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1 Introduction

Recently, there has been a growing interest in quantifying the nature of quantum information
spread in strongly interacting many body system. In quantum many body system, the
spread of information effectively depends on the nature of commutator between two local
generic operators. In particular, the commutator behaves differently when evaluated in
chaotic and integrable systems. There exists fundamental bounds on such commutators as
evaluated for different quantum theories which in turn reflects how fast quantum information
can scramble from being accessible to a few local degrees of freedom to the entire system.1

As an example, a relativistic system that is governed by the rules of Lorentz symmetry
does not allow any correlation between two space like separated local operators. In this

1We appreciate the nicely written lecture notes [1] which helps us to understand the basic idea and also
recent developments regarding the quantum information scrambling in many body quantum theory.
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case causality sets the bound to the information spread by the velocity of light. In a non-
relativistic system, on the other hand two local operators can have finite overlap even if they
are largely separated in space as compared to the elapsed time. However, a bound on the
information propagation still exists for the non-relativistic system, known as Lieb-Robinson
bound as observed in a discrete lattice system [2]. Here the corresponding ‘Lieb-Robinson
velocity’ defines a bound for the growth of operator norm of two Heisenberg operators
W (t, x) and V (t, x). Lieb-Robinson bound depends on the details of the UV physics and
hence it is independent of the state of the system. However, at lower energy scale such
state independent bound is not relevant. There exists much tighter and slower speed limit,
for example the butterfly velocity [3, 4] that bounds the propagation of all kinds of physical
excitations which are important at the low energy density or temperature. Butterfly velocity
is a state dependent quantity as it is given in terms of the IR scale of the underlying theory.
Instead of operator norm butterfly velocity is governed by the growth of commutator square
involving generic operators. The butterfly velocity in general local quantum theory follows
several bounds and inequalities. In this paper we will particularly be interested in how these
bounds and inequalities gets modified due to the inherent non locality that the little string
theory possess. Moreover, we will mainly focus on the connection between information
scrambling and quantum chaos for a quantum many body theory with non-local interaction.

Chaotic behavior in a quantum system with large number of degrees of freedoms
can be quantified as the rate with which quantum information spreads across the entire
system. Moreover, in many body systems which are governed by complicated hamiltonian,
information encoded within any small subsystem scrambles among the degrees of freedom
of the whole system such that it cannot be recovered by doing local measurement on that
particular subsystem. Let the system under consideration is defined initially by the density
matrix ρ0 which evolves in time according to the usual time evaluation rules in Heisenberg
picture, ρ(t) = e−iHtρ0e

iHt, H being the hamiltonian of the system. If the system is
partitioned into two parts, A and B then any local measurement on subsystem A can be
performed with the reduced density matrix ρA = trB(ρ(t)). As time evolves the subsystem
A starts loosing information and it is no longer defined by the reduced density matrix ρA
but instead by the thermal ensemble density matrix ρβ at some inverse temperature β and
the information about the initial state of A is no longer available on local measurements.
Typically quantum chaos is characterized by the thermal average of the following double
commutator for two generic operator W and V as [3, 5],

C(t, x) = − < [W (t, x), V (0)]2 >β . (1.1)

In the above equation the double commutator can be simplified only to observe that it is
proportional to the out of time ordered product of operators W and V , the OTOC. In
quantum many body systems, the chaotic behavior is captured by the exponential growth
of the OTOC, C(t, x) in the above equation given as, [6–16]

C(t, x) = 1
N2 e

λL

(
t− |x|

vb

)
, (1.2)

where the overall growth rate is determined by the Lyapunov exponent λL. As shown
in [17], that there exists an upper bound to the Lyapunov exponent given in natural unit as
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λL ≤ 2π
β which saturates for maximally chaotic systems. More specifically, for a large class

of holographic theories with black hole in Einstein’s gravity this bound is observed to be
saturated [18, 19, 21] leading to the conclusion that black holes are the fastest scramblers of
quantum information [22, 23]. In equation (1.1), the commutator measures the correlation
between a small perturbation V at some early time and some other operator W inserted at
position x and time t. The growth of this early perturbation is characterized by the butterfly
velocity vb which defines an effective light cone such that the operator W if inserted outside
of it will not be effected by the early perturbation, C(t, x) ≈ 0. However inside the light
cone the commutator is finite and as the initial perturbation scrambles with time into the
degrees of freedom of the entire system, C(t, x) also grows until some time scale t∗, known
as the scrambling time at which C(t, x) becomes O(1) [24].

There is another important interpretation of butterfly velocity in the context of
AdS/CFT correspondence. It determines the causal structure of the bulk geometry [25]
which unlike the microcausality in CFT, is not that straight forward, especially near the
black hole horizon. Given a region A on the boundary, it’s corresponding entanglement
wedge is defined as the bulk region which is bounded by the region A itself and the Ryu-
Takayanagi (RT) surface that is homologous to A. Now consider a particle inside the bulk
which is entangled with some reference state. With evolving time as this particle falls
deep inside the bulk, its entanglement with the reference state can only be recovered as
long as it stays inside the entanglement wedge. So the region A must grow with a rate
such that the corresponding RT surface also penetrate sufficiently deep into the bulk to be
able to confine the particle inside the entanglement wedge. The growth rate of A on the
boundary is exactly equal to the butterfly velocity vb. The fact that it is not possible for the
region A to grow any faster than the butterfly velocity vb, sets a restriction for the particle
speed in the bulk. This is how the bulk causality can be interpreted from the knowledge of
butterfly velocity on the boundary. In [26], butterfly velocity was computed holographically
for asymptotically AdS-BH spacetime in general dimension to get,

vb =
√
d+ 1

2d , (1.3)

where d is the spatial dimension of the boundary field theory. Usually in local quantum
theory the butterfly velocity is bounded by the speed of light. However, in the presence
of nonlocal interactions this bound can be violated. As an example in [27], the authors
observed that in N = 4 non-commutative SYM theory, vb happens to depend on the
non-commutative parameter θ and for sufficiently large θ it can even exceed the speed of
light. This violation is a result of the explicit breakdown of Lorentz invariance due to the
non-commutative parameter.

The connection between quantum chaos and information scrambling can be better
understood in a dynamical setting as provided by the process of thermalization where
the expectation value of any simple observable decays with time to the thermal value. In
other words, as a system thermalize, it looses the memory of initial state resulting in the
generation of effective entropy for entanglement. There exists a number of interesting
papers on the characterization of entanglement growth in free field theory [30–32]. In
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the presence of strong coupling, the simple picture of entanglement spreading by the flow
of non-interacting particles in a free theory is no longer applicable. To deal with strong
coupling the authors in [33–35] considered a set up which consists of injecting at t = 0, an
uniform energy density (global quench) for a negligible period of time and then letting the
resulting excited state thermalize. It is observed that in (1+1) dimensional quantum system
as well as in higher dimensional holographic system the entanglement of any subsystem Σ
grows linearly in time,

dSΣ(t)
dt

= vEsthAΣ, (1.4)

with sth is the thermal entropy and AΣ is the area of the entangling subsystem Σ. Physically
this growth of entanglement can be realized in terms of ‘entanglement tsunami’ wave
propagating inwards from the boundary of Σ with velocity vE such that only the region
which is already covered by the wave is entangled with the complimentary region Σc. In [30],
vE was obtained for (1 + 1) dimensional system to be equal to 1 in natural unit. For
higher dimensional holographic system with d ≥ 3, the authors in [33, 34, 36] calculated
the following general result for vE ,

vholo
E = (η − 1)

η−1
2

ηη/2
, η = 2d− 2

d
. (1.5)

Further, in [37], it was shown that for relativistic theories in any dimension, vE cannot
exceed the velocity of light, vE ≤ 1. Finally, the authors in [26] managed to came up with
the proof that for any unitary quantum theory, entanglement velocity must be bounded by
the corresponding butterfly velocity,

vE ≤ vb. (1.6)

Later, in [38], the same inequality was observed to hold for holographic theories as well.
In this paper we will concentrate on the holographic calculation of entanglement

velocity by measuring the disruption of mutual information between two completely disjoint
quantum theories coupled together forming a thermofield double state (TFD). For schematic
conveniences, let us call the two copies of the quantum theories as QFTL and QFTR, with
the suffix denoting ‘Left’ and ‘Right’ respectively. A TFD state is defined on the tensor
product of the Hilbert spaces of QFTL and QFTR such that given the energy eigenstates
|Ei >L and |Ei >R of the two QFTs, it is the unique pure entangled state given as,

|TFD >= 1
Z1/2

∑
i

e−
β
2Ei |Ei >L |Ei >R . (1.7)

