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Quantum-Inspired Evolutionary Algorithm
for Real and Reactive Power Dispatch

John G. Vlachogiannis and Kwang Y. Lee, Life Fellow, IEEE

Abstract—This paper presents an evolutionary algorithm
based on quantum computation for bid-based optimal real and
reactive power (P-Q) dispatch. The proposed quantum-inspired
evolutionary algorithm (QEA) has applications in various combi-
natorial optimization problems in power systems and elsewhere.
In this paper, the QEA determines the settings of control variables,
such as generator outputs, generator voltages, transformer taps
and shunt VAR compensation devices for optimal P-Q dispatch
considering the bid-offered cost. The algorithm is tested on the
IEEE 30-bus system, and the results obtained by the QEA are
compared with those obtained by other modern heuristic tech-
niques: ant colony system (ACS), enhanced GA and simulated
annealing (SA) as well as the original QEA. Furthermore, in
order to demonstrate the applicability of the proposed QEA, it
is also implemented in a different problem, which is to minimize
the real power losses in the IEEE 118-bus transmission system.
The comparisons demonstrate an improved performance of the
proposed QEA.

Index Terms—Bid-based dispatch, economic dispatch, evolu-
tionary computation, quantum computation, real and reactive
power operational planning.

I. INTRODUCTION

N EED for improved power quality and secure power supply
today demands many services in the electric power sys-

tems, such as the dispatch of reactive power and other services
known as ancillary services. Real and reactive power opera-
tional planning belongs to these categories of services. It allo-
cates voltage controls and reactive power support in accordance
with voltage security and open market mechanisms [1]. Many
research works have revealed the coupling between real and re-
active power support [1]–[8], while some others [9], [10] have
tried to evaluate reactive power short-term marginal prices. Hao
and Papalexopoulos proposed the development of local reactive
power markets [11]. Zammit et al. designed ancillary service
markets considering firstly security and secondly economic op-
timization in combination with spot market for electricity [12].
Recently, the discrete nature of the problem has led to the use
of meta-heuristic techniques such as ant colony systems search
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(ACS) [1], genetic algorithms (GAs) [13]–[19], and simulated
annealing (SA) [20].

In this paper, the real and reactive operational planning is
solved by means of a new quantum computing inspired genetic
algorithm. Quantum computing was introduced in the early
1980s by Feynmann [21], [22] and Beinoff [23]. Quantum
computers will operate on the superposition of all classical
search states, allowing them to evaluate properties of all states
in about the same time a classical machine requires for an
evaluation of a single state. Superposition is described by a
state vector, consisting of complex numbers, called ampli-
tude amplifications [24]. Under these circumstances, quantum
computing in the future could play a significant role in com-
puter science. Recent researches (latest in the 1990s) look at
quantum computing as a new evolutionary technique reducing
the complexity of global optimization problems. They can be
classified into two fields of studies: The first focuses on gener-
ating new quantum algorithms using evolutionary techniques
such as genetic programming [25] and the second concentrates
on quantum-inspired evolutionary computing for classical
computers [26]–[31]. In the second field of studies, Han and
Kim [29]–[31] introduced a quantum-inspired evolutionary
algorithm (called the original QEA) when solving a class of
combinatorial problems.

In this paper we propose an improved quantum-inspired evo-
lutionary algorithm (QEA) for various combinatorial optimiza-
tion problems applied in power engineering. The proposed QEA
is backed by theoretical background, and characterized by rapid
convergence and search capability compared with other clas-
sical GA and evolutionary techniques such as ACS algorithm
[1]. These achievements are based on the concept of quantum
theory such as qubits and a random superposition of quantum
states. One individual in QEA can represent many states at the
same time and there are weak relationships between individuals
since each one of them is determined by current best solution
and its probability, that is, the history of an individual up to date
[24], [26]–[31].

