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Abstract:  

Computational imaging combines measurement and computational methods with the aim of 

forming images even when the measurements are weak, few in number, or highly indirect. 

Although this field of research is nearly as old as photography itself, the recent surge in new 15 

quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, 

scalable and robust data processing, have induced a remarkable increase of activity with stunning 

results in the domain of low-light flux imaging and sensing. In this review, we provide an overview 

of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these 

problems have recently been addressed for imaging applications in extreme conditions. These 20 

methods provide clear examples of the future imaging solutions to be developed, where the best 

results are expected to arise from an efficient co-design of the sensors and data analysis tools.   

One Sentence Summary:  

Cutting-edge single-photon detectors and advanced computational methods combine to create 

new imaging solutions and push back the boundary of the invisible. 25 

 

Introduction: Computational imaging is the fusion of computational methods and imaging 

techniques with the aim of producing better images, where “better” has a multiplicity of meaning. 

A recent surge in new imaging sensors and in particular with single-photon sensors, combined 

with a new wave of computational algorithms, data handling capability and deep learning, has 30 

resulted in a remarkable surge of activity in the field. 

One clear trend is a shift away from increasing the number of mega-pixels towards fusing camera 

data with computational processing and, if anything, decreasing the number of pixels, potentially 

to a single pixel. The incoming data may therefore not actually look like an image in the 

conventional sense but is transformed into one after a series of computational steps and/or 35 

modelling of how the light travels through the scene or the camera. This additional layer of 

computational processing frees us from the chains of conventional imaging techniques and 

removes many limitations in our imaging capability.  
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We briefly describe some of the most recent developments in the field including full 3D imaging 

of scenes that are hidden (e.g. around a corner or behind an obstacle), high resolution imaging with 

a single-pixel detector at wavelengths for which no cameras exist, cameras that can see through 

fog or inside the human body or cameras that mimic the human eye by creating detail only in areas 

of interest. We will also discuss how multispectral imaging using single-photon detectors can 5 

improve 3D reconstruction and provide richer information about the scene.  

In a more general context, we discuss how single-photon detection technologies are transforming 

imaging capabilities with single-photon sensitive cameras that can take pictures at the lowest light 

levels and with the ability to create videos reaching a trillion frames per second. This improvement 

has enabled the capture of images of light beams travelling across a scene and provided 10 

opportunities to observe image distortions and peculiar relativistic temporal inversion effects that 

are due to the finite speed of light. The ability to capture light in flight also underpins some of the 

applications mentioned above, for example the ability to view a 3D scene from around a corner. 

Probabilistic modelling of the particle-like nature of light when using single-photon detectors has 

stimulated the birth of new computational techniques such as “first-photon imaging,” which hints 15 

at the ultimate limits of information to be gained from detecting just one photon. 

 

Single pixel and ghost imaging: Although most imaging techniques that have emerged recently 

are based on classical detectors and cameras, some of these approaches have been inspired by or 

have a tight connection with similar ideas in quantum imaging. A prime example is ghost imaging 20 

(1), originally thought to be based purely on quantum principles but now recognized as being 

dependent upon spatial correlations that can arise from both quantum and classical light (2). The 

realization that this technique does not require quantum light led to a merging of the fields of 

computational ghost imaging (3) with work on single-pixel cameras (4) and to an overall increase 

of activity in the field. In its quantum version, ghost imaging refers to the use of parametric down-25 

conversion to create pairs of photons with correlated positions. If we detect the position of one 

photon with a standard camera and illuminate an object with the other position-correlated photon,  

it is sufficient to detect only the reflectance or transmittance of the object with a single-pixel 

detector, i.e. measure the correlation count between the beams to then reconstruct a full image by 

repeating the measurement with many different photon pairs (each of which will be randomly 30 

distributed due to the random nature of the correlated photon pair generation process) (5-6). It is 

now acknowledged that the quantum properties of the correlated photons play no role in the image 

reconstruction process: thermal light split into two beams using a beam splitter can be used equally 

effectively, albeit at a higher photon flux (7). Rather than using a beam splitter, it is possible to 

use a spatial light modulator to create a pattern where the copy is simply the computer memory. 35 

This approach therefore no longer requires a camera of any kind in the setup: the computer-

generated pattern is already known and the image, 𝐼, can be retrieved by multiplying the single 

pixel readout, 𝑎#, with the corresponding pattern, 𝐻#, and then summing over all 𝑖 patterns, i.e. 𝐼 =

𝑎#𝐻## . This opens the route to so-called compressed single-pixel imaging: where assumptions 

about the spatial correlations of the image enable patterns to be judiciously chosen to require a far 40 

fewer number of patterns than the final number of image pixels, with compression factors up to 

80-90%. This concept is not dissimilar from standard jpeg compression, which assumes that typical 

images are concentrated in their spatial frequencies, with the difference that now the compression 

is applied at the image acquisition stage. By this compression, single-pixel imaging is therefore 

transformed from a slow, relatively inefficient process into a highly efficient imaging technique 45 

that can operate at video frame rates in full colour (8). More recent developments include the 
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extension to full 3D images where depth information is obtained by also using time-of-flight 

information (9-10), i.e. alongside the object reflectivity one also keeps track of distance, 𝑑, from 

the temporal shift, 𝜏, of the detected signal, as the two are related by the speed of light, 𝑑 = 𝑐𝜏.  

In general, this single-pixel technique suffers from having lower resolution and providing poorer 

quality images even when compared to a cell-phone camera. This limitation that can been partly 5 

overcome by taking inspiration from nature and implementing computational algorithms so that 

the system increases the density of the projected spatial patterns only in areas of interest, therefore 

increasing the spatial resolution in regions where it is needed and leaving the surrounding areas 

relatively less defined (11). This is just one example of where computational techniques have fused 

together with the detection technology to provide more efficient sensing solutions. Another 10 

example is the “first-photon imaging” approach that emerged from a unique co-design of hardware 

and computational algorithms, built around the concept of single-photon detection.  