It is important to note that each of the two states on the left and right side are exactly
thermal and the thermality in each copy arises due to the entanglement with the other
one. In the language of AdS/CFT correspondence [39], thermofield double state is dual
to the eternal black hole geometry which can be realized in Penrose diagram (see figure 1)
as a maximal analytic extension of the usual one sided black hole geometry [40]. Here the
interior of the two black holes are connected through the wormhole geometry that indicates
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Figure 1. Kruskal diagram for two sided black hole geometry.

the entanglement between the two black holes. Mutual information I(A,B) between two
subsystems A ∈ QFTL and B ∈ QFTR is defined as,

I(A,B) = S(A) + S(B)− S(A ∪B), (1.8)

where S(A ∪B) is the entanglement entropy of the union of A and B. Now initially there
is a large amount of entanglement between the two subregions as evident form the existing
upper bound on the correlation between two operator OA and OB defined on A and B

respectively given as [41],

I(A,B) ≥ (< OAOB > − < OA >< OB >)2

2 < O2
A >< O2

B >
(1.9)

In order to characterize the spread of entanglement we first need to disrupt the TDF
structure by applying a small perturbation W on the left side (say) at some early time ti.
In the bulk, this corresponds to some localized energy density injected near the boundary
in the distant past. Due to the strong gravitational force, the excitation will accelerate with
time and it’s energy gets blue shifted as it reaches near the black hole horizon. This results
in a shockwave modified geometry for the bulk spacetime. It is important to note that only
the left-right correlation is destroyed in this case making the mutual information I(A,B) to
vanish for a sufficiently early time perturbation. As a result in equation (1.8), only S(A∪B)
shows increasing behavior with time exactly the same way as in equation (1.4). That is the
growth rate is controlled by the entanglement velocity vE . The entanglement entropy S(A)
and S(B) being unchanged, results I(A,B) to vanish consequently.

As already mentioned the primary goal of this study is to investigate the effect of
nonlocality to the spread of quantum information. In the context of black hole information
paradox, quantum nonlocality might possibly be the fundamental ingredient towards the
resolution of the paradox. In [42], it was argued that in a situation of strong gravitational
interaction the dynamics is governed by the nonlocal degrees of freedom. These observa-
tions/findigs motivate us to study the dynamics of nonlocal information spreading in a
particular quantum theory with inherent nonlocality, the little string theory [43]. Little
string theory arises in the decoupling limit (vanishing string coupling gs) of magnetically
charged N � 1, NS5-branes in type-II string theory, N being the number of five branes. In
this case the dynamics of the NS5-branes decouples from the bulk even with finite string
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length ls =
√
α′. The resulting theory on five branes is known as the little string theory

which is a nonlocal theory without gravity, it exhibits T-duality upon compactification.
Unlike the usual local QFT, the fundamental object in this theory are one dimensional
strings. The impurity in the form of NS5-branes breaks the original SO(9, 1) Lorentz sym-
metry, however from the worldvolume perspective of the NS5-branes, it still possesses the
SO(5, 1) Lorentz invariance. Another characteristics of little string theory is the existence of
Hagedorn density of states at temperature Th, known as the Hagedorn temperature. Here
the inverse of the Hagedorn temperature βh serves as the nonlocal scale of the theory [44].
The nonlocal effects are manifest at length scale less than the inverse Hagedorn temperature
βh while above βh one recovers the usual behavior as observed for the local theory.

Nonlocal quantum theories often shows interesting behavior for physically measurable
quantities at certain length scales. As an example, the holographic computation of entan-
glement entropy (using the Ryu-Takayanagi prescription [45]) of certain nonlocal theories
with appropriate gravity dual shows volume law behavior for the leading UV diverging
term instead of the usual area law below some critical length scale of the theory [46–48].
A similar conclusion was also made by the authors in [49] regarding the computations of
entanglement entropy and holographic mutual information in large N strongly coupled
noncommutative gauge theory which possesses an inherent non locality due to the natural
UV/IR mixing that the theory exhibits. Regarding the scrambling of quantum information
it is observed that the nonlocal theories can scramble information much faster compare to
the local theories such that the thermalisation occurs at smaller time scale in theories with
nonlocal interactions [50, 51]. The same conclusion was also made in [27] regarding the
information scrambling in noncommutative geometry by explicitly computing the butterfly
velocity. It was shown that the butterfly velocity keeps on increasing with the noncom-
mutative parameter. In this paper we also observe the increasing behavior of butterfly
velocity at length scale less than the inverse Hagedorn temperature. However unlike the
case in noncommutative geometry, in this case the butterfly velocity does not violate the
bound imposed by the speed of light. This is because although the theory of little string is
nonlocal, it still possess the lorentz symmetry as already discussed.

So far in our discussion we talked about the diagnosis of quantum chaos from the
study of out of time ordered correlator. However calculation of OTOC is sometimes hard,
especially when one tries to evaluate at finite temperature. It is recently observed that the
chaotic nature of a many body quantum system has a direct manifestation in the energy
density retarded Green’s function [19, 20]. In other words the exponential growth of the
OTOC (1.2) can be realized from the structure two point correlation function involving
the temporal component of the stress energy tensor on the boundary. According to this
phenomenon which is known by the name ‘pole skipping’, quasinormal frequency (ω) and
momentum (k) for collective excitations upon analytic continuation can take special complex
values such that the residue of retarded Green’s function in momentum space vanishes
exactly. That is, at those special values of ω and k, line of poles and line of zeroes of retarded
Green’s function passes through each other and hence it is not uniquely defined. This
phenomenon was first observed in a numerical computations for a particular holographic
system [18] and then derived in [20] for an effective field theory of quantum chaos. The
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gravitational origin of this phenomenon was nicely explained in [19]. It was observed that
at special complex values of ω and k, there exists two linearly independent ingoing solution
for any bulk field equation of motion near the horizon so that one can define any arbitrary
linear combinations of them to construct another possible solution. Hence the retarded
Green’s function which is determined by the unique choice of the ingoing solution, is not well
defined due to the arbitrariness of the solution at the horizon. A series of computations has
been done recently regarding the explicit computation of pole skipping points for different
theories including the holographic ones. [21, 52–82]. In this paper we intend to carry on
similar calculation for the holographic dual description of little string theory. We will be
particularly interested in the pole skipping points occurring on upper half of the complex
plane which are directly related to the parameters of chaos.

The rest of the paper is organized as follows, in section 2 we briefly discuss the
holographic dual of little string theory and the corresponding nonlocal scale. In section 3
and 4, we compute the holographic entanglement entropy and the entanglement wedge
cross section to show directly the evidence of nonlocality at length scale smaller than some
critical one. Section 5 is entirely based on the computation of butterfly velocity using the
gravitational shockwave analysis in a typical entangled state of two copies of the theory,
known as the thermofield double state. In section 6, we study the disruption of left-right
entanglement in the same thermofield double set up by computing the two sided holographic
mutual information. In section 7, we evaluate the parameters of quantum chaos, namely
the Lyapunov exponent and the butterfly velocity using the phenomenon of pole skipping.
Finally, we conclude in section 8.

2 Holographic description of little string theory

There exists two different classes of non-gravitational theories in higher dimension that
results in some limit of type-II string theory. The usual local field theories are one such
class that arises in the low energy limit defined by E � ms, ms = 1√

α′
being the string

scale. On the other hand, there are consistent theories obtained in the limit of vanishing
string coupling, gs → 0, but at finite string scale ms. This constant string scale is important
for the dynamics of these theories, known as the ‘little string theory’. It is a nonlocal theory
defined on the worldvolume of N � 1 parallel NS5 branes after one considers the decoupling
limit as mentioned above. In the vanishing string coupling limit however the coupling of
the field theory on the NS5 branes remains finite and can be realized by considering the
low energy limit [43]. In string frame the supergravity solution can be described in terms of
the following ten dimensional metric, the dilaton and a three form flux corresponding to
the NS B field [83–85]

ds2
S = −f(r)dt2 + dx2

5 +A(r)
(
dr2

f(r) + r2dΩ2
3

)
, where

A(r) = 1 + Nα′

r2 , f(r) = 1− r2
H

r2 , e2Φ = gs2A(r),

H3 = 2L
√
Nα′(r2

H +Nα′)V3

(2.1)
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where V3 is volume of the compact three sphere and rH is the black hole horizon. At energy
scale E ∼ ms, the string scale, little string theory has a density of state which is larger
compared to that of the standard local QFT known as the Hagedorn density of states.
It is proportional to eβhE , E being the energy density and βh as the inverse Hagedorn
temperature. Further, we define L =

√
Nα′ such that the inverse Hagedorn temperature is

given as,
βh = 2π

√
Nα′ = 2πL. (2.2)

This inverse Hagedorn temperature scale determines the nonlocality of little string theory,
such that at any scale lower than that the nonlocal phenomenon can be explicitly observed.
In the rest of the paper we consider large value of L (as βh is proportional to L) to show
the nonlocal effects on different measures of information spread and also quantum chaos. In
other words at separation smaller than βh, there exist no local operators but they actually
smeared over finite distance scale which is at least ∼ βh. The most interesting thing about
the little string theory is that it possesses several characteristics of a critical string theory
but is devoid of the nontrivial features of gravity. Using the above dual gravitational
description we will highlight some of the interesting properties of little string theory relevant
to the ongoing research in quantum information theory.

