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Abstract: We identify a formal connection between physical problems related to the

detection of separable (unentangled) quantum states and complexity classes in theoretical

computer science. In particular, we show that to nearly every quantum interactive proof

complexity class (including BQP, QMA, QMA(2), and QSZK), there corresponds a natural

separability testing problem that is complete for that class. Of particular interest is the fact

that the problem of determining whether an isometry can be made to produce a separable

state is either QMA-complete or QMA(2)-complete, depending upon whether the distance

between quantum states is measured by the one-way LOCC norm or the trace norm. We

obtain strong hardness results by proving that for each n-qubit maximally entangled state

there exists a fixed one-way LOCC measurement that distinguishes it from any separable

state with error probability that decays exponentially in n.
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1 Introduction

Certain families of decision problems have proven to be particularly versatile and expressive in complexity

theory, in the sense that slightly varying their formulation can tune the difficulty of the problems through a

wide range of complexity classes. Adding quantifiers to the problem of evaluating a Boolean formula, for

example, brings the venerable satisfiability problem up through the levels of the polynomial hierarchy [59]

all the way up to PSPACE [58], at each level providing a decision problem complete for the associated

complexity class. Moreover, adding limitations to the format of the Boolean satisfiability problem gives

decision problems complete for a variety of more limited classes.1 Likewise, in the domain of interactive

proofs [3, 31, 4, 32, 62, 48, 64], problems based on distinguishing probability distributions or quantum

states, depending on the setting, arise very naturally.

In the domain of quantum information theory, quantum mechanical entanglement is responsible for

many of the most surprising and, not coincidentally, useful potential applications of quantum information

[43], including quantum teleportation [7], super-dense coding [10], enhanced communication capacities

[8, 9, 23], device-independent quantum key distribution [27, 60], and communication complexity [20].

Thus, deciding whether a given quantum state is separable (unentangled) or entangled is a prominent

and long-standing question that frequently resurfaces in different forms. The complexity of determining

whether a given mixed quantum state is separable or entangled therefore arose early and was resolved:

the problem is NP-complete with respect to Cook reductions when the state is specified as a density

matrix and one demands an error tolerance no smaller than an inverse polynomial in the dimension of the

matrix [33, 30].

From a physics or engineering perspective, however, it is often more natural to specify a quantum

state as arising from a sequence of specified operations (as in a quantum circuit) or the application of a

local Hamiltonian [51, 11]. This formulation of the quantum separability problem was studied by three

of us [39, 40], wherein it was shown that the problem is hard for both QSZK and NP, even when one

demands that no-instances be far from separable in one-way LOCC distance (and not merely in trace

distance). It was also shown that this one-way LOCC variant of the problem admits a two-message

quantum interactive proof, putting it in QIP(2). The exact complexity of this problem is still open.

In this paper, we explore several variations on the complexity of determining whether a state specified

by a quantum circuit is separable or entangled, or whether all inputs to a channel specified by a quantum

circuit lead to separable states at the channel output. The properties we vary include the following:

1. Allowing arbitrary mixed states versus restricting attention to pure states.

2. Allowing arbitrary channels versus restricting attention to isometric channels.

3. We compare the difficulty of deciding whether entanglement is present (separable versus entangled

states) with the difficulty of identifying any correlation whatsoever (product versus non-product

states).

4. Measuring distance between quantum states using the trace norm or the so-called “one-way LOCC

norm” of [54].

1For example, it is known that if clauses of the Boolean satisfiability problem are limited to two variables each, the resulting

problem (2SAT) is NL-complete [56, Ch. 4.2, Theorem 16.3], while if one allows only Horn clauses the resulting problem

(HORNSAT) is P-complete [22], and if one removes any such limitations on clauses the problem (SAT) is NP-complete [21].
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We study seven different combinations of these properties, obtaining problems that are complete for four

different complexity classes based on quantum interactive proofs: BQP, QMA, QMA(2), and QSZK. Our

study applies to multipartite states and channels, though only bipartite states and channels are required

for the hardness results. We obtain strong hardness results as a corollary of a new theorem establishing

the existence of a fixed one-way LOCC measurement that successfully distinguishes a given n-qubit

maximally entangled state from any separable state with error probability that decays exponentially in n.

(Theorem 3.1 of Section 3.)

Outline of paper. A detailed list of our complexity theoretic results is given in Figure 1 of Section 1.1.

A summary of relevant concepts such as the one-way LOCC distance, various complexity classes, the

permutation and swap tests is given in Section 2. Our strong lower bound on the one-way LOCC distance

between maximally entangled and separable states is proven in Section 3. The completeness results are

presented in Sections 4–7. In Section 9 we discuss how these completeness results provide operational

interpretations for several geometric measures of entanglement discussed in [66, 18] and references

therein. Finally, we conclude in Section 11 with a summary of our results and a discussion of directions

for future research.

1.1 Overview of results

Figure 1 gives a brief description of each problem and provides a concise summary of our results. Below

we give more details of our results along with their relation to prior results in the literature:

1. PURE PRODUCT STATE is BQP-complete, as is the one-way LOCC version of the problem.

(Theorem 4.2 of Section 4.) Membership in BQP follows from the soundness of the “product test”

[37]. Hardness of the one-way LOCC version follows from an application of Theorem 3.1.

2. The one-way LOCC version of SEPARABLE ISOMETRY OUTPUT is QMA-complete. (Theorem 5.2

of Section 5.) Membership in QMA follows from the existence of succinct k-extendible witnesses

for separability [14]. (A similar approach was used in previous work by three of us to place the

one-way LOCC version of SEPARABLE STATE inside QIP(2) [39, 40].) Hardness follows from

another application of Theorem 3.1.

3. PURE PRODUCT ISOMETRY OUTPUT, PRODUCT ISOMETRY OUTPUT, and SEPARABLE ISOME-

TRY OUTPUT are QMA(2)-complete. (Theorem 6.2 and Corollary 6.9 of Section 6.) Membership

of PURE PRODUCT ISOMETRY OUTPUT in QMA(2) follows from a simple application of the

swap test combined with the collapse QMA(k) = QMA(2) [37]. Hardness is the result of a novel

circuit construction (Figure 4). Completeness for the other two problems follows by an equivalence

to PURE PRODUCT ISOMETRY (Section 6.3).

4. PRODUCT STATE is QSZK-complete. (Theorem 7.2 of Section 7.) The result follows by an

equivalence with the QSZK-complete problem QUANTUM STATE SIMILARITY [61, 65].

