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Abstract

Conversational sentiment analysis is an emerging,
yet challenging Artificial Intelligence (AI) subtask.
It aims to discover the affective state of each par-
ticipant in a conversation. There exists a wealth of
interaction information that affects the sentiment of
speakers. However, the existing sentiment analy-
sis approaches are insufficient in dealing with this
task due to ignoring the interactions and depen-
dency relationships between utterances. In this pa-
per, we aim to address this issue by modeling intra-
utterance and inter-utterance interaction dynamics.
We propose an approach called quantum-inspired
interactive networks (QIN), which leverages the
mathematical formalism of quantum theory (QT)
and the long short term memory (LSTM) network,
to learn such interaction dynamics. Specifically, a
density matrix based convolutional neural network
(DM-CNN) is proposed to capture the interactions
within each utterance (i.e., the correlations between
words), and a strong-weak influence model inspired
by quantum measurement theory is developed to
learn the interactions between adjacent utterances
(i.e., how one speaker influences another). Ex-
tensive experiments are conducted on the MELD
and IEMOCAP datasets. The experimental results
demonstrate the effectiveness of the QIN model.

1 Introduction

Sentiment analysis (SA) targets at judging sentiment polar-
ities for various types of texts at document, sentence or as-
pect levels [Tripathy et al., 2017; Yang and Cardie, 2014;
Pontiki et al., 2016]. The recent boom of social network
services produces a huge volume of textual records of com-
munications between humans. Such data carry a rich source
of information including sentiments or opinions, which often
evolve during the conversation. It brings forth a new chal-
lenge of judging the evolving sentiment polarities of different
people in a conversational discourse. Therefore, the research
on conversational sentiment analysis has attracted an increas-
ing attention from both academia and industry.

∗The corresponding author.

Conversational sentiment analysis aims to detect the affec-
tive states of multiple speakers during and after an conver-
sation, and study the sentimental evolution of each speaker
in the course of the interaction. The interaction dynamics in
a conversation mainly consists of intra- and inter-utterance
interactions. Intra-utterance interaction refers to the correla-
tions between terms within an utterance, while inter-utterance
interaction involves repeated interactions between the speak-
ers’ utterances. Fig. 1 provides an example from the MELD
dataset [Poria et al., 2018], from which, we can notice that
the evolution of Jen and Ross’s affective states is influenced
by both intra- and inter-utterance interactions.

Existing research in conversational sentiment analysis
mainly focused on leveraging intra-utterance interactions,
e.g., learning relations between words, extracting effective
features, etc., to judge sentiment, while the inter-utterance
interactions are largely neglected. For instance, Ojamaa et
al. [2015] used a lexicon-based method to extract speakers’
attitudes from conversational texts. However, they neglected
the interactions and used only 23 dialogue files. Bhaskar et
al. [2015] proposed to combine acoustic and textual features
in audio conversations to enhance the efficiency of emotion
classification. However, they did not consider interactions
among speakers. Huijzer et al. [2017] performed affective
analysis of emails. They did notice, but did not model the
interaction between customer support and customers.

In recent years, quantum theory (QT), as a mathematical
formalism to model the complex interactions and dynamics
in quantum physics, has been adopted for constructing text
representation in various information retrieval (IR) and NLP
tasks [Sordoni et al., 2013; Wang et al., 2018; Li et al., 2018;
Zhang et al., 2018c]. For instance, the Quantum Language
Model (QLM) [Sordoni et al., 2013] represents a query or
document as a density matrix on a quantum probabilistic
space, and computes density matrix-based metrics as ranking
function. the Neural Network based QLM (NNQLM) [Zhang
et al., 2018a] builds an end-to-end network for question an-
swering (QA) to jointly model a question-answer pair based
on their density matrix representations. Zhang et al. [2018b]

leverages an improved version of QLM for twitter sentiment
analysis. Such QT-based models can be considered as a gen-
eralization of classical approaches in that they are capable of
capturing inherent intricacies in interactions. This motivates
us to explore the use of quantum theory as a theoretical basis
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Figure 1: Two interaction dynamics in a conversation. Red and blue colors are used to show the emotion shift of Jen and Ross respectively.

for capturing the intra- and inter-utterance interaction dynam-
ics, both of which are complex in nature.