3 Holographic entanglement entropy

The Bekenstein-Hawking formula for the entropy of a black hole [86] relates the entropy to
some geometry of the black hole geometry, it scales as the area of the black hole horizon.
The holographic prescription by Ryu-Takayanagi [45] is a kind of generalisation of the
Bekenstein-Hawking formula which states that the entropy of any arbitrary subsystem
of a quantum system also has a geometrical interpretation, it equals the area of some
minimal hypersurface embedded into the dual spacetime background. For a simple bipartite
system, the entanglement entropy measures the strength of correlation between the degrees
of freedom of any subsystem A with the rest of the system. Given a pure state |ψ >

of the whole system, the entanglement entropy of any subsystem A is defined as the
Von-Neumann entropy,

S(A) = −Tr (ρA log ρA) , (3.1)

where, ρA is the reduced density matrix for A. In this section we will use the above
mentioned Ryu-Takayanagi conjecture to compute the entanglement entropy of an infinitely
long strip like entangling surface extending along the (x2, x3, x4, x5) directions but with
finite width l along x1 such that, l/2 ≤ x1 ≤ l/2, −R/2 ≤ x2, . . . , x5 ≤ R/2 with R→∞.
Due to the varying dilaton profile in this case we will use the generalized version of the
formula for the entanglement entropy of a subregion A as given in [87],

S(A) = Area(A)
4G10

N

= 1
4G10

N

∫
dx8e−2φ

√
g

(8)
ind, (3.2)

where, G10
N = 8π6α′4 is the 10-dimensional Newton’s constant and gind is the metric

induced on the strip which is embedded into the spacetime geometry following the equation
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x1 = x1(r) with time t remaining constant throughout. Using the string frame metric (2.1),
one can extremize the area functional in (3.2) with respect to the embedding function x1(r)
to get the equation for the hypersurface extended in the bulk as,

dx1
dr

=
√
A(r)
f(r)

1√
r6A(r)
r6
mA(rm) − 1

, (3.3)

where rm denotes the turning point for the extremal surface, (dx1/dr) |rm →∞. We will
also define a UV cut-off at r = rδ to regularize the area functional defined as, x1(rδ) = ±l/2
which leads to the following expression for the strip width l as,

l = 2
∫ rδ

rm
dr

√
A(r)
f(r)

1√
r6A(r)
r6
mA(rm) − 1

. (3.4)

The final expression for the area of the subregion A is given as,

A = 2Ω3R
4

g2
s

∫ rδ

rm
dr

A(r)√
f(r)

r3√
1− r6

mA(rm)
r6A(r)

. (3.5)

Before going into the explicit computation of S(A), let us first present a detailed discussion
about the area functional as follows from the embedding of the extremal bulk hypersurface
as a function of the strip width. As mentioned before, for a theory which exhibit nonlocal
effects, there exists a critical value for the strip width, lc such that the usual area law
behavior for the entanglement entropy is not obeyed and instead it follows the volume law
when the width is less than lc. In the following we will calculate an expression for this
critical width which turns out to be proportional to the UV cut-off scale rδ. So if we set
rδ to infinity then for every finite width of the strip we will find a volume law behavior.
However when we keep the UV cut-off scale at large but finite value, a phase transition
regarding the behavior of entanglement entropy can be observed as the width of the strip
is increases from a value less than lc to the one greater than the same [89]. In particular,
the entanglement entropy will show a transition from the volume law to the usual area
law behavior.

Behavior at UV scale. Let us consider the plot as given in figure 2. We observe that
at small values of l, that is for very narrow strip, there exist only one smooth extremal
hypersurface which lies very close to the UV cut-off scale rδ. Also, in this smaller width
region all the three hypersurface corresponding to different values of rH/L has the same
form as shown in figure 2. In order to get an analytic expression for the hypersurface at
small width one can use equation (3.3) to obtain the following relation between r and x1,

r(x1)− rm =
(
r2
m − r2

H

) (
2L2 + 3r2

m

)
8rm (L2 + r2

m)2 x2
1 +O

(
x4

1

)
. (3.6)

Using the boundary condition, x1(rδ) = ±l/2 in the above equation, one can plot the
variation of the extremal surface with strip width for small values of l. In figure 3, we have
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Figure 2. Figure showing the embedding of the hypersurface as a function the strip width l for
different values of the horizon radius rH with fixed L. Here we have fixed rδ=45.

0 10 20 30 40
{0

10

20

30

40

50
rm

Figure 3. Figure showing the penetration of the extremal surface in the bulk as a function of the
strip width. The numerical result is denoted by the solid brown curve while the analytic result is
indicated by the orange dashed line. Note that the analytic result matches nicely with the numerical
one for lower values of the strip width l. In this plot we have fixed numerical value the ratio rH/L
to 0.1.

shown the relationship between rm and l using both the numerical result and the analytic
expression (3.6) as obtained for small strip width. Substituting r(x1) from equation (3.6)
into the area functional in equation (3.5), we obtain the approximate analytic expression
for the area at small l region to be,

A = Ω3R
4

g2
s

(
lr3
δ + L2

2 lrδ + 15
128 l

3rδ +O
(
l5
))

(3.7)

In a general black hole background that corresponds to an uniform thermal state in the
boundary, the most dominant contribution to the entanglement entropy (basically the
divergent part) comes from the correlation between the degrees of freedoms which are lying
very close to the boundary of the entangling surface. Hence the most dominant part of
entanglement entropy follows an area law. However there are also finite contributions to
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the entanglement entropy that follows a volume law behavior arising due to the correlation
between the degrees of freedom from the entire volume of the entangling region. However
in this case we notice that the leading order term in rδ in the above expression for the area
depends on the size l of the system, so that even the diverging part of the entanglement
entropy shows an extensive behavior (volume law) which can be linked to the nonlocal
nature of the underlying theory.

Behavior at IR scale. As it follows from figure 2 that there exists three solutions for
the extremal surface at a given strip width around the critical value l = lc. Among these
three surfaces, the one at the middle always shows increasing behavior and hence it is not
physical. The surface at the bottom has minimum area compared to the surface at the top
and according to the RT prescription the bottom surface will be favourable. At even larger
strip width there exists unique solution for the extremal surface and it will stay close to the
horizon and far away from the UV cutoff. As a result the area functional in this scale is
independent of the position of the UV cutoff and shows the usual area law behavior for the
leading divergent part of the entanglement entropy. The area of the extremal surface in
this case is given as,

A = Ω3R
4

g2
s

(
r4
δ + 2L2 + r2

H

2 r2
δ + 1

4
(
4L2r2

H + 3r4
H

)
log rδ +O (1/rδ)

)
. (3.8)

The above result for the area is independent of the width l of the infinite strip. Also with
this result the entanglement entropy now follows an area law behavior as observed for a
local theory. However, keeping the width of the strip fixed if one takes the limit rδ →∞,
then the area again increases extensively similar to equation (3.7).