5. The one-way LOCC version of SEPARABLE STATE is in SQG, a competing-provers class known to

coincide with PSPACE [35]. (Proposition 8.2 of Section 8.) As mentioned previously, this problem

is already known to be contained in QIP(2) [39, 40], which is a subset of PSPACE [45, 44]. Thus,

this new bound is not a complexity-theoretic improvement over prior work.
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However, it is interesting that this problem admits a succinct quantum witness, provided that the

verifier is granted the additional ability to query a second, competing prover in his effort to check

the veracity of the first prover’s purported witness. By contrast, the two-message single-prover

quantum interactive proof of [39, 40] depends critically upon the ability of the verifier to exchange

two messages with the prover.

2 Preliminaries

This section summarizes some facts about quantum information and complexity theory relevant for the

rest of the paper. Familiarity with both fields of study is assumed; our primary goal here is to establish

notation and terminology. Some references giving background on these topics are [55, 69, 70] and [64, 1].

2.1 Registers, states, separable states

A register is a finite-level quantum system, which is implicitly identified with a finite-dimensional

complex Euclidean space. Registers are denoted with Roman capital letters A,B, . . . . The state of a

register is described by a density matrix, which is a positive semidefinite matrix ρ with Tr(ρ) = 1. A pure

state is a rank-one density matrix. Pure states can be written in standard bra-ket notation ρ = |ψ〉〈ψ| for

some unit vector |ψ〉. It is common practice to refer to unit vectors |ψ〉 as pure states. The Greek letters

φ ,ψ are reserved for pure states and we often abbreviate |ψ〉〈ψ| to ψ .

A multipartite state ρA1···Al
is a product state if ρA1···Al

= ρA1
⊗ ·· · ⊗ ρAl

for states ρA1
, . . . ,ρAl

of

registers A1, . . . ,Al , respectively. A state is separable if it can be written as a probabilistic mixture of

product states [68]. That is, a multipartite state ρA1···Al
is said to be separable if it admits a decomposition

of the following form:

ρA1···Al
= ∑

y∈Y
pY (y)σ1,y

A1
⊗·· ·⊗σ l,y

Al
, (2.1)

for collections {σ1,y
A1

}, . . . ,{σ l,y
Al
} of quantum states and some probability distribution pY (y) over an

alphabet Y [68]. By applying the spectral theorem to each density operator, we can always find a

decomposition of any separable state in terms of pure product states:

ρA1···Al
= ∑

z∈Z
pZ(z) |ψ1,z〉〈ψ1,z|A1

⊗·· ·⊗ |ψ l,z〉〈ψ l,z|Al
. (2.2)

A state is entangled if it is not separable.

In the multipartite case, it is often necessary to specify the cut or partition of the registers relative to

which ρ is product or separable. For example, a state ρ of registers ABCD could be a bipartite product

state with respect to the cut AB : CD, yet it may not be a product state with respect to the tripartite cut

A : B : CD or the bipartite cut AC : BD. We let S denote the set of all separable states with respect to

a given cut. Whenever the cut is not immediately clear from the context, we make it explicit with an

argument—for example, S(A : B : CD).
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Problem name Description Complexity Circuit

• PURE PRODUCT STATE

• PURE PRODUCT STATE,

one-way LOCC version

Is the state generated by the pure-

state quantum circuit close to a

product state?

BQP-complete

A

B
U|0⟩

• SEPARABLE ISOMETRY

OUTPUT, one-way LOCC

version

Is there an input to the isometry

such that the output is close to a

separable state in trace distance,

or does every input lead to an

output that is far from separable

in one-way LOCC distance?

QMA-complete A

B
U

|0⟩

Circuit
Input

• PURE PRODUCT

ISOMETRY OUTPUT

• PRODUCT ISOMETRY

OUTPUT

• SEPARABLE ISOMETRY

OUTPUT

Is there an input to the isometry

such that the output is close to a

product/separable state?

QMA(2)-complete

• PRODUCT STATE

Is the state generated by the

mixed-state circuit close to a

product state?

QSZK-complete R

A

B
U|0⟩

• SEPARABLE STATE, one-

way LOCC version

Is the state generated by the

mixed-state circuit close to a

separable state?

In QIP(2).

QSZK-hard,

NP-hard.

[39, 40]

• SEPARABLE CHANNEL

OUTPUT, one-way LOCC

version

Is there an input to the channel

such that the output is close to a

separable state in trace distance

or does every input lead to an

output that is far from separable

in one-way LOCC distance?

QIP-complete

[39, 40]

R

A

B
U

|0⟩

Channel
Input

Figure 1: The collected results of separability testing problems and their complexity. A “one-way

LOCC version” of a problem means that distances for yes-instances are measured by the trace norm, but

distances for no-instances are measured by the one-way LOCC norm.

THEORY OF COMPUTING 5

http://dx.doi.org/10.4086/toc


GUS GUTOSKI, PATRICK HAYDEN, KEVIN MILNER, AND MARK M. WILDE

2.2 Trace distance, fidelity

The Schatten 1-norm ‖X‖1 of a matrix X is defined as the sum of the singular values of X . (Hereafter we

refer to this norm as simply the 1-norm. This norm is sometimes called the trace norm and is alternately

denoted ‖X‖Tr.) The 1-norm characterizes the physically observable difference between two quantum

states ρ,ξ in the following sense: given a quantum register prepared in one of {ρ,ξ} chosen uniformly at

random, the maximum probability with which one can correctly identify the given state by a two-outcome

measurement of that register is equal to 1/2+‖ρ −ξ ‖1/4. The measurement that achieves this maximal

probability is known as the Helstrom measurement [42].

The quantity ‖ρ − ξ ‖1 is sometimes called the trace distance between ρ,ξ . The trace distance

between two quantum states ρ,ξ is given by the following variational characterization:

‖ρ −ξ ‖1 = 2 max
0�Π�I

Tr(Π(ρ −ξ )) , (2.3)

where the maximizing Π⋆ leads to the Helstrom measurement {Π⋆, I −Π⋆}. A straightforward conse-

quence of (2.3) is that if two states are close in trace distance then they must have similar measurement

statistics. In particular, for all measurement operators 0 � Π � I it holds that

Tr(Πρ)≥ Tr(Πξ )− 1

2
‖ρ −ξ ‖1 . (2.4)

The trace distance ‖ψ −φ ‖1 between two pure states |ψ〉, |φ〉 is related to the inner product 〈ψ|φ〉
by the formula

|〈φ |ψ〉|2 = 1−‖ψ −φ ‖2
1/4 . (2.5)

The following implication holds for any pure states φ ,ψ and any ε ∈ [0,1]:

|〈φ |ψ〉|2 ≥ 1− ε =⇒ ‖φ −ψ‖1 ≤ 2
√

ε . (2.6)