Specifically, the QEA algorithm aims to determine the op-
timal settings of control variables, such as generator outputs,
voltage magnitudes, transformer taps and the settings of shunt
VAR compensation devices, which are considered in a quantum
or Q-bit individual of QEA. Results are compared to those given
by metaheuristic techniques of ACS search [1], enhanced GA
[19], and SA [20] as well as the original QEA [29]–[31] for the
network of IEEE 30-bus test system, and are shown to exhibit
improved performance. Also, in order to demonstrate the appli-
cability of the proposed QEA on a larger problem, we imple-
ment it to minimize the real power losses in transmission lines
of the IEEE 118-bus system. The results are compared to those
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given by metaheuristics ACS search [1], enhanced GA [19], as
well as the primal-dual interior-point based IP-OPF algorithm
[41]. The full mathematical model of the IP-OPF [41] also is
given in Appendix A. The last comparison demonstrates the ex-
cellent performance of proposed QEA on a larger optimization
problem.

The rest of the paper is organized as follows: the problem of
P-Q dispatch is formulated in Section II. Section III addresses
the fundamental concept of the quantum computation, while the
QEA is introduced in Section IV. Section V presents the results
of the QEA on bid-based real/reactive operational planning of
the IEEE 30-bus system and minimization of real power losses
in transmission lines of IEEE 118-bus system. Final conclusions
with future works are outlined in Section VI.

II. PROBLEM FORMULATION

The real and reactive power (P-Q) dispatch studied in this
paper includes firstly, the economic resource allocation consid-
ering a typical bid structure and secondly, the security man-
agement. More specifically, the minimization of the offered bid
cost, under the constraints of basic components and the steady-
state transmission line loadings are examined [1]. The problem
of real and reactive operational planning is formulated as an
optimization problem with an objective function, expressed as
[1], [20]

(1)

where is the total cost; is the active power bid cost of
unit- at time- ; is the real power generation of unit- at
time- ; and is the number of units, under the following
equality and inequality constraints [1], [20].

Equality constraints
1) Typical load flow equations at buses.

Inequality constraints:
b) Generation constraints: Generator voltage magni-

tudes, real and reactive powers restricted by minimum
and maximum limits.

c) Transformer constraints: Transformer taps bounded
by minimum and maximum limits.

d) Shunt VAR constraints: Shunt VAR compensation re-
stricted by its capacity.

e) Security constraints: Steady-state transmission line
loadings.

The inequality constraints are incorporated in the objective
function (1) as quadratic penalty terms [1], [20] as explained
in Section V. The equality constraints are satisfied given that
for each trial solution an ac power flow runs as explained in
Section V.

III. QUANTUM COMPUTING REPRESENTATION

The basic concepts of quantum computing are addressed in
this section [29]–[31]. The smallest unit of information stored in
a two-state quantum computer is called a quantum bit or -bit.
A Q-bit may be in the “1” state, in the “0” state, or in any su-
perposition of the two, while a bit in traditional computing can

Fig. 1. Polar plot for qubits.

only hold a single state, either 0 or 1 [33]–[35]. The state of a
Q-bit S can be represented as (Fig. 1)

(2)

where and are complex numbers that specify the probability
of the corresponding states; and therefore are called amplitude
amplifications [31]. The and give the probability that
the Q-bit will be found in the “0” and “1” states, respectively.
So, they satisfy the relation: .

A. Q-bit Individual Representation and Quantum Collapse

If there is a system of Q-bits, the system can represent many
states at the same time. A number of different representations
can be used to encode the solutions onto individuals in an
evolutionary computation. The representations can be classified
broadly as: binary, numeric, and symbolic. The proposed QEA
uses the representation, adopted in [29]–[31], called Q-bit for
the probabilistic representation of the smallest unit of infor-
mation and a Q-bit individual as a string of Q-bits, which are
defined below.