 

First-photon imaging: An important legacy of recent interest in the field of quantum information 

science is the development of a series of detector technologies for single photons. The workhorse 15 

for most laboratories is the single-photon avalanche diode (SPAD). SPADs are in essence, 

semiconductor diodes that are reverse-biased beyond their breakdown threshold: a single photon 

(or even a thermally generated charge in the diode) is sufficient to lead to the rapid charge 

multiplication process (or avalanche) that creates a spike in the output current. A quenching 

mechanism stops the avalanche process before the diode is irreversibly damaged, leading also to a 20 

dead time during which the diode is insensitive to incident photons before being re-activated. The 

particle-like nature of a photon is revealed through the very short burst in the SPAD output current 

that can then be very precisely timed when a reference signal is also provided. The ability to 

precisely detect the photon arrival time can be used for long distance, high-precision LIDAR 

ranging: a distant object is illuminated with a point-like pulsed laser beam. Each outgoing pulse 25 

starts a counter, which is then stopped at time 𝜏 when a return photon is detected; accounting for 

the two directions of the light travel, the distance of the illuminated object is simply 𝑑 = 𝑐𝜏/2. 

Scanning the scene using this time-correlated single photon counting (TCSPC) technique can 

therefore provide a full 3D image (or depth image) of the scene (12-14). However, TCSPC-based 

imaging can require very long acquisition times, in particular when photons return to the detector 30 

at low rate. Conventional processing techniques require: (i) operation in the photon-starved 

regime, i.e. 10% or less of the outgoing laser pulses should give rise to a detected return photon so 

that bias from detector dead times is negligible; and (ii) measurement over many illumination 

repetition periods so that 100-1000 photons or more are detected for each position. Under these 

conditions a faithful measurement of the photon arrival time is obtained. This approach can easily 35 

lead to acquisition times of a complex scene that can be of the order of many seconds or even 

minutes.  

The computational imaging philosophy enables a significant reduction in the number of detected 

photons needed for 3D imaging (15). In the “first-photon imaging” approach, only the very first 

detected photon at each scan location is used, so the acquisition time is limited primarily by the 40 

speed of scanning, and any detector dead time coincides with the scanning (16). As shown in Fig. 

2, using the number of pulses until a photon is detected as an indirect measurement of reflectivity 

along with a piecewise-smooth assumption for both reflectivity and depth, after several 

computational steps, a 3D image of a scene is produced as shown in Fig. 2. This approach builds 

a strong link between the computational steps and the detailed mechanism of single-photon 45 

detection, with various aspects such as the noise background and the particle-like nature of the 
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photons and their detection built into the information used to retrieve high-quality 3D images. 

Similar extreme photon efficiency can be achieved with a fixed dwell time at each scene position 

(17), and principled statistical techniques for adapting the local spatial resolution to characteristics 

of the data enables background noise 25 times stronger than the back-reflected signal to be 

mitigated (18). Additional performance improvements have been obtained with deep learning. 5 

Using an array of SPADs parallelizes the data acquisition and thus can increase imaging speed, 

though an array has coarser time resolution, translating to coarsened longitudinal distance 

measurements (19). Methods for arrays can also be highly photon efficient (20). 

 

Non-Line of sight imaging: Photon counting has strongly impacted the field of Non-Line-Of-10 

Sight (NLOS) imaging, i.e. the imaging objects that are for example hidden behind a wall, corner 

or obstacle (21-30). Access to very high temporal resolution imaging systems allows 

reconstruction of a full 3D image of the hidden scene, as conceptually explained in Fig. 3(A). A 

short laser pulse is sent to a scattering surface chosen so as to scatter light behind the obstacle and 

thus illuminate the hidden scene. The hidden scene will reflect back a return echo that will once 15 

again hit the first scattering wall and return to the imaging system. An intuitive understanding of 

the hidden object reconstruction is based on the fact that the locus of points that can give rise to a 

back-scattered signal from a laser spot at a position 𝑟- = (𝑥- , 𝑦-)  and measured at a given point 

𝑟# = (𝑥# , 𝑦#) on the wall is given by 	𝑟 −	𝑟- + 	𝑟 −	𝑟# + 𝑧 = 𝑐𝜏. This equation describes an 

ellipsoid of points that can be recalculated for each detection point on the wall: each of these 20 

ellipsoids will overlap only at the points of origin of the (hidden object) scattering. Therefore, by 

summing over all ellipsoids, one obtains a high “intensity” (proportional to the overlap) in 

correspondence to the hidden object. With sufficient temporal resolution and additional processing 

to sharpen the retrieval, it is possible to reconstruct full 3D shapes: for example, 100 ps is sufficient 

to resolve cm-sized features. Practically, most retrieval techniques aim at iteratively finding a 25 

solution for 𝐼 = 𝐴𝜌 where 𝜌(𝑥, 𝑦, 𝑧) represents the physical distribution of the hidden object and 

the measured transient image intensity is 

𝐼 𝑥, 𝑦, 𝜏 =
1

𝑟-
:𝑟#

: 𝛿 	𝑟 −	𝑟- + 	𝑟 −	𝑟# + 𝑧 − 𝑐𝜏 𝜌 𝑥, 𝑦, 𝑧 𝑑𝑥𝑑𝑦𝑑𝑧 

The first demonstration of this technique was obtained using a streak camera (21) that provides 

very high 1-10 ps temporal resolution but at the expense of relatively long acquisition times, see 30 

Fig.3(B) and (C). Successive demonstrations resorted to single photon counting to reconstruct 3D 

images (22) and to perform tasks such as tracking of moving objects (25) and humans even over 

very large distances (more than 50 meters between the scattering wall and the imaging system 

(26)) using also single pixel SPADs. Recent improvements have demonstrated acquisition times 

of the order seconds for a full 3D scene reconstruction by modifying the acquisition scheme 35 

(photons are now collected coaxially, i.e. along the same (exact) trajectory as the outgoing the 

laser beam (29)) as a result of which measurement integral is simplified to 

𝐼 𝑥, 𝑦, 𝜏 =
1

𝑟<
𝛿(𝑟 + 𝑟- − 𝜏𝑐)𝜌(𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧 

where the radiometric term 1/𝑟<, is now only a function of 𝜏 and can thus be removed from the 

integral. Overall, the result of this is that 𝐼 𝑥, 𝑦, 𝜏  reduces to a convolution that significantly 40 

reduces the computational retrieval times, paving the way to real-time reconstruction of 3D scenes. 
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This is an example of how imaging hardware and computational techniques have co-evolved to 

create a new imaging capability. It is worth pointing out that recent measurements have shown not 

only real-time capability, but also long-distance and full daylight operation (26, 29), thus moving 

from proof-of-principle to first steps towards deployment in real-world applications in just a few 

years. An interesting challenge for this field of research starts from the observation that much of 5 

the technology involved in NLOS imaging is common with standard, direct line-of-sight of 

LIDAR, i.e. 3D imaging of environments using laser pulse time-of-flight measurements. In this 

sense, NLOS imaging has the potential to become a natural extension of LIDAR. In this context, 

there are clear applications for NLOS imaging, when combined with LIDAR, for urban safety and 

un-manned vehicles. It is also worth noting that future NASA missions will employ SPAD arrays 10 

for LIDAR mapping of planet surfaces and studies are currently underway to evaluate the potential 

of NLOS imaging to remotely (e.g. from a satellite) assess the internal structure of underground 

caves on planets in view of future human colonisation activities (31).  

