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Abstract—In this paper, we present an approach to 

Large-Scale CARP called Quantum-Inspired Immune Clonal 

Algorithm (QICA-CARP). This algorithm combines the feature 

of artificial immune system and quantum computation ground 

on the qubit and the quantum superposition. We call an 

antibody of population quantum bit encoding, in QICA-CARP. 

For this encoding, to control the population with a high 

probability evolution towards a good schema we use the 

information on the current optimal antibody. The mutation 

strategy of quantum rotation gate accelerates the convergence of 

the original clone operator. Moreover, quantum crossover 

operator enhances the exchange of information and increases 

the diversity of the population. Furthermore, it avoids falling 

into local optimum. We also use the repair operator to amend 

the infeasible solutions to ensure the diversity of solutions. This 

makes QICA-CARP approximating the optimal solution. We 

demonstrate the effectiveness of our approach by a set of 

experiments and by Comparing the results of our approach with 

ones obtained with the RDG-MAENS and RAM using different 

test sets. Experimental results show that QICA-CARP 

outperforms other algorithms in terms of convergence rate and 

the quality of the obtained solutions. Especially, QICA-CARP 

converges to a better lower bound at a faster rate illustrating 

that it is suitable for solving large-scale CARP.    

 Index Terms—Large-scale CARP, quantum rotation gate, 

quantum crossover operator, the repair operator. 

I. INTRODUCTION 

apacitated Arc Routing Problem (CARP) has been used 
for many problems, including mail delivery, clearing 

snow from the street and school bus planning [1~2]. CARP 
computes a path corresponding with the minimum cost.  For 
example, consider a team of agents/vehicles is dispatched to 
different destinations from to complete a task, including 
delivering goods or services as some desired objectives are 
obtained and some constraints are satisfied, such as:  
1) Each agent starts from a dispatch point, delivers goods or 
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services and finally ends at the dispatch point again.  
2) Each agent can only complete one task at a time.  
3) The total demand of the must be equal or less than the sum 
of the agent’s capacities, denoted by Q.  
  CARP aims at minimizing the total cost of the all agents 
under the constraints some of which mentioned above [3]. To 
the best of our knowledge, although CARP problems are 
mostly large-scale in practice, the approaches that are 
developed so far provide solutions only to the small-scale 
problems. Nonetheless, CARP is increasingly becoming more 
attractive for researchers because to find the optimal solution 
to the practical large-scale CARP problems is still a 
challenging open research question [4]. Many approaches to 
CARP problem have been developed, including heuristics 
and meta-heuristics. Heuristic algorithms obtain a higher 
quality solution using a smaller computational resource 
especially for small-scale problems as they have a simple 
algorithm structure. As an example, the solution of stereotype 
heuristic algorithm is used as an initial value in meta-heuristic 
approaches. This improves the convergence to an optimal 
solution and the stability of the solution. For instance, Golden 
et al. [5] proposed augment-merge heuristic algorithm that 
initialized the solution as many loops where each loop 
connects one task and warehouse. In the augment stage, the 
algorithm adjusts continuously assignment of the tasks in the 
loop to reduce the number of loops. Ulusoy heuristic 
algorithm proposed in [7] improves the path-scanning 
heuristic [6]. Augment-insert heuristic algorithm [8] and 
approximation algorithms [9] have been also proposed to 
compute an effective solution to the CARP problem. The 
stereotype heuristic CARP algorithm usually starts from a 
partial solution or an empty solution. It is then adjusted by a 
specific selection standard to obtain a complete solution. This 
type of algorithms converges to a sub-optimal solution very 
fast as its performance can be improved using intermediate 
rules. Despite these advantages, stereotype heuristic CARP is 
not a suitable approach to large-scale problems. On the other 
hand, the meta-heuristic algorithms, including Evolutionary 
Algorithms [10~11], Ant Colony System [12], Simulated 
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Annealing, Tabu Search [13], Memetic Algorithms and so on 
[14~16], has been increasingly attracting researchers’ 
attention because it has shown the performance of the 
approach to various types of combinatorial optimization 
problems with a wide range of applications. Using these 
algorithms, one or multiple solutions are obtained at each 
iteration which are used to generate the next generations. This 
procedure repeats resulting in an optimal solution.  
  There are also many meta-heuristic algorithms developed 
specially to solve CARP problems. For example, Hertz et al. 
[17] proposed tabu search algorithm in which the solution is 
represented by a full path. This approach obtains a solution 
with a higher quality than the one obtained by heuristic. More 
recently, Hertz and Mittaz [18] proposed an approach called 
Variable Neighborhood Descent (VND) to avoid a local 
optimum by defining several neighborhoods and making a 
detail exploration of the space in the neighborhood of the 
solution. Although this approach avoids a local optimum, it 
does not consider the infeasible solution space. Lacomme et 
al. [19] improved Genetic Algorithm (GA) and combined it 
with local search algorithm. The encoding method of MA is 
very practical and natural as two arcs in two opposite 
directions represent each demand side. Meta-heuristic 
algorithm has shown to obtain a high quality solution in most 
test cases, especially in those larger-scale instances, in the 
short period of time. In our works [20][21], we proposed 
immune clonal selection algorithm to solve multi-objective 
problems. This approach uses a clone operation to achieve a 
global optimum. Nevertheless, the clone operation increases 
population size in local space in order to improve the 
capability of local optimization. The immune clonal selection 
algorithm chooses portion of the antibody to mutate during 
the mutation operating to improve the diversity of population, 
and this operation often leads to the loss of the optimal 
solution. Memetic Algorithm with Extended Neighborhood 
Search (MAENS) proposed in [22] uses an extension step for 
local search. Hence, it rarely falls into a local optimum. 
Although this approach determines a good lower bound on 
the test case, it does not show a good stability property. 
Recently, according to MAENS, Mei et al. proposed an 
excellent cooperation co-evolutionary algorithm based on 
route distance grouping (RDG-MAENS) [23], which adopts 
the strategy of co-evolution [24] and divide and conquer [25]. 
They showed their approach outperforms other existing 
algorithms proposed to solve CARP. However, 
RDG_MAENS has the following shortcoming: (1) each 
generation includes some rounds to evolve, e.g. 50 rounds, 
and the best solution recognized so far is updated only after 
the evolution of one generation. Hence, the best solution 
recognized so far takes part in the evolution of the current 
round despite the fact that it may not be the best at the 
moment. (2) Assigning individuals to the appropriate 
subpopulation according to their distance can lead to an 

imbalance number of assigned individuals to different 
sub-populations well as imbalance allocation of resources. 
Therefore, the solution obtained by this approach may neither 
be optimal nor stable. 

In this paper, we propose Quantum-Inspired Immune 
Clonal Algorithm for solving Large-Scale CARP 
(QICA-CARP). First, we use heuristic algorithm to generate 
the initial solution to accelerate the convergence speed. 
Second, an antibody of population is used which is denoted 
by quantum bit encoding. In order to accelerate the 
convergence rate of the original clone operator, quantum 
rotation gate is used and the angle of rotation policy is 
dynamically adjusted to control the direction of the evolution 
of the population. Then, the quantum crossover operation is 
used to enhance information exchange while it increases the 
diversity of the population and achieves global search. We 
use also the quantum coherence to carry on a full interference 
crossover so that it overcomes the problem related to the 
shortcoming of early-maturing of individuals in the late time 
of evolution. Finally, the repair operator is used to improve 
the stability of the solutions as well as to maintain the 
diversity of the solutions to handle the infeasible solution set. 

The rest of the paper is organized as follows. The 
description of CARP is introduced in Section II. In Section 
III, QICA-CARP for solving CARP is introduced. In Section 
IV, The experimental studies are carried out in several 
famous CARP test set (small scale, medium scale and large 
scale). Section V gives the conclusion and future work. 

II. DESCRIPTIONS OF THE CARP 

In [26], CARP is defined as a connected graph G= (V, A, 
E), where V, A, and E denote a set of vertexes, arcs and 
edges, respectively. In a graph, each arc (or edge) 
corresponds with a non-negative cost and a non-negative 
demand. The demand T E A   is a set of tasks that 

vehicles are supposed to complete, e.g. delivering a service. 

Task t T  has two attributes, including demand for 

service, denoted by d where d(t)>0, and service consumption, 
denoted by S where SC(t)>0. Non-mission side, i.e. an edge to 
which no task is assigned, does not need to service. If no 
service is provided from vi to vj, the consumption of the 
vehicle is dc(vi,vj) > 0. Here, we consider a connected graph 
to be symmetric, i.e. dc(vi,vj)=dc(vj,vi) for each edge (vi,vj). 
To find a plan of paths for m vehicle, whose capacities are Q, 
to serve all the tasks in the graph subject to some constraints 
is the main objective of solving a CARP problem. Eventually, 
a sequence of tasks can be expressed as a sequence of 
vertexes as the task sequence is supposed to connect the 
least-cost path between adjacent tasks.  

In this paper, quantum-coding is used to initialize 
population as the code reflects the probability of the task 
being serviced in a sequence of vertexes. The solution x to 
CARP is expressed as a set of routes (m vehicles), as follows: 
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where, Rq is the q-th route of the routes set R, | Rq | is the 
number of edges in q-th route, sc(vqi, vq(i+1)) is the cost of 
serving at edge (vqi, vq(i+1)). In addition, tc(vqi, vq(i+1)) is the 
travel cost of edge (vqi, vq(i+1)) which is calculated by the 
shortest path from vqi to vq(i+1) obtained by Dijkstra algorithm 
in the connected graph [27]. If the i-th edge is served in q-th 
route and wqi=0, otherwise. Constraints in eq. (3) and (4) 
ensure that each task is serviced by one vehicle whereas eq. 
(5) indicates the capacity constraint of the vehicles. 

III. QUANTUM-INSPIRED IMMUNE CLONAL ALGORITHM FOR 

SOLVING CARP 

Quantum-Inspired Immune Clonal Algorithm (QICA) is an 
immune clone algorithm based on quantum-coded, which 
applies quantum computing to clone operator of artificial 
immune system [20]. According to the quantum bit and the 
quantum superposition, we combine the feature of artificial 
immune system with quantum computation and use it to solve 
a CARP problem. In our approach, a quantum bit encoding 
represents an antibody of a population. The information of 
the current optimal antibody is then used to accelerate the 
convergence of the original clone operator and to control the 
population evolution, which evolves into a good schema with 
a high probability. This evolution occurs based on the action 
of quantum rotation gate as well as strategy of adjusting 
dynamically the angle of rotation. Furthermore, we adopt 
quantum crossover operation (1) to enhance information 
exchange (2) to increase the diversity of the population (3) to 
achieve a global search based on the characteristic of strong 
local optimization capability of cloning operator. Besides, the 
infeasible solutions are modified in the population so as to 
maintain the diversity of the population. 