A Q-bit individual with length is defined as a string of
Q-bits

(3)

where , .
The representation of the Q-bit individual has the advantage

of representing a linear superposition of single states. In general
the state of a Q-bit individual can be represented as

(4)

where are defined as the
products

(5)

Evolutionary computing with Q-bit individual representation
has better characteristics of population diversity than other
representations, since it can represent a superposition of the
single states probabilistically. In classical computation, the
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possible states of a system of bits form a vector space of
dimensions, i.e., we have possible single states. However, in
a Q-bit individual of Q-bits the resulting state space has
dimensions. It is this exponential growth of the state space with
the number of particles that suggests a possible exponential
speed-up of computation on quantum computers over classical
computers. The measurement of a Q-bit individual projects
the quantum state of Q-bit individual onto one of the single
states associated with the measuring device. The result of a
measurement is probabilistic and the process of measurement
changes the state to that measured. This process is known as
quantum collapse. Multi-measurements can be treated as a
series of single Q-bit measurements (multi-quantum collapse)
[33].

B. Quantum Gates

In the evolutionary computation with the Q-bit individual,
the state of a Q-bit individual can be changed by the opera-
tion of a quantum gate. A quantum gate is a reversible gate
and can be represented as a unitary operator acting on the
quantum states satisfying , where is the
Hermitian adjoint of . There are several quantum gates, such
as the NOT gate, controlled NOT gate, rotation gate, Hadamard
gate, etc. [34]–[36]. For example, the NOT gate is the 2 2

matrix and acts on a state of one Q-bits in a Q-bit

individual (2)

(6)

A rotation gate is employed to update each Q-bit in a Q-bit
individual. The operation of the rotation gate on each Q-bit
individual in a population consisting of members/parti-
cles is presented as

(7)

where is the number of Q-bits in the th Q-bit individual and
the rotation gate is defined by

(8)

Here, is a rotation angle (see Fig. 1) of each Q-bit indi-
vidual toward either or state depending on its
sign. The value of can be determined through a predeter-
mined lookup table [30]. It can be also computed with the nor-
malized difference (relative error) between objectives of each
Q-bit individual and the global best op-
timum (Q-bit individual )

(9)

Here, , represent the amplitude amplifications of th
Q-bit in the th Q-bit individual; represents the global best

Q-bit individual in the population, and is the normalized
difference (relative error) between objectives

(10)

where and are the objectives achieved by th Q-bit
individual and the global best one (Q-bit individual ) in the
population, respectively.

The sign function in (9) is defined by

if
if

(11)

The product of two functions in (9) indicates the direction
of rotation so as for to be more close to .
Specifically, the first takes into account the difference be-
tween amplitude amplifications and and the second
one the location of Q-bit individual (see Fig. 1). If it is located
in the first/third quadrant the sign is set to positive , else to
negative .

These features give to the proposed QEA the possibility of a
general EA applied in any combinatorial optimization problem.
However, it can be specialized for the particular problem by
choosing only the appropriate probability distribution of Q-bit
individuals discussed in the next section.

IV. QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM (QEA)

In this section the QEA for bid-based real/reactive operational
planning is presented. However, the QEA due to its general fea-
tures, as it is presented, can be applied in any combinatorial op-
timization problem for power systems.

The main contribution of this QEA over the state-of-the art
QEA [29]–[31] is the formula of the probability distribution
that Q-bit individuals follow. In a quantum computer, the
measurement of a quantum state results in its collapse to a
single state, as described in the previous section [34]–[36].
However, collapsing into a single state does not occur in QEA,
since QEA is working on a classical computer, rather than in
a quantum computer. The process of quantum collapse in a
classical computer is achieved by comparison of probabilities

or with random numbers . These numbers can
follow a probability distribution; for example, the uniform
distribution, , as proposed in [29]–[31].

Let us assume that we have a little bit of information about
the search space of the specific problem to be explored. Then,
we can see that this prior knowledge can be easily put into use
in generating the initial values of Q-bits in the population of
Q-bit individuals [37]. After many empirical runs on real/reac-
tive operational planning it is concluded that the knowledge of
search space is better explored/exploited if random numbers
follow the empirical formula of uniform distribution powered
by , where is the population size of Q-bit individuals
and the number of Q-bits in the Q-bit individual. The product

represents the total length of all Q-bit individuals in the
population. The empirical probability distribution formula in-
creases the probability of Q-bits to be initialized/collapsed at
the value of “1”. In this way, the area of search space with high
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values of control (decision) variables can be better explored/ex-
ploited. In other words, in this study, the global optimum so-
lution is “hidden” near the “area” of search space, where there
are high values of control variables than the rest of the space.
Indeed, for instance large amounts of voltage magnitudes and
shunt VAR compensation (respecting the operating constraints)
increase the reactive power supply in the system resulting in the
relief of generators and so the total cost of generator production
is reduced. Consequently, the probability distribution formula
that the quantum states of Q-bit individuals follow is