Enhanced SPAD arrays for imaging in scattering media: Over the past several years a number 

of industrial and academic research groups have been developing a new generation of cameras 15 

where each individual pixel consists of a SPAD and all the TCSPC electronics and can thus 

efficiently acquire transient images with a resolution as low as 50 ps (19, 32-34). This effectively 

implies that when combined with a high repetition rate laser for the active illumination of the 

scene, videos rates reaching up to 20 billion frames per second can be achieved (35). This 

remarkable performance is probably better appreciated when expressed in terms of the actual 20 

imaging capability. At such frame rates per second, light propagates just 1.5 cm between 

successive frames implying that it is possible to actually freeze light in motion in much the same 

way that standard high-speed cameras can freeze the motion of a supersonic bullet. The first images 

of “light in flight” were shown in the late 1960’s using nonlinear optical gating methods (36-38) 

but the first camera-based measurements were only demonstrated several years ago using a streak 25 

camera (39). More recent measurements based on SPAD arrays have allowed the first capture of 

light pulses propagating in free space with total acquisitions times of the order of seconds or less 

(35). SPAD array cameras have also been used to directly image laser pulse propagation through 

optical fibres: beyond the direct applications of these measurements e.g. to stand-off detection of 

the fibre parameters, these measurements combined a fusion of single photon data together with 30 

hyperspectral imaging over several different wavelengths (discussed also below) and 

computational processing through which the 32x32 pixel resolution was successfully up-sampled 

by using the temporal axis to re-interpolate the pulse trajectory in the (x,y) spatial plane (40). 

The ability to capture simultaneously spatial and high-resolution temporal information at very low 

light levels with SPAD cameras has recently been applied to other challenging imaging problems, 35 

for example to imaging and sensing through scattering and turbid media. Pavia et al. have for 

example, applied inverse retrieval methods in combination with spatial and temporal information 

from a linear SPAD array for tomographic reconstruction of objects hidden in murky water (41). 

More recently, Heshmat et al. have acquired data with a planar SPAD array and reconstructed 

various shapes of objects obscured by a thick tissue phantom (42). Their technique was called “All 40 

Photons Imaging”, directly underlining the importance of the photon time-of-flight information 

that is recorded by the single-photon camera. We note that such approaches do not necessarily 

explicitly distinguish between the physical origin of the data sets. For example, temporal or spatial 

information are placed on equal footing and enter in the retrieval process in a manner where it is 

simply the quality of data that constrains the problem. This approach hints towards future 45 
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developments where the retrieval problem is further constrained by adding measurements from as 

many different sources and detectors as possible. In the broad regime of strong scattering, the 

camera will typically record an indistinct, diffuse illumination transmitted through the medium or 

reflected from the scene with little or no obvious information about any objects hidden behind or 

inside the scattering medium. Computational techniques are thus required in order to actually 5 

retrieve details about the object. This field of research is of particular interest for a number of 

applications such as medical diagnostics and imaging and sensing/imaging through fog. 

 

With the rise autonomous underwater vehicles (AUVs), unmanned aerial vehicles (UAVs), robots 

or cars, water and fog are particularly challenging media for imaging systems. While sonar is a 10 

well-established technology for long range underwater imaging, it can suffer from low spatial 

resolution limited by the physics of sound propagation in the medium. While high power optical 

solutions can be used for short range imaging in relatively clear water, the presence of underwater 

scatterers between the active imaging system and the scene (e.g., the seabed) usually produce large 

quantities of reflected photons that can mask the returns from the scene of interest. Using a pulsed 15 

illumination source combined with sensitive single photon detectors, it is possible to discriminate 

the photons reflected due to scattering in the water from those (an extremely small refraction) that 

actually reach the surfaces of interest. For instance, in (43), the authors demonstrated the ability to 

image underwater up to 8 attenuation lengths. When combining this edge-cutting technology with 

advanced statistical methods inspired by (44), significant performance improvements could be 20 

achieved in terms of 3D reconstruction and estimation of the surface reflectivity by accounting for 

the distance-induced signal loss (45). Reconstruction of 3D of terrestrial scenes at long distances 

suffers from similar limitations. Even if the measurements are performed under favorable 

conditions (e.g., dry conditions), the recorded signals can be significantly affected by atmospheric 

turbulence (46-48), and solar illumination (49, 50). Again, significant improvements in terms of 25 

detection accuracy (51) and maximal observable range (52) have been obtained by using adapted 

computational tools. The problem becomes even more acute in the presence of fog, which is a 

major concern for the next generation of automated cars. It has been demonstrated that it is 

technically possible to detect and analyze fog patches over long distances, provided that the laser 

power is sufficient to ensure a non-zero probability of photon reflection and a long enough 30 

acquisition time (53, 54). In the automotive context, where the acquisition time is intrinsically 

limited by the vehicle displacement, more robust and computationally efficient strategies have 

been recently proposed (55, 56) and it is clear that the future solutions will embed physical 

modelling of both the medium and the data collection process within the information extraction.  

 35 

Multispectral single-photon imaging. Multispectral and hyperspectral imaging, which are 

extensions of classical color (RGB) imaging, consist of imaging a scene using multiple 

wavelengths (from four to several hundreds or even thousands in hyperspectral images). These 

modalities have benefited from a significant body of research over more than 35 years, from the 

data collection community (57-59) and, more importantly, from the data processing and analysis 40 

community (60-65). Indeed, such modalities can be associated with a wide variety of 

computational problems, ranging from image acquisition (compressive sampling), restoration 

(denoising/deblurring, super-resolution), segmentation (classification) to source separation 

(spectral unmixing), object/anomaly detection and data fusion (e.g., so called pansharpening). 