Compared to the traditional GA and MA (memetic 
algorithm) approach, QICA-CARP mainly includes the colon 
operation [28], mutation operation of quantum rotation gate 
as well as quantum crossover and repair operation, among 
which clonal operation enhances the local search [29~30]. If 
an individual has a higher affinity between antigen and 
antibody, the individual is of a larger colon scale. Hence, the 
algorithm with clonal operator can make a detailed search in 
the promoting space. The crossover is a widely. However, it 
is implemented between two individuals in GA an MA. This 

results in a limited exchange of information. To make more 
individuals participate in the crossover process and to utilize 
the full knowledge of individuals, the special crossover 
method of quantum crossover can be used wherever (1) more 
than two individuals exist and (2) the quantum crossover 
happens in more than one position of an individual at the 
same time [30]. It also improves the premature convergence 
of individuals in the last stage of the algorithm by utilizing 
the characteristic of quantum coherence. After applying 
crossover, it may produce many infeasible solutions 
corresponding with cost that is lower than the others. We use 
a repair operator so that the infeasible solution can be 
considered to be feasible. This allows a detailed search 
resulting in a better solution. A scheme of QICA-CARP flow 
chart is shown in fig. 1. 
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Figure 1 The flow of QICA-CARP 

It has been proven that the improvement 1 in Figure 1 
increases the speed of convergence while it handles the 
premature convergence effectively [31]. We refer to the 
repair operator as 3 main strategies to solve infeasible 
solution. In the first strategy, presented in [19], only the 
feasible solution is produced in assess process and any 
infeasible solutions are ignored. The second strategy is a 
common method of penalty function. The main disadvantage 
of this strategy is, however, a complex setting of parameters 
of the penalty function. Hence, it is very hard to keep the 
solution that has the best total cost and satisfies the constraint 
of capacity violation.  

The third strategy designs a repair operator to repair the 
infeasible solution so that they are considered as a feasible 
one [32]. This is one of the very few methods for repairing 
the infeasible solution by adjusting a 0-1 vector in solution. 
However, it only considers a very limited area at each time in 
the solution space. In other words, it modifies one task in one 
route every time. Hence, it searches just the area around the 
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current solution instead of fully using the global information. 
The operator in the improvement stage takes global 
information into consideration to find the best solution of 0-1 
vector combinations. In addition, it can find a better solution 
to improve the ability of searching. From the analysis that has 
just mentioned and comparing QICA-CARP with other EA, 
QICA-CARP and other EA all have the global search 
operator. However, the quantum crossover in QICA-CARP 
can make the best of individual’s information and make a 
more effective global search to improve the searching ability 
of algorithm especially for the large scale CARP, so it plays a 
most important role in QICA-CARP. In fact, the repair 
operator is the main difference between QICA-CARP and 
other algorithms. It is also very helpful to look for a better 
solution by translating the infeasible solution, which is easily 
ignored and/or hard to handle, into a reasonable solution. This 
is of secondary importance. Finally, the mutation strategy 
accelerates the convergence speed while prevents premature 
convergence of individuals. It is, thus, an effective auxiliary 
operator in QICA-CARP.  

A. Quantum bits and quantum coding 

In QICA-CARP, we use a coding scheme based on 
quantum bits [30]. For quantum computing in an immune 
system, the smallest unit is a quantum information bit (a 
qubit), which is a two-state quantum system. Specifically, it 
is a unit vector defined in the two-dimensional complex 
vector space, and used to store information during the 
calculation process [30]. There are two basic forms of 
quantum information quantum bit at any instant, which are | 
0> and | 1> respectively. Several bits can represent a task 
number, and a sequence of quantum bit can represent a task 
sequence that is transformed into a sequence of vertexes. We 
use QICA to solve CARP as follows. First, a population is 
initialized as A(0) by quantum encoding. Quantum coding 
population of the t-th generation is then expressed as: 
A(t)={a1(t), a2(t),…, an(t)}, where n represents the population 
size and aj(t) is a quantum chromosome. By contrast, aj(t) 
represents a path in CARP with the following expression:  

1 2

1 2

( ) ( ) ( )
( ) , 1,2,3 ,

( ) ( ) ( )

j j jm

j
j j jm

t t t
t j n

t t t

  

  
 
 
 
 

a     (6) 

where, m is the length of chromosome. aj(t) denotes a path 

that has m/nbit tasks where nbit is the number of bit 
representing a task number. Furthermore, the parameters in 
eq. (6) must satisfy normalization condition in eq. (7).  

2 2
1, 1, 2,3 ,ji ji i m             (7) 

where, 2
ji

 represents the probability of the i-th bit gene 

getting the state |0> and 2
ji

 is the probability of the i-th bit 

gene getting the state |1>. The initialized population is 
denoted by A(0)={a1(0), a2(0),…, an(0)}, initial iteration 

denote by t=0, and quantum chromosome represents the path 
aj(t)|t=0= aj(0). In addition, the encoding of each antibody is 

1 2

1 2

(0) (0) (0)
(0)

(0) (0) (0)

j j jm

j
j j jm

  

  

 
 
 

a            (8) 

A random number is then generated in the interval of [0, 1] 
using the corresponding probability that the bit is 0 or the bit 

is 1. If the number is larger than 2
ji

 , the value of the bit is 1, 

and zero otherwise. After comparing m times, A(t) is used to 
obtain a binary sequence which stands for the task number. 
The initialization of one solution is complete if all the task 
number is in the task sequence. An example of the encoding 
and decoding is described in Figure 2.  

 

Figure 2 An example of encoding and decoding 

In this figure, there are 5 tasks and 5 inverse tasks shown 
in parenthesis to serve 5 tasks no matter the task or its inverse 
task is served. We adopt 4 quantum bits to represent a task 
number where each bit has two attributes, including alpha and 
beta. After generating 4 random numbers and 4 times 
observations, it produces a sequence of 0 and 1 to represent a 
task number. As we know, 4 quantum bits can represent the 
non-negative natural number in the interval of [0, 15]. We use 
a modular arithmetic operation to link the number with the 
task number. First, we should initialize the quantum sequence 
a(t), as follows: 

( ) ( ) ( ) 1 / 2 1 / 2) 1 / 2) 1 / 2)1 2 4( )
( ) ( ) ( ) 1 / 2 1 / 2 1 / 2 1 / 21 2 4

t t t
t

t t t

  

  
 
   
   

  
a           

(9) 
For the first bit, we will produce a random number denoted 

by rand. If rand is larger than 1
2

( )t , the first bit of solution 

sequence gets 1 value, and 0 otherwise. After 4 such 
operation, four 0-1 bits are produced, which represents a task 
number. After producing 5 tasks number, a task sequence can 
be obtained. For example, although {1, 7, 3, 5, 9} is a task 
solution, it is not reasonable because it does not satisfy the 
constraints of capacity violation. 

We use Ulusoy’s split method for decoding making the 
solution reasonable by considering the capacity violation 
constraint. As a sequence of tasks can expressed as a 
sequence of vertexes since the tasks can be linked by vertex, 
we can obtain a complete plan of the best necessary paths and 
their corresponding cost. 
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B. Immune Cloning Operation 

One of the major steps of the Immune Clone Algorithm is 
Immune cloning operation. The clone operation is used to 
replicate a population. We consider the size of antibody 
population to be n and the antibody population to be 
represented by A(t)={a1(t), a2(t),…, an(t)}. In addition we 
consider the antibody to be the candidate solutions to CARP. 
The affinity of the antibody and the antigen determines the 
value of the objective function at a candidate solution. Hence, 
the antigens are used to find the optimal solution and the 
antibodies represent the candidate solutions in the CARP. For 
a CARP, the function of this affinity for each quantum 
chromosome is:   

f(A(t))={ f(a1(t), f(a2(t)),…, f(an(t))}       (10) 
where, f(aj(t)) represents the size of the affinity for the 
quantum chromosome aj(t). We select a population to be 
cloned for CARP, which is called dominant clonal population 
and is denoted by As(t), based on the function of the affinity 
of the antibody and the antigen, i.e. the antibody-antigen 
affinity and the antibody-antibody affinity. The clone 
operation is then applied to As(t) resulting in a cloned 
population, denoted by A(1)(t)). The size of the antibody aj(t) 
after cloning operation is qj(t) where qj(t) is computed using 
eq. (11), as follows:     

1

( ( ))
( ) *        1, 2,3 ,

( ( ))

j

j C jm

i
i

f t
q t N j n

f t


  


 
 
 
  

a

a

   (11) 

where    is an operation to round down the corresponding 

value. NC relates to the size of the cloned population where 
NC>NA and NA=|As(t)|. 

j denotes the affinity between 

antibody
 

j and other antibody. In the artificial immune 
system, this refers to the distance between the candidate 
solutions. In the case of a single antibody, the clone scale is 
adjusted according to the affinity of the antibody and the 
antigen as well as according to the affinity of the antibody 
and the antibody. The more the affinity of the antibody and 
the antigen stimulates, the greater the possibility that it is 
searched. In other words, if the affinity of the antibody and 
the antigen stimulates more, the scale of the clone will be 
larger. This is beneficial to finding the optimal solutions and 
maintaining the diversity of solutions to CARP. After 
applying the immune clone operation to the CARP, the 
obtained cloned population A(1)(t) will be as follows: 

    ( )11 2 1 2
1 1 1 ( ) (

(1)

) ( )
( ) ( ), ( ), , ( ) , , ( ), ( ), , ( )ts

s s s

qq

t t t
t t t t t t t  A

A A A
= a a a a a aA

            (1) (1) (1)
1 2( ), ( ), , ( )Nt t t a a a                (12)

   
                      

                               
where, ak

j(t)= aj(t), k=1,2,3,…,qj. ai
(1)(t) expresses the cloned 

antibodies, i=1,2,3,…,N and N=q1+q2+…+q|As(t)| which 
indicates the size of population after cloned operation. Thus, 
the immune cloning operation can be applied on the CARP 
following the steps above mentioned. It is worth mentioning 

that Immune Clone operations clone antibodies with high 
adaptation resulting in more local search.

 
C. Variation of quantum rotation gate 

The hyper-mutation in the immune clone operation is a 
kind of local search strategy. In fact, it is a random operation 
that only mutates part of the antibody to increase the diversity 
of population and it avoids falling into a local optimum. 
However, this operation usually reduces the diversity of the 
variation, which may lead us losing the optimal solution. 
Therefore, we present a variation of quantum rotation gate for 
solving this problem.  

In the quantum theory, the migration between each qubit is 
realized through the quantum’s transformation matrix [30]. 
The rotation angle of the quantum rotation gate is used to 
achieve the mutation operation and the population A(2)(t). 
This allows us to use the optimal path information totally in 
the variation. It also accelerates the speed of convergence 
[30]. The mutation operation of the side encoding is 
expressed in eq. (13).  

'

'

( ) ( )cos( ) sin( )

sin( ) cos( ) ( )( )

i i

ii

t t

tt

 



  
  


 

    
         

      (13) 

where, θ is the angle of the rotation mutation. After the 
mutation operation, the amplitude of probability of the  -th 

qubit in the quantum chromosome ai
(1)(t) can be expressed by 

eq. (13). In the algorithm, θ is equal to the adaptive dynamic 
step, denoted by δ. If the value of δ is too large, the search 
step will be consequently increased. This can easily lead to 
converging to a local extreme point which is called the 
precocious phenomenon. However, the optimal solution to 
CARP cannot be found by this approach. By contrast, if the 
value of δ is too small, the search step will be very small and 
convergence becomes very slow or even standstill. This is not 
practically helpful to solve the large-scale CARP. Hence, 
according to the characteristics of CARP, we define δ as a 
variable related to the clone scale as per eq. (14). 

δ=10×exp(-qj(t)/Nc)                (14) 

where, qj(t) is the size of the antibody aj(t) after cloning 
operation according to eq. (11), Nc is the total size of 
population after clonal operation. In addition, the search step 
can be adjusted adaptively based on the affinity of the 
antibody. After applying the variation of quantum rotation 
gate on the cloned population A(1)(t), the obtained population 
A(2)(t) can be represented as: 

A(2)(t)={a1
(2)(t), a2

(2)(t),…, aN
(2) (t)}

      
(15) 

where, ai
(2)(t) represents the antibody ai

(1)(t) after the variation 

of quantum rotation gate. If  -th bit in ai
(1)(t) had a mutation 

operation like eq. (13), ai
(2)(t) after mutation can be computed 

by eq. (16). 