In this paper, we propose quantum-inspired interactive net-
works (QIN) that jointly captures intra- and inter-utterance
interactions for conversational sentiment analysis. The model
extracts textual features with a density matrix based CNN
(DM-CNN) to capture the intra-utterance correlations be-
tween words. The inter-utterance interaction is extracted by
a strong-weak influence model, which is inspired by quan-
tum measurement theory, to measure the influence between
speakers across utterances. The influence is integrated into
the output gates of an LSTM with textual features as inputs.
The obtained hidden states of the LSTM are fed to a softmax
function to determine the affective state for each utterance.

We have designed and carried extensive experiments on the
MELD and IEMOCAP datasets to evaluate the QIN model,
in comparison with a wide range of baselines, including six
deep neural network approaches: a deep convolutional neural
network (CNN) and five variants of long short term memory
(LSTM) networks. The experimental results demonstrate the
effectiveness of the QIN model.

2 Quantum Theory Preliminaries

2.1 Basic Notations and Concepts in Quantum
Theory

In quantum theory, the probabilistic space for quantum the-
ory is an infinite Hilbert Space [Bourbaki, 1966] 1, noted as
H. For simplicity and in line with previous quantum-inspired
models [Zhang et al., 2018a; Wang et al., 2018], we restrict
our model to finite vector spaces over real numbers in R.

With Dirac’s notation, a state vector ϕ and its transpose
are expressed as a Ket |ϕ〉 and a Bra 〈ϕ| respectively. The
inner product between two state vectors |ϕ1〉 and |ϕ2〉, is
represented as 〈ϕ1|ϕ2〉. Similarly, the representation of the
wave function (which is also a mathematical description of
the quantum state) in Hilbert Space is given by the inner prod-
uct ϕ (x) = 〈x|ϕ〉.

Quantum Probability (QP) is a generalization of the clas-
sical probability theory. In QP, an event is a subspace of

1complex vector space possessing the structure of inner product

Strong Measurement Weak Measurement

Variance σ < |eigenvalue| σ > |eigenvalue|

Position in Eq.4 left side right side left side right side

Suppose x0

is around 1

−(x−0)2

4σ2 → −∞

e
−(x−0)2

4σ2 → 0

−(x−1)2

4σ2 → 0

e
−(x−1)2

4σ2 → 1

−(x−0)2

4σ2 → 0

e
−(x−0)2

4σ2 → 1

−(x−1)2

4σ2 → 0

e
−(x−1)2

4σ2 → 1

The effect on

quantum state
collapsed to |1〉 biased a little

Table 1: The parameter analysis for Equation 4

Hilbert Space represented by an orthogonal projector Π. As-
sume |u〉 is a unit vector, i.e., ‖~u‖2 = 1, the projector Π on
the direction u is written as |u〉 〈u|. ρ =

∑

i pi|u〉〈u| can
represent a density matrix. Density matrix ρ is symmetric,
ρ = ρT , positive semi-definite (ρ ≥ 0), and of trace 1. The
quantum probability measure µ is associated with the den-
sity matrix. It satisfies two conditions: (1) for each projector
|u〉〈u|, µ (|u〉〈u|) ∈ [0, 1], and (2) for any orthonormal ba-
sis {|ei〉},

∑n
i=1 µ (|ei〉〈ei|) = 1. The Gleason’s Theorem

[Gudder, 2014] has proven the existence of a mapping func-
tion µ (|u〉〈u|) = tr (ρ|u〉〈u|) for any |u〉.

The density matrix representation in QP provides a com-
prehensive mathematical formalism to capture the intra-
utterance interactions, which will be detailed in Section 3.

2.2 Preliminaries of Quantum Measurements

Quantum Measurement (QM) theory includes ordinary quan-
tum measurements (i.e., strong measurements) and weak
measurements. Quantum measurement consists of two steps:
(i) the measurement device is weakly coupled to the quantum
system; (ii) the measurement device is strongly measured,
and its collapsed state is referred to as the outcome of the
measurement process.