While the main applications using (passive) multispectral imaging are in Earth and space 45 

observation, the proven benefits of imaging with multiple wavelengths simultaneously have 
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enabled its application in the food industry (58, 66) and a broader range of applications such as 

diagnostic dermatology (67, 68). Active multispectral imaging is less sensitive to ambient 

illumination than passive imaging, which requires data acquisition under daylight condition (e.g., 

for Earth observation). Without fast timing capabilities, multi/hyperspectral imagers are however 

only able to provide 2D intensity profiles and are thus not adapted to analyze multi-layered 3D 5 

structures, such as forest canopies. Multispectral Lidar is a promising modality allowing for joint 

extraction of geometric (as single wavelength Lidar) and spectral (as passive multispectral images) 

information from the scene, while avoiding data registration issues potentially induced by the 

fusion of heterogeneous sensors. In (69), it was demonstrated that it was possible to use 

multispectral single photon Lidar (MSPL) to remotely infer the spatial composition (leaves and 10 

branches) and the health of trees using only 4 wavelengths. More recently, new experiments have 

been designed to image up to 33 wavelengths (500-820nm) in free space (70) and 16 wavelengths 

underwater (71). As a consequence, we have witnessed the development of algorithms inspired 

from passive hyperspectral imagery (3D datacubes) for analysis of MSPL data (4D datacubes). 

For instance, Bayesian methods have been proposed to cluster, in an unsupervised manner, 15 

spectrally similar objects while estimating their range, from photon-starved MSPL data (72). This 

work was further developed in (73, 74) to classify pixels based on their spectral profiles in photon-

starved regimes down to 1 photon per pixel and per spectral band on average (see Fig. 4).  Such 

results are only possible by efficiently combining a highly sensitive raster scanning single-photon 

system allowing for submillimetre range resolution with hierarchical Bayesian models able to 20 

capture the intrinsic, yet faint, structures (e.g., spatial and spectral correlations) of the data. A 

significant improvement has been demonstrated using simulation methods (see next section) to 

reconstruct scenes (range and reflectivity profiles) with as few as 4 photons per pixel (with 4 

spectral bands and one photon per pixel on average) (73). Spectral unmixing presents another 

challenging problem encountered when analyzing multi/hyperspectral data, that is, when it is 25 

necessary to identify and quantify the materials/components present in the observed scene. 

Spectral unmixing thus generalizes classification methods by accounting for the fact that several 

“mixed” materials can be observed in a given pixel. Spectral unmixing methods allow for sub-

pixel material quantification, which is particularly interesting for long-range imaging scenarios 

where the divergence of the laser beam cannot be neglected. In (70), a novel computational method 30 

is developed for quantifying and locating 15 known materials from MSPL data consisting of 33 

spectral bands, while detecting additional (potentially unknown) materials present in the scene. 

Again, this work demonstrated the possibility of material quantification and anomaly detection 

with as few as 1 photon per pixel and per spectral band, on average. It also illustrated how Bayesian 

modelling can be used for uncertainty quantification, e.g., for providing confidence intervals 35 

associated with estimated range profiles. As mentioned above, while the most recent single-photon 

detectors are very attractive for their high temporal resolution, their use to extract information from 

large scenes is currently limited by long acquisition times associated with raster scanning 

strategies. This is particularly limiting when several wavelengths are acquired in a sequential 

manner. To address this problem, compressive sampling strategies have been investigated to 40 

achieve faster MSLP data acquisition (75, 76). Although computational methods adapted for 

scanning systems have been proposed, whereby a random number of spectral bands can be probed 

in a given pixel, the most promising results have been obtained with a simulated mosaic filter (4 

wavelengths) whose actual implementation within a SPAD array in the near future should allow 

for the simultaneous acquisition of multiple pixels and fast reconstruction of range and reflectivity 45 

profiles. These results show how advanced computational methods can be used to enhance 
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information extraction from imaging systems but also improve the design of future detectors and 

detector arrays.  

 

Computational methods in the photon starved regime. Generally speaking, from a 

computational perspective, extracting information from a scene can be seen as inferring a set of 5 

parameters 𝒙, which may have a physical meaning (or not), for a set of measurements 𝒚 recorded 

by an imaging/sensing device. These parameters can take continuous values, (e.g., light field 

intensities, object positions and velocities) or discrete values, (e.g., the number objects, binary 

values representatives of the presence or absence of objects). Two main families of methods can 

be adopted to design algorithms for data analysis, namely, supervised machine learning approaches 10 

and statistical signal processing approaches, although hybrid methods can also be used. The choice 

of the most suitable approaches depends primarily on the complexity of the computational model, 

as well as the computational budget available, i.e., the expected processing time, data storage 

limitations and the desired quality of the information extracted. Supervised machine learning 

(including deep learning) approaches are particularly well suited for applications where a sufficient 15 

quantity of ground truth data/information or reference data is available (77-80). Such methods rely 

on a two-stage process, referred to as the training stage and the test stage. Starting from a forward 

model 𝒚 ≈ 𝑔(𝒙), relating the measured data 𝒚 to the unknown source parameters 𝒙, the training 

stage uses a set of measurements and corresponding parameters to learn the inverse mapping ℎ(⋅) 

between the measurements and the set of parameters to be recovered, i.e., it fits an inverse model 20 

𝒙 ≈ ℎ(𝒚). In contrast to model-based statistical methods, data-driven machine learning 

approaches do not rely on the knowledge a forward model 𝑔 ⋅ .		Thus, these methods can often be 

applied to complex problems where the forward model is unknown or too complicated to be 

derived analytically but there is plenty of training data available. The training stage controls the 

quality of the estimation of the mapping ℎ(⋅), which in turn depends on the representational power 25 

of the machine learning algorithm, and on the quality/diversity of the training samples. Machine 

learning approaches have been successfully applied to imaging applications such as imaging 

through multimode fibres (77), lensless imaging of phase objects (78) and identification of human 

pose from behind behind a diffusive screen (79). SPAD cameras have been specifically applied to 

the problem if identifying both the position and identity of a people hidden behind a wall (80) 30 

scattering walls (81) or camouflage (82). Their use can become limited due to their poor 

adaptability properties (e.g., they have to be re-trained for different acquisition scenarios) and the 

lack of ground truth information as is often the case in photon-starved regimes where the goal is 

to extract information previously inaccessible.  