  1 2

1 2
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ii i im

i imi
i
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a t




  
  






 
 
 

       (16) 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



 
 
 
 
 
 

6 

We can also reduce the mutation step size around the 
winning antibody to improve the capability of local search. 
Furthermore, it increases the mutation step size around the 
inferior antibody to perform a full quick search based on the 
specific structure of cloning operator. We can get a better 
lower bound by this strategy. This algorithm used to solve 
CARP is reported in Table 1. 

Table 1 The variation of quantum rotation gate used in solving CARP 

Algorithm 1: the algorithmic process of the variation of quantum rotation 
gate used in solving CARP 
Input: the antibody population A(1)(t) obtained after the clone operation; 
Output: The population A(2)(t) obtained after the variation of quantum 
rotation gate; 
Begin 
1. Do operation on the cloned population A(1)(t), map the decision variable to 
the unit interval and obtain the population A(1)’(t), which is an individual 
within the interval of [0, 1]; 
2. Set the quantum rotation angle θ according to the size of populations 
A(1)(t) and A(1)’(t); 
3. Set the direction of rotation based on the calculated antibody affinity of 
the cloned population A(1)(t). 
4. If ( A(1)’(t) (i,j) > 1 || A(1)’(t) (i,j) < 0 ). 
5. Modify the updated illegal Individual; 
6. end if 
7. Output the population A(2)(t); 
End 

D. Clonal selection operation 

In the immune clonal algorithm, we usually use the 
immune genetic manipulation to retain the information of the 
parent population and to maintain the diversity property. The 
immune genetic manipulation Tg

C comprises the cloning 
recombination Tr

C and the cloning variation Tm
C. Let Ag(t) 

denote the antibody population after the immune genetic 
manipulation. We can now write the relation between Tg

C, Tr
C 

and Tm
C as follows:  

Tg
C (Ag(t))= Tr

C (A(1)(t))+ Tm
C (A(1)(t))        (17) 

In QICA-CARP, however, the immune selection of the 
immune cloning operation is different than the selection 
operation in the traditional EA. Besides, the new population 
consists of excellent antibodies selected from the offspring 
according to the quantum rotation gate mutation strategy and 
the corresponding with the parent population, i.e. 
A(3)(t)=Ts

C(A(t)∪  A(2)(t)). We now set a maximum size of the 
population, denoted by Nmax, before the clonal selection 
operation. Then, we determine the size of population based 
on the maximum size after the clonal selection operation. If 
N>Nmax, we calculate the affinity function of each antibody 
and select the antibody with a relative high affinity function. 
Otherwise, the scale of antibody population remains the 
same. Eventually, the population A(3)(t) after the clonal 
selection operation can be expressed as:  

A(3)(t)={a1
(3)(t), a2

(3)(t),…, aNs
(3) (t)} 

s.t.: N>Nmax: NS=Nmax, i=1,2,…, Nmax;       (18)                   
N<=Nmax: NS=Nmax, i=1,2,…, N;

             
 

where, ai
(3)(t) denotes the antibody after the clonal selection 

operation. To select the best individuals from the progeny 
after the clone proliferated and to form a new population of 

antibodies is the main purpose of this operation. This 
increases a faster convergence to a better solution for CARP 
problem. 

E. Quantum crossover 

In the evolutionary algorithms, the crossover operation is 
another strategy to search fro the optimal solution, such as 
single-point crossover, uniform crossover, multi-point 
crossover, and arithmetic crossover. To limit the two 
individuals is one of the common crossover operations. To 
prevent the solutions from falling into a local optimum, we 
use quantum coherence to construct the full interference 
crossover [30]. In this approach, more than two antibodies in 
the population are involved in the crossover for solving the 
CARP problem. Here, we use the full interference crossover 
for CARP. We select randomly four loops in the antibodies, 
which are represented by R1, R2, R3, and R4 where, R1={0, 
A(1), D(2), C(3), B(4), A(5), D(6), 0}, R2={0, B(1), A(2), 
D(3),C(4), B(5), A(6), 0}, R3={0, C(1), B(2), A(3), D(4), C(5), 
B(6), 0}, and R4={0, D(1), C(2), B(3), A(4), D(5), C(6), 0}. In 
the connectivity graph, each antibody of these four loops are 
involved in the crossover operation according to the 
characteristics of the full interference crossover. The full 
interference crossover of the loop is shown in Figure 3. 

A(1) D(2)  C(3) B(4) A(5) D(6)

B(1) A(2)  D(3) C(4) B(5) A(6)

C(1) B(2)  A(3) D(4) C(5) B(6)

D(1) C(2)  B(3) A(4) D(5) C(6)

A(1) A(2) A(3) A(4) A(5) A(6)

B(1) B(2) B(3) B(4) B(5) B(6)

C(1) C(2) C(3) C(4) C(5) C(6)

D(1) D(2) D(3) D(4) D(5) D(6)

the full interference 

crossover

Figure 3 The schematic diagram of the full interference crossover 

Fig. 3 shows the full interference cross, which is one kind 
of the cross-way by the diagonal re-assortment implemented 
on the solutions of the loop for CARP. We select NS /3 
individuals with a worse rank in population to perform 
crossover because it has a strong influence on the structure of 
the solution. The interference crossover process is as follows: 
(1) select several individuals and random positions, called pos, 
(2) each individual exchange bits with each other. The 
exchange is happening with 1 bit interval. The population 
A(4)(t) obtained after performing the full interference 
crossover for the population A(3)(t) can be written as per eq. 
(19), in the following: 

A(4)(t)={a1
(4)(t), a2

(4)(t),…, aNs
(4) (t)}        (19) 

where, ai(4)(t) represents the antibody obtained by the full 
interference crossover operation. This quantum crossover 
method improves the one-sidedness and locality of common 
crossover by benefiting the most from the antibody 
information. Moreover, it can inject new impetus and produce 
new antibodies while the population evolves into the local 
optimal. This is very useful for solving a CARP problem. The 
full interference cross by using the properties of the quantum 
coherence allows the algorithm prevents the population from 
prematurely falling into a local optimum in the evolving 
process. However, the solution obtained after crossover may 
become infeasible because some tasks may be not included in 
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the solution. Hence, we adopt the repair operator to deal with 
the situation in the next section. 

F. The repair operation 

QICA-CARP is an evolutionary algorithm.  
The initial population in EA is usually generated randomly 

resulting in a large number of infeasible solutions. Moreover, 
the offspring after QICA-CARP applied on the feasible 
solutions may also results in some infeasible solutions. Here, 
we use the heuristic algorithm that generates an initial 
solution speed up the convergence of the algorithm. 
However, this does not handle the infeasible solutions.  

Let  (4) (4) (4) (4)
1 2( ) ( ), ( ), , ( )kt t t t A a a a denote the infeasible 

solutions, then the population A(4)(t) obtained by the
 

full 
interference cross is expressed as: 

   (4) (4) (4) (4) (4) (4) (4)
1 2 1 2( ) ( ), ( ), , ( ) ( ), ( ), , ( )

sN k kt t t t t t t   A a a a a a a

        (20) 
where k denotes the number of the infeasible solutions. The 
common strategies for processing the infeasible solutions 
includes multi-objective policy [26], repair infeasible 
solutions [33] and the penalty function method [34]. The 
penalty function method is a common method for solving 
constrained optimization problems. In this approach there 
exists a punishment for infeasible solutions to decreases the 
solution’s fitness. The approach accepts non-feasible 
solutions so that some non-feasible solutions have the 
opportunity to be remained when it is appropriate; thus, some 
excellent solutions are retained expanding the search space. 
However, since the selection of the penalty coefficient and 
the penalty function is relatively complex, an appropriate 
function should be used with a good selection of the 
corresponding parameters according to the problem itself. 

Considering the CARP to be an NP-Hard problem, it is 
very complex to use the penalty function to handle the 
infeasible solutions. We choose the appropriate repair 
operator to translate the infeasible solutions into the feasible 
solution of the population. A repair operator is designed, 
which can either convert the infeasible solutions into the 
feasible solutions or search in the convex border to find the 
optimal solution. Using the repair operator, population A(5)(t) 
can be computed as follows: 

   
   

' ' '
(5) (4) (4) (4) (4) (4) (4)

1 2 1 2

(5) (5) (5)
1 2

( ) ( ), ( ), , ( ) ( ), ( ), , ( )   

          ( ), ( ), , ( )                        21

s

s

N k k

N

t t t t t t t

t t t

   

  

A a a a a a a

a a a

where,
 

 ' ' ' '
(4) (4) (4) (4)

1 2( ) ( ), ( ), , ( )A a a a  kt t t t is the infeasible 

solutions after
 
the repair operation and Ai

(5)(t) is the antibody 
after the repair operation. The repair operator can be 
embedded into the optimization algorithms of CARP that 
improves the search efficiency. The flowchart of the CARP 

algorithm with repair operator embedded is reported in Table 
2. 

Table 2  

Algorithm 2: The repair operator algorithm embedded in CARP  

Input: the infeasible solutions (4)( )tA ; 

Output: the feasible solutions 
'

(4) ( )tA ; 

Begin 
1. Calculate the affinity of the antibody in A(4)(t) denoted by aff; 

2. For the repeated task in task sequence in (4)( )tA , we eliminate the one 

which make a higher travel cost; 
3. If (aff <1.3*Lower_Bound) 
4. while (N is not the empty set) do  // Set N indicates all tasks which is not 

inserted in the loop 
5. For all tasks Ti in N, 1≤i≤|m|, look for the vehicle collection Φ(Ti) that 

consists of the vehicles which the task Ti can be putted in without capacity 
violation.  

6. Select the task which can make the |Φ(Ti)| (the number of elements in 
Φ(Ti)) smallest to insert .  

7. Find the minimum current loading TCLL vehicle, then the task Tk can be 
assigned to the vehicle. 

8. Remove the task Tk from N and update the vehicle’s loading. 
end while 
else 

9. i=1; 
10. Find the loop that does not meet the capacity constraints in the k-th 

vehicle loop, denoted by r. Then , find the total task SUM in the r loops. 
11. The remaining k-r loops are arranged in ascending order based on the 

loop requirements. 

while (SUM+
'

(4)( ( ))if ta >(i+r)*Q) do 

12.   The loop
'

(4) ( )i ta is added to the task set M. 

13.   SUM=SUM+
'

(4)( ( ))if ta . 

14.    i++; 
end while 

15.  The loop
'

(4) ( )i ta is added to the task set M. 

16.  Do the path-scanning on all the tasks in the set M and use the     
Ulusoy-Split segmentation method optimization on it. 

17.  Use the new circuit to replace the old circuit in the (4) ( )i ta to obtain
 

'
(4) ( )i ta . 

     end if 
End  

Among them, (4) ( )i ta (1≤i≤k) indicates the loop formed by the i-th 

vehicle; 
TCLL the current remaining capacity of j-th vehicle; T indicates the task that 
required to service; |m| is the number of total tasks. 

In summary, we adopt QICA-CARP to solve CARP whose 
corresponding steps includes quantum coding, immune 
cloning operation, variation of quantum rotation gate, clonal 
selection operation, quantum crossover and the repair 
operation. We initialize the quantum encoding population as 
A(t). The state transfer of antibody population is denoted as 
follows: 

(1) (2)

(3) (4) (5)

( ) ( )
     

 

( )

(
 

)
 

) ( ) (

quantumrotation gateclone clone selection
operation operation

quantumcrossover therepair operat

t t t

t t
ion

t

  

 

A A A

A A A  

It is known that, the immune clone algorithm is an 
intelligent algorithm that has the strong capability of dealing 
with the local optimum by increasing the local population 
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size. However, this algorithm does not solve the large-scale 
problems and it fails to solve the real-time process. Hence, 
we use the parallel nature of quantum computation to solve 
CARP to improve the convergence rate of the original 
operator. Table 3 shows the algorithmic process of 
QICA-CARP. 