(12)

It is remarkable that the proposed probability distribution for-
mula (12) followed by the collapsed Q-bits in this study has sim-
ilar shape with the Plank radiation formula (probability distribu-
tion) followed by the density of neutrons and other elementary
particles collapsed in the earth’s gravitational field [38].

The steps of the QEA for real/reactive operational planning
are described in the following paragraphs.
Step 1) For a given load pattern, set .
Step 2) Translate each control variable (namely the per-

mitted values of each one) to a Q-bit individual.
If binary bits are needed to encode a Q-bit in-
dividual (which is determined depending on the
desired accuracy), we will use a register of
Q-bits to represent all the possible states of
the quantum machine, namely the possible states
in the feasible region of the optimization problem.
In this study, there are four regions in each Q-bit
individual, one for each set of control variables:

a) vector of generation PV bus voltage magni-
tudes, ;

b) vector of generator real output, ;
c) vector of transformer tap settings, ; and
d) vector of bus shunt admittance, .

Encoding is performed using different Q-bit lengths
for each set of control variables depending on the
desired accuracy.

Step 3) Initialize a population of Q-bit individuals

(13)

where each Q-bit individual, ,
, is with length ( Q-bits) as repre-

sented in (3).
Step 4) For all Q-bit individuals ,

initialize the probabilities at

(14)

where is the random variable generated by (12).
Step 5) While termination criterion (the maximum number

of q-generations) is not reached, do

Begin
Step 5.1:
Step 5.2 (Quantum collapse): Make
solutions by observing quantum states

as follows:

(15)

Each is the collapsed state of Q-bit
individual and formed as an -length
classical GA chromosome or binary string. It
includes binary bits (0 or 1), i.e., is
formed by selecting Q-bits

(16)

Step 5.2.1: For each , ,
generate a random number using (12). If

, set at
value of “1”, else “0”.
Step 5.2.2: Each represents a
candidate solution to the problem. So,
evaluate each ,
running an ac power flow solution using the
objective function .

Step 5.3: Store the global best solution
(minimum in this case study) and the best Q-bit
individual among , .
Step 5.4: Update each Q-bit individual
using the quantum operation of the
rotation gate (7)–(11).

V. RESULTS

In the following case studies, the termination criterion of the
proposed QEA which is the maximum number of q-generations
is set at value of 500.

A. IEEE 30-Bus System

The proposed QEA algorithm is tested on the real/reactive
operational planning of IEEE 30-bus system and compared with
those given by the ACS algorithm [1], enhanced GA [19], SA
algorithm [20], and the original QEA [29]–[31].

The line diagram of the IEEE 30-bus network is given in
Fig. 2. Some modifications in network’s data were made as in
[20] for comparison purposes. Specifically, the network con-
sists of four generators, 41 lines, four transformers, and two ca-
pacitor banks (Fig. 2). For transformer taps, seven positions in
each transformer were considered, each position corresponding
to 0.02 increments within the interval [0.94, 1.06]. The avail-
able reactive powers of capacitor banks are 0 MVAr, 7.5 MVAr,
15 MVAr, 22.5 MVAr, and 30 MVAr and they are connected
to buses 10 and 24. Generator voltages were discretized in 150
steps (step: 0.0006 pu) within the range of [0.96, 1.05]. For com-
parison purposes, load pattern is set at the values referred in [39],
multiplied by a factor of 0.6 (nominal load). The accuracy for
the generator outputs is set to 1 MW (or 0.01 pu).
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Fig. 2. Line diagram of the IEEE 30-bus system.