The fidelity is a pseudodistance measure for quantum states given by

F(ρ,ξ ) =
∥

∥

∥

√
ρ
√

ξ
∥

∥

∥

2

1
(2.7)

for all density matrices ρ,ξ . Uhlmann’s Theorem asserts that the fidelity between two states ρ,ξ is the

optimal squared overlap between purifications of ρ,ξ :

F(ρ,ξ ) = max
|φρ 〉,|φσ 〉

|〈φρ |φσ 〉|2 . (2.8)

Uhlmann’s Theorem gives the fidelity an operational interpretation as the maximum probability with

which a purification of ρ would pass a test for being a purification of σ . The fidelity and trace distance

are related by the Fuchs-van-de-Graaf inequalities [28]:

1−
√

F(ρ,ξ )≤ 1

2
‖ρ −ξ ‖1 ≤

√

1−F(ρ,ξ ) . (2.9)
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2.3 Permutation test, swap test

The permutation test is a quantum circuit applied to a multi-register system A1, . . . ,An with the property

that the probability of passing is equal to the shadow of the state on the symmetric subspace of the complex

Euclidean space associated with A1, . . . ,An (i.e., Tr(Π
sym
A1,...,An

ρ)) [47] (see also [5, 46]). Furthermore, if

the test passes, then the resulting state of those registers is supported on the symmetric subspace. The test

consists of the following steps:

1. Prepare an n!-dimensional ancillary register W in a uniform superposition of all n! computational

basis states. (This is accomplished by applying the quantum Fourier transform to the all-zeros state

|0〉 of W .)

2. Apply a controlled-permutation unitary that permutes registers A1, . . . ,An according to the permu-

tation indexed in register W .

3. Invert the quantum Fourier transform on W and measure that register in the computational basis.

Accept if and only if the measurement outcome is all zeros.

A special case of the permutation test for n = 2 is known as the swap test [16]. (In this case the

ancillary register W is just a single qubit and the quantum Fourier transform is just the standard Hadamard

gate.) The swap test has the powerful property that if registers A1A2 are prepared in a pure product state

|ψ〉|φ〉 then the swap test passes with probability

1

2
+

1

2
|〈ψ|φ〉|2 = 1− 1

8
‖ψ −φ ‖2

1 . (2.10)

Thus, with repetition, the swap test can be used to estimate the distance between any two unknown pure

states.

2.4 One-way LOCC distance

In this paper we are sometimes interested in the distinguishability of multipartite quantum states under

the restriction that the distinguishing measurement must be implementable by local operations with

unidirectional classical communication. This class of measurements induces a matrix norm called the

one-way LOCC norm [54]. For each matrix X acting on the complex Euclidean space associated with

registers AB, the one-way LOCC norm ‖X‖1-LOCC of X is defined by

‖X‖1-LOCC = max
ΛB→M

‖(IA ⊗ΛB→M)(X)‖1 , (2.11)

where the maximization is over all quantum-to-classical channels ΛB→M. These are the channels that

measure the contents of register B and store the classical outcome in a new register M. Every such channel

has the form

ΛB→M(ρ) = ∑
m

Tr(Λmρ)|m〉〈m| , (2.12)

where {|m〉} is an orthonormal basis and {Λm} forms a quantum measurement, meaning that each Λm is

positive semidefinite and ∑m Λm = I.
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This definition of the one-way LOCC norm is asymmetric: one could define another norm as a

maximization over measurements of register A, and these norms are distinct. It is clear from the definition

that

‖X‖1-LOCC ≤ ‖X‖1 , (2.13)

because the one-way LOCC measurements are a subset of all measurements.

The one-way LOCC norm extends naturally to multi-register systems [49, 13, 15]. In particular, for

each matrix X acting on the complex Euclidean space associated with registers A1 · · ·Al , the l-partite

one-way LOCC norm of X is given by

‖X‖1-LOCC = max
ΛA2

,...,ΛAl

‖(IA1
⊗ΛA2

⊗·· ·⊗ΛAl
)(X)‖1 , (2.14)

where the maximization is now over quantum-to-classical channels ΛA2
, . . . ,ΛAl

. The interpretation

here when X is a difference of two density matrices is that the last l − 1 parties each perform a local

measurement on their systems and communicate the results to the first party, who then attempts to

distinguish the two states.

2.5 Quantum interactive proofs

A quantum interactive proof consists of a conversation between a polynomial-time quantum verifier and

a computationally unbounded quantum prover regarding some binary input string x. The prover attempts

to convince the verifier to accept x and the verifier attempts to judge the veracity of the prover’s argument.

A promise problem L is said to admit a quantum interactive proof with completeness c and soundness s if

there exists c,s ∈ [0,1] such that c > s and a verifier who meets the following conditions:

Completeness condition. If x is a yes-instance of L, then the prover can convince the verifier to accept

with probability at least c.

Soundness condition. If x is a no-instance of L, then no prover can convince the verifier to accept with

probability higher than s.

The completeness and soundness parameters c,s need not be fixed constants but may instead vary as a

function of the input length |x|. If these parameters are not specified then it is assumed that L admits a

quantum interactive proof for some choice of c(|x|),s(|x|) for which there exists a polynomial-bounded

function p(|x|) such that c− s ≥ 1/p. The complexity class QIP consists of all promise problems that

admit quantum interactive proofs and is known to coincide with PSPACE [44].

Often in the study of interactive proofs the precise values of c,s are immaterial because error-reduction

procedures can be used to transform any verifier for which c− s ≥ 1/p into another verifier for which

c tends toward one and s tends toward zero exponentially quickly in the bit length of x. (For example,

sequential repetition followed by a majority vote can be used to reduce error for QIP.) For this reason, it is

typical to assume without loss of generality that c,s are constants such as 2/3,1/3 or that c is exponentially

close to one and s is exponentially close to zero whenever it is convenient to do so. However, it is not

always clear that a given complexity class is robust with respect to the choice of c,s so it is good practice

to be as inclusive as possible when defining these classes.
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QMIPne

QMA(2)

QIP(3) = PSPACE = SQG

QIP(2)

QSZKQIP(1) = QMA

QIP(0) = BQP
NP

P

Figure 2: The quantum interactive proof hierarchy and related classes discussed in this paper. A line

denotes inclusion of the lower class in the higher class. (For example, P is a subset of NP.) Classes for

which a separability testing problem is known to be complete are in bold type.

Interesting subclasses of QIP are obtained by restricting the number of messages in the interaction

between the verifier and prover. For each positive integer m, the class QIP(m) consists of those problems

that admit a quantum interactive proof in which the verifier exchanges no more than m messages with the

prover. It is known that three messages suffice for any quantum interactive proof, so that QIP = QIP(3)
[48], leaving a hierarchy of four classes defined by quantum interactive proofs. Fundamental complexity

classes such as BQP and QMA can be written in this notation as QIP(0) and QIP(1), respectively. This

hierarchy, along with other complexity classes considered in this paper, is depicted in Figure 2.