Table 3 the algorithmic process of QICA-CARP 

Algorithm 3: The algorithmic process of QICA-CARP 
Input: A connected graph with weights G, task set Z, the capacity of vehicle 

Q; 
Output: The optimal feasible solution ( )s Z ; 

Begin 
1. Initialize population p(Z); 
2. 

( ) ( )( ) argmin ( ( ( )))s Z p Zs Z tc s Z ; 

3. Decompose the task set Z=（Z1,...,Zg）; 
4. j=1; 
5. Use the heuristic algorithm to construct a better feasible solution of Zj; 
6. Set the termination condition and the initialization iterations; 
While(Indivi_Best≠Lower_Bound) do 
7. t=0, initialize the quantum encoding population A(0) and calculate the 

affinity of the antibody; 
8. Obtain  A(1)(t) by the cloning operation; 
9. Perform the variation of the quantum rotation gate generating A(2)(t); 
10.  Perform the immune selection operation to form A(3)(t); 
11. Calculate the affinity function of A(3)(t) and perform a quantum crossover 

operation to get  A(4)(t); 
12.  The repair operator is used to repair the infeasible solutions in A(4)(t) 

obtaining A(5)(t); 
13.  t=t+1; 
14.  If the termination condition is not satisfied, go to step 5; 
end while 
15.  Obtain the optimal feasible solution of sub-component ( )s Zi ; 

16.  until j = g 
17.  ( ) { ( ( ),..., ( ))}1s Z s s Z s Zg  ; 

If ( ( ( )) ( ( )))tc s Z tc s Z   

18.  Update the optimal feasible solution of Z: ( ) ( )s Z s Z ; 

end if 
19.  return ( )s Z ; 

End 
Among them, Lower_Bound is the lower bound of the test case. 

IV. SIMULATION RESULTS AND THE ANALYSIS 

A. Experimental setting 

To demonstrate In order to evaluate the performance of the 
proposed approach QICA-CARP, we perform some 
experiments and compare the results with the ones obtained 
by MAENS and RDG-MAENS. MAENS has been proven to 
be a sufficient algorithm for small- and medium-scale 
problems and RDG-MAENS has been proven superior to 
some representative algorithms for large-scale CARP 
(LSCARP).  

The experimental test sets reported in [23] includes gdb, 
val, Beullen’C, D, E, F, egl and EGL-G. The gdb test set 
consists of 23 small-scale or medium-scale test instances. The 
instance set of the val includes 34 test instances generated by 
10 different graphs. Next, the Beullen’C, D, E, F is 
constructed according to the transport network in the Flanders 
district of Belgium by Beullens. Each test set includes 25 test 
instances. The instances in test sets of C and D are generated 

by from the same graph. Likewise, the instances in test sets of 
D and F are generated by from the same graph. The capacity 
of vehicles in instances of D and F are twice the capacity in 
the instances of C and E. The next data set is egl. The 
corresponding test set is generated based on the application 
problems of sprinkling gravels on roads to avoid road icing 
on the winter of the Lancashire in the United Kingdom. This 
test set consists of 25 instances based on two graphs by 
setting different capacity constraints and task sets for 
different test instance. Finally, 10 large-scale instances make 
up the EGL-G test set that includes 255 vertex and 375 edges, 
and different instances are associated with different task sets 
and capacities of vehicles. Each instance in each test set runs 
independently 30 times. Some parameters are used in this 

experiment are the number of sub-problems  =2, which is 

the same as RDG-MAENS, the size of the parent antibody 
population Psize=30, which is identical to the size of the angle 
of rotation   and is computed by eq. (14).The main 

parameters are the number of generation, the ratio of clone q, 
the probability of mutation Pls. In the process of 
decomposition, there is also the degree of fuzziness 

parameter  . Here, to confirm the sensitivity of these 4 

parameters, we set several groups experiments on test 
instance egl-s2-B and we analyze the mean cost in 10 
independent runs as the index.  
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Figure 4 The sensitivity of the cost value to the parameters 

It is shown in Fig. 4(a) the algorithm is not sensitive to the 
probability of mutation. If the probability of mutation is less 
than 0.3, the performance is getting better because the 
probability of mutation becomes larger. On the other hand, 
when it becomes larger than 0.3, the algorithm is getting 
worse. We empirically set the mutation value equal to 0.2. 
The mutation value less than 0.3 was shown to be good 
according to our experiments. As sown in Fig. 4(b), the 
output of the algorithm is sensitive to the clonal ratio. In fact, 
the larger the clone ration, the less the cost. However, the 
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high ratio results in a high computing cost. Hence, a good 
balance between these two factors is very critical. We 
empirically set the clonal ratio to be 3 that has shown to have 
a good performance. As shown in Fig. 4(c), the output of the 
algorithm is not very sensitive to the degree of fuzziness. We 
experienced a good performance by the value of degree of 
fuzziness between 4 and 6, and we set it here equal to 5. On 
the other hand, the algorithm is very sensitive to the number 
of generation, as shown in Fig. 4(d). In fact, the larger the 
number of generations, the better the performance. We 
empirically set the number of generations equal to 500. 

B. Comparing QICA-CARP with RDG-MAENS for solving 
CARP 

We report the results achieved by QICA-CARP, 
RDG-MAENS and MAENS for solving the LSCARP with 
small-scale dataset in Table 4.  Before results analysis we 
need to note the followings. (1) |V|, |E|, |T| and LB represent 
the number of vertexes, the total number of edges, the 
number of tasks and the best lower bound found so far for the 
instances, respectively. (2) ‘mean’ represents the average 
value obtained by 30 independent runs on the instances. 
‘Best’ represents the best one of them, and SD is the standard 
deviation showing the stability of the algorithm on the test 
case. The performance of the algorithm is stable if the SD is 
small. (3) The best results obtained by RDG-MAENS and 
QICA-CARP are in reported by bold fonts. In addition, the 
bold fonts report the same results. The best results obtained 
by MAENS or QICA-CARP is indicated by ‘_’. (4) ‘*’ 
indicates that the algorithm can get better lower bound than 
LB on the test case. (5) p and h are the parameters in the 
Wilcoxon signed rank test between QICA-CARP and 
RDG-MAENS. p represents the probability of the median of 

two samples to be equal, and the null hypothesis should be 
questioned when p is close to 0. h is the test result where h=0 
indicates that the difference between the median of the two 
samples is not significant whereas h=1 means the difference 
between the median of the two samples is significant. In this 
paper, the significance level of Wilcoxon signed rank test sets 
equal to 0.05. (6) We use percentage ‘%’ to show how much 
QICA-CARP makes the results better that the ones obtained 
by RDG-MAENS. This is denoted by Δ. 

QICA-CAR and MAENS has almost the same optimal 
solution. However, The result obtained by MEAN has 
slightly better average value because gdb is small-scale data 
set and decomposition does not suit it. It is also evidenced 
that QICA-CARP achieves 16 smaller average value of the 
total_cost in the 23 test instances of gdb where other values 
are the same. Furthermore, SD values of each test instance 
show that the standard deviation of QICA-CARP is 0 on 17 
instances. Smaller standard deviations are obtained on other 
test instances in comparison with the results obtained by 
RDG-MAENS. This indicates the stability of QICA-CARP is 
stronger than RDG-MAENS on this test set. We see that 
QICA-CARP can converge to the lower bound of the test 
instance on all 23 instances of gdb by looking at the best 
values obtained by the algorithms on the test instances. The 
results of Wilcoxon signed rank test on this test set show that 
there are 14 “h=1” in 23 test instances. This indicates that the 
results obtained by the new algorithm are better than the one 
obtained by the RDG-MAENS. This illustrates that 
QICA-CARP is much more effective than RDG-MAENS for 
searching the solutions on the gdb test set. However, because 
gdb is a small-scale dataset, we need to show the superiority 
of QICA-CARP with other datasets, as well. 

Table 4 The comparison results of QICA-CARP and RDG-MAENS on gdb 

name |V| |T| |E| LB 
MAENS RDG-MAENS QICA-CARP 

p h Δ(%) 
mean SD Best mean SD Best mean SD Best 

gdb1 12 22 22 316 316.0 0.0 316 316.0 0.0 316 316.0 0.0 316 1 0 0 

gdb2 12 26 26 339 339.0 0.0 339 340.8 2.8 339 339.0 0.0 339 0.0039 1 0 

gdb3 12 22 22 275 275.0 0.0 275 277.0 3.7 275 275.0 0.0 275 0.0039 1 0 

gdb4 11 19 19 287 287.0 0.0 287 287.5 1.4 287 287.0 0.0 287 0.2500 0 0 

gdb5 13 26 26 377 377.0 0.0 377 379.8 4.1 377 377.0 0.0 377 4.8828e-004 1 0 

gdb6 12 22 22 298 298.0 0.0 298 299.1 4.2 298 298.3 1.3 298 0.6250 0 0 

gdb7 12 22 22 325 325.0 0.0 325 325.0 0.0 325 325.0 0.0 325 1 0 0 

gdb8 27 46 46 348 348.7 1.0 348 348.0 0.0 348 348.2 0.8 348 0.2500 0 0 

gdb9 27 51 51 303 303.0 0.0 303 307.7 3.0 303 303.2 0.9 303 2.2442e-005 1 0 

gdb10 12 25 25 275 275.0 0.0 275 277.4 4.0 275 275.0 0.0 275 0.0039 1 0 

gdb11 22 45 45 395 395.0 0.0 395 396.5 3.4 395 395.0 0.0 395 0.0156 1 0 

gdb12 13 23 23 457 458.0 0.0 458 461.1 6.0 458 458.4 1.3 458 1.2207e-004 1 0 

gdb13 10 28 28 534 536.0 0.0 536 544.7 5.2 536 536.2 1.1 536 5.4777e-007 1 0 

gdb14 7 21 21 100 100.0 0.0 100 100.4 0.8 100 100.0 0.0 100 0.0313 1 0 

gdb15 7 21 21 58 58.0 0.0 58 58.0 0.0 58 58.0 0.0 58 1 0 0 

gdb16 8 28 28 127 127.0 0.0 127 127.4 0.8 127 127.0 0.0 127 0.0313 1 0 

gdb17 8 28 28 91 91.0 0.0 91 91.0 0.0 91 91.0 0.0 91 1 0 0 

gdb18 9 36 36 164 164.0 0.0 164 164.0 0.0 164 164.0 0.0 164 1 0 0 

gdb19 8 11 11 55 55.0 0.0 55 55.0 0.0 55 55.0 0.0 55 1 0 0 

gdb20 11 22 22 121 121.0 0.0 121 122.7 0.7 121 121.0 0.0 121 3.4142e-007 1 0 

gdb21 11 33 33 156 156.0 0.0 156 156.7 1.0 156 156.0 0.0 156 9.7656e-004 1 0 

gdb22 11 44 44 200 200.0 0.0 200 200.4 0.8 200 200.0 0.0 200 0.0313 1 0 

gdb23 11 55 55 233 233.0 0.0 233 234.9 0.4 233 233.4 1.4 233 1.5188e-004 1 0 
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Fig. 5 shows the convergence of some instances that 
illustrates more detailed description of comparison between 
the results obtained by QICA-CARP and RDG-MAENS 
applied on the gdb dataset. The x-axis represents the 
computational time in seconds, and the y-axis represents the 
average total cost of the best-so-far solutions over the 30 
independent runs. The blue line represents the result of 
RDG-MAENS and the red line is QICA-CARP. 
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Figure 5 The convergence curves of QICA-CARP on some instances of gdb 

It is evidenced in this figure that the convergence rate of 
QICA-CARP is slower than RDG-MAENS on some test set. 
However, QICA-CARP can converge to the lower bound 
with better stability property. Hence, the convergence rate of 
QICA-CARP in some instances of the small-scale test set gdb 
needs to be improved. 