In such scenarios, model-based statistical methods can be more attractive, as they can better fit the 35 

data to a forward model 𝑔(⋅).  Physical considerations, such as light transport theory through the 

medium and the detector can often guide the choice of the most appropriate models, although non-

physically inspired approximations can be used to make the model fitting algorithm more 

computationally tractable. When there is measurement uncertainty and noise the forward model 

can be better characterized by the conditional probability distribution 𝑓(𝒚|𝒙), which describes the 40 

statistical variation of the measurements 𝒚 for a given source parameter value 𝒙. For fixed value 

𝒚, the function  𝑙G 𝒙 = 𝑓(𝒚|𝒙), called the likelihood function, quantifies the likelihood that the 

source value  𝒙  generated the observed value 𝒚. The maximum likelihood principle forms an 

estimate of 𝒙 from 𝒚 by maximizing the likelihood over 𝒙.  However, the maximum likelihood 

estimate is often not unique in high dimensional inverse problems such as imaging. However, often 45 

additional information about 𝒙 is available, e.g., a priori knowledge about positivity, smoothness, 
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or sparsity, and can be used to improve on the maximum likelihood estimate. Let 𝜙 be a 

regularization function such that 𝜙(𝒙) is small when 𝒙 complies with a priori knowledge and is 

large otherwise. Then it is possible to recover 𝒙 by minimizing the cost function 𝐶𝒚 𝒙 =

−log 𝑙G 𝒙 + 𝜙(𝒙), i.e.,  

min
𝒙
𝐶𝒚 𝒙 = min

𝒙
−log 𝑙G 𝒙 + 𝜙(𝒙) .	 5 

If 𝜙(𝒙) can be associated with a proper density 𝑓 𝒙 ∝ 𝑒RS(𝒙), called the prior distribution, this 

penalized likelihood estimation strategy can be interpreted in the Bayesian formalism as a 

maximum a posteriori estimation procedure, i.e., the above minimization is equivalent to 

maximizing the posterior density of 𝒙 

 10 

𝑓 𝒙 𝒚 = 𝑓(𝒚|𝒙)𝑓(𝑥)/𝑓(𝑦), 

 

where 𝑓(𝒚) is a density that does not depend on 𝒙. These and related likelihood based approaches 

have been adopted by many researchers in low photon imaging, e.g., (16, 17, 75).  

The Bayesian formalism allows for the observed data to be combined with additional information 15 

available in a principled manner. This also allows so-called a posteriori measures of uncertainty to 

be derived. However, such measures cannot be computed analytically in most practical 

applications because of the complexity of good spatial correlation models, so they often rely on 

high-dimensional integrations. While significant advantage may be gained from computationally 

simple pixel-by-pixel adaptation (83), a classical approach thus consists of approximating these 20 

measures (e.g., a posteriori variances/covariances or confidence intervals) using variational 

approximations or simulation techniques. Markov Chain Monte Carlo (MCMC) methods are 

particularly well adapted for inference in difficult scenarios where the cost function or posterior 

distribution of interest has multiple modes and multiple solutions potentially admissible. For 

instance, such methods have been successfully applied to object detection (51), material 25 

quantification and anomaly detection (70) from low-flux single-photon Lidar measurements.  

 

Conclusions.  With the rapid advance in imaging cameras and sensors together with a leap forward 

in computational capacity, we see enormous potential for significant innovation over the next 

several years. The main challenge—or the main opportunity—at this stage is the co-development 30 

of sensors and computational algorithms that are built around the physical processes of the photon 

transport and detection processes. We have provided examples showing progress in this direction, 

ranging from first-photon imaging techniques to photon-starved hyperspectral imaging. The trend 

seen in commercial cameras between 2000-2015, characterized by a constant drive towards higher 

pixel counts, has slowly subsided, giving way to a different approach whereby both performance 35 

and functionality are increased by combining multiple sensors through computational processing. 

Obvious examples are recent advances in cell-phone technology, arguably one of the main drivers 

behind imaging technology, that now boasts multiple cameras and lenses providing depth 

perception, improved signal to noise ratio and other functionalities such as 3D face recognition. 

With SPAD cameras also gradually making their appearance on the commercial scene, single-40 

photon imaging and computational techniques offer an exciting avenue for future innovation in 

situations where previously imaging was not thought to be possible. We have briefly discussed 
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examples such as imaging though denser scattering media such as the human body or fog, and full 

3D imaging of scenes that are around a corner or beyond the direct line of sight, e.g., around a 

corner. These examples are particularly relevant in demonstrating the progress that can be made 

when the photon transport models and computational approaches are integrated with the new 

generation of photon detectors. The expectation is that over the next several years we will witness 5 

a remarkable growth of computational imaging methods, driven by and also driving new 

technologies such as single-photon SPAD arrays that will revolutionize nearly every aspect of 

human activity, ranging from medical diagnostics to urban safety and space missions. 

References  

(1) T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, Optical imaging by means of two-photon 10 
quantum entanglement. Phys Rev A 52(2), 3429–3432 (1995). 

(2) J. H. Shapiro, R. W. Boyd, The physics of ghost imaging. Quantum Inf. Process. 11(4), 949–993 (2012) 

[doi:10.1007/s11128-011-0356-5]. 

(3) J. Shapiro, Computational ghost imaging. Phys Rev A 78(6), 061802 (2008) 

[doi:10.1103/PhysRevA.78.061802]. 15 

(4) M. F. Duart, M. A. Davenport, T. Dharmpal, J. N. Laska, S. Ting, K. F. Kelly, R. G. Baraniuk, Single-pixel 

imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008) 

[doi:10.1109/MSP.2007.914730]. 

(5) D. Shin, J. H. Shapiro, V. K. Goyal, Performance analysis of low-flux least-squares single-pixel imaging. 

IEEE Signal Process. Lett. 23(12), 1756-1760 (2016).  20 
 

(6) P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, M. J. Padgett, Imaging with a small number of photons. 

Nat. Commun. 6, 5913 (2015). 

(7) A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, Correlated imaging, quantum and classical. Phys Rev A 

70(1), 10 (2004) [doi:10.1103/PhysRevA.70.013802]. 25 

(8) M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, M. J. Padgett, 

Simultaneous real-time visible and infrared video with single-pixel detectors. Sci. Rep. 5, 10669–8 (2015) 

[doi:10.1038/srep10669]. 

(9) G. A. Howland, D. J. Lum, Photon counting compressive depth mapping. Opt. Express 21(20), 23822–

23837 (2013) [doi:10.1364/OE.21.023822]. 30 
(10) M.-J. Sun M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, M. J. Padgett, Single-pixel three-

dimensional imaging with time-based depth resolution. Nat. Commun. 7, 12010–12016 (2016) 

[doi:10.1038/ncomms12010]. 