Let |φd〉 denote the wave function of measurement device
and represent the position basis. It could be written as:

|φd〉 =

∫

x

φ(x)|x〉dx (1)

φ(x) = (2πσ2)−
1
4 e−x2/4σ2

(2)

where x is the pointer position, and σ is the standard deviation
of a normal distribution around 0.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5437



Suppose the quantum system being measured S is in a state
|ψ〉 = α|0〉 + β|1〉, in which α and β are the complex prob-
ability amplitudes satisfying |α|2 + |β|2 = 1. |0〉 and |1〉
are the eigenstates corresponding to the eigenvalues 0, 1 re-
spectively. The system and the measurement device are then
entangled as such:

∫

x

[e−
(x−0)2

4σ2 α|0〉 ⊗ |x〉+ e−
(x−1)2

4σ2 β|1〉 ⊗ |x〉]dx (3)

The details of entanglement process can be referred to
[Von Neumann, 2018]. Next, a strong measurement is car-
ried out on the pointer of the measuring device, resulting in a
collapse of the pointer to the state |x0〉. The entangled system
is also collapsed to:

[e−
(x0−0)2

4σ2 α|0〉+ e−
(x0−1)2

4σ2 β|1〉]⊗ |x0〉 (4)

where the eigenvalue x0 could be anywhere around 0 or 1,
or even further away. Whether the quantum measurement is
strong or weak is determined by the ∆ = σ2. The collapse of
the pointer biases the system’s vector. However, if σ is very
big, the bias will be very small and the system’s outcome will
be very similar to the original vector. A detailed analysis is
shown in Table 1.

QM provides a principled and effective mechanism to cap-
ture the inter-utterance interactions.

3 Learning Interaction Dynamics with the

Quantum-Inspired Interactive Networks

3.1 Problem Formulation and Network Procedure

In this work, we target determining the attitude of each
speaker at the utterance (sentence) level, in terms of positive,
negative and neutral. The problem we investigate thus takes
each utterance u as input and produces its sentiment label y
as output. Hence, we formulate the problem as follows:

In a multi-turn conversation, how can we capture the in-
teractions between speakers to determine their emotional
changes during the conversation?

The architecture of the proposed quantum-inspired interac-
tive network (QIN) is shown in Fig. 3. We first extract tex-
tual features of conversational discourses ~x = [~r1, ~r2, ..., ~rn]
through a density matrix based convolutional neural network
(DM-CNN), which takes the semantic dependencies into con-
sideration. Second, inspired by quantum measurement the-
ory, a strong-weak influence model is developed to compute
the inter-utterance influences between speakers within the
whole conversation, denoted as R. Last, an LSTM variant
is built on top of the extracted textual features ~x to model the
evolution of sentiments in the conversation, with the output
gate ot combined with the inter-utterance influences R.

3.2 Density Matrix-Based CNN

Nowadays, a series of pioneering studies provide the evidence
that density matrix, which is defined on the quantum proba-
bilistic space, could be applied in natural language processing
as an excellent representation method [Sordoni et al., 2013;
Zhang et al., 2018a; Li et al., 2018]. Compared with em-
bedding vector, density matrix could encode more seman-
tic dependencies. Motivated by Zhang’s work [Zhang et al.,

2018a], we develop a density matrix based convolutional neu-
ral network (DM-CNN) to represent utterances. The repre-
sentation procedure is described below.

Suppose |wi〉 = (wi1, wi2, ..., wid)
T

is a normalized word
vector. The projector Πi for a single word wi is formulated
in Eq. (5). One-hot representation of words over other words
is known to suffer from the curse of dimensionality and diffi-
culty in representing ambiguous words. In this work, we use
word embeddings to construct projectors in semantic space.