To compare the statistical properties of QICA-CARP with 
RDG-MAENS on the test set gdb, use the box diagram about 
'total_cost' on each instance. Fig. 6 shows the box diagram of 
results obtained by applying QICA-CARP and RDG-MAENS 
on some instances of the gdb test set.  
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Figure 6 The box diagram of QICA-CARP and RDG-MAENS on gdb 

The maximum value, the median line and the data 
distribution in Fig. 6 show that the solution obtained by 
QICA-CARP is much better than the ones obtained by 
RDG-MAENS. Besides, QICA-CARP can find a better 
optimal solution, which is consistent with the test results of 
these two algorithms in table 4. Because the gdb is a 
small-scale test set, the searching ability of these two 
algorithms are good enough, the ability of QICA-CARP to 
find solutions is not reflected completely.  

Table 5 The comparison results of QICA-CARP and RDG-MAENS on val 

name |V| |T| |E| LB 
MAENS RDG-MAENS QICA-CARP 

p h 
 

Δ(%) mean SD Best mean SD Best mean SD Best 

1A 24 39 39 173 173.0 0.0 173 173.0 0.0 173 173.0 0.0 173 1 0 0 

1B 24 39 39 173 173.0 0.0 173 179.7 1.0 179 178.0 4.2 173 0.0077 1 0 

1C 24 39 39 245 245.0 0.0 245 245.1 0.7 245 245.5 2.1 245 0.5000 0 0 

2A 24 34 34 227 227.0 0.0 227 239.4 8.1 227 237.9 6.8 227 0.0303 1 0 

2B 24 34 34 259 259.0 0.0 259 262.5 4.5 259 261.5 2.7 259 0.0322 1 0 

2C 24 34 34 457 457.2 1.1 457 465.5 5.5 457 459.3 3.6 457 8.5633e-006 1 0 

3A 24 35 35 81 81.0 0.0 81 83.3 1.7 82 83.4 1.7 81 0.7240 0 1.25 

3B 24 35 35 87 87.0 0.0 87 89.3 1.6 87 89.8 2.0 87 0.0056 1 0 

3C 24 35 35 138 138.0 0.0 138 139.1 1.0 138 138.8 0.9 138 0.4407 0 0 

4A 41 69 69 400 400.0 0.0 400 410.4 7.1 400 403.4 4.7 400 2.3085e-006 1 0 

4B 41 69 69 412 412.0 0.0 412 418.1 6.1 412 414.1 4.4 412 1.7567e-005 1 0 

4C 41 69 69 428 431.1 3.1 428 442.6 3.8 434 434.1 5.8 428 1.5912e-006 1 1.38 

4D 41 69 69 526 532.9 3.3 530 545.4 5.0 536 533.6 3.4 530 1.5650e-006 1 1.12 

5A 34 65 65 423 423.0 0.0 423 428.2 4.3 423 425.3 5.1 423 0.0010 1 0 

5B 34 65 65 446 446.0 0.0 446 447.1 2.5 446 446.6 1.2 446 0.0313 1 0 

5C 34 65 65 473 474.0 0.0 474 477.2 3.9 474 474.4 1.1 474 2.6963e-004 1 0 

5D 34 65 65 573 582.9 2.2 577 596.4 5.7 579 583.5 3.7 577 1.0996e-006 1 0.35 

6A 31 50 50 223 223.0 0.0 223 225.6 2.6 223 224.2 2.5 223 0.0042 1 0 

6B 31 50 50 233 233.0 0.0 233 236.5 3.1 233 234.3 2.1 233 6.2042e-005 1 0 

6C 31 50 50 317 317.0 0.0 317 319.0 2.6 317 318.3 1.9 317 0.0039 1 0 

7A 40 66 66 279 279.0 0.0 279 282.5 2.8 279 280.5 4.4 279 6.8189e-004 1 0 

7B 40 66 66 283 283.0 0.0 283 283.6 2.0 283 285.4 5.0 283 0.0313 1 0.84 

7C 40 66 66 334 334.0 0.0 334 337.6 3.4 334 335.2 3.0 334 7.5568e-005 1 0 

8A 30 63 63 386 386.0 0.0 386 391.3 6.8 386 390.3 6.0 386 0.0121 1 0 

8B 30 63 63 395 395.0 0.0 395 400.9 4.8 395 396.7 3.1 395 6.9222e-005 1 0 

8C 30 63 63 518 525.9 1.7 521 539.2 4.4 527 527.8 4.2 521 1.5273e-006 1 1.14 

9A 50 92 92 323 323.0 0.0 323 330.0 4.6 325 325.9 2.6 323 1.5831e-006 1 0.62 

9B 50 92 92 326 326.0 0.0 326 331.7 3.6 326 327.3 2.4 326 1.1594e-005 1 0 

9C 50 92 92 332 332.0 0.0 332 336.3 2.9 332 333.2 2.5 332 7.0048e-006 1 0 

9D 50 92 92 385 391.0 0.0 391 397.3 3.9 391 391.8 1.8 391 7.3698e-006 1 0 

10A 50 97 97 428 428.0 0.0 428 436.6 4.9 430 431.1 2.8 428 1.5460e-006 1 0.47 

10B 50 97 97 436 436.0 0.0 436 440.8 3.5 437 437.0 1.1 436 1.5460e-006 1 0.23 

10C 50 97 97 446 446.0 0.0 446 451.2 4.1 447 447.3 1.3 446 1.2868e-006 1 0.00 

10D 50 97 97 525 533.6 1.5 531 540.6 3.5 535 531.3 2.4 527 1.4392e-006 1 0.01 
 
Table 5 shows the simulation of the results obtained by 

applying QICA-CARP, RDG-MAENS and MAENS on the 
val test sets. QICA-CARP and MAENS algorithms achieve 
the same optimal solution on all instances except 10D, on 

which QICA-CARP got a better solution. On the other hand, 
the average obtained by MAENS is better than the one 
obtained by QICA, because val has a very small scale and the 
ability of global searching is weaken after using 
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decomposition in QICA-CARP. QICA-CARP results in 30 
better solutions than RDG-MAENS whereas only four 
solutions obtained by RDG-MAENS and QICA-CARP are 
equal in val dataset. In addition, the SD of QICA-CARP 
indicates that it results in better stability property on the val 
test set. Although, QICA-CARP converges to a better lower 
bound, it's not the best lower bound of the instances. 
According to the test results of Wilcoxon signed rank test on 
this instances, there are 30 cases of ‘h=1’ in the 34 instances 
which show that the new algorithm outperforms 
RDG-MAENS. This illustrate that the new algorithm can be 
used instead of the RDG-MAENS. Fig. 7 shows the 
convergence curves on some instances of the val test set. The 
blue line represents the result of RDG-MAENS whereas the 
red line is QICA-CARP. 
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Figure 7 The convergence curves of QICA-CARP on some instances of val 

Fig. 7 shows that QICA-CARP converges faster to the 
lower bound of instances while it is stable. However, the 
convergence rate is not ideal at start on some test set. Because 
the val is the medium-scale test set, the convergence graphs 
illustrate that convergence speed of QICA-CARP must be 
still improved. Nonetheless, the global search capability of 
QICA-CARP has been reflected on the medium-scale 
instance. We show the box diagram on the instance in Fig. 8 
to analyze the statistical properties of QICA-CARP and 
RDG-MAENS on the test set val. Fig. 8 shows the box 
diagram about 'total_cost' of QICA-CARP and 
RDG-MAENS on part of instances of the val test set. 

By analyzing the distribution of the test results in the box 
diagram, we see that the QICA-CARP is more stable and 
capable of finding the lower bound than RDG-MAENS. In 
addition, the number of abnormal values in the test results of 

QICA-CARP is significantly less than the RDG-MAENS 
because of the repair operator in QICA-CARP. The results 
obtained for this test set demonstrate the superiority of the 
QICA-CARP where it can be used instead of RDG-MAENS. 
This is in accordance with the results gained by testing on 
val, shown in Table 5. In summary, the performance of 
QICA-CARP is much better than RDG-MAENS for solving 
the medium-scale CARP. 
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Figure 8 The box diagram of QICA-CARP and RDG-MAENS on val test set 

Table 6 presents the results obtained by QICA-CARP, 
RDG-MAENS and MAENS on testing set Beullens’C, E. We 
see that QICA-CARP obtains the optimal solution on 37 out 
of 52 instances, whereas MAENS achieves 1 optimal solution. 
Moreover, MAENS results in 14 better average values, 
whereas QICA-CARP has 33 better average value. Compare 
the QICA-CARP with RDG-MAENS, 2 better solutions are 
obtained by using QICA-CARP out of 52 samples whereas 
RDG-MAENS has none. However, the improvement of 
QICA-CARP is not sufficient which is in accordance with the 
results gained by Wilcoxon signed rank test on Beullens’C, E. 
In Wilcoxon signed rank test, there are 12 ‘h=1’ in 
Beullens’C and 13 ‘h=1’ in Beullens’E. Besides, by analyzing 
the value of SD, we can see that the stability of QICA-CARP 
is stronger.  

Table 6 The comparison results of QICA-CARP and RDG-MAENS on Beullen’C, E 

3 |V| |T| |E| LB 
MAENS RDG-MAENS QICA-CARP 

p h 
 

Δ(%) mean SD Best mean SD Best mean SD Best 
C01 69 98 79 4105 4162.0 23.9 4115 4172.3 27.89 4150 4172.0 25.78 4150 0.2500 0 0 
C02 48 66 53 3135 3135.7 3.7 3135 3148.0 30.2 3135 3148.0 24.53 3135 0.1250 0 0 
C03 46 64 51 2575 2627.8 3.9 2625 2585.3 4.07 2575 2585.0 4.5 2575 0.9047 0 0 
C04 60 84 72 3478 3535.7 4.5 3533 3528.2 46.34 3510 3519.3 34.92 3510 0.0313 1 0 
C05 56 79 65 5365 5477.3 30.0 5425 5415.0 27.45 5365 5415.7 32.63 5365 0.5000 0 0 
C06 38 55 51 2535 2587.5 3.4 2575 2543.7 15.86 2535 2538.0 6.3 2535 0.2656 0 0 
C07 54 70 52 4075 4135.0 0.0 4135 4095.0 24.49 4075 4099.3 24.59 4075 9.7742e-004 1 0 
C08 66 88 63 4090 4162.3 4.3 4160 4097.5 29.52 4090 4117.3 66.85 4090 0.0050 1 0 
C09 76 117 97 5233 5300.8 21.5 5278 5292.5 24.32 5260 5282.2 22.68 5260 0.5625 0 0 
C10 60 82 55 4700 4827.8 43.8 4780 4755.0 43.93 4700 4749.5 36.13 4700 0.0625 0 0 
C11 83 118 94 4583 4711.7 34.1 4673 4671.3 34.59 4640 4688.2 37.4 4640 0.0488 1 0 
C12 62 88 72 4209 4309.0 0.0 4309 4256.3 34.97 4240 4247.3 27.56 4240 0.1563 0 0 
C13 40 60 52 2955 3027.0 21.4 3015 2959.0 13.75 2955 2956.0 2.0 2955 0.0313 1 0 
C14 58 79 57 4030 4097.3 10.8 4090 4036.3 10.16 4030 4032.5 7.48 4030 0.0313 1 0 
C15 97 140 107 4912 5042.5 16.3 5007 4967.2 20.15 4940 4965.7 18.71 4940 0.1875 0 0 
C16 32 42 32 1475 1480.2 0.9 1480 1480.7 8.34 1475 1477.8 6.54 1475 0.3008 0 0 
C17 43 56 42 3555 3583.3 17.8 3575 3583.8 38.25 3555 3567.8 26.54 3555 1 0 0 
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C18 93 133 121 5577 5673.7 18.9 5652 5648.3 23.5 5620 5638.5 12.32 5620 3.8497e-004 1 0 