A quantum interactive proof for a promise problem L is said to be statistical zero knowledge if for

each yes-instance x of L the verifier learns nothing from the prover beyond the veracity of the claim “x

is a yes-instance of L”. This property is formalized via a simulation-based definition of “knowledge.”

The complexity class of promise problems that admit statistical zero knowledge quantum interactive

proofs is called QSZK. We need not concern ourselves with a precise definition of this class, since our

completeness results are established by equivalence to another QSZK-complete problem. The reader is

referred to the seminal works in [61, 65] for more information on statistical zero knowledge quantum

interactive proofs.

Other interesting variations of the quantum interactive proof model are obtained by considering

multiple cooperating or competing provers. For example, one can consider a variant of QMA in which

k distinct and unentangled provers cooperate in order to convince the verifier to accept. The resulting

complexity class is called QMA(k) and is known to satisfy QMA(k) = QMA(2) for all integers k ≥ 2

[37]. The only known bounds for QMA(2) are the trivial bounds QMA ⊆ QMA(2)⊆ NEXP. Evidence

that QMA(2) is strictly larger than QMA was presented in Refs. [2, 12, 6, 29, 19].

Despite the lack of any decent upper bound on QMA(2), we are aware of only two problems in

QMA(2) that are not also known to be in QMA: the pure-state N-representability problem [50] and the
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separable sparse Hamiltonian problem [17]. Of these, only the latter is known to be QMA(2)-complete.

The present paper gives another QMA(2)-complete problem in Section 6.

Alternately, one could consider quantum interactive proofs with two competing provers: one prover—

the yes-prover—tries to convince the verifier to accept x while the other prover—the no-prover—tries

to convince the verifier to reject x. As before, interesting complexity classes are obtained by restricting

the number and timing of messages in the interaction between the verifier and provers. In Section 8 we

exhibit a protocol in which the verifier receives a single message from the yes-prover and then exchanges

two messages with the no-prover. The complexity class of promise problems that admit such proofs is

called SQG (for “short quantum games”) and is known to coincide with PSPACE [35].

Each of the aforementioned complexity classes is known to be robust with respect to the choice of

completeness and soundness parameters c,s, meaning that any protocol for which c is larger than s plus an

inverse polynomial in the input length can be amplified into a new protocol with c exponentially close to

one and s exponentially close to zero. Error reduction for BQP follows immediately from Chernoff-type

bounds via sequential repetition followed by a majority vote. Error-reduction results for QIP, QIP(2),
QMA, QSZK, QMA(2), and SQG were established in [48, 45, 53, 61, 37, 35], respectively.2

3 One-way LOCC distance to a separable state

In this section we prove a theorem that enables us to establish strong hardness results for various

separability testing problems appearing later in the paper.

If |φ〉 is any maximally entangled pure state of two n-qubit registers AB then

max
σ∈S(A:B)

F(φ ,σ) = 2−n . (3.1)

A concise proof of the above equality can be found in [63, Lecture 17]. Applying the above relation and

(2.9), we find the following result for the trace distance:

min
σ∈S(A:B)

‖φ −σ‖1 ≥ 2
(

1−2−2n
)

. (3.2)

In fact, a much stronger statement holds: every maximally entangled state is exponentially far from

separable not only in trace distance, but also in one-way LOCC distance. It appears that this observation

has not yet been made explicitly in the literature, so we provide a proof. (However, we note that it is

certainly implicit in many places in the literature.)

Theorem 3.1 (Minimum one-way LOCC distance to separable). For all maximally entangled pure states

|φ〉 of two n-qubit registers AB it holds that

min
σ∈S(A:B)

‖φ −σ ‖1-LOCC ≥ 2(1− (2/3)n) . (3.3)

2That SQG is robust with respect to error follows from the containments SQG(c,s)⊆ PSPACE for any c− s > 1/poly [35]

and PSPACE ⊆ SQG(1− ε,ε) for any desired exponentially small ε [34]. However, the “error reduction procedure” induced

here is very circuitous: a high-error short quantum game must be simulated in polynomial space, and then that polynomial-space

computation must be converted back into a low-error short quantum game via proofs of IP = PSPACE [52, 57]. It is not known

whether a more straightforward transformation such as parallel repetition followed by a majority vote could be used to reduce

error for SQG.
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Moreover, this bound is witnessed by a fixed one-way LOCC measurement that depends only on |φ〉.

Proof. Let An ≡ A1 · · ·An denote Alice’s n qubits, and let Bn ≡ B1 · · ·Bn denote Bob’s. By the local unitary

equivalence of maximally entangled states, it suffices to exhibit a fixed one-way LOCC measurement that

successfully distinguishes any separable state σAn:Bn from n singlets

n
⊗

i=1

∣

∣ψ−〉
AiBi

, (3.4)

each in the state |ψ−〉 ≡ (|01〉− |10〉)/
√

2. One such scheme is as follows:

1. (Twirling) Bob chooses n 2×2 unitaries {U1, . . . ,Un} at random and applies unitary Ui to his ith

qubit. He reports to Alice which unitaries he selected and she applies Ui to her ith qubit. This

“twirling” step has the effect of symmetrizing their state so that it is a mixture of Bell states.

2. For i ∈ {1, . . . ,n}, Bob picks one of the following three Pauli operators

X ≡
[

0 1

1 0

]

, Z ≡
[

1 0

0 −1

]

, Y = iXZ (3.5)

at random. Let Pi denote the ith choice. He measures Pi on his ith qubit. After performing the last

measurement, he sends all measurement choices and outcomes to Alice.

3. For i ∈ {1, . . . ,n}, Alice measures Pi on her ith qubit.

4. She accepts that the state is n singlets if and only if all measurement outcomes are different.

The main reason that this 1-LOCC distinguishing protocol works is as follows: the singlet is the

only state having the property that measurement outcomes are different when performing the same von

Neumann measurement on each qubit (for any von Neumann measurement). Furthermore, the maximum

probability with which a separable state can pass this test is equal to 2/3, so that performing n of these

tests on a separable state σAn:Bn reduces the probability of passing the “singlet test” to (2/3)n
.