The transition from a volume law behavior to an area law for the entanglement entropy
occurs continuously as one moves from UV to IR scale. Hence one can calculate the critical
length scale lc by comparing the two expressions for the area at high and low energy scales
as given in (3.7) and (3.8), respectively and then solving for l.

lc = rδ
2 + 3L2 + 2r2

H

4rδ
+O(1/r2

δ ). (3.9)

So we see that the critical length scale is proportional to the UV cutoff which is a signature
of nonlocal behavior of the theory. The contribution to the entanglement entropy coming
from different energy scales differs nontrivially. Also in standard local theory, the UV
contribution to the entanglement entropy do factorize from that coming from the IR and
they just adds up to the total entanglement entropy. In particular, the UV part of the
entanglement entropy depends on the UV-cutoff rδ and also it is local in a sense that
only the degrees of freedom very close to the boundary of the subsystem gets involved
to the quantum correlation across the boundary which results in an area law behavior.
Conversely, the IR contribution is not only independent of the UV cutoff but does not
depend on the scheme of the regularization either such that a good cutoff will only change
the physics of the UV without affecting the IR. However, in a nonlocal theory the above
mentioned factorisation between contributions coming from UV and the IR scales is no
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Figure 4. Figure showing the variation of entanglement entropy with strip length l for three
different values of rH/L.

longer a valid assumption. For instance, as we have found, below the critical length scale
the UV contribution of the entanglement entropy depends on the width l of the infinite
strip which is the IR scale of our theory. Hence the UV part of the entanglement entropy is
no longer local and for a sufficiently narrow strip the degrees of freedom living on the entire
strip now correlates to the one outside and hence it develops a dependance on the IR scale.
This dependance on l also leads to the violation of the area law. Finally, the critical length
lc for the strip width also depends on the UV cutoff. So if the cutoff is taken at infinity,
then a volume law for the entanglement entropy would follow for all energy scales. All the
above results indicates the UV/IR mixing of the underlying nonlocal theory.

In figure 4 we have shown the variation of the area with respect to the width l varying
from very small value to sufficiently large one. The area increases very quickly till the
critical length scale and after that it slows down and eventually saturates. The transition
from volume law to area law behavior is clearly realized from the same plot. Also note that
at the critical value of strip width, the entanglement entropy is continuous but it’s first
derivative suffers a discontinuity indicating a first order phase transition. However as we
increase the size of the black hole by considering larger value of rH , there is no such phase
transition which is explicitly shown in the same figure (see the green colored plot).

4 Holographic entanglement wedge cross section

In the last section we analyse the entropy of entanglement for a bipartite system in a pure
state. However, for total correlation in a bipartite mixed state the appropriate measure as
defined in quantum information theory is the entanglement of purification (EoP) [92]. In
the context of AdS/CFT correspondence, the geometrical quantity which is dual to EoP is
conjectured in [93, 94] to be the Entanglement wedge cross section (EWCS). In holographic
theories the computation of EWCS can be done in a straight forward manner by evaluating
the area of the minimal hypersurface ΓW (see figure 5) inside the entanglement wedge in
the bulk corresponding to the union of two subregions A and B on the boundary. In this
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Figure 5. A schematic representation of the holographic set up for the computation of EWCS.

section we adopt the holographic technique to calculate EWCS for the same gravitational
background dual to the theory of little string theory. The goal is to see if the nonlocal
nature of little string hteory has any direct manifestation in such measure of correlation in
a mixed state.

Let us start with the technical definition of Eop. Consider two subregions A and B
in the form of a infinite strip of equal width l on two separate the boundary slices at a
constant time. In general, the two subregions will be in mixed states defined by the density
matrix ρA ∈ HA and ρB ∈ HB respectively, where HA and HB are the corresponding Hilbert
spaces. The total density matrix for the two bipartite systems ρAB ∈ HA ⊗ HB can be
obtained from the pure state |ψ >∈ HA ⊗ HB following the usual definition of density
matrix, ρAB = TrA B|ψ >< ψ|. In the last definition A and B represents the additional
degrees of freedoms required for the purification of ρAB such that the state |ψ > belongs to
the extended Hilbert space HAA⊗HBB. The EoP is defined as the minimum von-Neumann
entropy S(AA), minimized over all possible splitting of the purification into A B,

E(ρAB) = min
ρAB=TrA B|ψ〉〈ψ|

S(AA). (4.1)

In order to proceed with the holographic calculation of EWCS, we represent two subregions
on the boundary as infinitely long strip with finite width l in a similar fashion. The two
subregions are separated by a distance D as in figure 5. The RT surface for 2l +D and D
are denoted by γ2l+D and γD respectively. In a symmetric configuration around x1 = 0, the
EWCS is the minimal area of the hypersurface denoted by ΓW with the two end points
coinciding on the RT surface γD and γ2l+D. The induced metric on the hypersurface is
given as,

ds2
ΓW =

5∑
i=2

dx2
i +A(r)

(
dr2

f(r) + r2dΩ2
3

)
. (4.2)

The area of this minimal surface can be computed from the above induced metric yielding
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the final result for the EWCS as,

EW = Ω3R
4

4G(10)
N g2

s

∫ rm(D)

rm(2l+D)
dr
r3A(r)√
f(r)

,

= Ω3R
4

32G(10)
N g2

s

[
r
√
r2 − r2

H

(
4L2 + 2r2 + 3r2

H

)

+ r2
H

(
4L2 + 3r2

H

)
log

(
r +

√
r2 − r2

H

)]rm(D)

rm(2l+D)

(4.3)

Now, as we have seen in the previous section that the RT surface inside the bulk follow very
different embedding depending on weather the width of the strip l is greater or less than
the critical length scale lc (see figure 2). So we expect the EWCS to show different behavior
with increasing l in regions where l < lc and l > lc. In the left panel of figure 6, we see that
the EWCS increases with the strip width l for length scale which is less that the critical
value lc. This can be explain at least geometrically from the nature of the embedding of
RT surface in the bulk geometry. Again referring to figure 2, we see that the RT surface
for small values of l < lc stays very close to the boundary and as l increases it starts to
penetrate deep into the bulk towards the horizon. Now the RT surface γ2l+D, corresponding
to the region of total width 2l + D on the boundary, moves towards the horizon faster
than the other RT surface γD as the width l is increased. This is clearly evident from the
increasing slope of the minimal surface in figure 2 in the region of small l. Hence the length
of the extremal surface ΓW increases with l initially. However, as the width is increased
to sufficiently large value beyond lc, the minimal surface γ2l+D now reaches enough close
to the horizon and can no longer penetrate anymore. On the other hand, the surface γD
being comparatively smaller in area, can still increase in size and move towards the horizon.
As a result the length of the extremal surface ΓW decreases as shown in the right panel
of figure 6.

Clearly the increase in EWCS in the region of small l is due to the nonlocal correlation
between the two subregions A and B. In other words, for small strip widths, the degrees of
freedoms from the entire volume of the two subregions participate in the correlation due to
the nonlocal nature of the interaction and hence we see an increase in the correlation with
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l. However beyond the critical length scale the nonlocal correlation ceased and the usual
decreasing behavior is observed. As the strip width is increased beyond a particular value
of l, the two subregions gets in a disconnected phase such that the correlation between
them drops discontinuously to zero.2

5 Study of shockwave geometries

5.1 Gravity setup for unperturbed geometry

We will start by considering the following 10-dimensional metric (2.1) corresponding to an
extended two sided black brane geometry,

ds2 = −Gttdt2 +Grrdr
2 +Gijdx

idxj +Glmdθ
ldθm. (5.1)

Where, i, j = 1, 2, 3, 4, 5 represents the five dimensional flat directions and l,m = 1, 2, 3
corresponds to the compact three dimensional unit sphere S3. The asymptotic boundary is
located at r =∞ and the horizon at r = rh, r being the radial coordinate. Different metric
components of the above equation (5.1) can be expanded near the horizon and are given as,

Gtt = Z0(r − rh), Grr = Z1
r − rh

, Gij = Glm = Constant. (5.2)

The inverse hawking temperature can be calculated from the above data as

β = 4π
√
Z1/Z0 = 1/TH . (5.3)

For the gravitational shockwave analysis of the above geometry it is convenient to work
with the Kruskal coordinate system (U, V ) which is defined below as,

UV = e
4π
β
r∗ , U/V = −e−

4π
β
t
, (5.4)

where r∗ is the tortoise coordinate given below as,

r∗ =
∫ √

Gtt
Grr

dr. (5.5)

In terms of the Kruskal coordinate the metric (5.1) can be rewritten as,

ds2 = 2F (U, V )dUdV +Gij(U, V )dxidxj +Glm(U, V )dθldθm, (5.6)
2Here we have considered the infinitely long parallel strip configurations of width l to calculate the EWCS.