Πi = |wi〉〈wi| (5)

Based on word projectors Πi, we represent an utterance
with a density matrix ρu, which is formulated as:

ρu =
∑

i

piΠi =
∑

i

pi|wi〉〈wi|

=











∑

i pi(wi1)
2

∑

i piwi1wi2 ...
∑

i piwi1wid
∑

i piwi2wi1

∑

i pi (wi2)
2

...
∑

i piwi2wid

... ...
∑

i piwidwi1

∑

i piwidwi2 ...
∑

i pi (wid)
2











(6)

where pi is the probability of event (word) Πi satisfying
∑

i pi = 1. In this work, we set pi with equal probabilities

pi =
1
D , where D is the number of words in a document.

The utterance density matrix ρu is then fed into a deep
CNN architecture to obtain abstract textual features. The
CNN consists of two convolutional layers with max pooling,
a fully connected layers and a softmax layer. The first convo-
lutional layer has eight 5×5 filters. The second convolutional
layer has sixteen 3 × 3 filters. The obtained textual features
~x = [~r1, ~r2, ..., ~rn] are used as inputs of our QIN model.

3.3 A Quantum Measurement-Inspired
Strong-Weak Influence Model

Influence is an indirect and invisible way of altering the state
of an entity, and is thus difficult to model. When one talks to
another person, he is often influenced by their style of inter-
action. We posit that the intensity of interaction determines
whether a speaker’s affective state might or might not change.
In particular, a strong interaction is in effect if his affective
state changes, indicating he is greatly affected by others. On
the other hand, weak interaction is used to describe such in-
fluence as too weak to offer changes to a speaker’s affective
state.

In QT, quantum measurement describes the interaction
(coupling) between a quantum system and the measurement
device. Strong measurement leads to the collapse of the quan-
tum system while weak measurement disturbs the quantum
system very little. The variance of pointer readings of the
measurement device could distinguish whether the interac-
tion is strong or weak. In this work, we treat each speaker as
a learning system. Accordingly, the interaction could be char-
acterized as a coupling between two systems. The interaction
between quantum system and the measurement device is ex-
actly similar to the interaction between speakers. Inspired by
this, we associate strong and weak interaction with quantum
measurement, and develop a strong-weak influence model.
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Specifically, our model is an extension of the dynamical
“influence model”, which generalizes HMM by construct-
ing the influence matrices for describing the influence each
Markov chain has on the others [Pan et al., 2012]. Suppose
there are C entities in the system, and each entity e is as-
sociated with a finite set of possible states {1, 2, ..., S}. At
different time t, each entity e is in one of the states, denoted
by qet ∈ {1, 2, ..., S}. Influence is treated as the conditional
dependence between each entity’s current state qet at time t
and the previous states of all entities q1t−1, q

2
t−1, ..., q

C
t−1 at

time t− 1. qet is only influenced by all entities at time t− 1.
Therefore, the conditional probability can be formulated as:

P (qet | q
1
t−1, q

2
t−1, ..., q

e
t−1, ..., q

C
t−1)

=
∑

c∈1,2,...,C

R (rt)e,c × P
(

qet |q
c
t−1

) (7)

where R (rt) is a C × C matrix (R (rt)e,c represents the ele-

ment at the eth row and the cth column), rt ∈ {1, 2, 3, ..., J},
t = 1, ..., T , and J is a hyperparameter set by users to de-
fine the number of influence matrices R (rt). P

(

qet |q
c
t−1

)

is the transition probability from state qct−1 to qet , controlled
by an S × S matrix M c,e specific to a pair of entities (c, e):
P
(

qet |q
c
t−1

)

= M
c,e
qc
t−1,q

e
t
, where M

c,e
qc
t−1,q

e
t

represents the ele-

ment at the qct−1th row and qet th column of matrix M c,e.
However, in a turn-taking conversation, the speakers’ states

in each turn are influenced by both the current states of speak-
ers who speak in front of e at turn (time) t, i.e., q1t , q

2
t , ..., q

e−1
t

and the previous states of other speakers who have not yet
spoken (including the current speaker under concern) in the
current round, i.e., qet−1, q

e+1
t−1 , ..., q

C
t−1. In particular, the state

of the first speaker is influenced solely by previous states of
all entities. The conditional probability then becomes

