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Abstract: The standard objects of quantum integrable systems are identified with el-
ements of classical nonlinear integrable difference equations. The functional relation
for commuting quantum transfer matrices of quantum integrable models is shown to
coincide with classical Hirota’s bilinear difference equation. This equation is equivalent
to the completely discretized classical 2D Toda lattice with open boundaries. Elliptic
solutions of Hirota’s equation give a complete set of eigenvalues of the quantum transfer
matrices. Eigenvalues of Baxteg-operator are solutions to the auxiliary linear prob-
lems for classical Hirota’s equation. The elliptic solutions relevant to the Bethe ansatz
are studied. The nested Bethe ansatz equation$;for-type models appear as discrete
time equations of motions for zeros of classiedlinctions and Baker-Akhiezer func-
tions. Determinant representations of the general solution to bilinear discrete Hirota’s
equation are analysed and a new determinant formula for eigenvalues of the quantum
transfer matrices is obtained. Difference equations for eigenvalues ¢J-thperators
which generalize Baxter’s three-teffik)-relation are derived.

1. Introduction

In spite of the diversity of solvable models of quantum field theory and the vast variety
of methods, the final results display dramatic unification: the spectrum of an integrable
theory with a local interaction is given by a sum of elementary energies

E= 26(1%‘)7 (1.1)

whereu; obey a system of algebraic or transcendental equations knoReths equa-
tions[4, 16]. The major ingredients of Bethe equations are determined by the algebraic
structure of the problem. A typical example of a system of Bethe equations (related to
Az-type models with an elliptidz-matrix) is
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whereo(x) is the Weierstrass-function and

N
¢(u) = [T otnlu — ). 1.3)

k=1

Entries of these equations which encode information of the model are the fuagtjon
(entering throughy(u)), quasiperiodss, w, of thes-function, parameters, v, y;, and
size of the systenV. Different solutions of the Bethe equations correspond to different
guantum states of the model.

In this paper we show that these equations, which are usually considered as a tool
inherent to the quantum integrability, arise naturally as a result of the solution of entirely
classicalnon-lineardiscrete timentegrable equations. This suggests an intriguing in-
terrelation (if not equivalence) betwegtegrable quantum field theoriesmdclassical
soliton equations in discrete timén forthcoming papers we will show that the Bethe
equations themselves may be considered as a discrete integrable dynamical system.

R. Hirota proposed [20] a difference equation which unifies the majority of known
continuous soliton equations, including their hierarchies [42, 12]. A particular case of
the Hirota equation is a bilinear difference equation for a function [, m) of three
discrete variables:

at(n,l+1Lm)r(n,l,m+1)+87(n,l,m)r(n,l+1m+1)
+yr(n+11+1 m)r(n—1,l,m+1)=0, (1.4)

where it is assumed that+ 5 +~ = 0. Different continuum limits at different boundary
conditions then reproduce continuous soliton equations (KP, Toda lattice, etc). On the
other handr(n, [, m) can be identified [42] with the-function of a continuous hierarchy
expressed through special independent variables.

The same equation (with a particular boundary condition) has quite unexpectedly
appeared in the theory gliantumintegrable systems as a fusion relation for the transfer
matrix (trace of the quantum monodromy matrix).

The transfer matrix is one of the key objects in the theory of quantum integrable
systems [13]. Transfer matrices form a commutative family of operators acting in the
Hilbert space of a quantum problem. LRB{ 4(u) be theR-matrix acting in the tensor
product of Hilbert spacel; ® V4. Then the transfer matrix is a trace over the auxiliary
spacéd/4 of the monodromy matrix. The latter being the matrix producVaR-matrices
with a common auxiliary space:

Ta(uly)) = Ry a(u — yn) ... Roa(u — y2)Raa(u — 1),
Ta(u) = traTa(uly:) . (1.5)

The transfer matrices commute for all values of the spectral parameted different
auxiliary spaces:
[Ta(u), Tar ()] = 0. (1.6)

They can be diagonalized simultaneously. The family of eigenvalues of the transfer
matrix is an object of primary interest in an integrable system, since the spectrum of the
guantum problem can be expressed in terms of eigenvalues of the transfer matrix.
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The transfer matrix corresponding to a given representation in the auxiliary space
can be constructed out of transfer matrices for some elementary space by means of
the fusion procedurd35, 36, 26]. The fusion procedure is based on the fact that at
certain values of the spectral parameteéhe R-matrix becomes essentially a projector
onto an irreducible representation space. The fusion rules are especially simple in the
Aq-case. For example, the, ;(u)-matrix for two spin-1/2 representations in a certain
normalization of the spectral parameter is proportional to the projector onto the singlet
(spin-0 state) at = +2 and onto the triplet (spin-1 subspace)at —2, in accordance
with the decomposition [A2] + [1/2] = [0] + [1]. Then the transfer matri€;(u) with
spin-1 auxiliary space is obtained from the product of two spin-1/2 monodromy matrices
T(u) with arguments shifted by 2:

T3 (u) = trpy (R (—2)T3(u + DT (u — 1)R1.1(-2)) -

A combination of the fusion procedure and the Yang-Baxter equation results in numerous
functional relations (fusion rules) for the transfer matrix [35, 47]. They were recently
combined into a universal bilinear form [30, 37]. The bilinear functional relations have
the most simple closed form for the models of thg_;-series and representations
corresponding teectangularYoung diagrams.

Let T'¢(u) be the transfer matrix for the rectangular Young diagram of lengthd
heights. If n can not be represented in the forme= r1w1 + row, with rationalry, r;
(below we always assume that this is the case; for models with trigonormRetniatrices
this means that the quantum deformation paramgteyuld not be a root of unity), they
obey the following bilinear functional relation:

T3 (u+ DT — 1) = T ()T y(u) = T )T ). (1.7)

SinceT¢(u) commute at different, a, s, the same equation holds for eigenvalues
of the transfer matrices, so we can (and will) tr&égx) in Eq. (1.7) as number-valued
functions. The bilinear fusion relations for models related to other Dynkin graphs were
suggested in ref. [37].

Remarkably, the bilinear fusion relations (1.7) appear to be identical to the Hirota
equation (1.4). Indeed, one can eliminate the constantsy by the transformation

(—a/7)™ "

(L /oy )

7(n,1,m) =

so that

Tn(l + la m)Tn(lv m+ 1) - Tn(lv m)Tn(l + la m+ 1) = T’I’L+1(l + 17 m)Tn—l(lv m+ 1) = 0,
(1.8)
and then change variables frdight-conecoordinates:, [, m to the“direct" variables

a=n, s=1l+m, u=1l—m—n,
7l m) = Tl — m — ). (1.9)

Atleastataformal level, this transformation provides the equivalence between Egs. (1.7),
(1.4) and (1.8). In what follows we call Eq. (1.8) (or (1.7)) Hirota’s bilinear difference
equation (HBDE).

Leaving aside more fundamental aspects of this “coincidence," we exploit, as a first
step, some technical advantages it offers. Specifically, we treat the functional relation
(1.7) not as an identity but asfandamental equatiowhich (together with particular
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boundary and analytical conditions) completely determines all the eigenvalues of the
transfer matrix. The solution to HBDE then appears in the form of the Bethe equations.
We anticipate that this approach makes it possible to use some specific tools of classical
integrability and, in particular, the finite gap integration technique.

The origin of T¢(u) as an eigenvalue of the transfer matrix (1.5) imposes specific
boundary conditions and, what is perhaps even more important, requires certain analytic
properties of the solutions. As a general consequence of the Yang-Baxter equation, the
transfer matrices may always be normalized teebiptic polynomialsin the spectral
parameter, i.e. finite products of Weierstrasfunctions (as in (1.3)). The problem
therefore is stated as finding elliptic solutions of HBDE.

A similar problem appeared in the theory of continuous soliton equations since the
works [1, 11], wherein a remarkable connection between the motion of poles of the
elliptic solutions to the KdV equation and the Calogero-Moser dynamical system was
revealed. Elliptic solutions to Kadomtsev-Petviashvili (KP), matrix KP equations and
the matrix 2D Toda lattice (2DTL) were analyzed in Refs. [31, 32, 33], respectively.

It was shown, in particular, that poles of elliptic solutions to the abelian 2DTL (i.e.
zeros of corresponding-functions and Baker-Akhiezer functions) move according to
the equations of motion for the Ruijsenaars-Schneider (RS) system of particles [48].

Analytic properties of solutions to HBDE relevant to the Bethe ansatz suggest a
similar interpretation of Bethe ansatz equations. We will show that the nested Bethe
ansatz forA;_;-type models is equivalent to a chain o&klund transformations of
HBDE. The nested Bethe ansatz equations arise as equations of motion for zeros of the
Baker-Akhiezer functions in discrete time (discrete time RS sySteFhe discrete time
variable is identified with the level of the nested Bethe ansatz.

The paper is organized as follows. In Sect. 2 we review general properties and
boundary conditions of solutions to HBDE that yield eigenvalues of quantum transfer
matrices. In Sect. 3 the zero curvature representation of HBDE and the auxiliary linear
problems are presented. We also discuss the duality relation between “wave functions”
and “potentials" and define&klund flows on the set of wave functions. These flows
are important ingredients of the nested Bethe ansatz scheme. For illustrative purposes,
in Sect. 4, we give a self-contained treatment of thecase, where the major part
of the construction contains familiar objects from the usual Bethe ansatz. Section 5 is
devoted to the generdl,,_;-case. We give a general solution to HBDE with the required
boundary conditions. This leads to a new type of determinant formulas for eigenvalues
of quantum transfer matrices. A sketch of proof of this result is presented in the appendix
to Sect. 5. Generalized Baxter’s relations (difference equation@far)) are written in
the explicit form. They are used for examining the equivalence to the standard Bethe
ansatz results. In Sect. 6 a part of the general theory of elliptic solutions to HBDE is
given. Section 7 contains a discussion of the results.

2. General Properties of Solutions to Hirota’s Equation Relevant to Bethe Ansatz

2.1. Boundary conditions and analytic propertieldBDE has many different solutions.
Not all of them give eigenvalues of the transfer matrix (1.5). There are certain boundary
and analytic conditions imposed on the transfer matrix (1.5).

11t should be noted that equations of motion for the discrete time RS system were already written down in
the paper [43]. However, the relation to elliptic solutions of discrete soliton equations and their nested Bethe
ansatz interpretation were not discussed there.
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(i) It is known thatT’(u), the transfer matrix in the most antisymmetrical repre-
sentation in the auxiliary space, is a scalar, i.e. it has only one eigenvalue (sometimes
called the quantum determinant g@l(u) of the monodromy matrix). It depends on the
representation in the quantum space of the model and is known explicitly. In the simplest
case of the vector representation (one-box Young diagram) in the quantum space it is
[34]:

k—1s—1 k—1
TEu)=¢u—s—k) [[ [ ou+s+k—2—2p—2) ] dlu+s+k—2]), (2.1)
1=0 p=1 =1
TO(u) = 1. (2.2)

These values df'®(u) andT*(u) should be considered as boundary conditions. Let us
note that they obey the discrete Laplace equation:

TE(u+ DTE(u— 1) = TEA()TE 1 (u). (2.3)
This leads to the boundary condition (b.c.)
Ti(u)=0 asa<0 and a>Fk (2.4)

(with this b.c. Eq. (1.8) is known as the discrete two-dimensional Toda molecule equation
[22], an integrable discretization of the conformal Toda field theory [8]).