In this case there exists two different phases, namely (i) the connected phase and (ii) the disconnected
phase which basically indicates the degree of correlation between two subsystems. In connected phase the
correlation is finite, on the other hand in the disconnected phase there is no correlation between the two
subsystems. Now, in the connected phase the area of the minimum cross-section is finite till some particular
value of the strip width l, say lcon. However as the width is increased beyond lcon, the entanglement wedge
doesn’t exist anymore and as a result the corresponding minimum cross-section vanishes. So the reason for
the disconnected phase is the sudden non-existence of the entanglement wedge as the value of l gets bigger
than lcon. Also, as already mentioned, physically the occurrence of the disconnected phase indicates zero
correlation between the two subregions.
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where F (U, V ) = β2

8π
Gtt(UV )
UV . Now in terms of the (U, V ) coordinate, the two asymptotic

boundaries on the left and the right side (see figure 1) are situated at UV = −1, while at
the horizon we have UV = 0. Considering the above metric, Einstein’s field equation can
be written as,

Rµν −
1
2∂µ∂νφ−

1
4 exp(−φ)HµbcH

bc
ν + 1

6(d− 2)gµν exp(−φ)H2
3 = 8πGNTM0,µν , (5.7)

where, TM0,µν is the energy momentum tensor corresponding to the matter part of the action
computed using the unperturbed geometry. It is presumed to have the following structure,

TM0,µνdx
µdxν = 2TUV (U, V )dUdV + TUU (U, V )dU2 + TV V (U, V )dV 2 + Tij(U, V )dxidxj

+ Tlm(U, V )dθldθm. (5.8)

5.2 Shockwave geometries

The two sided black hole geometry discussed above is holographically dual to the thermofield
double state as already defined in the introduction section. In this section we will discuss
the possible modifications of the metric in (5.6) as a result of a localised perturbation
on one of the boundaries (say left) at early time. In the gravity description this early
perturbation corresponds to an energy pulse that originates from the past horizon and
propagates into the future singularity. Due to the strong gravitational attraction, the
energy of this pulse increases exponentially with time. For sufficiently early perturbation
on the boundary the energy pulse produces a shockwave in the bulk geometry such that the
corresponding backreaction becomes non negligible. This perturbed geometry is referred
to as the shockwave geometry. Analysing the interaction of this shockwave with the
black hole horizon one can extract important quantities like butterfly velocity vB and
Lyapunov exponent λL etc. These quantities can shed light on the chaotic features of
holographic theories.

The shockwave we consider here is localized at U = 0 and propagates along the V
direction resulting an extension along V and a compression along U . The energy momentum
tensor that describe the whole effect is given as,

T Shock
UU = Eδ(U)e

2πt
β eik.x. (5.9)

Here we will work in the momentum space due to the absence of any well defined gauge
invariant local operators in position space for the underlying nonlocality of little string
theory.3 To incorporate the backreaction in our calculation we made the replacement
V → V + α. Here α captures key information about the profile of the shockwave,

α = α̃(t, k)eik.x. (5.10)

α̃(t, k) can be obtained as solution of the Einstein’s field equation. To ensure the fact that
only the region with U > 0 is modified due to the shockwave, we replace V with V + Θ(U)α,

3For detailed discussion on this see [27].
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Θ(U) being the Heaviside step function. After doing some algebraic manipulation, the
modified metric and energy momentum tensor can be expressed respectively as,

ds2 = 2FdUdV +Gijdx
idxj +Glmdθ

ldθm−2Aδ(U)dU2, (5.11)

TM = 2
(
TUV −αTV V δ(U)

)
dUdV +TV V dV

2 +
(
TUU +α2TV V δ(U)2−2α TUV δ(U)

)
dU2

+Tijdx
idxj +Tlmdθ

ldθm. (5.12)

Finally, for perturbed geometry we can write Einstein’s equation of motion as,

Rµν −
1
2∂µ∂νφ−

1
4 exp(−φ)HµbcH

bc
ν + 1

6(d− 2)gµν exp(−φ)H2
3 = 8πG10

N (TMµν + T shock
µν ),

(5.13)
with TM and T shock is given in equation (5.9) and (5.12). Now, we need to solve the UU
component of equation (5.13). Also notice that the components of the energy momentum
tensor and metric should obey the following conditions [28, 29]

F,V = Gij,V = TMV V = 0 at U = 0. (5.14)

We first solve equation (5.7) for (TUV , TV V , TUU ) and then substitute these back into the
UU component of (5.13) to finally obtain the following result for α̃ given as,

α̃

(
−Fkikj + 1

2Gij,UV
)
Gij = 8πG10

NEe
2πt
β . (5.15)

In terms of coordinate (t, r), the above equation takes the following form(
Gijkikj + M̃2

)
α̃ = −e

2π(t−t∗)
β , (5.16)

where

M̃2 = 4π2

β2

(
1

G′tt(rh)

(
5
(
G′11(rh)
G11(rh)

)
+ 3

(
G′θθ(rh)
Gθθ(rh)

)))
, (5.17)

and
t∗ = β

2π log
(

F (rh)
8πG10

NE

)
, (5.18)

where, t∗ is known as the scrambling time which indicates the time scale for saturation of
complexity or growth of operator size. In other words, it denotes the time scale for the
perturbation to spread over all boundary space time. For diagonal metric Gij , we can
estimate the parameter α̃ as,

α̃(t, k) ∼ e
2π(t−t∗)

β

Gii(rh)k2
i + M̃2 . (5.19)

For homogeneous shock, all the components of k are same and we set it to zero such that
the shock parameter α̃ can be expressed as,

α̃(t, k) ∼ Constant× e
( 2π(t−t∗)

β

)
. (5.20)

– 17 –



J
H
E
P
0
8
(
2
0
2
2
)
0
4
1

0 2 4 6 8 10

L
rH

0.58

0.60

0.62

0.64

0.66

0.68

0.70

vb

Figure 7. Variation of butterfly velocity vb with length scale L
rH

.

We can compare it with the double commutator in (1.2) and obtain the Lyapunov exponent
λL as,

λL = 2π
β
. (5.21)

Notice that equation (5.19) has a pole at a particular value of k proportional to M̃ . The
expression for k2 evaluated at the pole is given in terms of λL and vb as,

k2 = −λ
2
L

v2
b

. (5.22)

Using the above formula together with equation (5.21) we can calculate butterfly velocity as,

v2
b = λ2

L

M̃2 = 1
G11(rh)

(
1

G′tt(rH)

(
5G
′
11(rH)

G11(rh) + 3G
′
θθ(rh)

Gθθ(rh)

))−1

. (5.23)

For the little string theory butterfly velocity can be obtained by substituting the exact
metric components from equation (2.1) into (5.23) to obtain the following result,

v2
b = L2 + r2

H

2L2 + 3r2
H

. (5.24)

In figure 7, we have plotted vb with respect to a dimensionless quantity L
rH

. It can be
noticed from figure 7, that for increasing values of L

rH
, butterfly velocity vb increases sharply

and finally saturates to a value less than the speed of light, c = 1. The initial increase of vb
with L

rH
indicates a faster spread of information due to the nonlocal property of little string

theory. The saturation of vb below the speed of light is due to the Lorentz invariance of the
little string theory.

6 Holographic mutual information of two sided geometry

Mutual information plays an important role in defining nonlocal correlation between
noninteracting and non-overlapping subregions. For two sided black hole geometry, these
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Figure 8. Schematic diagram of unperturbed two sided geometry.

two subregions are considered at two asymptotic boundaries of the corresponding Kruskal
diagram. The correlation between these two distant subregions can be realized through
the inverse of the geodesic distance through the wormhole geometry extending from the
left boundary to the right one. Due to the butterfly effect in holographic theories, a
small perturbation in the asymptotic boundary can destroy the left-right entangled pattern
completely as mentioned above. We will be interested in the process of this disruption,
more precisely the rate with which it happens.

6.1 Two sided mutual information for unperturbed geometry

We will start with the computation of mutual information in the unperturbed gravity dual of
little string theory using the HRRT prescription of [88]. We consider two identical infinitely
long strip like entangling surfaces A and B in the left and right boundaries extended
along the spacial directions (x2, x3, x4, x5) such that −R/2 ≤ x2,3,4,5 ≤ R/2 with R→∞.
However, it has a finite width l along the x1 direction. Considering a constant time slice, the
corresponding Ryu-Takayanagi surfaces in the bulk exterior on both sides of the geometry
is defined by the embedding x1(r). This embedding will generate a surface γA in the left
exterior and γB in the right exterior. Also the corresponding bulk hypersurface for A ∪B
is given as γ1 ∪ γ2 as shown schematically by the red colored lines in figure 8 With this the
mutual information I(A,B) is defined as,

I(A,B) = S(A) + S(B)− S(A ∪B), (6.1)

where S(A), S(B), S(A ∪ B) are the entanglement entropy of A, B and A ∪ B respec-
tively. Using the HRRT formalism they can be calculated from the minimum area of the
hypersurface γA, γB,and γ1 ∪ γ2 respectively. The induced metric can be written as,

grr =
(
Grr +G11x

′(r)2
)
,

gθiθi = Gθiθi ×metric of S3, i = 1, 2, 3, G11 = G22 = G33 = G44 = G55. (6.2)
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The area functional for γA can be calculated as,