We now analyze this protocol in more detail. Due to the fact that (U ⊗U)|ψ−〉= |ψ−〉 for any 2×2

unitary U , the first step has no effect on the singlets. Furthermore, the rest of the protocol succeeds

with probability one if the state is equal to n singlets, due to the property mentioned in the previous

paragraph. So we turn to analyzing the probability of accepting if the state is in fact separable. We begin

by analyzing the first “Pauli test” in steps 2-4 and find a bound on its acceptance probability. When doing

so, it suffices to consider the reduced state of σAn:Bn on systems A1 and B1, which is separable across this

cut because the original state is separable across the An : Bn cut. The initial twirling procedure transforms

this separable state to the following “Werner” state:

p
∣

∣ψ−〉〈ψ−∣
∣

A1B1
+

1− p

3

(

∣

∣ψ+
〉〈

ψ+
∣

∣

A1B1
+
∣

∣φ+
〉〈

φ+
∣

∣

A1B1
+
∣

∣φ−〉〈φ−∣
∣

A1B1

)

, (3.6)

such that the maximal value of p is 1/2 [43, Section VI-B-9]. (The states |ψ+〉A1B1
, |φ+〉A1B1

, and

|φ−〉A1B1
are the other Bell states orthogonal to |ψ−〉A1B1

.) One can check that the probability with which
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each of the three other Bell states besides |ψ−〉A1B1
passes the “Pauli test” on the ith qubit (in steps 2-4

above) is equal to 1/3. So this implies that the maximum probability with which this Pauli test can pass

is 1/2 ·1+1/6 · (1/3+1/3+1/3) = 2/3. The analysis is the same for the other n−1 Pauli tests: the

only property that we use is that the reduced states on systems Ai : Bi is separable across this cut, so

that entanglement (or any correlation whatsoever) in the systems A1 · · ·An or B1 · · ·Bn (but not across

the cut An : Bn) cannot help in passing this test. The result is that (2/3)n
is a universal bound on the

maximum probability with which any separable state σAn:Bn can pass the overall test. By the discussion in

Sections 2.2 and 2.4, the statement in the theorem follows.

4 PURE PRODUCT STATE is BQP-complete

We begin with the simplest of our separability testing promise problems—that of determining whether

the state prepared by a given quantum circuit is close to a pure product state. We propose two variants of

this problem, one easier than the other. We prove that the the harder variant is in BQP and we prove that

the easier variant is BQP-hard, establishing BQP-completeness for both problems.

Problem 4.1 ((α,β , l)-PURE PRODUCT STATE). 3

Input: A description of a quantum circuit that prepares an l-partite pure state |ψ〉.
Yes: |ψ〉 is α-close to a pure product state:

min
|φ1〉,...,|φl〉

‖ψ −φ1 ⊗·· ·⊗φl‖1 ≤ α. (4.1)

No: |ψ〉 is β -far from any pure product state:

min
|φ1〉,...,|φl〉

‖ψ −φ1 ⊗·· ·⊗φl‖1 ≥ β . (4.2)

We define the one-way LOCC version of (α,β , l)-PURE PRODUCT STATE similarly except that the

trace norm in the specification of a no-instance is replaced with the one-way LOCC norm. The one-way

LOCC version of PURE PRODUCT STATE trivially reduces to the trace distance version by virtue of the

inequality ‖X‖1 ≥ ‖X‖1-LOCC. The main result of this section is the following theorem:

Theorem 4.2 (PURE PRODUCT STATE is BQP-complete). The following hold:

1. The trace distance version of (α,β , l)-PURE PRODUCT STATE is in BQP for all l and all α < β
√

11
32

.

(It is implicit here and throughout the rest of the paper that the gap between α and β
√

11
32

is larger

than an inverse polynomial in the input length.)

2. The one-way LOCC version of (ε,2− ε)-BIPARTITE PURE PRODUCT STATE is BQP-hard, even

when ε decays exponentially in the input length.

Thus, both problems are BQP-complete for all l ≥ 2 and all (α,β ) with 0 < α < β
√

11
32

and β < 2.

3If l = 2 then the problem is called (α,β )-BIPARTITE PURE PRODUCT STATE. This convention applies to other problem

names throughout the paper.
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4.1 Membership in BQP

Our efficient quantum algorithm for the PURE PRODUCT STATE problem employs the product test. The

product test is a boolean test that takes as input two copies of an arbitrary multipartite pure state |ψ〉.
The closer |ψ〉 is to a product state, the higher the probability with which the product test passes. A

specification of the product test is as follows:

1. Given are two copies of an arbitrary l-partite pure state |ψ〉. One of these copies is contained in

registers A1, . . . ,Al and the other in B1, . . . ,Bl .

2. Perform l swap tests—one for each pair of registers (Ai,Bi) for i = 1, . . . , l. Accept if and only if

all the swap tests pass.

The relationship between the distance from |ψ〉 to the nearest product state and the success probability of

the product test was established in [37].

Theorem 4.3 ([37]). For each l-partite pure state |ψ〉 let Ptest(ψ) denote the probability with which the

product test passes when applied to |ψ〉 and let

1− ε = max
|φ1〉,...,|φl〉

|〈ψ|φ1 ⊗·· ·⊗φl〉|2. (4.3)

It holds that

1−2ε ≤ Ptest(ψ)≤ 1− 11

512
ε. (4.4)

The bounds of Theorem 4.3 are easily written in terms of the trace distance t between |ψ〉 and the

nearest product state via (2.5):

1− t2/2 ≤ Ptest(ψ)≤ 1− 11

2048
t2. (4.5)

Armed with the product test, we now present our quantum algorithm for the PURE PRODUCT STATE

problem.

Proposition 4.4. (α,β , l)-PURE PRODUCT STATE is in BQP for all l and all α < β
√

11
32

.

Proof. The efficient quantum algorithm for (α,β , l)-PURE PRODUCT STATE is as follows: use the input

circuit to prepare two copies of |ψ〉, perform the product test, and accept if and only if the product test

passes.

If |ψ〉 is a yes-instance then (4.5) tells us that the product test passes with probability at least 1−α2/2.

On the other hand, if |ψ〉 is a no-instance then (4.5) tells us that the product test passes with probability

at most 1− 11
2048

β 2. The algorithm witnesses membership in BQP whenever the former quantity is larger

than the latter, which occurs whenever α < β
√

11
32

.
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4.2 Hardness for BQP

Proposition 4.5. The one-way LOCC version of (ε,2− ε)-BIPARTITE PURE PRODUCT STATE is BQP-

hard, even when ε decays exponentially in the input length.

Proof. Let L be any promise problem in BQP and let {|ν〉x}x be a family of efficiently preparable pure

states witnessing membership of L in BQP. By this we mean the following: for each instance x of L the

state |νx〉 is held in two registers DG. Register D is a decision qubit indicating acceptance or rejection

of x and register G is a garbage register that is a purifying system for D.