The bid curves of four generators are given by [20]

(17)

(18)

(19)

(20)

The binary length of each control variable is: 8 for each of
the four generator voltages, namely for
generator voltages; 8, 7, 6, and 4 for each of the four generator
outputs, namely for generator
outputs; 3 for each of the four transformer taps, namely

for transformer taps; and 3 for each of the
two capacitor banks, namely for capacitor
banks. Therefore, the length of each Q-bit individual is

Fig. 3. Best achievement (euro) and achieved iterations of QEA algorithm (for
5 to 16 Q-bit individuals) in the nominal load of IEEE 30-bus system.

Fig. 4. Best achievement (euro) and achieved iterations of original-QEA algo-
rithm (for 5 to 16 Q-bit individuals) in the nominal load of IEEE 30-bus system.

. In other words, it consists of 75 Q-bits and
can represent simultaneously binary states.

The objective function (1) is modified by augmenting it with
constraints in the following formula [20]:

(21)

where expresses the total cost (1); is the number of
buses and the number of lines; , are the limits
of voltage at bus- , and is the thermal limit of line- .

The penalty factors and enforce the voltage and
thermal limits, respectively [20]

if
else

(22)

if
else.

(23)

Fig. 3 shows the convergence characteristics of proposed
QEA. In particular, it shows the best achieved minimum so-
lution of (21) and the corresponding number of q-generations
achieved as a function of the number of Q-bit individuals in
the population ranging from 5 to 16 Q-bit individuals. The
number of Q-bit individuals between 5 and 16 gives the best
compromise between satisfactory achievement and the total
convergence time. From the figure it is concluded that the QEA
with 6 Q-bit individuals (QEA#6) achieves the best solution of
3045.03 euro in 366 iterations.

In order to see the contribution of the proposed QEA more
clearly, the original QEA introduced in [29]–[31] was also tested
and its convergence characteristics are shown in Fig. 4. From
Fig. 4 it is concluded that the original QEA with 9 Q-bit indi-
viduals (original QEA#9) achieves the solution of 3058.00 euro
in 615 iterations. This result is better than the results obtained
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Fig. 5. Convergence of QEA#6 in the nominal load of IEEE 30-bus system.

by the enhanced GA [19] and SA [20], but worse than the re-
sults of ACS [1] and the proposed QEA. The maximum number
of q-generations of the original QEA was increased at value of
1000.

The convergence characteristics of the proposed QEA#6 are
shown in Fig. 5. However, the QEA#10 converges satisfactorily
in the shortest time (Fig. 3). It converges in 94 iterations and the
total CPU time is calculated at 0.261 s. The ACS [1] converges
in about 2000 iterations and the final value of the objective func-
tion (21) is estimated at 3050.2 euro [1]. The final values given
by enhanced GA [19] and SA method are 3059.78 euro and 3110
euro [20], respectively. These are achieved in 686 and 150 iter-
ations [20], respectively.

In conclusion, the proposed QEA performs better than ACS
[1] and enhanced GA [19] in terms of convergence time. The SA
[20] prematurely converges in 150 iterations. Also, the proposed
QEA converges in fewer q-generations than those of the orig-
inal QEA [29]–[31] achieving better results. Finally, the pro-
posed QEA offers profit amount, which is calculated at 5.17
euro, 14.75 euro, 64.93 euro, and 12.97 euro, over other four
EAs, respectively. The proposed QEA in contrast to other four
EA requires only the regulation of the empirical formula (12).
This formula could include a prior-knowledge that we have for
the problem. The improved performance of the proposed QEA
over the original one [29]–[31] is due to this formula which can
better explore a search space.