(i) The second important condition (which follows, eventually, from the Yang-Baxter
equation) is thaf’¢(u) has to be an elliptic polynomial in the spectral parametdy
elliptic polynomial we mean essentially a finite product of Weierstsafsnctions. For
models with a rationaR-matrix it degenerates to a usual polynomiakin

To give a more precise formulation of this property, let us note that Eq. (1.7) has the
gauge invariance under a transformation parametrized by four arbitrary fungtiofs
one variable:

T (u) — x1(a+u+ s)xz(a — v+ s)xs(a +u — s)xala —u — s)T3(u). (2.5)

These transformations can remove all zeros from the charactetistiest+ « = const.
We require that the remaining part of &lf'(x) should be an elliptic (trigonometric,
rational) polynomial of one and the same degh&aevhereN is the number of sites on
the lattice (see (1.3)).
One can formulate this condition in a gauge invariant form by introducing the gauge
invariant combination
T ()T 4 (u)

TeY )T Hu)

We requireY?(u) to be an elliptic function having 2 zeros and 2’ poles in the
fundamental domain. This implies thag () has the general forf

Yi(u) = (2.6)

N
T¢(u) = A [T o(n(u — 2")). (2.7)

=1
Wherez§“’s), A%, u(a, s) do not depend on and the following constraints hold:

2 This differs from a more traditional expression in terms of Jaéekinctions by a simple normalization
factor.
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N N
Z(z§a,s+1) + Z;a,s—l)) - Z(z§a+1,s) + zga—l,s)) ’ (28)

J=1 Jj=1
ma,s+1) +p(a, s —1) =pla+1,s) +pla—1,s). (2.9)

Another gauge invariant combination,
Tiu+1)T%u—1) _

Xsa(u) = — Tsa_‘_l(u)Tg—l(u)

—1- Y ), (2.10)

is also convenient.
As areference, we point out gauge invariant forms of HBDE [37]:

(1 +Y3 ()L +Y 4 (u)

Yiu+ )Y (u—1)= , 2.11
e e O TE e e ) R
o a o (@+X¢u+1)A +XE(u— 1))
X)) Xg 4(u) = L+ (X)) DL+ () D) (2.12)
It can be shown that the minimal polynomial appears in the gauge
a—1s—1 a—1 -t
Tou) = Te) | [[[[ew+s+a—2—2p -2 ][ ¢u+s+a—20) ,
1=0 p=1 =1

’ (2.13)

where all the “trivial" zeros (common for all the eigenvalues) of the transfer matrix are
removed (see e.g. [54]). The boundary values at0, & then become:

To(u) = ¢u + ),
TFu) = ¢(u—s—k). (2.14)

From now on we adopt this normalization.

(iif) The analyticity conditions and b.c. (2.14) lead to a particular “initial condition"
in s. It is convenient, however, to take advantage of it before the actual derivation. The
condition reads

THu)=0 forany —k<s<0, O<a<k. (2.15)
This is consistent with (1.7), (2.14) and implies
15 (u) = p(u — a) (2.16)

for0<a<k.

Under the analyticity conditions (i) and the b.c. (2.14) (and their consequences (2.15),
(2.16)) each solution to HBDE (1.7) corresponds to an eigenstate ofithetransfer
matrix.

The same conditions are valid for higher representations of the quantum space.
However, in that case there are certain constraints on zero&:pf{they should form
“strings”), whencel'¢(u) acquires extra “trivial” zeros. Here we do not address this
guestion.

2.2. Plicker relations and determinant representations of soluti@lassical integrable
equations in Hirota’s bilinear form are known to be naturally connected [50, 25, 51],



Quantum Integrable Models and Discrete Classical Hirota Equations 273

with geometry of Grassmann’s manifolds (grassmannians) (see [24, 23, 19]), in general
of an infinite dimension. Type of the grassmannian is specified by boundary conditions.
Remarkably, the b.c. (2.4) required for Bethe ansatz solutions corresporfititeo
dimensionalgrassmannians. This connection suggests a simple way to write down a
general solution in terms of determinants and to transmit the problem to the boundary
conditions. Numerous determinant formulas may be obtained in this way.

The grassmannia®’*} is a collection of all { + 1)-dimensional linear subspaces of
the complex { + 1)-dimensional vector spa&**1. In particular,G1, is the complex
projective spac®”. Let X € G’'*! be such ai{ + 1)-dimensional subspace spanned
by vectorsxt) = " a9l j = 1., r+1, wheree' are basis vectors i6"*L. The
collection of their coordinates form a rectangular{ 1) x (r + 1)—matrixac§”. Let us
consider its¢ + 1) x (r + 1) minors

detz'?) = (io, i1, ...,3,), p,q=0,1,...,7, (2.17)
pq P

obtained by choosing + 1 linesio, i1, . . ., i,. TheseC"*} minors are calledlucker
coordinatef X . They are defined up to a common scalar factor and providelttoker
embeddingf the grassmannia@”*} into the projective spade?, whered = C1 — 1
(Cr*1is the bimomial coefficient).

Theimage of57*1 in P4 is realized as an intersection of quadrics. This means that the
coordinatesip, i1, . . . , i) are not independent but obey tRkicker relationd23, 19]:

r
(i07 ila ceey ir)(jovjla ceey ]7‘) = Z(jpa ila seey ir)(j07 "'jp—la i07jp+l"'7 JT‘) (218)
p=0

foralli,, j,,p = 0,1,...,r. Hereitisimplied that the symbal{, i1, . . . , 4,,) is antysym-
metric in all the indices, i.e.iq, ..., ip—1,0p, ..., %) = —(i0, ..., %p, ip—1,...,0r) and
it equals zero if any two indices coincide. If one treats these relations as equations rather
than identities, then determinants (2.17) would give a solution to Hirota’s equations.
The PLlcker relations in their general form (2.18) describe fusion rules for transfer
matrices corresponding to arbitrary Young diagrams. At the same time these general
fusion rules can be recast [40] into the form of higher equations of the discrete KP
hierarchy. These are-term bilinear equations for functions efvariables [12, 44]. In
this paper we restrict ourselves to the three-term Hirota equation.
In order to reduce generaliRlker relations to 3-term HBDE, one should téake j,
for p # 0, 1. Then all terms but the first two in the r.h.s. of (2.18) vanish and one is left
with the 3-term relation

(7;07 7:17 ey ir)(jOajla 7:27 .o 7ir) = (jOv ilv i27 ey ir)@o;jl» Z'27 s 7’7’)
+(jla /L'lv iZa v 7%‘)(707 iOa Z‘27 cee 7’7“) (219)

After substitution of (2.17) these elementaryiéier relations turn into certain deter-
minant identities. For example, choosimg) = Opj, x%) = dq45, ¢ 7 p, ONE Can recast
Eqg. (2.19) into the form of the Jacobi identity:

D[plp] - Dlglq] — DIplq] - Dlq|p] = Dlp,qlp,ql - D, (2.20)

whereD is the determinant of a ¢ 1) x (r + 1)-matrix andD[p1, p2|q1, 2] denotes the
determinant of the same matrix wih o-th rows andy; »-th columns removed. Another
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useful identity contained in Eq. (2.19) connects minbi{g,, [] of a (r + 3) x (r + 1)
rectangular matrix, where the two rods!/, are removed:

D[ll, l3] : D[l27 l4] - D[ll7 ZZ] : D[l3a l4] = D[l:l.» Z4] : D[l27 l3] ) ll < l2 < Z3 < l4 .
(2.21)
Identifying terms in Eq. (2.19) with terms in HBDE (1.8), one obtains various de-
terminant representations of solutions to HBDE. Two of them follow from the Jacobi
identity (2.20):

Ta(l7m):det(Tl(l+i—a,m—j+a)), ,j=1...,a, T1o(,m)=1 (2.22)
or, in “direct" variables
Té(u)=det(Th, ju+i+j—a—1), ij=1...,a, Tou)=1. (2.23)

This representation determines an evolutiom iintom the initial values at. = 1. The
size of the determinant grows with A similar formula exists for the evolution ist

Tou)=det(Ty" (u+i+j—s—1), 4,j=1...,s, T =1. (2.24)

The size of this determinant grows withDeterminant formulas of this type have been
known in the literature on quantum integrable models (see e.g. [6]). They allow one to
express 4 (u) throughT(u) or T (u).

A different kind of determinant representation follows from (2.21):

TH(u) = dethd;;,
My, = {f_Li(u+s+a+2]) ifj=1 .. k—a,i=1..k

holu—s+a+2)) if j=k—a+l .k izl k(229

whereh;(x) andh;(x) are Z arbitrary functions of one variable. The size of this deter-
minant is equal té: for all 0 < a < k. This determinant formula plays an essential role
in what follows.

The determinant representations give a solution to discrete nonlinear equations and
expose the essence of the integrability. Let us note that they are simpler and more
convenient than their continuous counterparts.

2.3. Examples of difference and continualystype equationsFor illustrative purposes
we specialize the Hirota equation to tHe-case and later study it separately./At 2
Eq. (1.7) is

To(u+ DTs(u— 1) — Tosr(u)Ts_1(u) = dp(u + 8)p(u — s — 2) (2.26)

with the condition?_;(u) = 0 (here we seT’(u) = TX(u)).

This equation is known as a discrete version of the Liouville equation [22] written
in terms of ther-function. It can be recast to a somewhat more universal form in terms
of the discrete Liouville field

Ts+1(U)T9—l(u)
o(u+ s)p(u — s — 2)

(see (2.6)), which hides the functiaitu) in the r.h.s. of (2.26). The equation becomes
Yi(u = 1)Y,(u + 1) = Vera(u) + D(Fs-a2(u) +1). (2.28)

Yi(u) = Yi(u) = (2.27)
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(Let us note that the same functional equation but with different analytic properties of
the solutions appears in the thermodynamic Bethe ansatz [53, 46].)

In the continuum limit one should puf,(u) = §—2exp(—¢(z,t)), uw =01z, s =
5~1t. An expansion i® — 0 then gives the continuous Liouville equation

D20 — 02 = 2exp(p). (2.29)

To stress the specifics of the b.c. (2.15) and for further reference let us compare it
with the quasiperiodic b.c. Then th& -case corresponds to the discrete sine-Gordon
(SG) equation [21]:

T u) = XN T Hu — 2), (2.30)

wherea and )\ are parameters. Substituting this condition into (1.7), we get:

THu+ DTN — 1)~ Th@)TE 4() = NPT —2),  (2.31)
TO(u+ DI — 1) — T4 )T 4(0) = e “THW)THu+2).  (2.32)

Let us introduce two fieldg** andy®* on the squares( u) lattice

TO(u) = explp™" +¢*"), (2.33)
THu+1) = \2explp™" — ¢**), (2.34)

and substitute them into (2.31), (2.32). Finally, eliminatirig’, one gets the discrete
SG equation:

Sinh((ps+l,u+(ps—l,u _(ps,u+l_(ps,u—1) - )\Sinh(@s+l,u+<ps—l,u +(ps,u+l+(ps,u—l+a) .