Suppose that the family {|ν〉x}x has completeness 1−δ and soundness δ . In this proof we reduce the

arbitrary problem L to the one-way LOCC version of (α,β )-BIPARTITE PURE PRODUCT STATE where

α = 2
√

δ , (4.6)

β = 2−22−n/2 −2
√

δ , (4.7)

for any desired n. The desired hardness result then follows by an appropriate choice of δ ,n, given that

BQP(c,s)⊆ BQP(δ ,1−δ ) for any δ exponentially small in the input length.

The reduction is as follows. Given an instance x of L we produce a description of the following circuit

for preparing a pure state |ψ〉 of registers AA′BDG:

1. Prepare registers AA′ in a 2n-qubit maximally entangled state such as n EPR pairs, which we denote

by |φ+〉. Prepare register B in the n-qubit |0〉 state. Prepare registers DG in state |νx〉.

2. Perform a controlled swap gate that swaps registers A′ and B when D is in the reject state |no〉 and

acts as the identity otherwise.

A graphical depiction of this state preparation circuit appears later in the paper as a special case of

Figure 3.

If x is a yes-instance of L then |νx〉 has squared overlap at least 1− δ with |yes〉D|ζ 〉G for some

state |ζ 〉 of register G. It follows that the constructed state |ψ〉 is 2
√

δ -close in trace distance to

|φ+〉AA′ |0〉B|yes〉D|ζ 〉G, which is product with respect to the cut AA′ : BDG. So |ψ〉 is a yes-instance of

the one-way LOCC version of (α,β )-BIPARTITE PURE PRODUCT STATE.

Next, suppose that x is a no-instance of L. In this case |νx〉 has squared overlap at least 1−δ with

|no〉D|η〉G for some state |η〉 of register G. It follows that |ψ〉 is 2
√

δ -close in trace distance to a state

which is in tensor product with the 2n-qubit maximally entangled state |φ+〉 on registers AB. By contrast,

for any product state |φ〉 of registers AA′ : BDG the reduced state TrA′DG(φ) of registers AB must also

be a product state. Thus, it suffices to exhibit a fixed one-way LOCC measurement that successfully

distinguishes any product state of registers AB from n EPR pairs with high probability. The existence of

such a measurement was proved in Theorem 3.1.

We therefore have the following for any product state |φ〉 of registers AA′ : BDG:

‖ψ −φ ‖1-LOCC ≥
∥

∥TrA′DG(φ)−φ+
AB

∥

∥

1-LOCC
−
∥

∥φ+
AB −TrA′DG(ψ)

∥

∥

1-LOCC
(4.8)

≥ 2−22−n/2 −2
√

δ , (4.9)

from which it follows that |ψ〉 is a no-instance of the one-way LOCC version of (α,β )-BIPARTITE PURE

PRODUCT STATE.
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5 SEPARABLE ISOMETRY OUTPUT (one-way LOCC version) is QMA-

complete

In this section we prove QMA-completeness of the problem of deciding whether the isometry implemented

by a given quantum circuit can be made to produce a state that is close to separable in trace distance or

far from separable in one-way LOCC distance.

Problem 5.1 ((α,β , l)-SEPARABLE ISOMETRY OUTPUT, one-way LOCC version).

Input: A description of a quantum circuit that implements an isometry U with an l-partite output

system A1 · · ·Al .

Yes: There is an input state ρ such that UρU∗ is α-close in trace distance to separable:

min
ρ

min
σ∈S(A1:···:Al)

‖UρU∗−σ ‖1 ≤ α. (5.1)

No: For all input states ρ it holds that UρU∗ is β -far in one-way LOCC distance from separable:

min
ρ

min
σ∈S(A1:···:Al)

‖UρU∗−σ ‖1-LOCC ≥ β . (5.2)

The main result of this section is the following theorem:

Theorem 5.2 (SEPARABLE ISOMETRY OUTPUT, one-way LOCC version is QMA-complete). The

following hold:

1. The one-way LOCC version of (α,β , l)-SEPARABLE ISOMETRY OUTPUT is in QMA for all l and

all α < β 4/16.

2. The one-way LOCC version of (ε,2− ε)-BIPARTITE SEPARABLE ISOMETRY OUTPUT is QMA-

hard, even when ε decays exponentially in the input length.

Thus, the problem is QMA-complete for all l ≥ 2, all 0 < α < β 4/16, and all β < 2.

5.1 Containment in QMA

Our quantum witness for separability invokes the notion of k-extendibility of separable states [67]. We

therefore begin with a brief summary of k-extendibility.

Let AB be any two registers and let B1, . . . ,Bk be registers each of the same size as B. A bipartite

state ρ of registers AB is k-extendible if there exists a state ω of registers AB1 · · ·Bk that is invariant under

permutations of registers B1, . . . ,Bk and consistent with ρ , meaning that TrB2···Bk
(ω) = ρ .

The set of all k-extendible states (with respect to a given cut of the registers) is denoted Ek. It is a

basic fact that every separable state is k-extendible for all k, so that S⊆ Ek. To see this, let

ρ = ∑
i

pi|ψ i〉〈ψ i|A ⊗|φ i〉〈φ i|B (5.3)
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be any separable state of registers AB and observe that

∑
i

pi|ψ i〉〈ψ i|A ⊗|φ i〉〈φ i|⊗k
B (5.4)

is a k-extension of ρ . It is known that if ρ is not separable then there exists some k′ for which ρ is not

k′-extendible. Moreover, it is known that Ek+1 ⊆ Ek for all k, from which it follows that the sets Ek form

a containment hierarchy that converges to the set S of separable states in the limit k → ∞ [24, 25].

The notion of k-extendibility extends naturally to multi-register systems A1 · · ·Al by imposing the

extendibility condition on each individual register [26, 15], though the notation is cumbersome. Formally,

let Ai,1, . . . ,Ai,k be registers of the same size as Ai. A state ρ of registers A1 · · ·Al is k-extendible with

respect to A1 : · · · : Al if there exists a global state ω of all lk registers Ai, j that is consistent with ρ on

A1 · · ·Al and invariant under permutations of registers Ai,1, . . . ,Ai,k for all i = 1, . . . , l. (Observe that there

are l · k! such permutations.)

Brandão and Harrow have shown that if ρ is close to k-extendible in trace distance for not-too-large

k then ρ is also close to separable in one-way LOCC distance [15]. The following is a straightforward

consequence of their result.

