to be fault-tolerant. In performing such a concatenation of codes, additional analog

information acquired during the error correction protocol can significantly boost the performance of a

next-level QEC scheme based on multiple error-corrected GKP qubits [220, 221]. For instance, studies have

shown that the fault-tolerance thresholds of the circuit-based toric code and the surface code can be

increased by using the additional analog information [222, 223]. Another way to realize fault-tolerant

quantum computing with the GKP code is to combine the GKP code with the idea of fault-tolerant

measurement-based quantum computation using cluster states, for which the additional analog information

also plays an important role [224–230]. From the circuit-based computing studies, we know that

fault-tolerant quantum computing with the GKP code is possible if the squeezing of the GKP states is larger

than 11 dB. Whereas from the measurement-based computing scenarios, a more favorable threshold value

of 8 dB can be obtained by taking advantage of post-selection. However, as the measurement-based schemes

use post-selection, they require a higher resource overhead. Recently, reference [59] made the phase

estimation protocol to prepare GKP states in reference [50] fault-tolerant by using the concept of flag qubits

[231, 232].

There have also been general studies on the fault-tolerance of biased-noise qubits [84, 87–89]. These

studies highlight the potential of achieving higher fault-tolerance thresholds and lower resource overheads

by taking advantage of the noise bias. References [85, 86] suggested pieceable fault-tolerant [233] Toffoli

circuits while reference [98] offered a magic state distillation scheme tailored to biased-noise models [234]

as a means of achieving fault-tolerant universal quantum computation with biased-noise two-cat qubits. A

detailed roadmap for realizing biased-noise two-cat qubits using acoustic nanomechanical resonators as well

as alternative fault-tolerant universal quantum computation schemes were recently proposed [90].

7. Outlook and perspectives

Continuous variables have long been recognized as promising candidates for the efficient encoding and

processing of quantum information [235]. Bosonic codes leverage the advantages afforded by continuous

variable quantum devices to realize hardware-efficient QEC and pave the way toward the eventual

realization of a fault-tolerant quantum computer. In this review, we have presented some of the most

compelling results that attest to the viability of the cQED platform. In particular, many milestones, from

reaching the break-even point to implementing logical operations between bosonic logical qubits, have thus

far been demonstrated using 3D cQED devices. An important next milestone would be to demonstrate the

break-even point for logical operations, i.e., to achieve gate fidelities with error-correctable bosonic qubits

that are higher than the highest gate fidelity attainable with the best physical element without error

correction. Achieving the break-even point in both QEC and single or two-mode logical operations forms a

critical foundation upon which fault-tolerant gates and algorithms can be constructed.

We further emphasize that the techniques and methodologies developed in these 3D cQED

implementations of bosonic codes are agnostic to the hardware architecture. They can therefore be readily

adapted to more compact designs, such as planar or 2.5D devices, as their performance improves with

further developments in materials engineering and new fabrication techniques [158].
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Crucially, encoding logical information in bosonic codes is naturally compatible with a modular

approach to scalability. In the modular architecture, each logical element can be encoded, protected, and

optimized individually, and then connected to other elements via on-demand communication channels

[236–238]. In contrast to directly wiring up an increasing number of physical elements, modularity has the

benefit of reduced cross-talk, robustness against local failure modes, and enhanced re-configurability.

Encoding and manipulating individual logical qubits encoded in cavities is a crucial primitive for eventually

realizing a large-scale modular quantum device. In addition, recent experiments have also demonstrated

other key elements of a modular architecture, including programmable quantum communication and

entanglement generation between two distant bosonic modes [239–241] as well as a teleported CNOT

gate [18].

As we continue to improve the performance and scale of these bosonic quantum systems on the

hardware level, we must also expand our technological repertoire to effectively control and characterize

these more complex devices. This expansion may involve, for instance, the development of more

sophisticated measurement electronics and protocols as well as new theoretical frameworks to capture the

signatures of multipartite entanglement. The small-scale bosonic devices developed so far provide an

indispensable platform to test and refine these crucial elements.

In recent years, cQED devices have become a workhorse for the implementations of QEC and quantum

information processing. Alongside the developments in cQED, we are also witnessing remarkable progress

with other platforms based on trapped-ions [242, 243], silicon spins [244, 245], neutral atoms [246], etc,

from both academic and industrial initiatives. While the ultimate hardware to achieve fault-tolerance may

not consist of millions of 3D cavities, the insights gained from and the technical achievements

demonstrated by the results summarized in this article will serve as crucial building blocks for the eventual

realization of a scalable and robust universal quantum computer.
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