A(γA) =
∫
d8σ

√
(detgab),

= Ω3R
4
∫
dr r3A5/8

(
A3/4

f
+ x′(r)2

A1/4

)1/2

,

= Ω3R
4
∫
drF(x, x′, r), (6.3)

where Ω3 is the volume of three sphere and R4 =
∫
dx2dx3dx4dx5. The integrand in the

last line of the above equation, F , do not depend on x explicitly hence the corresponding
canonical momentum is a conserved quantity which can be calculated as,

P = ∂F
∂x′

= r2A(r)3/8x′√
A(r)3/4

f(r) + x′2

A(r)1/4

. (6.4)

At turning point, r = rm, x′ will become infinitely large. Upon imposing this condition the
conserved quantity P is given as,

P |r=rm = r3
m

√
A(rm). (6.5)

Solving equation (6.4) for x′ along with the condition as given in (6.5) we obtain,

x′ =
√
A(r)
f(r)

1
r6A(r)
r6
mA(rm) − 1

. (6.6)

Substituting this expression of x′ back into equation (6.3) results in the following on
shell area,

A(γA) = 2Ω3R
4
∫ rδ

rm

r3A(r)√
f(r)

1√
1− r6

mA(rm)
r6A(r)

dr, (6.7)

where rδ is the UV cut-off as already defined. Finally, we can write down the corresponding
entanglement entropy SA as,

S(A) = A(γA)
4G10

N

= Ω3R
4

2G10
N

∫ rδ

rm

r3A(r)√
f(r)

1√
1− r6

mA(rm)
r6A(r)

dr. (6.8)

An exact similarly expression follows for the entanglement entropy of strip B. In order to
obtain S(A∪B), we need to calculate the combined area of the surfaces passing through the
interior connecting both sides of the geometry. There are two such surfaces, one at x = 0
which is denoted as γ1 and the other one is at x = l denoted as γ2. Using the symmetric
configuration of these surfaces one can express the area of surface γ1 ∪ γ2 as,

A(γ1 ∪ γ2) = 4Ω3R
4
∫ rδ

rh

r3A(r)√
f(r)

dr. (6.9)
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Figure 9. Plot showing variation of mutual information I with strip width l.

Corresponding entanglement entropy can be written as,

S(A ∪B) = Ω3R
4

G10
N

∫ rδ

rh

r3A(r)√
f(r)

dr. (6.10)

Using these results in (6.1) the final expression of mutual information can be written as the
following integral form,

I(A,B) = Ω3R
4

G10
N

(∫ rδ

rm

r3A(r)√
f(r)

1√
1− r6

mA(rm)
r6A(r)

dr −
∫ rδ

rh

r3A(r)√
f(r)

dr

)
. (6.11)

On the other hand the strip width l can be expressed as a function of rm and is given as,

l =
∫
dx =

∫
x′dr = 2

∫ rδ

rm

(√
A(r)
f(r)

1
r6A(r)
r6
mA(rm) − 1

)
dr. (6.12)

In figure 9, we have shown the variation of the mutual information I(A,B) with respect to
the strip width l for two different values of rhL . It is qualitatively very much similar to the
variation of entanglement entropy with l as discussed in section 3 which is not surprising
at all.

6.2 Two sided mutual information in presence of shock wave

Now, We will discuss the disruption of two sided mutual information in presence of a
shockwave. For the sake of simplicity we will consider the shock profile to be homogeneous.
In that case the shock parameter α can be written as α = Constant ∗ e

2πt0
β . The mutual

information in this case can be described as,

I(A,B;α) = S(A) + S(B)− S(A ∪B;α). (6.13)

As the exponentially boosted shockwave modifies the near horizon region of the black
hole geometry quite significantly, only S(A ∪B) will receive the possible correction with
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Figure 10. Schematic diagram of perturbed two sided geometry.

increasing shockwave parameter α. Because of the same reason, S(A) and S(B) will not get
modified at all. To get rid of the UV divergences that appeared in SA∪B , it is convenient to
define the following regularized version of it, which is given as,

Sreg(A ∪B;α) = S(A ∪B;α)− S(A ∪B;α = 0). (6.14)

With this regularised entanglement entropy, one can rewrite the definition of mutual
information (6.13) as,

I(A,B;α) = I(A,B;α = 0)− Sreg(A ∪B;α). (6.15)

Here we will consider sufficiently large value for the strip width l so as to get a finite positive
result of the mutual information. In presence of the shockwave, there is an effective increase
of the size of the wormhole at boundary time t = 0 which is schematically represented in
figure 10. As already explained, in this case only S(A ∪B) will be modified. Initially, It is
given by the area of the hypersurface γ1∪γ2 ≡ γwormhole and one obtains a nonzero value for
the mutual information. However, as the strength of the shockwave parameter α increases
with time, the area of the wormhole surface also increases eventually decreasing the mutual
information. With further increase of α, the area of γwormhole at some point gets bigger than
the combined area γA ∪ γB. Hence in the definition of mutual information (6.15), instead
of γwormhole, the combined area of γA and γB will be favourable for the entropy SA∪B due
to the minimum area criteria of HRRT formalism. As a result the mutual information
goes to zero, I(A,B;α) = 0. To construct the wormhole surface we choose an appropriate
embedding given as, xm = (t, 0, x2, x3, x4, x5, r(t), θ1, θ2, θ3). Using this embedding one can
easily obtain the components of the induced metric as,

gtt = Gtt +Grrṙ
2,

gθiθi = Gθiθi × metric of S3. (6.16)

– 22 –



J
H
E
P
0
8
(
2
0
2
2
)
0
4
1

Figure 11. Penrose diagram of perturbed geometry with the constant r = r0 surface and the
horizontal extremal surface as indicated by black and red lines respectively.

The area functional can be expressed as,

A(γwormhole) = 2Ω3R
4
∫
dt r3

√
A(r)
f(r)

(
−f(r)2 +A(r)ṙ2

)1/2
,

= 2Ω3R
4
∫
dtF(r, ṙ, t). (6.17)

As the integrand F(r, ṙ, t) in the above equation is invariant under time translation, the
corresponding conserved quantity can be calculated as,

C = ∂F
∂ṙ

ṙ −F ,

= r3√A(r)f(r)3/2

(−f(r)2 +A(r)ṙ2)1/2 . (6.18)

Referring to figure 11, we note that due to the shockwave perturbation, the left half of the
horizontal extremal surface will be divided into three parts with r0 being the contact point
of the constant r surface and the same horizontal extremal surface. The conserved quantity
C can be calculated at r = r0 as,

C(r0) = −r3
0

√
A(r0)

√
−f(r0). (6.19)

Next we substitute the above expression of C(r0) into equation (6.18) and solve for ṙ to get,

ṙ = f(C(r0)−2r6f(r)A(r) + 1)1/2√
A(r)

. (6.20)

Putting the above result for ṙ in equation (6.17), we get the on shell action as,

A(γwormhole) = 2Ω3R
4
∫
dr

r6A3/2

(fAr6C−2 + 1)1/2 . (6.21)

Also from the expression of ṙ as given in (6.20), one get the following result for time t
running along the wormhole as,

t =
∫
dr

ṙ
=
∫
dr

√
A

f (C−2fAr6 + 1)1/2 . (6.22)
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Taking all the three segments of the left half of the extremal surface in figure 11 into
consideration, the final integral form of SA∪B is given as,

S(A ∪B; r0) = Ω3R
4

G10
N

(∫ rδ

rH

dr
r6A3/2

(fAr6C−2 + 1)1/2 + 2
∫ rH

r0
dr

r6A3/2

(fAr6C−2 + 1)1/2

)
. (6.23)

Here the turning point at r = r0 also acts as the strength of the shockwave such that as
the shockwave parameter α is increased the turning point moves further into the black
hole interior and the value of r0 decreases. Notice also that in the above equation we
expressed the entanglement entropy SA∪B as a function of the turning point r0. Finally,
the corresponding regularized entropy is given as,

Sreg(A∪B;r0) = Ω3R
4

G10
N

(∫ rδ

rH

dr

(
r6A3/2

(fAr6C−2+1)1/2−
r3A√
f

)
+2
∫ rH

r0
dr

r6A3/2

(fAr6C−2+1)1/2

)
.