Theorem 5.3. Let A1, . . . ,Al be registers whose total combined dimension is D. Let ρ be ε-far from

separable in one-way LOCC distance, so that

min
σ∈S(A1:···:Al)

‖ρ −σ ‖1-LOCC ≥ ε. (5.5)

Then for any δ < ε it holds that ρ is δ -far from k-extendible in trace distance, so that

min
σ ′∈Ek(A1:···:Al)

‖ρ −σ ′‖1 ≥ δ , (5.6)

provided

k ≥
⌈

l +
4l2 logD

(ε −δ )2

⌉

. (5.7)

Proof. Let σ ′ be any k-extendible state with k > l. We know from [15, Theorem 2 and Corollary 8] that

there is a separable state σ ′′ ∈ S such that

∥

∥σ ′−σ ′′∥
∥

1-LOCC
≤

√

4l2 logD

k− l
. (5.8)

So we use this in the following chain of inequalities:

ε ≤ min
σ∈S(A1:···:Al)

‖ρ −σ ‖1-LOCC (5.9)

≤ ‖ρ −σ ′′‖1-LOCC (5.10)

≤ ‖ρ −σ ′‖1-LOCC +‖σ ′−σ ′′‖1-LOCC (5.11)

≤ ‖ρ −σ ′‖1 +

√

4l2 logD

k− l
(5.12)
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Since this bound holds for any k-extendible state, we can conclude that

ε −

√

4l2 logD

k− l
≤ min

σ ′∈Ek(A1:···:Al)
‖ρ −σ ′‖1 . (5.13)

The statement of the theorem then follows by picking k large enough so that ε −
√

4l2 logD
k−l

≥ δ .

We now present our succinct quantum witness for the one-way LOCC version of the SEPARABLE

ISOMETRY OUTPUT problem.

Proposition 5.4. The one-way LOCC version of (α,β , l)-SEPARABLE ISOMETRY OUTPUT is in QMA

for all l and all α < β 4/16.

Proof. For convenience we write A ≡ A1 · · ·Al where the combined register A has dimension D. It is

helpful to label the input and output registers of U as U : S → A. Let ε > 0 be such that
√

α < (β −ε)2/4.

The verifier witnessing membership of the problem in QMA is as follows:

1. Receive kl + 1 registers from the prover labeled S and A
j
i where A

j
i has the same size as Ai for

i = 1, . . . , l and j = 1, . . . ,k and

k =

⌈

l +
4l2 logD

ε2

⌉

. (5.14)

Apply U to register S to obtain register A ≡ A1, . . . ,Al .

2. Perform l permutation tests: one for each group (Ai,A
1
i , . . . ,A

k
i ) of k+1 registers. Accept if and

only if all permutation tests pass.

In what follows we use the shorthand A j ≡ A
j
1 · · ·A

j

l for each j ∈ {1, . . . ,k}.

Suppose first that U is a yes-instance of the problem. We show that there exists a state ρSA1···Ak of the

kl +1 registers SA1 · · ·Ak that causes the verifier to accept with probability at least 1−√
α . To this end

we define the following symbols:

1. Let σA be a separable state and ρS be a state of register S such that

‖UρSU∗−σA‖1 ≤ α , (5.15)

as promised in (5.1).

2. Let σAA1···Ak be a (k+1)-extension of σA in registers AA1 · · ·Ak. It is important that this (k+1)-
extension be taken as a convex combination of pure states as in (5.4), so that it would be accepted

by the permutation test with probability one.

3. Let Û : SW → A denote the unitary circuit that implements U when the workspace register W is

initialized to |0〉.
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By the preservation of subsystem fidelity [45, Lemma 7.2] there exists a state ρSA1···Ak of registers

SA1 · · ·Ak consistent with ρS such that

F
(

(Û∗⊗ IA1···Ak)σAA1···Ak(Û ⊗ IA1···Ak),ρSA1···Ak ⊗|0〉〈0|W
)

= F
(

Û∗σAÛ ,ρS ⊗|0〉〈0|W
)

. (5.16)

Let us argue that this state ρSA1···Ak is our desired state. It follows from (2.9), (5.15), and unitary invariance

of fidelity that

1−α ≤ F
(

σA,Û(ρS ⊗|0〉〈0|W )Û∗) (5.17)

= F
(

Û∗σAÛ ,ρS ⊗|0〉〈0|W
)

. (5.18)

Applying the above and (2.9) to the right side of (5.16), we find that the quantity in (5.16) is at least

1−
∥

∥Û∗σAÛ −ρS ⊗|0〉〈0|W
∥

∥

1
≥ 1−α. (5.19)

Applying (2.9) to the left side of (5.16), we find that the quantity in (5.16) is at most

1− 1

4

∥

∥(Û∗⊗ IA1···Ak)σAA1···Ak(Û ⊗ IA1···Ak)−ρSA1···Ak ⊗|0〉〈0|W
∥

∥

2

1
. (5.20)

Combining (5.19) and (5.20) leads to the following bound:

‖σAA1···Ak − (U ⊗ IA1···Ak)ρSA1···Ak(U∗⊗ IA1···Ak)‖1 ≤ 2
√

α. (5.21)

Thus, ρSA1···Ak is 2
√

α-close in trace distance to a state that is accepted by the verifier with certainty. It

then follows from (2.4) that the verifier accepts ρSA1···Ak with probability at least 1−√
α as desired.

Now suppose that U is a no-instance of the problem. By Theorem 5.3 and our choice of k we have

that

min
ρS

min
σA∈Ek(A1:···:Al)

‖UρSU∗−σA‖1 ≥ β − ε. (5.22)

We claim that an upper bound on the probability with which all the permutation tests pass is given by the

maximum fidelity of UρSU∗ with a k-extendible state:

Pr[all pass]≤ max
ρS

max
σA∈Ek

F(UρSU∗,σA). (5.23)

It follows from (2.9) that this probability is at most 1− (β − ε)2/4. We chose ε so that the completeness

1−√
α is larger than the soundness 1− (β − ε)2/4, from which it follows that the problem is in QMA.

We now justify the claim in (5.23) using a method similar to that in [40, Section 4]. In order to

implement the permutation tests in step 2 the verifier prepares a control register C in state

|perm〉C ≡ 1√
k!

∑
π∈Sk

|π〉C, (5.24)

which is a uniform superposition over all possible permutations of k elements resulting from an application

of the quantum Fourier transform [55] to the state |0〉C, so that the C register requires ⌈log2(k!)⌉ qubits.