P
(

qet |q
1
t , q

2
t , ..., q

e−1
t , qet−1, q

e+1
t−1 , ..., q

C
t−1

)

(8)

Referring to the example shown in Fig. 1, i.e., C =
{Jen (J), Ross (R)}. Each speaker is in one of three af-
fective states, which are positive, negative and neutral, e.g.,
S = 3, and qRt , q

J
t ∈ {−1, 0, 1}. The conditional probability

is measured as:














P
(

qJt |q
J
t−1, q

R
t−1

)

= R (rt)JJ · P (qJt |q
J
t−1) +R (rt)JR · P (qJt |q

R
t−1)

P
(

qRt |q
J
t , q

R
t−1

)

= R (rt)RJ · P (qRt |q
J
t ) +R (rt)RR · P (qRt |q

R
t−1)

(9)

where R (rt)JJ , R (rt)JR, R (rt)RJ , R (rt)RR are four ele-
ments of the influence matrix R (rt), denoting how Jen in-
fluences Jen, howRoss influences Jen, how Jen influences
Ross, and how Ross influences Ross.

Inspired by quantum measurement, we use two influence
matrices (i.e., J = 2, rt ∈ {1, 2}) to represent strong and
weak influences. The switching of rt is determined by the
average standard deviation of speakers’ sentimental scores
σavg . We set the eigenvalues of speaker’s affective state to
-1, 0 and 1, i.e., x ∈ {−1, 0, 1}. Hence, we introduce the
following prior for rt:

{

rt = 1 if σavg ≥
∑

x p (x) |x| weak influence

rt = 2 if σavg <
∑

x p (x) |x| strong influence

(10)

Figure 2: The difference between the dynamical influence model
and the strong-weak influence model. The blue lines show the de-
pendence, and the red lines indicate the switching influence.

where p (x) =
(

2σ2π
)− 1

2 e−(x−µavg)
2/2σ2

, denoting the
probability density to get x, and µavg is set to the average
of all expectations in this work.

We illustrate the difference between the dynamical influ-
ence model and the strong-weak influence model in Fig. 2.
Finally, we obtain two influence matrices, which capture the
strong and weak influences, i.e., R (2) and R (1), from one
speaker over another speaker under different interactive envi-
ronments2.

3.4 Quantum-Inspired Interactive Networks

Since we have learned the interaction information (including
interactions between terms and interactions between speak-
ers), then we incorporate them into the quantum-inspired in-
teractive networks (QIN), which is a variant of LSTM.

The QIN model is proposed for conversational sentiment
analysis. The main idea is: (1) for each LSTM unit, com-
bining the output gate ot with the learned influence matrices
R to constitute new output gate, describing what information
we’re going to output. The new output gate has considered
the previous speakers’ influences. (2) Taking textual vectors
that are built by DM-CNN as inputs, obtaining their hidden
states ht, and thus making decisions. Fig. 3 represents the
overall architecture of the QIN model.

Let ~xeit = [~r1, ~r2, ..., ~rn] represents the input of speaker
ei, which has been learned by DM-CNN. heit represents the
outputs of speaker ei, where t = {1, 2, ..., T}. We put heit
into a softmax layer to obtain the sentiment label. That is,

yeit = softmax (Wsh
ei
t + bs) (11)

where Ws and bs are the parameters.
In the conversation, the influence that one speaker has on

the other speaker would control the affected speaker’s re-
sponse. In Fig. 3, for two adjacent speakers (denoted as e1
and e2) at turn t = 1 (i.e., Spe1t=1, Spe2t=1), Spe1t=1 actually de-
termines how Spe2t=1 is constructed. Furthermore, at the next
turn t = 2, the construction of Spe1t=2 would be influenced
by both Spe1t=1 and Spe2t=1, and the construction of Spe2t=2
would be influenced by both Spe2t=1 and Spe1t=2. Influence
controls what information one speaker is going to flow out,

2The detailed inference process is given on
https://github.com/anonymityanonymity/influence-model.git
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Figure 3: The architecture of quantum-inspired interactive networks.