(2.35)

The constant can be removed by the redefinitigri-* — %% — %a.

Another useful form of the discrete SG equation appears in varidflé¢s) (2.10).
Under condition (2.30) one has

XMu) = X207 Hu — 2),  NXTu+1)X(u) = 1, (2.36)
so there is only one independent function

XHu) = z5(u) = —e A Texp( — 20" — 205472 (2.37)
The discrete SG equation becomes [21, 14, 9]:

A+zs(u+ )N +a5(u—1))
(1 +Az5(u+ 1)L +Azg(u — 1))

Terrt(u)xs_1(u) = (2.38)

In the limit A\ — 0 Eq. (2.38) turns into the discrete Liouville equation (2.28) for
Yi(u) = =1 — A"ty (u).
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3. Linear Problems and Backlund Transformations

3.1. Zero curvature condition.Consider the square lattice in two light cone variallles
andm and a vector functiog,({, m) on this lattice. LetL, (I, m) andM, ./ (I, m) be
two shift operators in directiornisandm:

Z La,a/ (ly m)ilfa' (l + 17 m) = 1/%1([, m)7
ZMa,a/(lam)wa’(lym-F 1) = "/}a(lam)' (31)
The zero curvature condition states that the result of subsequent shifts from an initial
point to a fixed final point does not depend on the path:
L(,m)-M({+1,m)=M(1,m)-L({I,m+ 1) 3.2)

HBDE (1.7) possesses [20, 49] a zero-curvature representation by means of the following
two-diagonal infinite matrices:

La,a’ = 6a,a’7l + 5a,a' ‘/la, )

Ma,a’ = 5a,a’ +6a,a’+1WgLa (33)
where
Ve = To(l + 1, m)7e41(l, m)
L, m)ran(l+1,m)
7-ca—l(la m + 1)Ta+1(l7 m)
= . 4
Wi Ta(l,m)To (I, m + 1) (3.4)

More precisely, the compatibility condition of the two linear problems

1/)(1(17 m) - wfl*'l(l + 17 m) = ‘/laq/}a(l + 17 m) )

Ya(l,m) = Ya(l,m + 1) =Wgie_a(l,m + 1), (3.5)
combined with the b.c. (2.14) yields HBDE (1.8). Introducing an unnormalized “wave
function”

fa(l,m) = Ya(l, m)7a(l,m), (3.6)

we can write the linear problems in the form
Ta+l(l + 13 m)fa(l7 m) - Ta+1(la m)fa(l + 17 m) = Ta(la m)fa+l(l + 13 m) )
T(l(la m+ 1)f(1(lv m) - Ta(l7 m)fa(lv m+ 1) = Tfl"'l(lv m)f(l—l(l7 m+ 1)7 (37)
or in “direct" variables
TSN u)F(s,u) — T u — 1D)F (s + L, u+1) =THu)F* (s + 1, u),
T (u — 1)F(s,u) — TY(w)F(s + L,u — 1) =T u — 1)F* s+ 1, u),
(3.8)
whereF(l +m,l —m — a) = f.(I, m).

An advantage of the light cone coordinates is that they are separated in the linear
problems (there are shifts only b{m) in the first (second) Eq. (3.7)).
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The wave function and potential possess a redundant gauge freedom:

x(a—1+1) ., a x(a —1)
o Mmoo

with an arbitrary functiory.
The b.c. (2.4) implies a similar condition for the object of the linear problems

Fes,u)=0 asa<0 and a>k-1 (3.10)

Vi — Wi Yall,m) — x(a—1+1)pa (3.9)

so that the number of functions is one less than the number Bfs. Then from the
second equation of the pair (3.8yat 0 and from the first one at= k£ — 1 it follows that
FO(s,u) (F¥—1(s,u)) depends on one cone variable- s (resp.,u — s). We introduce
a special notation for them:

FOs,u) = Qr_1(u+s), FF(s,u) = Qp_1(u — s). (3.11)

Furthermore, it can be shown that the important condition (2.15) relates the fun@tions
andQ: -~

Qr-1(u) = Qr-1(u — k +1). (3.12)
The special form of the functiong“ at the ends of the Dynkin graph € 0,k — 1)
reflects the specifics of the “Liouville-type" boundary conditions. This is to be compared
with nonlinear equations with the quasiperiodic boundary condition (2.30): in this case
all the functionsF’ depend on two variables and obey the quasiperiodic b.c.

3.2. Continuum limitIn the continuum limif = —dt., m = —dt_, 7, — 5“27'(17 fa—

5“2+“fa7 6 — 0, we recover the auxiliary linear problems for the 2D Toda lattice [52]
(0+ = 0/0t1):

Outhy = thars *+ D (10g T2,
Orby = Ly, (313)

a

or, in terms off,,

Ta+10+ fo — (0sTax1) fa = Tafar1,
TaO— fa — (0-Ta)fa = Ta+rrfa—1- (3.14)

The compatibility condition of these equations yields the first non-trivial equation of the
2D Toda lattice hierarchy:

O+TqO0_Ty — TaO0+O_Ty = Ta41Ta—1- (3.15)
In terms of -
alts t_) =log 7TTE§L—))
it has the familiar form
DvD_(py = 2 Paml _ gPar—Pa (3.16)

3.3. Backlund flow. The discrete nonlinear equation has a remarkable duality between
“potentials"T* and “wave functions’F first noticed in [49]. In the continuum version
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it is not so transparent. Equations (3.8) are symmetric under the interchahgaraf
T. Then one may treat (3.8) as linear problems for a nonlinear equatibisott is not
surprising that one again obtains HBDE (1.7):

Fos,u+1)F%s,u—1)— Fs+ 1, u)F(s — 1,u) = F*Ys, u) F* (s, u). (3.17)

Moreover, conditions (3.10)-(3.12) mean that even the b.cFfy, v) are the same
as forT%(u) under a substitutiop(u) by Qr_1(w). The only change is a reduction of
the Dynkin graph% — k — 1. Using this property, one can successively reduce the
Ajy_1-problem up tad;. Below we use this trick to derivd; _; (“nested”) Bethe ansatz
equations.

To elaborate the chain of these transformations, let us introduce a new variable
t=0,1,...,ktomarkalevel of the flowd;,_; — A; and letF%, (s, u) be a solution to
the linear problem ati{— ¢)'" level. In this notationF2(s, u) = T%(u) andF_,(s,u) =
F“(s, u)isthe corresponding wave function. The wave function itself obeys the nonlinear
equation (3.17), sé}'_,(s,u) denotes its wave function and so on. For each letled
function F*(s, u) obeys HBDE of the form (3.17) with the b.c.

Ff(s,u)=0 asa<0 and a>t. (3.18)

As a consequence of (3.18), the first and the last components of the ¥#¢tor) obey
the discrete Laplace equation (2.3) and under the condition (3.11) are functions of only
one of the light-cone variables ¢ s andu — s respectively). We denote them as follows:

FO(s,u) = Qu(u+s), Fl(s,u)=Qiu—s), (3.19)

where it is implied that),(u) = ¢(u). It can be shown that ellipticity requirement (ii)
and condition (2.14) impose the relatiQh(u) = Q;(u — t).
In this notation the linear problems (3.8) at level

FEits + L u)FP(s,u) — Fi(s,u — DFf(s + 1 u+ 1) = Fag(s, u) FF (s + 1, u),
(3.20)
Fia(s+ L u—1)F(s,u) = Fiq(s, ) (s + Lu—1) = Fi5 (s, u — DF (s + 1, )
(3.21)
look like bilinear equations for a function of 4 variables. However, Eq. (3.20) (resp., Eq.
(3.21)) leaves the hyperplame— s + a = const (resp.y + s + ¢ = const) invariant, and
actually depends on three variables.
Restricting the variables in Eq. (3.20) to the hyperplanes + a = v (wherev is a
constant), by setting
Tu(t,a) = Fy_(u+a—v,u), (3.22)

we reduce Eq. (3.20) to the form of the same HBDE (1.8) in cone coordihatasa.
The b.c.is

7ut,0) = Qr_i(Ru — v), Tu(t,k — 1) = Q_s(v +t — k) = const (3.23)
Similar equations can be obtained from the second linear problem (3.21) by setting
Tulbyt) = FF 100+ b — u,u+t — k) (3.24)
(v'is a constant). This function obeys Eq. (1.8),

Tu(b+ L 0)7u(b, t + 1) = 7u(b, )70 (b + 1,8 + 1) = 7ysa (b + 1, )72 (b, t + 1), (3.25)
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wheret now plays the role of the light cone coordinate The b.c. is
’Fu(ov t) = Cjkft(zu tt—k— 6)7 ’Fu(k -1, t) = Qkft(v) = const (326)

Itis convenient to visualize this array effunctions on a diagram; here is an example
for the Az-case § = 4):

0 1 0
0 Quu+s) Qilu—s) 0

0 Qa(u+s) Fis,u) Qau—s) 0 (3.27)
0 Qs(u+s) Fi(s,w) Fi(s,u) Qslu—s) 0

0 ¢lu+s) THu)  T2w)  T3uw) ¢lu—s) O

Functions in each horizontal (constapslice satisfy HBDE (3.17), whereas functions
on theu — s +a = const slice satisfy HBDE (1.8) with a being light cone variables
m respectively.

A general solution of the bilinear discrete equation (1.7) with the b.c. (2.14) is
determined by R arbitrary functions of one variabl@,(v) and@,(u),t =1, ..., k. The
additional requirement (ii) of ellipticity determines these functions through the Bethe
ansatz.

3.4. Nested Bethe ansatz schentéere we elaborate the nested scheme of solving
HBDE based on the chain of successiv@cBlund transformations (Sect. 3.4). This is

an alternative (and actually the shortest) way to obtain nested Bethe ansatz equations
(3.31). Recall that the function, (¢, a) = F{_,(u+a, u) (3.22) (where we put = O for
simplicity) obeys HBDE in light cone variables:

Tu(t+ 1L a)r,(t,a+1)— (¢, a)T(t+ L, a+ 1) =1yt + 1, a)my—1(t,a + 1). (3.28)

Sincer,(t,0) = Qx_:(2u), nested Bethe ansatz equations can be understood as “equa-
tions of motions" for zeros of),(u) in discrete time (level of the Bethe ansatz). The
simplest way to derive them is to consider the auxiliary linear problems for Eq. (3.28).
Here we present an example of this derivation in the simplest possible form.