(11) D. B. Phillips, M.-J., Sun, J. M. Taylor, M. P. Edgar, S. M. Barnett, G. M. Gibson, M. J. Padgett, Adaptive 

foveated single-pixel imaging with dynamic super-sampling. Sci. Adv. 3, e1601782 (2017). 35 

(12) D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (UK: Academic Press, 

London,1984). 

(13) W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer Series in Chemical 

Physics, Springer, Berlin, 2005). 



Submitted Manuscript: Confidential 

11 

 

(14) S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, S. Cova, Laser-based distance measurement using 

picosecond resolution time-correlated single-photon counting. Meas. Sci. Technol. 11(6), 712-716 (2000). 

(15) D. Lindell, M. O'Toole, G. Wetzstein, Single-photon 3D imaging with deep sensor fusion. ACM Trans. 

Graphics (SIGGRAPH), (2018).  

(16) A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, V. K. Goyal, First-photon 5 
imaging. Science 343(6166), 58-61 (2014). 

(17) D. Shin, A. Kirmani, V. K. Goyal, J. H. Shapiro, Photon-efficient computational 3D and reflectivity 

imaging with single-photon detectors. IEEE Trans. Computat. Imaging 1(2), 112-125 (2015). 

(18) J. Rapp, V. K. Goyal, A few photons among many: unmixing signal and noise for photon-efficient active 

imaging. IEEE Trans. Computat. Imaging 3(3), 445-459 (2017). 10 

(19) F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. 

Weyers, W. Brockherde, CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D 

time-of-flight. IEEE J. Sel. Topics in Quantum Electronics 20(6), 364-373 (2014). 

(20) D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, J. H. 

Shapiro, Photon-efficient imaging with a single-photon camera. Nat. Commun. 7, 12046 (2016). 15 

(21) A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, R. Raskar, Recovering three-

dimensional shape around a corner using ultrafast time-of-flight imaging. Nature Communications 3, 745 

(2012). 

(22) M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, A. Velten, Non-line-of-sight imaging using a time-gated 

single photon avalanche diode. Optics Express 23, 20997 (2015). 20 

(23) M. Laurenzis, A. Velten, Non line-of-sight laser gated viewing of scattered photons. Optical Engineering 

53(2), 023102 (2014). 

(24) J. Klein, C. Peters, J. Martin, M. Laurenzis, M. B. Hullin. Tracking objects outside the line of sight using 

2D intensity images. Sci. Rep. 6, 32491 (2016). 

(25) G. Gariepy, F. Tonolini, R. Henderson, J. Leach, D. Faccio. Detection and tracking of moving objects 25 
hidden from view. Nat. Photon. 10, 23-26 (2016). 

(26) S. Chan, R. Warburton, G. Gariepy, J. Leach, D. Faccio. Non-line-of-sight tracking of people at long range. 

Opt. Express 25, 10109 (2017). 

(27) N. Naik, S. Zhao, A. Velten, R. Raskar, K. Bala. Single view reflectance capture using multiplexed 

scattering and time-of-flight imaging. ACM Trans. on Graphics 30(6), 171 (2011). 30 

(28) R, Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, R. Raskar. Estimating motion and size of 

moving non-line-of-sight objects in cluttered environments. IEEE Conf. Comp. Vision Patt. Recogn. 

(CVPR), Providence, RI, USA, 265-272 (2011). 

(29) M. O’Toole, D. B. Lindell, G. Wetzstein, Confocal non-line-of-sight imaging with the light cone transform. 

Nature 555, 338-341 (2018). 35 

(30) A. Kirmani, H. Jeelani, V. Montazerhodjat, V. K. Goyal, Diffuse imaging: creating optical images with 

unfocused time-resolved illumination and sensing. IEEE Signal Process. Lett. 19(1), 31-34 (2012). 

(31) P. Boston et al., http://www.niac.usra.edu/files/studies/final_report/710Boston.pdf (2004) 

(32) C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, 

M. Gersback, R. K. Henderson, E. Charbon, A 160 x 128 single-photon image sensor with on-pixel 55 ps 40 
10 bit time-to-digital converter. IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers (ISSCC), 312-314 

(2011). 

(33) I. Vornicu, R. Carmona-Galan, A. Rodriguez-Vazquez, Arrayable voltage-controlled ring-oscillator for 

direct time-of-flight image sensors. IEEE Trans. on Circuits and Systems I: Regular Papers 64(11), 2821-



Submitted Manuscript: Confidential 

12 

 

2834 (2017). 

(34) L. Gasparini, M. Zarghami, H. Xu, L. Parmesan, M. M. Garcia, M. Unternahrer, B. Bessire, A. Stefanov, 

D. Stoppa, M. Perenzoni, A 32x32-pixel time-resolved single-photon image sensor with 44.64 µm pitch 

and 19.48% fill-factor with on-chip row/frame skipping features reaching 800kHz observation rate for 

quantum physics applications. IEEE Intern. Solid-State Circuits Conference, San Fransisco, USA (2018). 5 

(35) G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. 

Leach, D. Faccio. Single-photon sensitive light-in-flight imaging. Nat. Commun. 6, 6021 (2015). 

(36) J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht. Two photon excitation of fluorescence by 

picosecond light pulses. Applied Physics Letters 11, 216-218 (1967). 

(37) M. A. Duguay, J. W. Hansen. An ultrafast light gate. Applied Physics Letters 15, 192-194 (1969). 10 

(38) M. A. Duguay, J. W. Hansen. Ultrahigh-speed photography of picosecond light pulses. IEEE Journal of 

Quantum Electronics 10(9), 2162-2170 (1971). 

(39) A.Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, R. Raskar. 

Femto-photography: capturing and visualizing the propagation of light. ACM Trans. on Graphics. 32, 1-8 

(2013). 15 

(40) R. Warburton, C. Aniculaesei. M.  Clerici, Y.  Altmann, G. Gariepy,  R. McCracken, D. Reid, S. 

McLaughlin, M. Petrovich, J.  Hayes, R. Henderson, D. Faccio, J. Leach, Observation of laser pulse 

propagation in optical fibers with a SPAD camera. Sci. Rep. 7, 43302 (2017). 

(41) J.M. Pavia, M. Wolf, E. Charbon, Single-photon avalanche diode images applied to near-infrared imaging. 