(6.24)
Following the detailed analysis as presented in [27], one can determine the shockwave
parameter α in terms of the turning point r0 which takes the following form,

α(r0) = 2 exp(K1(r0) +K2(r0) +K3(r0)), (6.25)

where K1,K2 and K3 are given as follows,

K1(r0) = 4π
β

∫ r0

r

√
A

f
dr, (6.26)

K2(r0) = 2π
β

∫ rδ

rH

√
A

f

(
1− 1√

C−2fAr6 + 1

)
dr, (6.27)

K3(r0) = 4π
β

∫ rH

r0

√
A

f

(
1− 1√

C−2fAr6 + 1

)
dr. (6.28)

Using the above we have shown the explicit dependence of α on the dimensionless ratio
r0/rh in figure 12. We observe that the shockwave parameter α increases with decreasing
values of r0/rH and beyond certain value α sharply diverges. Also as expected, at r0 = rH
the shockwave parameter α exactly goes to zero.

Analysing the nature of the integral form of K3(r0), we find that the sharp divergence
of α below some critical value of r0 = rc is due to the diverging nature of K3(r0) which can
be realized from equation (6.25). To obtain this critical value, one needs to series expand
the integrand of K3 about r = r0 and then equate the coefficient of (r− r0) in the resulting
expansion to zero [27], yielding the following expression of rc,

rc =
rH

√
1−

(
L
rH

)2
+
√

1 +
(
L
rH

)2
+
(
L
rH

)4

√
3

. (6.29)

6.2.1 Variation of mutual information with shock parameter α

Two sided mutual information in presence of shockwave is already obtained in equation (6.15).
It will be convenient to normalize it with the corresponding result at zero perturbation,
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Figure 12. Variation of shockwave parameter α with dimensionless ratio r0
rH
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Figure 13. Plot shows variation of normalised mutual inforamtion I(A,B : α) with shockwave
parameter α for different L.

that is with α = 0,
I(A,B : α)

I(A,B : α = 0) = 1− Sreg(A ∪B; r0)
I(A,B : α = 0) . (6.30)

In figure 13 we have plotted the normalized mutual information as given in (6.30) with
increasing α for three different values of L. Form the figure we see that mutual information
monotonically decreases with increasing values of α and eventually becomes zero. This is
an expected result as the increase in shockwave parameter destroys the correlation between
the left and the right side of the extended geometry. Apart from this the most important
point of this analysis is the fact that for smaller length scale, for example the plot with
L = 10 (blue), the rate of decrease of mutual information with α is relatively slower than
the one with larger value, that is L = 15 (green). This behavior reflects the fact that the
information scrambling is faster as we probe into the nonlocal regime with larger values
of L.
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Figure 14. Plot shows variation of normalised entropy Sreg(A ∪B) with log α.

6.2.2 Entanglement velocity

In this section we will calculate entanglement velocity vE which characterizes the spreading
of entanglement pattern in chaotic systems after a global quench [33, 34, 36, 38, 95]. To
calculate vE we need to study the variation of Sreg(A∪B; r0) (6.24) with boundary time t0
at which the small perturbation is applied. We observe a linear growth of Sreg(A ∪B; r0)
with t0 or equivalently with logα for homogeneous shock as shown in figure 14 [95]. Now,
one can approximate the relation between Sreg(A ∪B; r0) and t0 in the region where it is
growing linearly as,

Sreg(A ∪B; r0) = R4r3
c

G̃10
N

√
−f(rc)A(rc)t0, (6.31)

where, G̃10
N = G10

N
Ω3

is the scaled Newton’s constant of gravity in 10-dimension. This
approximation is valid only if r0 is chosen in the vicinity of rc where α takes large values.
Differentiating the above equation with respect to t0, the rate of change of Sreg(A ∪B) can
be obtained as,

dSreg(A ∪B; r0)
dt0

= R4r3
c

G̃10
N

√
−f(rc)A(rc). (6.32)

Next, we calculate the thermal entropy using the Bekenstein-Hawking formula sth =
A(horizon)

4G̃10
N

[86]. For little string theory it can expressed in the following form,

sth =
√
A(rH)r3

H

4G̃10
N

. (6.33)

Using the above expression of the thermal entropy, one can rewrite equation (6.32) as,

dSreg(A ∪B; r0)
dt0

= sthAΣ
r3
c

r3
H

√
−f(rc)A(rc)

A(rH) , (6.34)
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Figure 15. Plot of butterfly velocity vB and entanglement velocity vE with lengthscale L
rH

.

where AΣ = 4R4 denotes the area of Σ = ∂(A∪B). Now comparing (6.34) with equation (1.4)
we can obtain entanglement velocity as

vE = r3
c

r3
H

√
−f(rc)A(rc)

A(rH) . (6.35)

We have shown the variation of vb and vE with L/rH in figure 15. From the plot we
can conclude that entanglement velocity vE and butterfly velocity vb both increases with
increasing L. However vE always remains well below butterfly velocity vb obeying the bound
as discussed in the introduction section.

7 Pole skipping

In this section we will explicitly compute the special locations in the complex w − q plane
known as the pole skipping points where the near horizon solution of bulk field equation of
motion cannot be determined uniquely resulting in non-uniqueness of the corresponding
retarded Green’s function. Depending upon the kind of bulk field perturbations, this
phenomenon can occur both in the upper half and in the lower half complex plane. For
example with the components of metric perturbation in the sound channel which corresponds
to the energy density retarded Green’s function, the pole skipping happens in the upper
half of the complex plane. Also only the upper half pole skipping points are related directly
to the parameters of quantum chaos. In the following we will study the pole skipping
phenomenon at lowest order in the near horizon expansion occurring on the upper half
plane and compute the Lyapunov exponent and butterfly velocity. Later we will also extend
the analysis for higher order poles in the lower half plane.

7.1 Pole skipping in the upper half plane: butterfly velocity

In this computation we need to do a near horizon analysis of the bulk field equation
of motion. Hence it is convenient to work in the ingoing coordinate system. The ten
dimensional supergravity solution for the stack of NS5 branes in terms of the ingoing
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Eddington-Finkelstein coordinate v = t+ r∗ is given as,

ds2 = −f(r)A−1/4dv2 + 2A1/4dvdr +A−1/4
( 5∑
i=1

dx2
i

)
+ r2A3/4dΩ2

3. (7.1)

Linearized perturbation of the metric and the scalar field has the following form,

gµν = g(0)
µν + hµν ,

Φ = Φ0 + φ,
(7.2)

where g(0)
µν and Φ0 denotes the background values for the metric and the scalar field with

hµν and φ as the corresponding linear perturbations. The fourier transformation for the
field fluctuations are given as,

hµν(t, x1, r) = e−iwv+iqx1hµν(r),
φ(t, x1, r) = e−iwv+iqx1φ(r),

(7.3)

where we have assume the perturbation to travel along the x1 direction. Moreover, based
on the rotational symmetry in the space formed by the coordinates x2, x3, x4, x5, one can
categorize the metric perturbations as the following three modes,

• Sound modes: hvv, hvr, hrr, hvx1 , hrx1 , hx1x1 , hx2x2 = hx3x3 = hx4x4 = hx5x5 ,

• Shear modes: hvxi , hrxi , hx1x2 , i = 2, . . . 5,

• Tensor mode: hxixj , i 6= j, i, j = 2, . . . 5.

We will start with the computation of butterfly velocity for which we need to consider the
components of the metric perturbations in the sound channel along with the scalar field
which couples to the metric. The linearized Einstein’s equation is given as,

R(1)
µν −

1
2 (∂µΦ0∂νφ+∂µφ∂νΦ0)+ 1

4e
−Φ0

{
HµbcHνb′c′

(
g(0)cc′hbb

′+g(0)bb′hcc
′)+φHµbcH

bc
ν

}
− 1

48g
(0)µνe−Φ0

{
HabcHa′b′c′

(
g(0)aa′g(0)bb′hcc

′+g(0)bb′g(0)cc′haa
′+g(0)cc′g(0)cc′hbb

′)−φH2
3

}
+ 1

48e
−Φ0H2

3hµν = 0. (7.4)

Also the linearized scalar field equation of motion is given as,

g(0)µν
(
∂µ∂νφ− Γ(1)ρ

µν ∂ρΦ0 − Γ(0)ρ
µν ∂ρφ

)
+ hµν

(
∂µ∂νΦ0 − Γ(0)ρ

µν ∂ρΦ0
)
− 1

12e
−Φ0φH2

3

− 1
12e

−Φ0HabcHa′b′c′

(
g(0)aa′g(0)bb′hcc

′ + g(0)bb′g(0)cc′haa
′ + g(0)cc′g(0)cc′hbb

′) = 0,
(7.5)

where, Γ(0)ρ
µν is the affine connection corresponding to the background value of the metric

while Γ(1)ρ
µν , R(1)

µν are the linearized fluctuations to the affine connection and the ricci tensor
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respectively defined as,

Γ(0)ρ
µν = 1

2g
(0)λρ

(
∂µg

(0)
λν + ∂νg

(0)
λµ − ∂λg

(0)
µν

)
,

Γ(1)ρ
µν = 1

2
[
g(0)λρ (∂µhλν + ∂νhλµ − ∂λhµν)− hλρ

(
∂µg

(0)
λν + ∂νg

(0)
λµ − ∂λg

(0)
µν

)]
,

R(1)
µν = ∂ρΓ(1)ρ

µν − ∂µΓ(1)ρ
ρν + Γ(0)ρ

ρλ Γ(1)λ
µν + Γ(1)ρ

ρλ Γ(0)λ
µν − Γ(0)ρ

µλ Γ(1)λ
ρν − Γ(1)ρ

µλ Γ(0)λ
ρν .