Let us assume tha&®,(u) has the form

My
Qu(u) = e ™ [ [ otnu — uf)) (3.29)
j=1
(note that we allow the number of roald; to depend ort). Since we are interested in

dynamics ir¢ at a fixeda, it is sufficient to consider only the first linear equation of the
pair (3.7):

Tur1(t + 1 @) fu(t, a) — Tus1(t, @) fu(t + 1, a) = 7 (t, a) fusr(t + 1, a) . (3.30)

An elementary way to derive equations of motion for roots gf, 0) is to putu equal to
the roots off, (t+ 1, 0), f,. (¢, 0) andf,+1(t + 1, 0), so that only two terms in (3.30) would
survive. Combining relations obtained in this way, one can elimifistand obtain the
system of equations
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Qi—1(u +2)Q¢(u} — 2)Qpaa(uf) _
Qr-1(uf)Qu(uf; + 2)Qua(uf — 2)

as the necessary conditions for solutions of the form (3.29) to exist. In the more detailed
notation they look as follows:

-1 (3.31)

My ¢ t—1 M, t t M t t+1
0(71(%‘ —uy ~+2) U(7I(Uj —uy, — 2)) U(W(Uj —uy))
11 ~ W oae w2y U saes =2

t
e o]

= _e2@ui—vin—vi1) (3.32)
With the “boundary conditions”
Qo(u) =1, Qi(u) = d(u), (3.33)

this system of\f; + M5 +. .. + M}, equations is equivalent to the nested Bethe ansatz
equations ford;_;-type quantum integrable models with Belavin's ellipiiematrix.

The same equations can be obtained for the right edge of the diagram (3.27) from the
second linear equation in (3.7). In Sect. 5 we explicitly identify Qs with similar
objects known from the Bethe ansatz solution.

Let us remark that the origin of Eq. (3.32) suggests to consider them as equations
of motion for the elliptic Ruijsenaars-Schneider model in discrete time. Taking the
continuum limit in¢ (providedM,; = M does not depend af), one can check that Eqgs.
(3.32) do yield the equations of motion for the elliptic RS model [48] wiftparticles.

The additional limiting procedurg — 0 with finite nu; = x; yields the well known
equations of motion for the elliptic Calogero-Moser system of particles.

However, integrable systems of particles in discrete time seem to have a richer
structure than their continuous time counterparts. In particular, the total number of
particles in the system may depend on (discrete) time. Such a phenomenon is possible in
continuous time models only for singular solutions, when patrticles can move to infinity
or merge to another within a finite period of time.

Remarkably, this appears to be the case for the solutions to Egs. (3.32) corresponding
to eigenstates of the quantum model. It is known that the number of excitdtipas
thet™ level of the Bethe ansatz solution does depend. ém other words, the number
of “particles" in the corresponding discrete time RS model is not conserved, though the
numbersi/; may not be arbitrary.

Inthe elliptic case degrees of the elliptic polynomidigu) are equal tdf; = (N/k)t
(providedn is incommensurable with the lattice spannedbyw, andN is divisible by
k). This fact follows directly from Bethe equations (3.31). Indeed, the elliptic polynomial
form (3.29) implies that i/} is a zero oY, (u), i.e.,Q:(u}) = 0, thenu’ +2nyw; +2now,
for all integersny, n, are its zeros too. Taking into account the Welll known monodromy
properties of ther-function, one concludes that this is possible if and only if

My + My 1 =2M,, (3.34)
which has a unique solution
N
M, = ?t (3.35)

satisfying b.c. (3.33). This means that the nested scheme for elliptig-type models
is consistent only ifV is divisible byk.
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In trigonometric and rational cases the conditions on degreék'sfbecome less
restrictive since some of the roots can be located at infinity. The equality in (3.35)
becomes an inequalityt/; < (N/k)t. A more detailed analysis [28] shows that the
following inequalities also hold: 2y < My, 2M, < Mj+Ms,...,2M; < My_1+M;q,

Ceay N = Mk > 2Mk,1 — Mkfz.

4. The A;-Case: Discrete Liouville Equation

In this section we consider thé;-case separately. Although in this case the general
nested scheme is missing, the construction is more explicit and contains familiar objects
from the Bethe ansatz literature.

4.1. General solutionLet us consider a more general functional relation:
To(u+ DTo(w = 1) = Tora(@)Ts-1(u) = $(u + s)d(u — s), (4.1)

where the functiong, qgare independent an@l,(u) = T1(u). The auxiliary linear
problems (3.8) acquire the form

Tona()Qu +5) — Ty(u — D)Q(u + 5+ 2) = $(u + 5)Qu — s — 1), (4.2)

Ton(@Qu—s+1) = T,(u+1)Qu—-s—-1)=¢(u—s)Qu+s+2).  (4.3)
Here we se)(u) = Q1(u) andg(u) = Q2(u). Rearranging these equations, we obtain

Bu — 2)Qu +2) + p(u)Q(u — 2) = A(u)Q(u), (4.4)
A(u)Q(u + 3) +(u+ 2)Q(u — 1) = A(u)Q(u + 1) (4.5)

with the constraint
T (w)Qu) — To(u — D)Q(u + 2) = p(u)Qu — 1), (4.6)

which follows from Eq. (4.2) at = 0. In these equations,

P(u — 2)Tsra(u — 8) + P(u)Ts 1 (u — 5 — 2)

Alw) = Ts(u—s—1) ' 47
— _ put 2)Tea(u+s) + pw)Ts_1(u+s+2)
A(u) = Tiu+s+1) . (4.8)

Due to consistency condition (4.4 «) and A(u) are functions of one variable and do
not depend or. The symmetry betweemands allows one to construct similar objects
which in turn do not depend am FunctionsA(u) and A(u), in the r.h.s. of (4.4), (4.5)
are the conservation laws of thedynamics. _ _

Letus note thatthe connection betweeamdo, ¢(u) = ¢(u—2), and its consequence
T_1(u) = 0 (see (2.15)), simplifies Eqgs. (4.4)-(4.8). Putting: 0 and using the b.c.
T_1(u) = 0, we find _

A(u) = A(u) = Ti(u) . (4.9)

Therefore, the following holds

Ts(u—DT1(u+s) = d(u+s — 2)Tse1(u) + du+ 8)Ts_1(u — 2), (4.10)
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Ts(u+DT(u — 8) = d(u — 8)Tser(u) + d(u — s — 2)Ts_1(u + 2), (4.12)
P(u — 2)Q(u +2) + p(u)Q(u — 2) = To(w)Q(u) . (4.12)

The first two equalities are known as fusion relations [35, 29, 5] while Eq. (4.12) is
Baxter's T-Q-relation [4, 3]. So Baxter's) function and thel’-Q-relation naturally
appear in the context of the auxiliary linear problems for HBDE.

A general solution of the discrete Liouville equation (for arbltrarand¢) may be
expressed through two independent functi@s) and@(«). One may follow the same
lines developed for solving the continuous classical Liouville equation (see e.g. [17, 27]
and references therein). Let us consider Eq. (4.4) (resp., (4.5)) as a second order linear
difference equation, where the functidifu) (A(u)) is determined from the initial data.
Let R(u) (resp.,R(u)) be a second (linearly independent) solution of Eq. (4.4) (resp.,
(4.5)) normalized so that the wronskians are

WW”%%&L@%&LQZ¢W% (4.13)

Ru+2) Qu+2)
and the constraint similar to (4.6) is imposed:

Ti(u)R(u) — To(u — 1)R(u + 2) = qﬁ(u)ﬁ(u —1). (4.15)

ﬁ%m:‘é@) Qu) | 5y, (4.14)

Then the general solution of Eq. (4.1) is given in term&)aind R:

Qu+s+1) Rlu+s+1)
Qu — s) R(u — s)

This formula is a particular case of the general determinant representation (2.25).

Like in the continuous case, this expression is invariant with respect to changing the
basis of linearly independent solutions with the given wronskians. The transformation
of the basis vectors is described by an elemerff bf2). Due to relations (4.6), (4.15)

@, R transform in the same way 85 R and the invariance of Eq. (4.16) is evident.

For any givenQ(u) andQ(u) the second solutio®(w) and R(u) (defined modulo
a linear transformatio®(u) — R(u) + aQ(u)) can be explicitly found from the first
order recurrence relations (4.13), (4.14), if necessaryQ(eb) and R(up) be initial
values atu = ug. Then, say, for even > 0,

Ts(u) = (4.16)

r/2

R(uo +7) = Q(ug + 1) ( Z O (b(UQ +25 — 2). R(UO)) 4.17)

+2)Q(uo +2j — 2)  Q(uo)

and so on for other’s andﬁ(u).
Finally, one can express the solution to Eq. (4.1) through two independent functions

Q(u) andQ(u):

Qu)Q(u +27)Q(u + 2j — 2)
(4.18)

Ts(u+s—1)=Q(u+28)@(u—1)( Tolu 1)) Z B

whereTp(u) can be found from (4.18) by putting= 0:
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_ D=1, Trl) e ) g
Qu)Qu—1) Qu+2)Qu+l) QR+2) Qu—1)Qu+1l)
Note also the following useful representations:
A(u) = Qu + 2)R(u — 2) — R(u + 2)Q(u — 2), (4.20)
A(u) = Ru+3)Q(u — 1) — Q(u + 3)R(u — 1), (4.21)

which are direct corollaries of (4.4), (4.5).
4.2. Equivalent forms of Baxter's equatioithe key ingredient of the construction is
Baxter's relation (4.12) and its “chiral" versions (4.4), (4.5). For completeness, we gather
some other useful forms of them.

Consider first “chiral” linear equations (4.4), (4.5) (thus not implying any specific

b.c. ins). Assuming thaf;(u) obeys HBDE (4.1), one can represent Egs. (4.4), (4.5) in
the form

T(u) Tora(u —1) Qu+s+1)
Toa(u+1) To(u)  Qu+s+3)| =0, (4.22)
Tsro(u+2) Trg(u+1) Qu+s+5)
Tw)  Tea(w+1) Qu—s)
Tealu—1) Tuo(w)  Qu—s-2)|=0, (4.23)
Toeo(u — 2) Toea(u — 1) Qu — 5 — 4)

respectively. This representation can be straightforwardly extended td;thecase

(see Egs. (5.37), (5.38)).
A factorized form of these difference equations is

. PW)Qu —2) . Q) o
(628 - W) (eza Ol 2)) X(u—2)=0, (4.24)
(6 S()O(u+ 1) ) (e Dl — 1)) X(u—-1)=0. (4.25)

Heree?« acts as the shift operatef f(u) = f(u+ 1), andX (u) (X (v)) stands for any
linear combination o&)(u), R(u) (Q(u), R(u)).

Specifying Eqgs. (4.22), (4.23) to the bE. 1(u) = 0 (see (4.9)), we see that both of
them turn into the equation

2
> ()T (u+a—1)X(u+2a—2)=0, (4.26)
a=0
that is Baxter’s relation (4.12). Furthermore, the difference operator in (4.26) admits a
factorization of the form (4.24):
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2

e lf(wta—1) o0, _ ( 20,  P(W)Q(u— 2)) < 20, Q) )
2y 20w ) T gw-2)

(4.27)
which is equivalent to the well known formula @k () in terms ofQ(u).

4.3. Double-Bloch solutions to Baxter's equatioim this section we formulate the
analytic properties of solutions to Baxter’s functional relation (4.4) that are relevant to
models on finite lattices.