C19 62 84 61 3096 3186.7 19.1 3156 3147.5 25.09 3115 3147.5 22.4 3120 4.8828e-004 1 0 
C20 45 64 53 2120 2123.5 6.7 2120 2131.7 13.44 2120 2132.7 12.89 2120 0.0727 0 0 
C21 60 84 76 3960 3980.2 0.9 3980 4000.0 45.28 3970 3980.2 27.61 3970 0.0430 1 0 
C22 56 76 43 2245 2245.0 0.0 2245 2246.0 5.39 2245 2246.0 0.0 2245 0.0150 1 0 
C23 78 109 92 4032 4136.3 30.8 4102 4102.3 24.38 4085 4098.2 20.21 4085 4.8828e-004 1 0 
C24 77 115 84 3384 3422.5 6.2 3414 3412.0 9.97 3400 3407.8 8.43 3400 0.0313 1 0 
C25 37 50 38 2310 2312.0 7.6 2310 2322.5 18.2 2310 2328.2 22.97 2310 1 0 0 
E01 73 105 85 4885 4997.8 35.0 4965 4922.0 11.8 4910 4922.2 11.87 4910 0.0125 1 0 
E02 58 81 58 3990 4025.5 14.2 4020 4004.0 27.85 3990 3998.8 19.48 3990 0.0039 1 0 
E03 46 61 47 2015 2017.0 4.1 2015 2022.7 10.23 2015 2022.0 14.54 2015 0.0020 1 0 
E04 70 99 77 4155 4259.3 21.1 4185 4227.0 44.13 4155 4204.0 46.34 4155 1 0 0 
E05 68 94 61 4585 4683.7 49.0 4615 4649.3 71.69 4585 4640.5 49.32 4585 0.5000 0 0 
E06 49 66 43 2055 2055.0 0.0 2055 2055.0 0 2055 2055.0 0 2055 0.5000 0 0 
E07 73 94 50 4155 4275.0 0.0 4275 4160.3 19.96 4155 4165.7 21.51 4155 0.0176 1 0 
E08 74 98 59 4710 4780.5 1.5 4780 4714.0 9.87 4710 4712.3 7.27 4710 0.0156 1 0 
E09 91 141 103 5780 5947.7 38.2 5855 5899.3 48.66 5810 5889.8 51.8 5810 0.6279 0 0 
E10 56 76 49 3605 3606.5 5.7 3605 3613.0 12.49 3605 3620.7 30.5 3605 0.5000 0 0 
E11 80 113 94 4637 4759 44.5 4677 4723.8 42.97 4670 4732.5 42.48 4670 0.9063 0 0 

E12 74 103 67 4180 4264.3 17.9 4210 4246.7 20.22 4200 4243.2 23.72 4195 0.3885 0 0.12 

E13 49 73 52 3345 3385.3 22.2 3370 3349.0 14.97 3345 3348.0 0.0 3345 0.0423 1 0 

E14 53 72 55 4115 4152.0 10.9 4145 4132.5 19.01 4115 4137.2 32.96 4115 1 0 0 

E15 85 126 107 4189 4231.8 13.0 4229 4232.3 8.24 4220 4226.7 9.14 4215 1.4904e-006 1 0.12 

E16 60 80 54 3755 3795.0 0.0 3795 3795.8 29.61 3775 3801.8 40.2 3775 0.0425 1 0 
E17 38 50 36 2740 2744.3 6.3 2740 2745.0 9.83 2740 2745.7 13.52 2740 1 0 0 

E18 78 110 88 3825 3837.3 6.3 3835 3856.8 26.47 3835 3856.3 27.72 3835 1.4713e-006 1 0 

E19 77 103 66 3222 3259.0 3.1 3257 3251.2 25.87 3235 3251.2 23.11 3235 1 0 0 
E20 56 80 63 2802 2842.0 0.0 2842 2826.3 4.99 2825 2842.3 28.14 2825 0.7734 0 0 
E21 57 82 72 3728 3783.5 22.9 3733 3790.3 38.58 3730 3791.0 32.47 3730 1.5381e-006 1 0 

E22 54 73 44 2470 2502.5 6.3 2500 2489.2 42.8 2470 2475.0 18.9 2470 0.4063 0 0 
E23 93 130 89 3686 3760.0 13.1 3726 3752.3 38.64 3710 3743.7 32.79 3710 1.6157e-006 1 0 

E24 97 142 86 4001 4129.2 26.3 4091 4062.5 29.69 4020 4059.0 28.98 4020 1.5117e-006 1 0 
E25 26 35 28 1615 1615.0 0.0 1615 1663.0 67.2 1615 1661.7 63.24 1615 1.6594e-006 1  

  In Table 7, we report the results of using QICA-CARP, 
RDG-MAENS and MAENS to find the optimum of 
Beullen’D, F, which is a medium-scale test set. The reported 
results show QICA-CARP obtains the optimal solution on 13 
out of 52 instances whereas MAENS could find only 4 
optimal solutions. This indicates that QICA-CARP is more 
appropriate than MAENS for searching optimum of the 
medium scale data set because Beullens’ decomposition 
strategy results in a better local searching and consequently in 
a better solution. Nonetheless, MAENS achieved 42 better 
average values whereas QICA achieved 7 because the scale 
of problems is not large enough. Furthermore, QICA-CARP 
attained 22 better solutions than RDG-MAENS out of 25 

samples of Beullens’D. As for other 25 samples of 
Beullens’F, QICA-CARP produced 19 solutions better than 
the ones obtained by the RDG-MAENS. Moreover, 
QICA-CARP results in more stable solutions while it 
converges to the lower bound of all instances in this test set. 
Nonetheless, the new algorithm can obtain two better lower 
bounds in Beullen’D, F. There are 19 instances of h=1in 
Beullens’D and 15 in Beullens’F using Wilcoxon signed rank 
test. The instance of Beullens’D, F are from the same graph 
but the capacity of Beullens’F is twice the Beullens’D. This 
demonstrates that QICA-CARP outperforms other algorithm 
in finding optimum of a large-scale test set. 

Table 7 The comparison results of QICA-CARP and RDG-MAENS on Beullen’D, F 

name |V| |T| |E| LB 
MAENS RDG-MAENS QICA-CARP 

p h Δ(%) 
mean SD Best mean SD Best mean SD Best 

D01 69 98 79 3215 3235 0.0 3235 3242.0 1.9 3215 3240.8 1.0 3215 0.6250 0 0 
D02 48 66 53 2520 2520.0 0.0 2520 2537.2 31.1 2520 2528.0 3.7 2520 9.7656e-004 1 0 
D03 46 64 51 2065 2065.2 0.9 2065 2080.3 27.0 2065 2077.7 11.9 2065 0.3438 0 0 
D04 60 84 72 2785 2786.0 3.8 2785 2785.0 0.0 2785 2785.0 0.0 2785 1 0 0 
D05 56 79 65 3935 3935.0 0.0 3935 3945.0 23.6 3935 3950.3 20.2 3935 0.1250 0 0 
D06 38 55 51 2125 2133.0 15.6 2125 2170.3 19.1 2125 2175.7 25.8 2125 0.5276 0 0 
D07 54 70 52 3078 3190.3 17.7 3178 3171.3 26.5 3125 3170.0 13.3 3125 0.5762 0 0 
D08 66 88 63 2995 3084.2 15.5 3065 3079.2 16.5 3045 3077.7 17.6 3045 0.3125 0 0 
D09 76 117 97 4120 4120.0 0.0 4120 4126.3 10.7 4120 4131.2 5.0 4120 0.8438 0 0 
D10 60 82 55 3335 3345.0 0.0 3345 3349.0 20.2 3340 3347.3 13.6 3330* 0.5000 0 0.30 
D11 83 118 94 3745 3760.5 6.2 3745 3767.2 6.8 3745 3760.3 6.6 3715* 1.6184e-004 1 0.80 
D12 62 88 72 3310 3310.0 0.0 3310 3329.2 32.0 3310 3323.3 21.9 3310 0.0156 1 0 
D13 40 60 52 2535 2536.0 2.0 2535 2540.2 3.5 2535 2537.5 2.8 2535 0.1094 0 0 
D14 58 79 57 3272 3283.0 3.1 3282 3290.0 17.9 3280 3289.0 13.6 3272 0.8750 0 0.24 
D15 97 140 107 3990 3999.0 3.1 3990 4011.0 12.9 3990 4004.7 8.0 3990 0.0078 1 0 
D16 32 42 32 1060 1060.0 0.0 1060 1272.0 12.3 1260 1271.2 11.3 1260 0.5000 0 0 
D17 43 56 42 2620 2620.0 0.0 2620 2626.3 3.8 2620 2622.3 0.0 2620 1 0 0 
D18 93 133 121 4165 4169.2 8.7 4165 4189.0 23.5 4165 4183.3 21.1 4165 0.0107 1 0 
D19 62 84 61 2393 2423.0 0.0 2423 2406.2 8.9 2400 2404.7 4.0 2393 0.4609 0 0.29 
D20 45 64 53 1870 1870.2 0.9 1870 1944.0 82.0 1870 1914.0 48.4 1870 3.9169e-005 1 0 
D21 60 84 76 2985 3024.2 18.8 2995 3098.8 21.1 3055 3092.5 15.3 3045 0.0234 1 0.00 
D22 56 76 43 1865 1865.0 0.0 1865 1932.3 88.7 1865 1940.8 74.9 1865 0.4952 0 0 
D23 78 109 92 3114 3147.2 8.4 3134 3158.2 13.8 3130 3155.3 16.2 3130 0.0167 1 0 
D24 77 115 84 2676 2739.5 19.3 2726 2740.3 22.9 2710 2734.7 22.8 2710 0.0664 0 0 
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D25 37 50 38 1815 1815.0 0.0 1815 1840.3 44.2 1815 1819.0 7.4 1815 0.0078 1 0 
F01 73 105 85 4040 4046.0 7.0 4040 4060.5 18.2 4040 4049.2 4.1 4040 3.5768e-005 1 0 
F02 58 81 58 3300 3300.0 0.0 3300 3311.3 15.7 3300 3313.2 10.5 3300 0.6250 0 0 
F03 46 61 47 1665 1665.0 0.0 1665 1696.2 36.0 1665 1682.5 13.4 1665 0.0020 1 0 
F04 70 99 77 3476 3498.2 8.4 3476 3507.5 9.6 3485 3499.8 7.9 3435* 8.3218e-004 1 1.43 
F05 68 94 61 3605 3605.3 1.3 3605 3605.3 1.3 3605 3603.7 2.0 3600* 0.0020 0 0.14 
F06 49 66 43 1875 1875.0 0.0 1875 1909.8 39.2 1875 1890.2 17.6 1875 9.7656e-004 1 0 
F07 73 94 50 3335 3345.7 24.5 3335 3393.5 62.5 3335 3366.5 34.8 3335 6.1035e-005 1 0 
F08 74 98 59 3690 3700.0 0.0 3700 3712.3 11.0 3705 3715.7 12.2 3705 0.1250 0 0 
F09 91 141 103 4730 4782.8 27. 4730 4801.8 36.0 4730 4798.8 39.6 4730 0.1546 0 0 
F10 56 76 49 2925 2925.0 0.0 2925 2936.5 4.9 2925 2934.2 4.9 2925 1 0 0 
F11 80 113 94 3835 3857.5 16.3 3835 3864.8 19.5 3835 3853.8 13.5 3835 8.2229e-005 1 0 
F12 74 103 67 3390 3429.5 33.0 3400 3462.3 35.2 3395 3450.0 26.3 3395 1.0036e-004 1 0 
F13 49 73 52 2855 2855.0 0.0 2855 2860.0 7.1 2855 2858.5 4.6 2855 0.3125 0 0 
F14 53 72 55 3330 3370.5 14.4 3330 3398.8 25.7 3330 3384.2 12.1 3330 5.2563e-005 1 0 
F15 85 126 107 3560 3566.7 9.9 3560 3575.7 13.5 3560 3573.7 10.4 3560 0.0410 1 0 
F16 60 80 54 2725 2725.0 0.0 2725 2741.7 25.6 2725 2766.8 28.7 2725 0.0156 1 0 
F17 38 50 36 2055 2055.0 0.0 2055 2058.0 0.0 2055 2055.0 0.0 2055 1 0 0 
F18 78 110 88 3063 3089.2 23.3 3078 3126.3 52.6 3075 3123.0 43.1 3065 0.4833 0 0.33 
F19 77 103 66 2500 2540 0.0 2540 2527.0 2.0 2525 2525.0 0.0 2525 0.2500 0 0 
F20 56 80 63 2445 2449.8 0.9 2445 2450.3 2.8 2445 2451.7 2.7 2445 0.1250 0 0 
F21 57 82 72 2930 2930.0 0.0 2930 2943.3 18.3 2930 2933.0 1.5 2930 0.0039 1 0 
F22 54 73 44 2075 2075.0 0.0 2075 2077.8 5.0 2075 2081.7 5.5 2075 0.0156 1 0 
F23 93 130 89 2994 3124.3 14.3 3014 3015.7 9.6 3005 3013.7 5.7 3000 0.0088 1 0.17 
F24 97 142 86 3210 3236.3 17.1 3210 3253.5 12.6 3220 3249.2 10.4 3210 6.1035e-005 1 0.31 
F25 26 35 28 1390 1390.0 0.0 1390 1510.2 69.2 1390 1519.0 61.1 1390 0.0020 1 0  