Table I shows the values of control variables proposed by
QEA#6, original QEA#9, ACS, enhanced GA and SA as well as
their best achievements and number of achieved q-generations.
These results confirm the prior-knowledge that the optimum so-
lution was “hidden” in the “area” of search space with high
values of control variables. Table I also gives the total CPU time
for QEA, the original QEA, ACS and enhanced GA. The results
of SA were obtained directly from [20] where there is no indica-
tion of the convergence time. The convergence time of QEA#6
(0.855 s) is smaller than that of the original QEA#9 [29]–[31]
(2.152 s) and much smaller than that of ACS [1] (236.57 s) and
the enhanced GA [19] (15.137 s). It is worthwhile to mention
that in the case of ACS 300 artificial ants were competed. The
enhanced GA’s population size was taken equal to 80, the max-
imum number of generations was 1000, the length of chromo-
somes was 128, and crossover and mutation were applied with
initial probability 0.9 and 0.001, respectively [19].

Finally, the bus voltages and apparent power flows in pu ob-
tained by the proposed QEA are depicted in Figs. 6 and 7, re-
spectively. The bus voltages are within the acceptable voltage

TABLE I
COMPARISON OF SETTINGS OF CONTROL VARIABLES

FOR REAL/REACTIVE PLANNING OF IEEE 30-BUS SYSTEM

Fig. 6. Bus voltages (pu) of IEEE 30-bus system.

Fig. 7. Apparent power flows (pu) of IEEE 30-bus system.

range of [0.96, 1.05] as shown in Fig. 6. According to Fig. 7, all
branch apparent power flows are much lower than the accept-
able ranges of 202 MW (for 132-kV lines between buses: 1–2,
1–3, 2–4, 2–5, 2–6, 3–4, 4–6, 6–28, 5–7, 6–8, 6–7, 8–28) and
30 MW (for 33-kV lines) [20], [39].

B. IEEE 118-Bus System

In order to demonstrate the applicability of the proposed QEA
on a larger power system, we implement it in minimizing the
real power losses in transmission lines of the IEEE 118-bus
system [40]. The results of QEA in this case study are com-
pared with those given by ACS [1], the enhanced GA [19], and
the classical primal-dual interior-point OPF algorithm (IP-OPF)
(Appendix A). Specifically, above algorithms need to handle
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Fig. 8. Convergence of QEA#80 in the nominal load of IEEE 118-bus system.

the problem of minimization of real power losses in transmis-
sion lines of IEEE 118-bus system satisfying physical and op-
erational constraints. Such constraints are load flow equations,
generator voltage limits and their reactive power outputs limits,
switchable VAR compensations limits, transformer tap settings
bounds and transmission line loadings. Specifically, the objec-
tive function is highly penalized (penalty factor: 1000) when the
above constraints are violated. More details about this problem
are given in [42].

In this case study the search space has 75 dimensions. Specif-
ically QEA handles the real power generation of 54 generators,
tap settings of nine transformers and reactive power injection
of 12 capacitor banks. In the transformer tests, tap settings are
considered within the interval [0.9, 1.1]. The available reactive
powers of capacitor banks are in [0, 30] MVAr. Voltages are
considered within the range of [0.95, 1.1]. The binary length
of each control variable is set at: 14 for each one of 54 gener-
ator voltages, 12 for each one of nine transformer taps and 12
for each one of 12 capacitor banks. Since the binary length of
voltage magnitudes at PV buses is , transformers
tap settings is and shunt VAR compensations is

, the total length of each Q-bit individual is 1008.
In other words, one Q-bit individual consists of 1008 Q-bits and
can represent simultaneously binary states. Many runs of
QEA have been done and it is found that the best population of
Q-bit individuals in this study is 80. The best population size of
the enhance GA [19] is 100 chromosomes.

The proposed QEA#80 converges in 118 q-generations
achieving the least real power loss of 122.2227 MW (Fig. 8).
The total CPU time is 12.592 s (Table II). The enhanced GA
[19] achieves 131.9657 MW. It converges in 143 q-generations
and the total CPU time is 15.375 s (Table II). The ACS [1]
achieves 131.9010 MW. It converges in 1812 q-generations in
the worst total CPU time of 532.90 s (Table II). The classical
IP-OPF is the fastest algorithm since it converges within 4.068
s (eight iterations). However, it gives the worst solution of
132.1097 MW [42]. Due to the space limitation, Table II gives
only 15 out of 75 values of decision variables as proposed in
other methods. In this case study, the QEA performed remark-
ably well compared to other three methods. In all cases the total
CPU time is calculated in a 1.4-GHz Pentium-IV PC.