First let us transform Baxter’s relation to a difference equation wiliptic (i.e.
double-periodic with periods.2 /7, 2w, /n) coefficients.

The formal substitution

= Qu)P(u)
W(u) = o —2) (4.28)
with a (as yet not specified ) functidp(u) yields
~ P(u+2)p(u — 4) ~ _A(w)P(u+2)~
Wy +2)+ Blu— 2)0(u — 2) W(y —2) = OO W(u). (4.29)

Below we restrict ourselves to the case when the delyreéthe elliptic polynomial
o(u) (1.3) iseven Then for anyP(u) of the form

N/2

P@) =[] on(u - p;)) (4.30)

j=1

with arbitraryp; the coefficients in (4.29) are elliptic functions. Indeed, for the coefficient
in front of W(u — 2) this is obvious. As for the coefficientin the r.h.s. of (4.29), its double-
periodicity follows from the “sum rule" (2.8).

Let us represent(w) in the form

P(u) = po(u)dr(v) , (4.31)

wherego(u), ¢1(u) are elliptic polynomials of degre®’/2 (of course forN > 2 there
are many ways to do that). Specifyidt{u) as

P(u) = ¢p1(u — 2), (4.32)

we rewrite (4.29) in the form

dolu — 4)p1() AW

Yt Dot —-2) D a2 433
where o)
_ u

W) = o0 (4.34)

Now, the coefficients in Eq. (4.33) being double-periodic, it is natural to consider its
double-Bloch solutionsA meromorphic functionf(z) is said to bedouble-Blochf it
obeys the following monodromy properties:

flx+2w,) =B, f(x), a=12. (4.35)
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The complex humberB,, are calledBloch multipliers It is easy to see that any double-
Bloch function can be represented as a linear combination of elementary ones:

M
flx) = Z c;®(x — x4, z)ml‘/”, (4.36)
i=1
where [33]
_oztatn) [olz—n)]7®
b, 2) = o(z +n)o(x) {o(z +1) ] ’ (4.37)

and complex parametetsandx are related by

o(z — wa /1
B = ke exp(@ (el + 1) (2 ) ) (@39

(¢(z) = o' (z)/o(x) is the Weierstrass-function). Considered as a functiongf®(z, z)
is double-periodic:
D(z, 2z + 2w,) = O(x, 2).

For general values aof one can define a single-valued branchdgfz, z) by cutting
the elliptic curve between the points= +n. In the fundamental domain of the lattice
defined by 2, the function®(z, z) has a unique pole at the point= 0:

D(z,2) = % +0(1).

Coming back to the variable = x /7, one can formulate the double-Bloch property
of the function¥(u) (4.34) in terms of its numerat@p(u). It follows from (4.36) that
the general form of)(u) is

M
Q) = Qu;v) = ™ [ [ oln(u — uy)), (4.39)

J=1

whereM = N/2 andv determines Bloch multipliers.

For the trigonometric and rational degeneration of Egs. (4.4), (4.33), (4.39) the
meaning ofv is quite clear: it plays the role of the “boundary phase" for twisted b.c. in
the horizontal (auxiliary) direction. For eaeliq. (4.12) has a solution of the form (4.39).
The corresponding value @f (u) = A(u) depends o as a parameter; (u) = T1(u; v).

If there existy # v/ such thatTy(u;v) = Ti(u;v'), one may putQ(u) = Q(u,v),
R(u) = Q(u; ). In the elliptic case the boundary phase in general is not compatible
with integrability and sa’ should have a different physical sense which is still unclear.

4.4. Bethe equationslt can be shown that for double-Bloch solutions the relation
betweerny and¢, ¢(u) = ¢(u — 2), implies

Q) =Qu—1), R(u)=R(u-—1), (4.40)

so that (see (4.16)
_|Qu+s+1l) Ru+s+1)

T = Qu— s — 1) Ru— s — 1)| (4.41)
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Itis clear that ifQ(u) and R(u) are elliptic polynomials of degrel¥ /2 multiplied by an
exponential function (as in (4.39))(u) has the desired general form (2.7).
Under condition (4.40) Eq. (4.18) yields the familiar result:

olu—s+2j—1)
+2j+1)Q(u—s5+2j—1)

Ts(u) =Qu+s+1)Q(u—s— l)z 0 s (4.42)
=0

This formula was obtained in [29, 5] by direct solution of the fusion recurrence relations
(4.10), (4.11).

Letwu; andv;, j = 1,..., M, be zeros of)(u) and R(u), respectively. Then, evalu-
ating (4.13) av = u;, u = u; — 2 andu = v;, u = v; — 2 we obtain the relations

B(uj) = Quj + 2)R(uy;) , H(uj — 2) = =Q(uj — 2)R(uy), (4.43)

whence it holds
Pluy) _ Qu; +2)
d(u; — 2) Qu; —2)’

o(v;) _ R +2)
¢v;—2) R —2)

Equation (4.44) are exactly the standard Bethe equations (1.2). We refer to Egs.
(4.45) ascomplementary Bethe equationsis easy to check that Eq. (4.44) ensure
cancellation of poles in (4.42). A more standard way to derive Bethe equations (4.44),
(4.45) is to substitute zeros ©j(u) (or R(u)) directly into Baxter’s relation (4.12).
However, the wronskian relation (4.13) is somewhat more informative: in addition to
Bethe equations fox;, v; it provides the connection (4.43) between them. In the next
section we derive the system of nested Bethe ansatz equations starting from a proper
generalization of Eq. (4.13).

In the elliptic case degrees of the elliptic polynomi&l&:), R(u) (for evenN) are
equal toM = N/2 (providedn is incommensurable with the lattice spannedJdgyws,).

This fact follows directly from Bethe equations (4.44), (4.45) by the same argument as
in Sect. 3.5.

In trigonometric and rational cases there are no such strong restrictions on delgrees
and)M of @ andR respectively. This is because a part of their zeros may tend to infinity
thus reducing the degree. WhenkEand M can be arbitrary integers not exceeding
N. However, they must be complementary to each othér: M = N. The traditional
choice isM < N/2. In particular, the solutio@(u) = 1 (M = 0) corresponds to the
simplest reference state (“bare vacuum") of the model.

We already pointed out that the functi@i{u) originally introduced by Baxter (see
e.g. [4] and references therein) emerged naturally in the context of the auxiliary linear
problems. Let us mention that for models with the ratioRahatrix this function can
be treated as a limiting value @f,(u) ass — oo [35]. Rational degeneration of Egs.
(2.7), (4.39) gives

(4.44)

(4.45)

N
Ty(u) = A, [Ju — 21, (4.46)
Jj=1
M
Q) = e [ [ — uy), (4.47)

J=1
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where
_ sinh(2n(s + 1))

*7  sinh(2n) (4.48)

(The last expression follows from (4.42) by extracting the leading term-asoc.) If
the “boundary phase™ivn is real andv # 0, one has from (4.41):

T:stl(u + S)

BN (4.49)

Q(u) = iz SInh(Z/n)eWI“ ||m 621/773
$—F 00

For each finites > 0 T(u) hasN zeros but in the limit some of them tend to infinity.
The degenerate case= 0 needs special analysis since the limits> 0 ands — oo do
not commute.

Another remark on the rational case is in order. Fusion relations (4.10), (4.11) give
“Bethe ansatz like" equations for zerosiof(v) (4.46). Substituting zeros @f, (v + 1)
into (4.10), (4.11) and using (4.48) one finds:

sinh(21(s + 2)) ¢(z(5) +5— 1) ﬁ EON (s 1) (4.50)
Sinh@ns)  o(-+s+1) 1o TS |
sinh(2n(s +2)) ¢z — s — 1) fv[ ik S (4.51)

sinh(2ns)  ¢(z{) — s s — A -1 (s+l) -1

These equations give the discrete dynamics of zergsThey are to be compared with
dynamics of zeros of rational solutions of classical nonlinear equations [1, 32]. It is an
interesting open problem to find elliptic analogues of Eqgs. (4.49)-(4.51).

5. The A,_,-Case: Discrete Time 2D Toda Lattice

5.1. General solutionThe family of bilinear equations arising as a result of tieBund
flow (Sect. 3.4),

F(s,u+ 1)F(s,u — 1) = F{(s + Lu)F (s — Lu) = F{™ s, ) FY " (s,u), (5.1)
and the corresponding linear problems,

FM s+ L) F s, w)— F (s, u—DFS(s+1, u+1) = Fiy (s, s+ L), (5.2)

Fia(s+1u—1)F(s,u) = Fia(s, ) F (s + 1L u—1) = i (s,u— 1)F (s + L u),
(5.3)
subject to the b.c.

Fi(s,u)=0 asa<0 and a >t (5.4)

They may be solved simultaneously by using the determinant representation (2.25). The
set of functiong (s, u) entering these equations as illustrated by the following diagram:
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0 FO F! 0

0 FY F} F? 0 (5.5)

0 FO F} F2 ... F! 0

(cf. (3.27)). Functions in each horizontal slice satisfy HBDE (5.1)l8xlof Eq. (5.1)
we understand the numbetLevel 0 is introduced for later convenience. At the moment
we do not assume any relations between solutions at different levels.

Determinant formula (2.25) gives the solution to these equations for eacti lavel
terms oft arbitrary holomorphi%functionshgj)(u + s) andt arbitrary antiholomorphic
functionshgj)(u — 8). This is illustrated by the diagrams:

1 1
h(ll) h(12) l_L(lz) }_l(ll)

hP P hY S S (5.6)
hgl) h?) h§t+1) Egtu) }—Lgt) Egl)

Then, according to (2.25), the general solution to Eq. (5.1) is

Fia(s,u) =
KD w+s—a+2) - hD(uts—a+2)
v ard) e 1Pubsard)
B hg“l)(u*'S"‘a) - hgl)(u+s+a)
= X?(u + s)xg(u — S) _ — ,
W u—sta—t) - hPu—sta—t)
WD wu—s+a—t+2) - WD (u—s+a—1+2)
W Yw—s—a+t) - hD(u—s—a+t)

(5.7)

3 Here we calholomorphic(antiholomorphig a function ofu + s (resp.,u — s).
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where 0< « < t+1and the gauge function$ («), x¢ (u) (introduced for normalization)
satisfy the following equations:

X (u+ Dx (u — 1) = x¢ Hu)xHw)
X (u+ Dx (u = 1) = X7 N () (5.8)

(cf. (2.5)). The size of the determinanttis- 1. The firsta rows contain functionﬁg”,

the remaining — a + 1 rows contaim{’). The arguments of!”), LY increase by 2,
going down a column. Note that the determinant in (5.7) (without the prefactors) is a
solution itself. Ata = 0 (@ = ¢ + 1) itis an antiholomorphic (holomorphic) function. The
required b.c. (3.19) can be satisfied by choosing appropriate gauge fungtios

5.2. Canonical solutionThe general solution (5.7) gives the functibfi(u) = F2(s, v)
interms of Z functions of one variablg, _, andh, _,.However, we needtorepresentthe
solution in terms of another set of 2unctions@.(u) andQ:(u) by virtue of conditions
(5.4) in such away that Egs. (5.2), (5.3) connecting two adjacent levels are fulfilled. We
refer to this specification as tlvanonical solution