IEEE J. Sel. Top. Quant. Electron. 20, 3800908 (2014). 20 

(42) G. Satat, B. Heshmat, D. Raviv, T Raskar. All photons imaging through volumetric scattering. Sci. Rep. 6, 

33946 (2016). 

(43) A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, G. S. Buller, 

Underwater depth imaging using time-correlated single-photon counting. Opt. Express 23(26), 33911-

33926 (2015). 25 

(44) Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, Lidar waveform-based analysis of depth 

images constructed using sparse single photon data. IEEE Trans. Image Processing 25(5), 1935-1946 

(2016). 

(45) A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, G. S. Buller, Object depth profile and reflectivity 

restoration from sparse single-photon data acquired in underwater environments. IEEE Trans. on 30 
Computat. Imaging 3(3), 472-484 (2017). 

(46) P. W. Milonni, J. H. Carter, C. G. Peterson, R. J. Hughes, Effects of propagation through atmospheric 

turbulence on photon statistics. J. of Optics B: Quantum and Semiclassical Optics 6(S742) (2004). 

(47) I. Capraro, A. Tomaello, A. Dall'Arche, F. Gerlin, R. Ursin, G. Vallone, P. Villoresi, Impact of turbulence 

in long range quantum and classical communications. Phys. Rev. Lett. 109(20), 200502 (2012).  35 

(48) M. Henriksson, L. Sjoqvist, Scintillation index measurement using time-correlated single-photon counting 

laser radar. Opt. Eng. 53(8), 081902 (2014). 

(49) A. McCarthy, X. Ren, A. D. Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, G. S. 

Buller, Kilometer–range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon 

avalanche diode detector. Opt. Express 21(19), 22098-22113 (2013). 40 

(50) A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. D. Dorenbos, V. Zwiller, R. H. 

Hadfield, G. S. Buller , Kilometer-range, high resolution depth imaging via 1560 nm wavelength single–

photon detection. Opt. Express 21(7), 8904-8914 (2013). 

(51) Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, Robust Bayesian target detection 

algorithm for depth imaging from sparse single-photon data. IEEE Trans. on Computat. Imaging 2(4), 456-45 



Submitted Manuscript: Confidential 

13 

 

467 (2016). 

(52) A. M. Pawlikowska, A. Halimi, R. A. Lamb, G. S. Buller, Single-photon three-dimensional imaging at up 

to 10 kilometers range. Opt. Express 25(10), 11919-11931 (2017). 

(53) J. Zhu, C. Yajun, Z. Labao, J. Xiaoqing, F. Zhijun, W. Ganhua, Y. Xiachao, J. Zhai, Y. Wu, Q. Chen, X. 

Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, P. Wu, Demonstration of measuring sea fog with an SNSPD-5 
based Lidar system. Sci. Rep. 7, 15113 (2017). 

(54) B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, G. Wu, High-speed photon-counting laser ranging 

for broad range of distances. Sci. Rep. 8, 4198 (2018). 

(55) G. Satat, B. Heshmat, D. Raviv, R. Raskar, All photons imaging through volumetric scattering. Sci. Rep. 6, 

33946 (2016). 10 

(56) G. Satat, M. Tancik, R. Raskar, Towards photography through realistic fog. IEEE Intern. Conf. on 

Computat. Photography (ICCP), Pittsburgh, PA, USA (2018). 

(57) F. H. Goetz, Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sensing 

of Environment 113(S1), S5-S16 (2009). 

(58) A. A. Gowen, C. P. O'Donnell, P. J. Cullen, G. Downey, J. M. Frias, Hyperspectral imaging - an emerging 15 
process analytical tool for food quality and safety control. Trends in Food Science & Technology 18(12), 

590-598 (2007). 

(59) G. P. Asner, D. E. Knapp, T. Kennedy-Bowdoin, M. O. Jones, R. E. Martin, J. W. Boardman, C. B. Field, 

Carnegie airborne observatory: in-flight fusion of hyperspectral imaging and waveform light detection and 

ranging for three-dimensional studies of ecosystems. J. of Applied Rem. Sens. 1(1), 013536 (2007).  20 
 

(60) D. Landgrebe, Hyperspectral image data analysis. IEEE Sig. Process. Mag. 19(1), 17-28 (2002). 

(61) A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. 

Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, Recent advances in techniques for hyperspectral image 

processing. Remote sensing of environment 113(S1), S110-S122 (2007). 25 
(62) J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, J. Chanussot, Hyperspectral 

unmixing vverview: geometrical, statistical, and sparse regression-based approaches. IEEE J. of Sel. Topics 

in Appl. Earth Observ. and Rem. Sens. 5(2), 354-379 (2012)  

(63) M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, J. C. Tilton, Advances in spectral-spatial 

classification of hyperspectral images. Proc. of the IEEE 101(3), 652-675 (2013). 30 
(64) N. Dobigeon, J.-Y. Tourneret, C. Richard, J. C. M. Bermudez, S. McLaughlin, A. O. Hero, Nonlinear 

unmixing of hyperspectral Images: models and algorithms. IEEE Sig. Process. Mag. 31(1), 82-94 (2014).  

(65) L. Loncan, L. B. Almeida, J. M. Bioucas-Dias, X. Briottet, J. Chanussot, N. Dobigeon, S. Fabre, W. Liao, 

G. A. Licciardi, M. Simões, J.-Y. Tourneret, M. A. Veganzones, G. Vivone, Q. Wei, N. Yokoya, 

Hyperspectral pansharpening: a review. IEEE Geosc.and Rem. Sens. Mag. 3(3), 27-46 (2015).  35 

(66) D.-W. Sun, Hyperspectral Imaging for Food Quality Analysis and Control (Academic Press, 2010) 

(67) R. Koprowski, O. Paweł, Segmentation in dermatological hyperspectral images: dedicated methods. 

Biomed. Eng. Online 15(1), 97 (2016). 

(68) F. Vasefi, N. MacKinnon,  D. L. Farkas, “Chapter 16 - Hyperspectral and Multispectral Imaging in 

Dermatology” in Imaging in Dermatology (Academic Press, Boston, 2016). 40 

(69) A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, G. 

S. Buller, Design and Evaluation of Multispectral Lidar for the recovery of arboreal parameters. IEEE 

Trans.  Geosci. and Rem. Sensing 52(8), 4942-4954 (2014). 