which is similar to the role of the output gate. This influence
has already been described by the influence matrix R (in Sec-
tion 3.3). Hence, we consider the influences of the previous
speakers on the current speaker by incorporating the influence
scores into the computation of the output gates in the LSTM
of QIN, which can be formulated as:

oe1t|t=1 = σ
(

Wxo~x
e1
t + bo

)

oe2t|t=1 = σ
(

Wxo~x
e2
t +Whoh

e1
t + bo

)

+ σ(Re2,e1 · ~x
e2
t )

oe1t|t≥2 = σ
(

Wxo~x
e1
t +Whoh

e2
t−1 + bo

)

+ σ(We1[Re1,e1, Re1,e2] · ~x
e1
t )

oe2t|t≥2 = σ
(

Wxo~x
e2
t +Whoh

e1
t + bo

)

+ σ(We2[Re2,e2, Re2,e1] · ~x
e2
t ) (12)

where We1 and We2 are the normalized weights. Re1,e1,
Re1,e2, Re2,e1, Re2,e2 are elements in R(rt).

Model training. In QIN model, cross entropy with L2 reg-
ularization is used as the loss function, which is defined as:

J = −
1

N

∑

i

∑

j

y
j
i logŷ

j
i + λr ‖θ‖

2
(13)

where yi denotes the ground truth, ŷi is the predicted senti-
ment distribution. i is the index of utterance, j is the index
of class. λr is the coefficient for L2 regularization. We use
the back propagation method to compute the gradients and
update all the parameters.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on the MELD3 and
IEMOCAP4 datasets to validate the effectiveness of QIN
model. MELD contains 13,708 utterances from 1433 dia-
logues. The utterances in each dialogue are annotated with

3This dataset is available on https://affective-meld.github.io/.
4http://sail.usc.edu/iemocap/.

three sentiments (which are positive, negative and neutral)
and seven emotions (which are anger, disgust, fear, joy,
neutral, sadness and surprise). IEMOCAP is a multimodal
database of ten speakers involved in two-way dyadic con-
versations. Each utterance is annotated using the following
emotion categories: anger, happiness, sadness, neutral, ex-
citement, frustration, fear, surprise, and others.

Evaluation metrics. Considering the imbalanced sample
problem, we adopt weighted F1 score, Accuracy as the eval-
uation metrics to evaluate the classification performance. We
employ t-test to perform the significance test.

Hyperparameters setting. In this work, we use the GloVe
word vector [Pennington et al., 2014] to find word embed-
dings. The dimensionality is set to 300. All weight matrices
are given their initial values by sampling from a uniform dis-
tribution U(−0.1, 0.1), and all biases are set to zeros. We set
the initial learning rate to 0.001. The batch size is 60. The co-
efficient of L2 normalization in the objective function is set
to 10−5, and the dropout rate is set to 0.5.

4.2 Comparative Models

In order for a comprehensive evaluation of the QIN model,
we include a range of baselines for comparison. They are
listed as follows.

CNN. We employ a CNN [Kim, 2014] including three con-
volutional layers and a fully connected layer. It is trained on
top of word embeddings for utterance-level classification.

LSTM & biLSTM. We implement a standard LSTM and
bi-directional LSTM. They take word embeddings as input
so as to get the hidden representation of each word.

ATAE-LSTM. We implement an attention based LSTM
with aspect embedding [Wang et al., 2016]. We obtain aspect
embeddings by averaging the vectors of words, and append it
with each word embedding vector.

Contextual biLSTM & Hierarchical biLSTM. We im-
plement a contextual biLSTM [Poria et al., 2017] and hier-
archical contextual biLSTM to model semantic dependency
among the utterances.
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MELD dataset Models Metrics
F1 Accuracy

Sentiments (3-class)

CNN 0.604 0.609
LSTM 0.626 0.630

biLSTM 0.611 0.624
ATAE-LSTM 0.615 0.628

contextual biLSTM 0.632 0.643
Hierarchical biLSTM 0.638 0.652

QIN 0.662† 0.679†

Emotions (7-class)