To find it let us notice that at = 0 Eq. (5.2) consists of the holomorphic function
Q.(u + s) and a functionf®. According to Eq. (5.7)F* is given by the determinant
of the matrix with the holomorphic entridé’)(u + s + 1) in the first row. Other rows
contain antiholomorphic functions only, $¢(u, s) = ", hii)(u+s+ 1) (u—s), where
n;(u — s) are corresponding minors of the matrix (5.7nat 1. Substituting this into
Eq. (5.2) atz = 0 and separating holomorphic and antiholomorphic functions one gets
relations connecting”, 1" | andQ,(u), Q;+1(u). Similar arguments can be applied to
Eq. (5.3) at another boundad#iy= ¢ + 1. The general proof is outlined in the appendix to
this section. Here we present the result:

B +s)=Quu+s), hPu—s)=Quu—s) (5.9)

and

(5.10)

Quea(u — 2)h (u) = ‘ KD — 2) Quu — 2) ’ |

W) Qu(w)
R Qi)
W+ 2) Quu+2)| G0

where 1< i < t. Functionsy, x in front of the determinant (5.7) are then fixed as
follows:

Qera(u+ DAy (u+1) =

-1
a—1
Yo () = (~1)" (H Qualu—a+ 2j>> L ax2,

7=1
X)) = Qualu),  xi(w) = (-1), (5.12)
t—a -1
Xe(u) = Qui(u+a—t+2j-1)| , a<t-1,
j=1

) =1,  XIu) = Qua(u). (5.13)
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It is easy to check that they do satisfy Eq. (5.8). The recursive relations (5.10), (5.11)

allow one to determine functiorig” anda{” starting from a given set @, (u). These
formulas generalize wronskian relations (4.13), (4.14) to4pe;-case.

Let us also note that this construction resembles the Leznov-Saveliev solution [39]
to the continuous 2DTL with open boundaries.

5.3. The Bethe ansatz and canonical solutidine canonical solution of the previous
section immediately leads to the nested Bethe ansatz for elliptic solutions.

In this case all functionbf), hgi) are elliptic polynomials multiplied by an exponen-
tial function:

M(i)

hgz)(u) - (L) eV mu H o(n(u — ut 9), (5.14)
7=0
hvie

h(t)(u) — —(1) V, Ynu H o(n(u — u (5.15)

This implies a number of constraints on thelr Zeros. 4
The determinant in (5.10) should be divisible @y.1(u — 2) andh@l(u), whence

MR Qi (5.16)
R +2) - Quuf+2) '
h(i+l) utfl,i ut-il’i

iy ) Quluy ) (5.17)

WD —2) T Quul Tt - 2)

whereu§ = uzl Furthermore, it is possible to get a closed system of constraints for the
roots ofQ(u) only. Indeed, choosing = u}, u = u} + 2 in (5.10), we get

Quea(ul — 2)Qu—1(ut) = —Q(u} — 2)hP(ut), (5.18)

Quar(up)Qe-1(u +2) = Qu(u + DA (uf) . (5.19)
Dividing Eq. (5.18) by Eqg. (5.19) we obtain the system of nested Bethe equations:

Qi—1(u} + 2)Q4(u} — 2)Qr+a(uh)

=-1, 5.20
Q1) Qu (s + 2)Qennlett — 2) (5.20)
which coincides with (3.31) from Sect. 3.5.
Similar relations hold true for thk-diagram:
Rl T+l 4 q (T +1
(U ) _ Qu(uj™ +1) (5.21)

E§i+1)(17§+1 ~1) Qt(—t+1 1) ’

h(2+1)(—t 1Z+1) Qt —t l’L+1)
hg”l)(uj 1,4 _ 1) Qt(—‘f 1,4 _ 1) ’

Quer( + 1)Qu—1 (@} + 1) = Qu(ul, + 2)hP(ah), (5.23)

(5.22)
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Quaa(@y — 1)Qu—1(ut — 1) = —Qu(@} — 2Pt , (5.24)
Qu-a(} + 1)Qu(@, — 2)Qua(] +1) _
Qu—1(, — D)Q:(} + 2)Qeea(dl, — 1)

These conditions are sufficient to ensure that the canonical solutidrf{a) (i.e.,
for F¢(s,u)) has the required general form (2.7). To see this, take a ge@efactor
from the product (5.12)@;+1(u — a + 25)) 2. It follows from (5.16) that at its poles the
4™ and;j + 1™ rows of the determinant (5.7) become proportional. The same argument
repeated for)-factors shows thak?, (s, v) has no poles. _
Finally, it is straightforward to see from (5.7) that the constrgipfu) = Q. (u — t)
leads to condition (2.15) (fort < s < —1 two rows of the determinant become equal).
To summarize, the solution goes as follows. First, one should find a solution to
Bethe equations (3.31) thus getting a set of elliptic polynontja(s), t = 1,...,k —1,
Qo(u) = 1, Qr(u) = ¢(u) being a given function. To make the chain of equations finite,
itis convenientto use the formal conventiQn 1 (u) = Q+1(u) = 0. Second, one should
solve step by step relations (5.10), (5.11) and find the funcfifft(s), 2\ (u). All these
relations are of the same type as the wronskian relation (4.13) id thease: each of
them is a linear inhomogeneous first order difference equation.

~1. (5.25)

5.4. Conservation lawsThe solution described in Sects. 5.2 and 5.3 provides compact
determinant formulas for eigenvalues of quantum transfer matrices. It also provides
determinant representations for conservation laws ofttignamics which generalize
Egs. (4.7), (4.8)tothd;_;-case. The generalization comes up in the form of Egs. (4.22),
(4.23) and (4.26). The conservation laws (i.e., integrals ofttignamics) follow from
the determinant representation (5.7) of the general solution to HBDE.

Let us consider@f + 1) x (Cy + 1)-matrices

T§7B/(s,u)ET3+B+B,(U—5+B—B’), B,B'=1,...,C¢+1, (5.26)

TEp(su)=T% p_p(u+s+B-B), BB =1...,08+1, (5.27)
whereCy is the binomial coefficient. Lel “[ P|R](s, v) be minors of the matrix (5.26)
with row P and columnR removed (similarly for (5.27)).

Theorem 5.1. LetT?(u) be the general solution to HBDE given by Eq. (5.7). Then any
ratio of the form

T[P|R](s, u)
Te[P'|R](s,u)
does not depend on These quantities are integrals of thejynamics:A‘}g,’;,(s, u) =

A"Pﬂ;,(u). Similarly, minors of the matrix (5.27) give in the same way a complimentary
set of conservation lavs

AT (s,u) = (5.28)

A sketch of proof is as follows.
Consider the Laplace expansion of the determinant solution (5.7) with respect to the
first a (holomorphic) rows:

Cr

To(u) = vb(u+ s)p(u — s). (5.29)

P=1

4 Compare with (4.7), (4.8).
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Here P numbers (in an arbitrary order) sets of indicgs, », . . . , p,) such thatt >
p1L > p2 > ... > pg > 1, ¢9%(u + s) is minor of the matrix in Eq. (5.7) constructed
from firsta rows and columngy, . . ., p, (multiplied by x§_,(u + 5)), ¥%(u — s) is the
complimentary minor (multiplied by§ _,(u — s)).

SubstituteR" column of the matrix (5.26) by the column vector with components
Y% (u+2B), B =1,...,C2+1. The matrix obtained this way (letus callf %) 5 /)
dependsoR=1,...,C¢+1,P=1,...,C¢anda=1,...,k— 1. The “complemen-
tary" matrix (Z“%*)p p, is defined by the similar substitution of the column vector
Yh(u+2B),B=1,...,Cf +1,into the matrix (5.27).

Lemma 5.1. Determinants of all the four matrices introduced above vanish:
det(7%) = det(7 ) = det(7“* ") = det(“*F) = 0. (5.30)

The proof follows from the Laplace expansion (5.29). From this representation it
is obvious thatC} + 1 columns of the matrices in (5.30) are linearly dependent. This

identity is valid for arbitrary functions{”(u + s), h{’(u — s) in Eq. (5.7).
The conservation laws immediately follow from these identities. Indeed, let us rewrite
the determinant of the matrix® - as a linear combination of entries of tR& column:
Cp+l
det(z “*F) = Z (—=1)P"* Byt (u + 2B"YT*[B'|R](s, u) = 0. (5.31)
B’=1

Dividing by 7*[P’| R](s, u), we get, using the notation (5.28):

Cp+l

3 D p(u+ 2B A (s, 0) = (DT B+ 2P (5.32)
B'=1,B'#P’

The latter identity is a system @} linear equations foC'y quantitiesAi’ﬁ/(s,u),

a,R a,R a,R a,R
Ay'pi(s,u), Sy APul,P’(S»?‘)’ AP,+11P,(S,1.L), . ‘_46';;+1,P’(Svu)' In the case of the
general position the wronskian of the functiaffs(w) is nonzero, whence system (5.32)
has a unique solution foi‘};)f;, (s, w). The coefficients of the system do not depend.on
ThereforeAij;,(s, u) are s-independent too. Similar arguments areapplied to minors
of the matrix (5.27).

Another form of Eq. (5.31) may be obtained by multiplication its I.h.&/jwu —2s)
and summation oveP. This yields

Cr+l
S (~1)P T (u — s+ BYT[BIR(s,u) = 0, (5.33)
B=1

which is a difference equation far¢(u) as a function of the “holomorphic" variable
u + s with fixed u — s.

5.5. Generalized Baxter’s relationEquation (5.31) can be considered as a linear differ-
ence equation for a function®(u) havingC} linearly independent solutionsy (w). It
provides thed;_i1-generalization of Baxter’s relations (4.4), (4.5). This generalization
comes up in the form of Eqgs. (4.22), (4.23) and (4.26).
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The simplest cases atie= 1 anda = & — 1. Then there arg + 1 terms in the sum
(5.31). Furthermore, it is obvious that

e =h 1), W) = A ). (5.34)
Then Eqg. (5.31) and a similar equation for antiholomorphic parts read:

k+1
> (1Y A (u+ 25 + DTk + 1(s,u) = 0, (5.35)
J=1

k+1
D (1Y (u+ 2Tk + 1)(s,u) = 0, (5.36)
j=1
where we putR = k + 1 for simplicity. These formulas may be understood as linear

difference equations of ordét. Indeed, Eq. (5.35) can be rewritten as the following
equation for a functiork (u):

T (u) T, (u—-1) e TY, j(u—k+1) X(u+s+1)
TL (u+1) T (u) v T (u—k+2)  X(u+s+3)

=0. (5.37)
T, (u+k) TY, (u+k—1) ... TL, ,(u+l) X(u+s+2k+1)

This equation hag solutionshg)_l(u), i=1,...,k. One of them ixYy_1 = hgll(u)
(see Eq.(5.9)). Similarly Eq. (5.36) for the antiholomorphic parts,

TFYu)  TEu-1) o TRR (u—k+1) X (u—s)
TFHu+1) TEHu) o T Mu—k+2) X (u—s+2)

=0, (5.38)
TFMu+k) TR J(utk—1) ... TF 3, (u+l) X (u—s+2k)

hask solutionshg)_l(u), 1=1,...,k. One ofthemis),_1 = hfll(u).