(7.6)

In this case the non-uniqueness of retarded Green’s function is due to the fact that the vv
component of the linearized Einstein’s equation (7.4) becomes trivial at the pole skipping
point. Hence in the near horizon limit we first expand the field perturbations as,

hµν = η(0)
µν + η(1)

µν (r − rH) +O(r − rH)2,

φ = φ(0) + φ(1) (r − rH) +O(r − rH)2.
(7.7)

Substituting the above expansion in the Einstein’s equation and expanding the same near
the horizon we obtain,

h(0)
vv

{
L2
(
Q2 − 2iW

)
+ r2

H

(
Q2 − 3iW

)}
+ (W − i)

(
L2 + r2

H

){
2Qh(0)

vx1 +W
(
h(0)
x1x1 + 4h(0)

x2x2

)}
= 0,

(7.8)

where we define W = w/2πTH and Q = q/2πTH , The above equation is satisfied for the
particular values of W and Q given as,

W = i, Q = i

√
2L2 + 3r2

H

L2 + r2
H

. (7.9)

The Lyapunov exponent and the butterfly velocity is given as,

λL = 2πTH , v2
B = L2 + r2

H

2L2 + 3r2
H

. (7.10)

7.2 Pole-skipping at higher order complex frequencies

In the last subsection we discussed the pole skipping point at the lowest order in the upper
half plane and obtained the expression of butterfly velocity. In this section we will extend
the analysis of pole skipping phenomenon for higher ordered complex frequencies Wn, with
n = 1, 2, 3, . . ..

7.2.1 Scalar field fluctuations

Considering linearized fluctuation of the scalar field as given in (7.3), the corresponding
equation of motion can be obtained as,

φ′′(r) + S(r)φ′(r) +R(r)φ(r) = 0, (7.11)
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where S(r) and R(r) are given as,

S(r) = 1
r
(
r2 − r2

H

)(−3r2 + r2
H + 2iWr2

√
L2 + r2

L2 + r2
H

)
,

R(r) = 1
r2 − r2

H

(
2L2 L2 + r2

H

(L2 + r2)2 +Q2
(
L2 + r2

L2 + r2
H

)
+ iW

(
2L2 + 3r2)

√
L2 + r2

√
L2 + r2

H

)
.

(7.12)

To determine the pole skipping points at different orders one needs to consider the near
horizon expansion for the solution φ(r) of the above equation as,

φ(r) = φ0 + (r − rH)φ1 + (r − rH)2 φ2 + (r − rH)3 φ3 + . . . (7.13)

Substituting the above into equation (7.11), and equating the coefficients of (r − rH)n to
zero for n = 0, 1, 2, 3, .. one gets the following system of linear equations,

c00φ0 + c01φ1 = 0,
c10φ0 + c11φ1 + c12φ2 = 0,

c20φ0 + c21φ1 + c22z2 + c23φ3 = 0,
...

(7.14)

where the coefficients cij ’s can be arranged in a square matrix of a given order as,

C =



c00 c01 0 0 · · ·
c10 c11 c12 0 · · ·
c20 c21 c22 c23 · · ·
...

...
...

... · · ·
,


, (7.15)

such that the pole skipping points are obtained by solving simultaneously the following two
equations,

cn−1 n = 0, detC = 0. (7.16)

In this case with the large L limit, the first few pole skipping points are given as,

W1 =−i Q2
1 =−2+2r

2
H

L2 +O
(
r4
H

L4

)
W2 =−2i Q2

2 =
{
−4− i2

√
6rH
L
,−4+ i2

√
6rH
L

}
+O

(
r2
H

L2

)
W3 =−3i Q2

3 =
{
−6−

(
12+ i6

√
3
) r2

H

L2 ,−6−
(
12− i6

√
3
) r2

H

L2 ,−10+22r
2
H

L2

}
+O

(
r4
H

L4

)
(7.17)

7.2.2 Shear mode of metric fluctuations

The gauge invariant variable for the shear modes of metric perturbations is given as,

Z2(u) = QHvx2(u) +WHx1x2(u), (7.18)
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where we have considered the redial gauge such that hµu = 0 for any µ. In the above
equation the field fluctuations are defined as Hx1x2 = hx1x2/gx1x1 and Hvx2 = hvx2/gx2x2 .
The Einstein’s equation of motion for the shear modes of field perturbation is obtained in
terms of the gauge invariant variable Z2 as,

Z ′′2 (u)− W 2

(1− u) (W 2 − (1− u)Q2)Z
′
2(u) +

(
r2
H + uL2) (W 2 − (1− u)Q2)

4u3 (1− u)2 (r2
H + L2) Z2(u). (7.19)

Using the method as discussed previously we obtain the pole skipping points for the first
few orders in the limit (rH/L)→ 0 as,

W1 = −i Q2
1 = 2− 2r

2
H

L2 +O
(
r4
H

L4

)
W2 = −2i Q2

2 =
{

4− r2
H

L2 ,−4− 5r
2
H

L2

}
+O

(
r4
H

L4

)

W3 = −3i Q2
3 =

{
6 + 3r

2
H

L2 ,−6− 3r
2
H

L2 ,−10− 5r
2
H

L2

}
+O

(
r4
H

L4

) (7.20)

8 Conclusion

In this paper we have used different well known holographic techniques to study quantum
information scrambling and quantum chaos in a nonlocal theory known as the little string
theory. The fundamental degrees of freedom of this theory are strings with finite length
ls. The nonlocal effects appear only at length scale lower than the inverse Hagedorn
temperature βh which is proportional to the square root of the string length. The main
conclusion of this analysis is that the nonlocality accelerates the scrambling of quantum
information. In other words the theory becomes more and more chaotic as one probe into
length scale less than the inverse Hagedorn temperature. This can be explicitly realized
from the variation of butterfly velocity vb with βh = 2πL as already discussed. Butterfly
velocity acts as an effective bound at low energy on the spread of quantum information. An
increasing behavior of vb with the nonlocal scale basically widen the effective butterfly cone
resulting in faster growth of local operators. However the butterfly velocity is observed to
saturate to a value less than the speed of light due to the Lorentz invariance.

For the holographic computation we work in the usual thermofield double set up whose
dual description is given in terms of the extended two sided black hole geometry. A small
perturbation on the boundary correspond to an energy quanta in the bulk which gets
exponentially boosted with time and produces a shockwave. This highly energetic quanta
can disrupt the entanglement structure between the left and the right side of the geometry
which is actually the butterfly effect for this holographic set up. This disruption of entangled
structure is captured by the decrease of holographic two sided mutual information with
increasing shockwave parameter. In this case we also observe that the rate of disruption of
mutual information is faster as the nonlocal scale is increased.

Regarding the chaotic behavior, we considered the recently observed phenomenon called
pole skipping that provides an efficient and easier way of computing Lyapunov exponent and
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also butterfly velocity which characterizes quantum chaos in many body system. Analysing
linearized Einstein’s equation involving different bulk field perturbations near the black
hole horizon singles out special quasinormal frequency and momentum in the complex plane
which can be connected directly to the chaos parameters due to the phenomenon of pole
skipping. In this paper we have computed the pole skipping points in the upper half plane
to obtain the butterfly velocity which exactly matches with the result as obtained through
the gravitational shockwave analysis in section 5.

In future, it will be interesting to repeat the same exercise for the gravity dual of
N = 4 SYM theory which is deformed by the presence of external heavy quarks [96, 97].
Further in [98], the author has studied the dynamics of entanglement wedge cross section
in shockwave geometry for three dimensional AdS geometry. A generalization of this result
in higher dimensional black hole background might be an useful future direction.
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