In summary, the results illustrate that QICA-CARP is 
superior to RDG-MAENS both the stability and the searching 
capability of these four test sets including Beullen’C, D, E, F. 
In addition, Fig. 9 shows convergence behavior of 
QICA-CARP during computing the optimum of these test set. 
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Figure 9 The convergence curves of QICA-CARP on some instances of 

Beullen’C, D, E, F 

Fig. 9 shows that QICA-CARP finds a better solution for 
E15 and F05 test set whereas the other two algorithms obtain 
the same results. Nonetheless, QICA-CARP has a faster 
convergence indicating that the convergence speed and 
stability of QICA-CARP are better than the RDG-MAENS. 
We also plot the box diagram of some examples of the test 
sets to better illustrate the statistical results of these two 
algorithms in finding the optimum of Beullen’C, D, E, F test 
sets. In specific, Fig. 10 shows the box diagram of 
‘total_cost’ showing that QICA-CARP results in a better 
solution than RDG-MAENS and shows better stability 
behavior on some instances. 

The number of the abnormal values obtained by 
QICA-CARP is significantly less than the one obtained by 
RDG-MAENS. This indicates that the QICA-CARP is more 
capable of repairing the infeasible solution than 

RDG-MAENS. Fig. 10 also shows the superiority of the 
QICA-CARP to the RDG-MAENS in terms of the maximum 
value, the median line, the minimum value and the emphasis 
of data distribution for solving CARP problem. 
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Figure 10 The box diagram of QICA-CARP and RDG-MAENS on 
Beullen’C, D, E, F test set 

In Table 8, we report the test results obtained by 
QICA-CARP, RDG-MAENS and MAENS for solving the 
large-scale test set egl. It is evident that QICA-CARP 
obtained a better optimal solution for 10 out of 24 instances 
whereas MAENS obtained 3 better optimal solutions. 
Furthermore, MAENS resulted in 8 better average values 
where QICA has 13 better average values. The reason is that 
egl is a large scale test set and QICA-CARP used 
decomposition strategy to improves the ability of local 
searching and make full use of the computing sources.  In 
comparison with RDG-MAENS, QICA-CARP obtained 22 
better solutions out of 24 instances of the egl test set. This is 
the average total cost of the best-so-far solutions over the 30 
independent runs. The SD values show that QICA-CARP 
results in more stable solutions than RDG-MAENS. 
Nonetheless, QICA-CARP found optimal solutions for 10 test 
instances better than the one obtained by RDG-MAENS. The 
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Wilcoxon signed rank test analysis results illustrate that there 
are 17 instances with h=1 verifying the superiority of 
QICA-CARP to RDG-MAENS. Moreover, QICA-CARP 

achieved better solution than RDG-MAENS on the 
large-scale egl instances. 

Table 8 The comparison results of QICA-CARP and RDG-MAENS on egl 

name |V| |T| |E| LB 
MAENS RDG-MAENS QICA-CARP 

p h 
 
Δ(%) mean SD Best mean SD Best mean SD Best 

E1-A 77 51 98 3548 3548.0 0.0 3548 3556.7 28.0 3548 3554.1 19.1 3548 0.3750 0 0 

E1-B 77 51 98 4498 4516.5 17.6 4498 4530.7 16.3 4498 4520.1 15.9 4498 1.2474e-004 1 0 

E1-C 77 51 98 5595 5601.6 9.9 5595 5621.4 26.1 5595 5609.3 25.5 5595 1.7199e-005 1 0 

E2-A 77 72 98 5018 5018.0 0.0 5018 5026.8 32.2 5018 5018.3 1.6 5018 0.1250 0 0 

E2-B 77 72 98 6305 6341.4 12.0 6317 6344.7 19.6 6317 6341.7 20.6 6314 0.0012 1 0.05 

E2-C 77 72 98 8335 8355.7 35.9 8335 8358.1 41.0 8335 8352.6 28.8 8335 0.0625 0 0 

E3-A 77 87 98 5898 5898.8 2.9 5898 5913.5 31.1 5898 5917.3 34.8 5898 0.0781 0 0 

E3-B 77 87 98 7729 7802.9 27.3 7775 7817.8 29.9 7777 7800.4 20.8 7775 2.4864e-006 1 0.03 

E3-C 77 87 98 10244 10321.9 18.0 10292 10327.9 30.1 10292 10321.4 21.5 10292 0.0013 1 0 

E4-A 77 98 98 6408 6475.2 10.3 6456 6479.8 18.6 6461 6476.2 25.6 6446 0.0040 1 0 

E4-B 77 98 98 8935 9023.0 18.7 8998 9028.4 23.8 8975 9022.5 25.8 8975 2.1732e-004 1 0 

E4-C 77 98 98 11493 11645.8 46.7 11561 11654.5 58.3 11594 11628.8 37.6 11567 3.7732e-006 1 0.03 

S1-A 140 75 190 5018 5039.8 35.9 5018 5059.5 44.8 5018 5073.3 40.6 5018 0.1145 0 0 

S1-B 140 75 190 6388 6433.4 8.6 6388 6424.5 29.7 6388 6415.3 21.1 6388 0.0117 1 0 

S1-C 140 75 190 8518 8518.3 1.5 8518 8541.9 30.7 8518 8531.7 22.4 8518 1.2674e-004 1 0 

S2-A 140 147 190 9825 9959.2 34.6 9895 10000.9 65.3 9909 9976.3 43.3 9909 4.3218e-005 1 0 

S2-B 140 147 190 13017 13231.6 63.2 13147 13203.5 70.3 13124 13185.0 68.0 13110 0.1629 0 0.06 

S2-C 140 147 190 16425 16509.8 51.8 16430 16488.6 43.7 16425 16474.7 39.2 16425 7.7653e-006 1 0 

S3-A 140 159 190 10146 10312.7 26.5 10257 10288.5 43.5 10242 10286.8 44.4 10221 0.3540 0 0.20 

S3-B 140 159 190 13648 13876.6 67.8 13749 13814.1 70.2 13715 13803.4 63.3 13692 0.0314 1 0.13 

S3-C 140 159 190 17188 17305.8 41.4 17207 17288.7 38.5 17216 17271.6 36.4 17214 3.8571e-006 1 0.01 

S4-A 140 190 190 12144 12419.2 33.2 12341 12388.6 54.6 12293 12380.1 56.8 12265 0.0094 1 0.23 

S4-B 140 190 190 16103 16441.2 38.1 16337 16407.7 59.3 16262 16387.2 57.9 16262 7.9366e-006 1 0 

S4-C 140 190 190 20430 20767.2 74.6 20538 20672.1 73.7 20530 20689.8 87.5 20505 4.0126e-004 1 0.12  
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Figure 11 The convergence curves of QICA-CARP on some instances of egl 

Figure 11 gives a more detailed description of the test 
results of QICA-CARP and RDG-MAENS on the egl test set. 
According to the results reported in Table 8, QICA-CARP 
found a better average value than RDG-MAENS on some 
instances using the same parameters. Fig. 11 shows that the 
convergence rate of QICA-CARP is slower than 
RDG-MAENS at the initial stage for some test instances. 
Nonetheless, QICA-CARP found a better solution faster than 
the one obtained by RDG-MAENS where the solution is 
more stable that the one obtained by RDG-MAENS. 

Fig. 12 shows the box diagram about ‘total_cost’ of 
QICA-CARP and RDG-MAENS on the egl test set. It is seen 
that QICA-CARP can get a better lower bound and a lower 
median line than the one obtained by RDG-MAENS. This 
indicates that the new algorithm results in a better minimum 
consumption path for solving CARP for these instances. In 

addition, the probability of abnormal values computed by 
RDG-MAENS is bigger than the one computed by 
QICA-CARP. This illustrates that the repairing of the 
infeasible solutions in QICA-CARP is very effective. In 
summary, QICA-CARP can find a better solution on the 
instance in figure 12 than the ones obtained by 
RDG-MAENS on large-scale test set egl.  
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Figure 12 The box diagram of QICA-CARP and RDG-MAENS on egl test 
set 

To test the performance more completely, we added the 
RMA algorithm [35] to make a comparison. Table 9 shows 
the results obtained for the test set EGL-G after 30 runs. It 
also shows the average solutions of ‘total-cost’ obtained by 
RDG-MAENS, QICA- CARP and RMA. The results show 
QICA-CARP can find 8 better solutions on 10 instances of 
the test set EGL-G indicating that QICA-CARP improves 
significantly the test outcome for the problem with the very 
large-scale test set of EGL-G. However, the standard 
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deviation of the results obtained by QICA-CARP is large 
indicating that we need to improve the stability of 
QICA-CARP on these instances. In addition, QICA-CARP 
converges to a better lower bound on 7 instances. The results 
reported in Table 9 also illustrate the capability of global 
search of QICA-CARP for searching a large-scale test set. 
Furthermore, QICA-CARP obtained 7 instances with h=1 out 

of 10 instances according to the Wilcoxon signed rank test. 
QICA-CARP got 6 solutions better than RMQ where RMA 
got 4. On the other hand, QICA obtained 1 better average 
where RMA got 9. We can see that QICA has a slightly better 
performance in searching the best solution, but it is not 
competitive in average value compared with RMA.  