(70) Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin, A. Hero, Robust 

spectral unmixing of sparse multispectral Lidar waveforms using gamma Markov random fields. IEEE 45 
Trans. on Computat. Imaging 2(4), 658-670 (2017). 

(71) P. Chhabra, A. Maccarone, A.  McCarthy, G. S.  Buller, A. Wallace, Discriminating underwater Lidar 

target signatures using sparse multi-spectral depth codes. Sensor Signal Processing for Defence (SSPD), 



Submitted Manuscript: Confidential 

14 

 

Edinburgh, U.K. (2016). 

(72) Y. Altmann, A. Maccarone, A. McCarthy, G. S. Buller, S. Mclaughlin, Joint spectral clustering and range 

estimation for 3D scene reconstruction using multispectral Lidar waveforms.  Europ. Signal Process. Conf. 

(EUSIPCO), Budapest, Hungary, 513-517 (2016). 

(73) Y. Altmann, A. Maccarone, A. McCarthy, G. Buller, S. McLaughlin, Joint range estimation and spectral 5 
classification for 3D scene reconstruction using multispectral Lidar waveforms. IEEE Statist. Signal 

Process. Work. (SSP), Palma de Mallorca, Spain, 1-5 (2016). 

(74) Y. Altmann, A. Maccarone, A. McCarthy, S. McLaughlin, G. S. Buller, Spectral classification of sparse 

photon depth images. Opt. Express 26(5), 5514-5530 (2018). 

(75) R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. A Lamb, S. McLaughlin, G. S. Buller, Comparative study 10 
of sampling strategies for sparse photon multispectral lidar imaging: towards mosaic filter arrays. J. of Opt. 

19(19), 094006 (2017). 

(76) Y. Altmann, R. Tobin, A. Maccarone, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, Bayesian 

restoration of reflectivity and range profiles from subsampled single-photon multispectral Lidar data.  

Europ. Signal Process. Conf. (EUSIPCO), Kos, Greece, 1410-1414 (2017). 15 

(77) R. Takagi, R. Horisaki, J. Tanida, Object recognition through a multi-mode fiber. Opt. Rev. 24(2), 117-120 

(2017). 

(78) A. Sinhai, J. Leee, S. Li, G. Barbastathis, Lensless computational imaging through deep learning. Optica 

4(9), 1117-1125 (2017). 

(79) G. Satat, M. Tancik, O. Gupta, B. Heshamt, R. Raskar, Object classification through scattering media with 20 
deep learning on time resolved measurement. Opt. Express 25(15), 17466-17479 (2017). 

(80) P. Caramazza et al., https://arxiv.org/abs/1709.07244 (2017). 

(81) D. Shin, F.Xu, F. N. C. Wong, J. H. Shapiro, V. K Goyal, Computational multi-depth single-photon 

imaging. Opt. Express 24(3), 1873-1888 (2016). 

(82) R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, G. S. Buller, Long-range depth 25 
profiling of camouflaged targets using single-photon detection. Opt. Eng. 57(3) 031303 (2017). 

(83) S. Medin, J. Murray-Bruce, V. K. Goyal, Optimal stopping times for estimating Bernoulli parameters with 

applications to active imaging. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Calgary, 

Canada (2018). 

 30 

   

Acknowledgments: The authors thank the Royal Society for support and hosting the Theo 

Murphy Scientific meeting on “Light Transport and imaging through complex media.  

Funding: DF acknowledges financial support from the UK Engineering and Physical Sciences Research 

Council (grants EP/ M006514/1, EP/ M01326X/1). YA acknowledges the support from the UK Royal 35 
academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). VKG acknowledges 

support from the US Defence Advanced Research Projects Agency (DARPA) InPho program through U.S. 

Army Research Office award W911NF-10-1-0404, the US DARPA REVEAL program through contract 

HR0011-16-C-0030, and US National Science Foundation through grants 1161413 and 1422034. AOH 

acknowledges the support from the U.S. Army Research Office award W911NF-15-1-0479 and the U.S. 40 

Dept. of the Air Force grant FA8650-15-D-1845.  

Author contributions: all authors contributed equally to this work. 

Data and materials availability: No new data was generated in this work. 

 



Submitted Manuscript: Confidential 

15 

 

 

 

 

 

 5 

Fig.1: Ghost imaging. Random spatial patterns, Rn, illuminate an object and only the total 

transmitted (or reflected) light, An, is measured. This intensity reading is then computationally 

combined with the information of the pattern, In(x,y) (either measured separately or known if this 

was generated by a computer) to form an image of the object.  

 10 

 

 

Fig.2 First-photon imaging. (A) Each photon detection can be mapped to a 3D position, which is 

often far from correct because half of the detections are due to background light.  The number of 

illumination pulses until a photon is detected is inversely proportional to an initial estimate of 15 

reflectivity. (B) Exploiting piecewise smoothness yields improved reflectivity estimates. (C) 

Approximate noise censoring removes most detections due to background light. (D) The final 

estimate exploits piecewise smoothness of depth. Figure adapted from [(15), Fig. 2] 
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Fig.3 Non-Line-Of-Sight imaging. (A) Basic geometry of the problem. A laser illuminates a 

scattering surface and scatters light around a wall that hides an object from the direct line of sight. 

The return signal back-scattered from the hidden object is detected at a point “i” on the scattering 5 

surface. This geometry, with a single observation point, defines an ellipsoid of possible locations 

for the object. Detection of the time-resolved transient image at multiple points on the surface 

allows to reconstruct the location or even the full 3D shape of the object. (B) An example of a 

hidden object with its reconstruction shown in (C). Figures (B) and (C) adapted from (20). 

Fig.4 Computational inverse probability methods to spectrally classify and depth resolve objects 10 

in a scene from photon-starved multispectral LIDAR images. The scene (A) was composed of 14 

clay materials composed of different colours. The recorded images consist of 200 × 200 pixels (the 

scanned target areas were approximately 50 × 50 mm) and the targets were placed at 1.85 meters 

from the system. In (B), the first column depicts the estimated depth profile (in mm), the reference 

range being arbitrarily set to the backplane range. The second column depicts color classification 15 

maps and the third column depicts the spectral signatures of the most prominent classes, projected 

onto the first and second axes obtained using principal component analysis. Each of these subplots 

illustrates the similarity between the estimated spectral signatures. Rows a) and b) in (B) depict 
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results obtained with an average of 1 detected photon per pixel, for each spectral band, with 33 

and only 4 bands. Figure adapted from (63) 

 