Difference equations (5.37), (5.38) can be rewritten in the factorized form. This fact
follows from a more general statement. Fix an arbitrary |&aid sefl ' (u) = Fi¢ (s, u),
Fe(s,u) = F_,(s,u) (asin Sect. 3).

Proposition 5.1. Foreachj =0,1,...,k — 1it holds:
(0 — RO (s, w)) (¢?*2 — RY(s,u)) ... (€70 — RY) (s, u)) FE~173 (s, “)(5: gé)

(eaﬁ*a’“ — ﬁg@l(s, u)) (ea“a“ — Egj)(s, u)) e (68578“ — E(lj)(s, u))Fj(s7 u) =0,
(5.40)
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where

T, (u+i— 1T (u — 1)T9 5 (u)

RF=19(5, ) = —2 stic2d sl 5.41
R B O iy e O M
- T = DT M — )T )
R (s,u) = ye) - gy g . (5.42)
Ts+i72(u —ut 1)Ts+i71 U)Tsﬂ'fl ('LL - 1)
Proof. The proof is by induction. Aj = 0 Eq. (5.39) turns into
Tk 1 (u)
Ds+0. s+1 k—1 —
0 s ) =0.
(7= gy e
This means thaF* (s, u) does not depend am+ s. Further,
T (u—1) < 9,40 T4 (u) ) -1
Fos+lu)=—-"—— % % - 2| F*"(s,u), 5.43
R rpw-p)t e B

(see (3.8)). The inductive step is then straightforward. The proof of (5.40) is absolutely
identical.
Now, puttingj = &k — 1 we get the following difference equations in one variable:

(ezauws — Rg%l)(s, U — s)) (628“+8S — R;’“jf)(s, u— S))

o (€70 — RET(s, 0 — 5)) Qp () = 0, (5.44)

(e72240: — BRI (s, u+ s))(e=2040 — RED(s,u+5))
o (emr0s — RETD(s, 0+ 5)Qr-1(u) = 0. (5.45)
Note that operators™?: act only on the coefficient functions in (5.44), (5.45). These
equations provide a version of the discrete Miura transformation of generalized Baxter's

operators, which is different from the one discussed in Ref. [15] (see also below).
Coming back to Eq. (5.31) and using relations (5.10), (5.11), one finds:

Up M) = Pt k= 1) = Qau+ k- 1), (5.46)

Yi() = h{ () = Qa(u) (5.47)

(for the proof see Lemma 5.2 in the appendix to this section).
Then, in complete analogy with Egs. (5.37), (5.38), one obtains from (5.31) the
following difference equations:

TFYw)  TEMu—1) o TR (u—k+1) X(uts+k—1)
TE M u+1) TFS ) o TR M u—k+2)  X(u+s+k+1)

=0, (5.48)

TR Mu+k) TR L (urk—1) ..o TR ((u+l)  X(u+s+3k—1)
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T (u) Tt J(u—1) o TY o (u—k+1) X(u—s)

T} 1(u+l) Ty p(u) oo T (u—k+2) X(u—s+2)
=0 (5.49)

T (u+k) TE , J(u+k—1) ... T 5, (u+l)  X(u—s+2k)

towhichQ1(u) (resp.Q1(u)) isasolution. The othdr—1 linearly independent solutions
to Eq. (5.48) (resp., (5.49)) are other algebraic complements of the last (first) line of the
matrix in Eq. (5.7) att = k — 1 (a = 1) multiplied byx}~7 (x}_,)-

Further specification follows from imposing constraints (3.12) which ensure condi-
tions (2.4) forced by the usual Bethe ansatz. One can see that under these conditions
Egs. (5.48) and (5.49) become the same. Further, substituting a particular value of
s = —k, into, say, Egs. (5.48), (5.37), one gets the following difference equations:

k
> (~1T{(u+a - 1)Qu(u+2a—2) =0, (5.50)
a=0
k
I u—a — 1) Qr—1(uw — 2a) _
Z(_l) du—2a—2) ¢u—2a) 0 (-51)

a=0

(we remind the reader tha(u) = Q(u)). The latter equation can be obtained directly
from the determinant formula (5.7): notice that under conditions (2.4) the determinants
in Eq. (5.7) become minors of the matﬁ%ll(u — 2k + 25), wherei numbers columns
running from 1 tok, j numbers lines and runs from 0 toskipping the valué — a.
Taking care of the prefactors in Eq. (5.7) and recalling #38t, (u) = Qx_1(u), one gets

Eq. (5.51). These formulas give a generalization of the Baxter equations (4.4), (4.5),
(4.12).

At last, we are to identify ou€),’s with @,’s from the usual nested Bethe ansatz
solution. This is achieved by factorization of the difference operators in (5.50) and (5.51)
in terms of@,(u). Using the technique developed in the appendix to this section, one
can prove the following factorization formulas:

f:(_l)a—kwezaau _ <ezau - Qe(W)Qr—1(u — 2))
a=0

o(u—2) Qulu — 2Qr ()
o, Qo) @l — 2)) ( o, Q) )
' ( Qi —2w)) & Guw-2)) (552)

)
_1ya—k Tf(w—a—1) 50, - ( —20, _ Qa(u) )
D i T T Q-2

(e‘wu _ Qo(uw)Qa(u — 2)) (e_wu _ Qu(W)Qr—1(u — 2))
Q2(u —2)Q1(uw) ) Qrlu —2)Qx-1(uw) )

(5.53)
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Note that these operators are adjoint to each other. The I.h.s. of Eq. (5.52) or (5.53)
is known as the generating function fof (u); T¢(u) for s > 1 can be found with the
help of determinant formula (2.24). These formulas for the generating function coincide
with the ones known in the literature (see e.g. [5, 38]). They yigt¢.) in terms of
elliptic polynomials@; with roots constrained by the nested Bethe ansatz equations
which ensure cancellation of poles i (u).

5.6. Appendix to Section Here we outline the proof of the result of Sect. 5. Itis enough

to prove that the canonical solution does satisfy Eqgs. (5.2), (5.3) connecting adjacent
levels. The idea is to show that they are equivalent to the elementacid?lrelation
(2.21). We proceed in steps.

First step: PreliminariesWe need the determinant identity

Qm,n G, k+1

k
det = H Qj k+1 det (am,n) (5.54)
Jj=2

1<m,n<k 1<m,n<k+1
Am+1n  Am+1k+1

valid for an arbitrary § + 1) x (k + 1)-matrixa,, », 1 < m,n < k + 1. It can be easily
proved by induction. ' o
Let us consider minors of the matricé&é’(u + 2i), hg)(u +2i),1<id,57<t+1of
sizea x a: _
a0 = det (hf(u+20 - 2)) (5.55)

1<a,f<a

and the same expression fH's throughﬁt's. The following technical lemma follows
directly from Eq. (5.54):

Lemma 5.2. If relations (5.9)-(5.11) hold, then

Ht(z_llzzza)(u + 1) _ H§1‘1+1,i2+1,.‘.,z'a+1,1)(u —1)

- = a - ) (5.56)
M Quu+2i—1) [ Qealu+2j—3)
ﬁ(il,iz,..-,ia) +1 rr(in+lio+1,... 00 +1,1)
= - (wr1)_ Hy ON (5.57)
Hj:l Qi (u+29) Hj:l Qe+1(u+2j —1)
Relations (5.46), (5.47) are direct corollaries of the lemma.
Second step: Frorhil)’s to ¢;'s. Let us fix a levek and define the quantities
qi(u) = = , (5.58)
H_j:j_ Qr(u—2k+2j+2)
B E(k,k—l,...,k/—;l,.“,l) v+ 2
Gi(u) = —= ( ) (5.59)

[1557 Qulu — k+2j +1)

for1 < < k. The hat means that the corresponding index is skipped. Due to Lemma 5.2
these quantities actually do not depend on the particular valkesgd in the definition.
More precisely, define;(u), ¢;(u) with respect to any level’ > k, then they coincide
with those previously defined for4 i < k.

With this definition, one can prove
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Lemma 5.3. Fix an arbitrary levelk > 1. Letm,,a=1,2,...,r, be a set of integers
such thatt > my > mp > ... > m, > 1land letm,, a =1,2,...,k —r, beits

complement to the sét 2, ..., k ordered in the same way > my > mp > ... >
my_, > 1. Then the following identities hold:

deti<a g<ir (W7D (u+ 27 — 2k + 20))

det (gm,(u+20—2))= , 5.60

1§a,ﬁ§r(q H( )) H?:—lr—l Qk(u +2r — 2k + 2]) ( )
detica g (B D(u+2r — k+2a — 2

det (7., (u+ 20— 2)) = ousenshor (g (et 2r 222 s

1<a,B<r

[  Qulu+2r —k+2j — 1)

Let us outline the proof. At = 1, these identities coincide with the definitionsepf
q;- At r = 2, they follow from the Jacobi identity (2.20). The inductive step consists in
expanding the determinant in the left hand side in the first row and then making use of
determinant identities equivalent to the- 1-term Piicker relation.

The identities from Lemma 5.3 allow one to express the canonical solution in terms of
qi, ¢;- The Laplace expansion of the determinant in Eq. (5.7) combined with Egs. (5.60),
(5.61) yields:

q(uts+a) o quuts+a)

q(utsta+2) <+ qutsta+2)

q(uts+2t—a—2) --- qr(u+s+2t—a—2)

Fo(s,u) = (1)t . (5.62)

qu—s—a+l) - qu—s—a+l)

q:(u—s—a+3) <o qi(u—s—a+3)

gi(u—s+a—1) oo qiu—s+a—1)

In particular, we have:
F2(s,u) = Qi(u+s)= det ger1—j(u+s+2i—2), (5.63)
1<i,j<t
Fi(s,u) = Qu(u—s)= det quaj(u—s—t+2i—1). (5.64)
1<e,5j<t

Third step: The Ricker relation Consider the rectangular € 3) x (¢ + 1)-matrix.S,;,
1=1,2,...,t+3,i=12,...,t+1, given explicitly by

S1j =015,

Sij = qo—j(uts+ta+2i—4), 2<i<t—a+2,

Sij = quro—j(lu—s+a+2j—2t—7), t—a+3<i<t+3. (5.65)
Applying the determinant identity (2.21) (the elementarydRer relation) to minors of

this matrix, one gets Eq. (5.2) for=1,l, = 2,l3=t—a+2,ls=t—a+3 and Eq. (5.3)
foriy=1,l,=t—a+2,l3=t—a+3,l4=t+1. This completes the proof.
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Remark. Functionsg; (u), ¢;(u), i« = 1,2...,k, are linearly independent solutions to
generalized Baxter’s equations (5.48), (5.49) respectively. To construct an elliptic poly-
nomial solution fofl'¢ (), itis sufficient to take them to be arbitrary elliptic polynomials

of one and the same degrée

d _ d )
gi(w) = ™ [[ ot — o), @) = <™ [ ol — o),

=1 =1

with the only conditions thag; — ¢;, 3, (v — 2”) do not depend on= 1,2, ... , k.
It is easy to check that in this case general conditions (2.8), (2.9) are fulfilled.