CNN 0.537 0.560
LSTM 0.546 0.575

biLSTM 0.536 0.557
ATAE-LSTM 0.517 0.579

contextual biLSTM 0.554 0.597
Hierarchical biLSTM 0.563 0.608

QIN 0.578 0.619

IEMOCAP dataset Models Metrics
F1 Accuracy

Emotions (9-class)

CNN 0.239 0.333
LSTM 0.318 0.322

biLSTM 0.275 0.331
ATAE-LSTM 0.316 0.326

contextual biLSTM 0.329 0.344
Hierarchical biLSTM 0.335 0.351

QIN 0.343 0.376†

Table 2: Comparison with baselines. Best performances are in bold.
The symbol † indicates the improvement of QIN model over the
baselines are statistically significant.

4.3 Results and Analysis

Table 2 shows the performance comparison of QIN with other
baselines. In the case of sentiment classification on MELD
dataset, CNN, LSTM, biLSTM and ATAE-LSTM achieve
worse performance against all neural network baselines, be-
cause they ignore the contextual dependencies among utter-
ances. The complete meaning of an utterance might be de-
termined by preceding utterances. Hence, the introduction of
attention mechanism does not help improve the performance.
This suggests the importance of contextual modeling. More-
over, on fine-grained (e.g., 7-class and 9-class) emotion clas-
sification tasks, all the above four baselines have their victory
and defeat. This implies that distinguishing fine-grained emo-
tions is a more difficult and intricate task. Through taking
utterances as inputs, contextual biLSTM has extracted con-
textual features. Contextual biLSTM performs consistently
better over other baselines. Our QIN takes a further step to-
wards emphasizing the importance of modeling interactions.
Through learning both the intra- and inter-utterance interac-
tion dynamics, QIN achieves the best performance among all
baselines.

In the case of emotion classification on IEMOCAP dataset,
all models get very poor performance because of the large
number of classes. However, QIN still achieves the best
performance. Compared with contextual biLSTM, QIN im-
proves the performance by 7.1% by accuracy. The main rea-
son is that QIN has modelled more semantic dependencies
and previous speakers’ influence. The results demonstrate

Dataset Models
Metrics

F1 Accuracy

MELD
DM-LSTM 0.654 0.663

Influence-LSTM 0.628 0.635
QIN 0.662 0.679

IEMOCAP
DM-LSTM 0.322 0.343

Influence-LSTM 0.339 0.369
QIN 0.343 0.376

Table 3: Ablated QIN for both MELD and IEMOCAP datasets.

the effectiveness and necessity of modelling the interactions
in conversational sentiment analysis.

5 Ablation Study

In this subsection, we design a series of sub-models to study
the impact of different components of the QIN model: (1)
DM-LSTM, which does not model influences, but only uses
density matrix-based CNN; (2) Influence-LSTM, which only
uses quantum measurement inspired by strong-weak influ-
ence model and incorporates influences into the output gate.

From Table 3, we observe that QIN achieves the best per-
formance among all models. The results verify that model-
ing both intra- and inter-utterance interactions makes a pos-
itive contribution to judging the sentiment polarity of an
utterance. Influence-LSTM is worse than DM-LSTM on
MELD, but performs better on IEMOCAP. Because IEMO-
CAP only contains two-way dyadic conversations, and cap-
turing the interactions between two speakers is easier. DM-
LSTM achieves better performance than CNN, LSTM and
ATAE-LSTM, showing that density matrix representation can
more effectively encode the semantic dependencies and their
probabilistic distribution information. Influence-LSTM out-
performs the baselines, proving that modeling inter-utterance
interactions benefits the sentiment classification performance.

6 Conclusions

In this paper, we propose the QIN model, which could capture
the correlations between terms and measure the influence of
the previous speakers. The main idea is to use a density ma-
trix based CNN and a strong-weak influence model inspired
by quantum measurement theory to model such interaction
dynamics. The experimental results on MELD and IEMO-
CAP demonstrate that our proposed QIN largely outperforms
a number of state-of-art sentiment analysis algorithms, and
also prove the importance of modeling interactions.
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