VI. CONCLUSIONS

This paper presented an improved quantum-inspired evolu-
tionary algorithm (QEA) for optimal P-Q dispatch in power
systems. Although the proposed QEA has similar encoding

TABLE II
COMPARISON OF CONTROL VARIABLES FOR REAL POWER MINIMIZATION

IN TRANSMISSION LINES OF IEEE 118-BUS SYSTEM

method with the classical GA, it can represent probabilistically
much more states. Also its evolutionary mechanism is com-
pletely different and much more effective than the classical
GA. The quantum population is progressed by the operation
of simple quantum gates. Specifically, the QEA introduced a
general quantum rotation gate applied to any combinatorial op-
timization problem. In addition, a prior knowledge for a specific
problem was easily incorporated to the initial condition of QEA.
This resulted in a new probability distribution that the collapsed
Q-bits follow. The QEA was applied in P-Q dispatch of IEEE
30-bus system. The obtained results were compared with those
obtained by Ant Colony Systems (ACS), the enhanced GA
and Simulated Annealing (SA) as well as the original QEA
algorithms, demonstrating an improved performance of QEA in
finding the best solution within a satisfactory computing time.
In order to demonstrate the performance of QEA we implement
it on a larger problem, namely the minimization of real power
losses in transmission lines of the IEEE 118-bus system. Results
show an excellent performance of QEA over ACS, enhanced
GA, and a conventional interior-point OPF-based algorithm.

APPENDIX A

The full mathematical model of the IP-OPF [41], which was
already used in [42] is as following.

The objective function for the active power loss minimization
problem is of the form

(A1)

where is the active power flow from bus to bus [40],
subject to

a) Equality constraints:

(A2)
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The vector includes real and reactive power equations
[40]. The vector includes all state variables (voltage an-
gles and magnitudes at buses) plus control variables (gen-
erator voltages, reactive powers of capacitor banks and
active power generations). Also, we consider the loading
parameter as the last entry of the vector .

b) Inequality constraints:

(A3)

where vector includes all [40]
i) Generation constraints: Generator voltage magni-

tudes, real and reactive powers restricted by min-
imum and maximum limits.

ii) Transformer constraints: Transformer taps bounded
by minimum and maximum limits.

iii) Shunt VAR constraints: Shunt VAR compensation
restricted by its capacity.

iv) Security constraints: Steady-state transmission line
loadings.

The primal-dual IP method solves the perturbed
Karush–Kuhn–Tucker (KKT) equations:

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

or for sort

(A10)

where

(A11)

The and are slack vectors that transform inequalities into
equalities; and are diagonal matrices with and

; is a barrier parameter that is forced to go to 0 as
(number of iterations) increases; is a vector
of ones of appropriate dimension (A8), (A9); is the Jacobian
of ; is the Jacobian of ; and is the gradient
of real power losses (A1). The derivation of real power losses

with respect to the loading parameter (last entry of
the vector ) is given by

(A12)

The main steps of the IP-OPF algorithm are as follows:

Step 1) Set , choose and a starting point
.

Step 2) Obtain the Newton system either (A10) or
(A4)–(A9) at the current point and solve for the
Newton direction using the fast re-factorization
algorithm for block matrices [43]:

(A13)

where is the Jacobian of evaluated at
and

(A14)

Step 3) Compute the maximum step length in
the direction of :

(A15)

where is a safety factor to ensure
that will hold the strict positive conditions

and

(A16)

and obtain new estimates for the variables:

(A17)

Step 4) If the point satisfies the convergence criteria
(A18)–(A20), then stop. If not, then set ,
reduce the barrier parameter using (A21), and
return to Step 1.

Convergence criteria: The th iteration is considered con-
verged if

(A18)

and

(A19)
and

(A20)

where and are predetermined tolerances.
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Reduction of the barrier parameter:

(A21)

where is the expected decrease in residual of the
complementary conditions: and is the
number of inequality constraints.
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