6. Regular Elliptic Solutions of the HBDE and RS System in Discrete Time

In this section we study the class of elliptic solutions to HBDE for which the number of
zerosM, of the r-function does not depend anWe call themelliptic solutions of the
regular type(or simplyregular elliptic solution$ since they have a smooth continuum
limit. Although it has been argued in the previous section that the situation of interest
for the Bethe ansatz is quite opposite, we find it useful to briefly discuss this class of
solutions.

It is convenient to slightly change the notatial?™(z) = 7,(-m, —1),z = un.
HBDE (1.8) acquires the form

Tl+l’m(l‘)7'l’m+l(.’1,‘) _ 7_l+1,m+l(x)7_l,m,(m) - 7_l+1,m(w + T])Tl’m'+l(.%' _ T]) . (61)

We are interested in solutions that are elliptic polynomials,in

M
@) = [ ot —25™). (6.2)
J=1
The main goal of this section is to describe this class of solutions in a systematic way
and, in particular, to prove thatl the elliptic solutions of regular type are finite-gap.
The auxiliary linear problems (3.5) look as follows:

(@) + )
)+ )

7_l,m(x _ ,’7)7_l+1,m(3j + ,'7)
7—l+l,m(x)7—l,m(z)
(The notation is correspondingly changdd:™ (un) = 1, (—m, —1).) The coefficients
are elliptic functions ofr. Similarly to the case of the Calogero-Moser model and its
spin generalizations [31, 32] the dynamics of their poles is determined by the fact that
Egs. (6.3), (6.4) have infinite number of double-Bloch solutions (Sect. 4).
The “gauge transformationf(z) — f(z) = f(x)e** (ais an arbitrary constant) does
not change poles of any function and transforms a double-Bloch function into another
double-Bloch function. I3, are Bloch multipliers forf, then the Bloch multipliers for
f are By = B1e®®, B, = Boe?™2, wherews, wy are quasiperiods of the-function.
Two pairs of Bloch multipliers are said to legjuivalentif they are connected by this
relation with somez (or by the equivalent condition that the produgt? B, “* is the
same for both pairs).
Consider first Eq. (6.3). Sindeenters as a parameter, not a variable, we omit it for

simplicity of the notation (e.gxéfm — z").

\I—’l’m+l($) — Lpl,m(x + ,r]) + lIJl’m(x) , (63)

\IJHl’m(l‘) - \I/l’m(:L‘) + \I’l’m(.’ﬂ _ 77)' (64)
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Theorem 6.1. Equation (6.3) has an infinite humber of linearly independent double-
Bloch solutions with simple poles at the poinf8 and equivalent Bloch multipliers if
and only ifz]" satisfy the system of equations

ﬁ olal —af Vol —af — o —af ) 65)
ol —at = o — 2y + o — 2 T '
All these solutions can be represented in the form
M
M (x) = Z ci(m, z, K)®(x — 27, 2)K%/M (6.6)
=1

(®(z, 2) is defined in (4.37)). The set of corresponding péirs<) are parametrized by
points of an algebraic curve defined by the equation of the form

M
R(k,z) = kM + Zri(z)ﬁ;M*i =0. (6.7)
i=1

Sketch of proofWe omit the detailed proof since it is almost identical to the proof of the
corresponding theorem in [33] and only present the part of it which provides the Lax
representation for Eq. (6.5).

Let us substitute the functiol™ (x) of the form (6.6) into Eq. (6.3). The cancellation
of poles atr = #7* — n andz = x"* gives the conditions

7

M
kei(m, 2, 6) + Xi(m) > ¢j(m, 2, K)®(a]" — 27" —n,2) =0, (6.8)
j=1
M
cilm+1, 2, k) = pi(m) Z cj(m, z, k)™ — 27, 2) (6.9)
=1
where u
m o __ ,m __ m _ m+l
Ai(m) = MHS=1 olai” — 3 M”)C’(IZ ) (6.10)
Hs:l,;fqﬂ 0—(1.’;77/ - 'T’gn) Hs:]_ U(m:n - mgn*'l - 7))
M m+1 m+1 m+1 m
0@ =T+ o (2 — )
palm) = ALt (6.11)

[T o ot — 2 ) [T ot — am +0)

Introducing a vecto’(m) with components;(m, z, k) we can rewrite these con-
ditions in the form

(L(m)+kI)C(m) =0, (6.12)
C(m + 1) = M(m)C(m), (6.13)
wherel is the unit matrix. Entries of the matric&$m) and M(m) are:
Lij(m) = Ni(m)®(zi" — 27" —n, 2), (6.14)
M;i(m) = pi(m)d(ztt — zi, 2). (6.15)

The compatibility condition of (6.12) and (6.13),
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L(m + 1)M(m) = M(m)L(m) (6.16)

is the discrete Lax equation.

By the direct commutation of the matric€s M (making use of some non-trivial
identities for the functio®(z, z) which are omitted) it can be shown that for the matrices
L and M defined by Egs. (6.14), (6.10) and (6.15), (6.11) respectively, the discrete Lax
equation (6.16) holds if and only if theé™ satisfy Eqgs. (6.5). It is worthwhile to remark
that in terms of\;(m), u;(m) Egs. (6.5) take the form

Ai(m + 1) = —p;(m), i=1...,M. (6.17)
Equation (6.12) implies that
R(k, z) = det(C(m) + kI) = 0. (6.18)

The coefficients ofz(x, z) do not depend om due to (6.16). This equation defines an
algebraic curve (6.7) realized as a ramified covering of the elliptic curve.
Solutions to Eq. (6.5) are implicitly given by the equation

Oz + U +U_m+2Z)=0, (6.19)

where the Riemann theta-functiél()_f) corresponds to the spectral curve (6.7), (6.18),
components of the vectols, U, U_ are periods of certain dipole differentials on
the curve,Z is an arbitrary vector. Elliptic solutions are characterized by the following
property: 2,U,i=1, 2, belongs to the lattice of periods of holomorphic differentials on
the curve. The matrix(m) = £(,m) is defined by fixinge'*"™, 2! i =1, ... M.
These Cauchy data uniquely define the curve and the vetdis, U_ andZ in Eq.
(6.19). The curve and vectais U,, U_ do not depend on the choicelgfmo. According
to Eq. (6.19), the vectaZ depends linearly on this choice and its components are thus
angle-type variables.

The same analysis can be repeated for the second linear problem (6.4): biaters
as a parameter and we sét™ — 7! for simplicity. The theorem is literally the same,
the equations of motion for the poles being

M _(~l oA N Al Al-1
IIWdﬂ#”mdd—%—Mdd—%)

=-1. 6.20
o 0@ = #Mo(@ - & +n)o(@ - 27— ) (620
The corresponding discrete Lax equation is
L+ DM = ML), (6.21)
wheré A A
L) = ()@@, — 25—, 2), (6.22)
M) = pu@E™ — 3 — 1, 2), (6.23)
and M l l l 1+1
3\1(l) = Hs:l J(xi - ‘rs - 7])0(% - 'Ts + 77) (624)

M A ~ M ~ ~ ’
Hszl_’?/i U(wé —1l) Hszlg(xé — 2l

5 A very close version of the discrefe- M pair appeared first in the Ref.[43] as an a priori ansatz.
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M ~ ~ ~ ~
[To=y o(@t — 2+ p)o(2i — 2L — )

[T2 o 0@ — D [T o3 — 3
All these formulas can be obtained from (6.5), (6.10)-(6.15) by the formal substitutions
i — gl ™ o 3 0 According to the comment after Eq. (6.19), the Cauchy
data for thel-flow x?’m", a;?*l’m‘) are uniquely determined by fixing the Cauchy data

é"’m", x;"’m"*l for them-flow and vice versa.

pi(l) = (6.25)

T

7. Conclusion and Outlook

Itturned out that classical and quantum integrable models have a deeper connection than
the common assertion that the former are obtained as a “classical limit" of the latter. In
this paper we have tried to elaborate perhaps the simplest example of this phenomenon:
the fusion rules for quantum transfer matrices coincide with Hirota’s bilinear difference
equation (HBDE).

We have identified the bilinear fusion relations in Hirota’s classical difference equa-
tion with particular boundary conditions and elliptic solutions of the Hirota equation,
with eigenvalues of the quantum transfer matrix. Eigenvalues of the quantum transfer
matrix play the role of the-function. Positions of zeros of the solution are determined
by the Bethe ansatz equations. The latter have been derived from an entirely classical
set-up.

We have shown that nested Bethe ansatz equations can be considered as a natural
discrete time analogue of the Ruijsenaars-Schneider system of particles. The discrete
time ¢t runs over vertices of the Dynkin graph df,_1-type and numbers levels of the
nested Bethe ansatz. The continuum limit gives the continuous time RS system [48].

This is our motivation to search for classical integrability properties of the nested Bethe
ansatz equations.

In addition we constructed the general solution of the Hirota equation with a certain
boundary conditions and obtained new determinant representations for eigenvalues of
the quantum transfer matrix. The approach suggested in Sect. 5 resembles the Leznov-
Saveliev solution [39] to the 2D Toda lattice with open boundaries. It can be considered
as an integrable discretization of the classiéalgeometry [18].

We hope that this work gives enough evidence to support the assertion that all spec-
tral characteristics of quantum integrable systems on finite 1D lattices can be obtained
starting from classical discrete soliton equations, notimplying a quantization. The Bethe
ansatz technique, which has been thought of as a specific tool of quantum integrability is
shown to exist in classical discrete nonlinear integrable equations. The main new lesson
is that solving classical discrete soliton equations one recovers a lot of information about
a quantum integrable system.

Soliton equations usually have a huge number of solutions with very different prop-
erties. To extract the information about a quantum model, one should restrict the class
of solutions by imposing certain boundary and analytic conditions. In particular, elliptic
solutions to HBDE give spectral properties of quantum models with elliptinatrices.

The difference bilinear equation of the same form, though with different analytical
requirements, has appeared in quantum integrable systems in another context. Spin-spin
correlation functions of the Ising model obey a bilinear difference equation that can
be recast into the form of HBDE [41, 45, 2]. More recently, nonlinear equations for
correlation functions have been derived for a more general class of quantum integrable
models, by virtue of the new approach of Ref.[10].
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Thermodynamic Bethe ansatz equations written in the form of functional relations
[53,46] (seee.qg., [7]) appeared to be identical to HBDE with different analytic properties.

All these suggest that HBDE may play the role of a master equation for both classical
and quantum integrable systems simultaneously, such that the “equivalence" between
guantum systems and discrete classical dynamics might be extended beyond the spectral
properties discussed in this paper. In particular, it will be very interesting to identify the
guantum group structures and matrix elements of quarditoperators an®-matrices
with objects of classical hierarchies. We do not doubt that such a relation exists.
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