Table 9 The comparison results of QICA-CARP and RDG-MAENS on EGL-G 

name |V| |T| |E| LB 
RMA RDG-MAENS QICA-CARP 

p h 
 

Δ(%) mean Best mean SD Best mean SD Best 

G1-A 255 375 347 1001210 1007693.7 996675 1008717.5 4670.4 1001210 1008151.8 4441.1 999151* 5.7064e-04 1 0.20 

G1-B 255 375 347 1118596 1054639.2 1002079 1126652.7 5312.7 1118596 1125874.0 5802.8 1118030* 7.1570e-04 1 0.05 

G1-C 255 375 347 1245398 1247471.667 1246507 1254743.4 4704.2 1245398 1252912.8 5242.1 1245398 4.1725e-05 1 0 

G1-D 255 375 347 1380711 1375893.5 1375289 1388719.2 5334.1 1380711 1387461.7 6012.5 1376795* 0.4779 0 0.03 

G1-E 255 375 347 1521171 1530297 1524372 1533089.5 8133.8 1521171 1529252.2 6101.5 1518055* 0.0207 1 0.20 

G2-A 255 375 375 1101797 1107473.818 1101465 1108472.7 3559.4 1101797 1109462.4 5923.1 1100447* 0.1359 0 0.12 

G2-B 255 375 375 1213093 1217433 1213383 1223670.2 5742.1 1213093 1222531.7 4843.3 1213004* 1.3034e-04 1 0.00 

G2-C 255 375 375 1342537 1352476.5 1351292 1354538.8 5551.1 1342537 1356537.0 5344.8 1344221 7.5137e-05 1 0 

G2-D 255 375 375 1486584 1486958.5 1482597 1493660.2 4465.0 1486584 1492428.0 3696.0 1482861* 1.4773e-04 1 0.25 

G2-E 255 375 375 1624438 1633968 1633026 1637388.9 7736.6 1624438 1636746.5 5764.3 1625984 0.5440 0 0  
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Figure 13 The convergence curves of QICA-CARP on EGL-G 

According to the results reported in Table 9, QICA-CARP 
obtained better solutions than RDG-MAENS for the test set 
EGL-G. We also show the convergence of the two algorithms 
in Fig. 13 during computation the optimal solution of the test 
set EGL-G. With the same parameter settings, the 
convergence of QICA-CARP is faster than the 
RDG-MAENS. Although the convergence rate of 
QICA-CARP is not very good at initial evolution of the 
algorithm, it found solutions better than RDG-MAENS. After 
initial stage of the algorithm evolution, the convergence rate 
speeds up. In general, the improvement demonstrated by 
QICA-CARP is beneficial to find a better solution especially 
for the large-scale test set.  

Figure 14 shows the box diagram of the ‘total_cost’ 
obtained using QICA-CARP and RDG-MAENS to find the 
optimum of the test set EGL-G. It is clear that QICA-CARP 
can find a better lower bound than RDG-MAENS. Although 
the stability needs to be improved on some instances, 
QICA-CARP is superior to RDG-MAENS in terms of 
performance on most instances. In QICA-CARP, the data  
below the median line in the box diagram is relative much. 

This indicates that QICA-CARP outperforms RDG-MAENS 
in finding the minimum consumption path for the large-scale 
test set. In conclusion, QICA-CARP is suitable for solving 
the large-scale CARP   
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Figure 14 The box diagram of QICA-CARP and RDG-MAENS on EGL-G 

test set 

  C．The comparison among different versions of QICA- 

CARP   
  QICA-CARP mainly includes 2 improvements: (1) adds 
the mutation strategy of quantum rotation gate and (2) uses 
the repair operator. In order to investigate the effect of each 
operation, we consider three different versions of the 
algorithm as follows: (1) in version 1, QICA-CARP is 
combined mutation of quantum rotation gate, (2) in version 2, 
QICA-CARP is combined repair operator and (3) in version 3, 
QICA-CARP is combined with mutation and repair operator.     
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Table 10 The comparison among different versions of QICA-CARP on egl 

name |V| |T| |E| LB 
RDG-MAENS 1 2 3 

mean SD Best mean SD Best mean SD Best mean SD Best 
E1-A 77 51 98 3548 3556.7 28.0 3548 3551.9 19.1 3548 3550.3 17.8 3548 3548.6 3.3 3548 

E1-B 77 51 98 4498 4530.7 16.3 4498 4526.5 13.5 4498 4529.9 13.2 4498 4532.4 14.7 4498 
E1-C 77 51 98 5595 5621.4 26.1 5595 5617.1 25.4 5595 5627.2 31.8 5595 5613.3 22.1 5595 

E2-A 77 72 98 5018 5026.8 32.2 5018 5029.0 33.0 5018 5029.6 35.6 5018 5024.6 23.3 5018 

E2-B 77 72 98 6305 6344.7 19.6 6317 6339.3 16.1 6317 6342.3 18.5 6317 6352.9 27.4 6317 
E2-C 77 72 98 8335 8358.1 41.0 8335 8362.6 41.3 8335 8356.7 36.6 8335 8369.1 42.2 8335 
E3-A 77 87 98 5898 5913.5 31.1 5898 5925.6 47.0 5898 5916.0 35.2 5898 5913.5 28.8 5898 

E3-B 77 87 98 7729 7817.8 29.9 7777 7814.3 26.9 7777 7810.7 28.1 7777 7810.6 26.5 7777 

E3-C 77 87 98 10244 10327.9 30.1 10292 10330.1 32.2 10292 10326.6 29.4 10292 10322.1 18.5 10292 

E4-A 77 98 98 6408 6479.8 18.6 6461 6478.7 17.9 6446 6472.5 14.5 6446 6484.3 30.3 6446 
E4-B 77 98 98 8935 9028.4 23.8 8975 9020.8 22.3 8962 9034.4 23.3 8988 9023.8 22.7 8962 
E4-C 77 98 98 11493 11654.5 58.3 11594 11643.1 40.0 11594 11665.7 59.5 11594 11644.5 54.1 11594 
S1-A 140 75 190 5018 5059.5 44.8 5018 5067.6 41.9 5018 5052.7 42.8 5018 5063.6 46.6 5018 
S1-B 140 75 190 6388 6424.5 29.7 6388 6418.7 27.0 6388 6421.4 31.2 6394 6417.6 22.1 6388 

S1-C 140 75 190 8518 8541.9 30.7 8518 8540.5 30.1 8518 8538.3 29.3 8518 8530.0 21.7 8518 

S2-A 140 147 190 9825 10000.9 65.3 9909 9974.0 44.9 9905 9976.4 44.4 9914 9971.2 43.0 9905 

S2-B 140 147 190 13017 13203.5 70.3 13124 13217.3 67.1 13111 13201.6 53.5 13121 13189.4 53.6 13121 

S2-C 140 147 190 16425 16488.6 43.7 16425 16483.4 42.4 16425 16488.2 42.6 16425 16476.4 38.1 16425 

S3-A 140 159 190 10146 10288.5 43.5 10242 10285.3 43.2 10220 10280.5 28.7 10221 10276.4 28.4 10221 

S3-B 140 159 190 13648 13814.1 70.2 13715 13827.5 73.7 13695 13786.4 56.8 13688 13791.5 62.1 13695 

S3-C 140 159 190 17188 17288.7 38.5 17216 17275.5 32.1 17191 17292.4 39.1 17189 17269.9 26.7 17191 

S4-A 140 190 190 12144 12388.6 54.6 12293 12396.0 46.7 12289 12388.3 52.2 12285 12389.6 44.1 12289 
S4-B 140 190 190 16103 16407.7 59.3 16262 16382.7 48.3 16243 16404.9 45.0 16290 16386.2 51.3 16243 
S4-C 140 190 190 20430 20672.1 73.7 20530 20686.6 77.2 20488 20679.6 74.9 20534 20672.8 79.2 20488 

Table 10 shows that the version 3 of QICA-CARP 
consistently outperforms the other two versions. This 
illustrate that the combining of two improvements is more 
powerful than using just one of them. Moreover, the 
experimental results of the version 2 and 3 are significantly 
better than the first one indicating that both operators are 
effective in improving the quality of the solution. This 
evidences that (1) The mutation strategy of rotation gate 
improves the searching ability of local search and resulting in 
a better solution in comparison to RDG-MAENS, (2) the 
repair operator improves both the quality and the stability of 
the solution (3) by using both simultaneously results in an 
overall good improved performance. 

D. Summary for tables of simulation results 

We make a summary of the simulation results reported in 
tables 4 to 10 to improve the presentation clarity in terms of 
the times of winners on optimal solution and performance of 
each algorithm.  

In Table 11, we compare MAENS, RDG-MAENS and 
RMA with QICA-CARP, consecutively. The data in table 
represents the number corresponding with the one getting a 
better solution between two algorithms, including the same 
results.  

Table 11. The statistic of experimental results of three algorithms 
 Algorithms gdb val Bullens egl EGL-G 

Best Average Best Average Best Average Best Average Best Average 
1 MAENS 23 5 33 32 54 64 14 11 - - 

QICA-CARP 23 1 34 0 64 48 21 16 - - 
2 RDG-MAENS 23 7 4 5 92 27 14 2 3 2 

QICA-CARP 23 22 34 30 103 76 24 22 8 8 
3 RMA - - - - - - - - 4 8 

QICA-CARP - - - - - - - - 6 2 

From Table 11, compared with MAENS, we see that 
MAENS slightly outperforms QICA-CARP if the scale of the 
problem to be solved is small because decomposition strategy 
is not suitable for small-scale problem. If the test set is larger 
scale, e.g. egl, QICA-CARP obtains a performance better 
than MAENS. AS for the comparison with RDG-MAENS, 
because RDG-MAENS and QICA-CARP utilize the 
decomposition strategy, their performance on small-scale 
problems is not satisfactory. Nonetheless, QICA-CARP 
shows a significant superiority than RDG-MAENS on 
different type of problems.  

QICA-CARP (1) applies the clone operation to the 
dominant population and uses the information on the current 
optimal antibody to control population with a high probability 

evolution toward good schema by the action of quantum 
rotation gate and (2) uses strategy of adjusting the angle of 
rotation dynamically to accelerate the convergence of the 
original clone operator. These two are the main differences 
between QICA-CARP and RDG in solving sub-problems. 
Moreover, the quantum crossover operation is used to 
enhance information exchange and to increase the diversity of 
the population. As a result, QICA-CARP obtains a 
satisfactory performance in comparison to RDG-MAENS. 
This makes QICA-CARP more suitable for the large-scale 
problems. QICA-CARP slightly outperforms RMA in finding 
an optimum of LSCARP in terms of searching. However, it is 
not competitive to RMA in general. All the experimental 
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results showed effectiveness of QICA-CARP in solving 
CARP especially in large-scale problems. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we used the RDG decomposition strategy of 
RDG-MAENS for solving CARP problem. We propose an 
approach called QICA-CARP combining the feature of 
artificial immune system and quantum computation to solve 
CARP based on the qubit and the quantum superposition.  

The proposed approach showed a performance slightly 
better than RDG-MAENS with a strong stability. 
Nonetheless, for small and medium scale test set including 
gdb, val and Beulles, QICA-CARP did not outperform 
MAENS. By contrast, for large-scale test egl, the stability and 
the ability to search the solutions shows slight superiority to 
other approaches. Eventually, we showed that QICA-CARP 
converges to a better solution with a faster speed compared 
with other algorithms in the case of large-scale test set 
EGL-G due to the global search. 

At different part of algorithm evolution, the convergence is 
not stable because the algorithm is sensitive to the parameter. 
Moreover, the stability of the average solution needs to be 
improved on this instance. In future research, in order to 
make the approach applicable to even more practical 
problems, we need to reduce the complexity of the algorithm 
and to improve its stability for solving large scale arc routing 
problem. 
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