The verifier then applies the following controlled-permutation operation:

(UΠ)AA1···AkC ≡ ∑
π∈Sk

W π
AA1···Ak ⊗|π〉〈π|C, (5.25)

THEORY OF COMPUTING 18

http://dx.doi.org/10.4086/toc


QUANTUM INTERACTIVE PROOFS AND THE COMPLEXITY OF SEPARABILITY TESTING

where W π
AA1···Ak is a unitary operation corresponding to permutation π . The verifier finally applies an

inverse quantum Fourier transform to C, measures it in the computational basis, and accepts if the

measurement outcomes are all zeros. Letting |ψ〉RSA1···Ak be a purification of the prover’s input, we can

write the maximum acceptance probability of this proof system as follows:

max
|ψ〉

RSA1 ···Ak

∥

∥〈0|CQFT−1
C (UΠ)AA1···AkCUS→A|ψ〉RSA1···Ak |perm〉C

∥

∥

2

2

= max
|ψ〉

RSA1 ···Ak ,|φ〉RAA1 ···Ak

∣

∣〈0|C〈φ |RAA1···Ak QFT−1
C (UΠ)AA1···AkCUS→A|ψ〉RSA1···Ak |perm〉C

∣

∣

2

2
(5.26)

We can define a channel generated by the inverse of the verifier’s circuit conditioned on accepting as

follows:

MAA1···Ak→AC(σAA1···Ak)≡ TrA1···Ak{(UΠ)AA1···AkC(σAA1···Ak ⊗|perm〉〈perm|C)(U∗
Π)AA1···AkC}. (5.27)

After doing so, we can apply Uhlmann’s theorem to (5.26) to rewrite the maximum acceptance probability

as follows:

max
ρS,σAA1 ···Ak

F(US→AρSU∗
S→A ⊗|perm〉〈perm|C,MAA1···Ak→AC(σAA1···Ak)). (5.28)

Since the fidelity can only increase under the discarding of the control register C,4 the maximum

acceptance probability is upper bounded by the following quantity:

max
ρS,σAA1 ···Ak

F(US→AρSU∗
S→A,MAA1···Ak→A(σAA1···Ak)), (5.29)

where

MAA1···Ak→A(σAA1···Ak) = TrC{MAA1···Ak→AC(σAA1···Ak)} (5.30)

=
1

k!
∑

π∈Sk

TrA1···Ak

{

W π
AA1···Ak σAA1···Ak

(

W π
AA1···Ak

)∗}
,

The equation above reveals that MAA1···Ak→A is just the channel that applies a random permutation of

the AA1 · · ·Ak systems and discards the last k systems A1 · · ·Ak. Clearly, since the channel MAA1···Ak→A

symmetrizes the state of the systems AA1 · · ·Ak, the maximum in (5.29) is achieved by a state σAA1···Ak for

which systems AA1 · · ·Ak are permutation symmetric. Thus, by recalling the definition of k-extendibility,

we can rewrite (5.29) as the maximum k-extendible fidelity of US→AρSU∗
S→A:

max
ρS,σAA1 ···Ak

F(US→AρSU∗
S→A,MAA1···Ak→A(σAA1···Ak)) = max

ρS,σA∈Ek(A1:···:Al)
F(US→AρSU∗

S→A,σA). (5.31)

This demonstrates that the maximum k-extendible fidelity is an upper bound on the maximum acceptance

probability and completes our proof of the claim in (5.23).

4We can interpret discarding the control register as actually giving it to the prover, so that the resulting fidelity corresponds

to the maximum acceptance probability in a modified protocol in which the prover controls the inputs to C.
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5.2 Hardness for QMA

Proposition 5.5. The one-way LOCC version of (ε,2−ε)-BIPARTITE SEPARABLE ISOMETRY OUTPUT

is QMA-hard, even when ε decays exponentially in the input length.

Proof. This proof is almost exactly the same as the proof of Proposition 4.5. The only difference is that

here we must quantify over all states of a new input register P for each circuit. Nonetheless, we include a

full proof for completeness.

Let L be any promise problem in QMA and let {Vx}x be a family of isometric verifier circuits

witnessing this fact with completeness 1−δ and soundness δ for sufficiently small δ to be chosen later.

Circuits in this family take the form Vx : P → DG. The input register P is supplied by the prover. The

output register D is a decision qubit indicating acceptance or rejection of x and the output register G is a

garbage register that holds the purification of D.

In this proof we reduce the arbitrary problem L to the one-way LOCC version of (α,β )-BIPARTITE

SEPARABLE ISOMETRY OUTPUT where

α = 2
√

δ , (5.32)

β = 2−22−n/2 −2
√

δ , (5.33)

for any desired n. The desired hardness result then follows by an appropriate choice of δ ,n.

The reduction is as follows. Given an instance x of L we produce a description of the following

isometric circuit U : P → AA′BDG:

1. Given the input register P apply the verifier circuit Vx to obtain registers DG.

2. Prepare registers AA′ in a 2n-qubit maximally entangled state such as n EPR pairs, which we denote

by |φ+〉. Prepare register B in the n-qubit |0〉 state.

3. Perform a unitary conditional swap gate that swaps registers A′ and B when D is in the reject state

|no〉 and acts as the identity otherwise.

See Figure 3 for a graphical depiction of this circuit.

Suppose x is a yes-instance of L and let |ϖ〉 be a pure state of register P that causes the verifier

to accept with high probability, meaning that the state Vx|ϖ〉 has squared overlap at least 1− δ with

|yes〉D|ζ 〉G for some state |ζ 〉 of register G. It follows that U |ϖ〉 is 2
√

δ -close in trace distance to

|φ+〉AA′ |0〉B|yes〉D|ζ 〉G, which is product with respect to the cut AA′ : BDG, and so U is a yes-instance of

the one-way LOCC version of (α,β )-BIPARTITE SEPARABLE ISOMETRY OUTPUT.

Next, suppose that x is a no-instance of L. In this case for all input states ρ of register P the output

state UρU∗ of registers AA′BDG is 2
√

δ -close to a state which is in tensor product with the 2n-qubit

maximally entangled state |φ+〉 on registers AB. By contrast, for any separable state σ of registers

AA′ : BDG the reduced state TrA′DG(σ) of registers AB must also be separable. Thus, it suffices to exhibit

a fixed one-way LOCC measurement that successfully distinguishes any separable state of registers AB

from n EPR pairs with high probability. The existence of such a measurement was proved in Theorem 3.1.
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D

G
Vx

Prover
Input

|Φ+⟩
|0⟩ B

A

A'

Figure 3: The circuit U produced by our reduction from an arbitrary problem L ∈ QMA to the one-way

LOCC version of (ε,2− ε)-BIPARTITE SEPARABLE ISOMETRY OUTPUT. The dashed line indicates that

the output registers are to be divided along the bipartite cut AA′ : BDG. This construction also appears in

the proof of Proposition 4.5 in the special case where the prover’s input is empty.

We therefore have the following for any input state ρ of register P and any separable state σ of

registers AA′ : BDG:

‖UρU∗−σ ‖1-LOCC ≥
∥

∥TrA′DG(σ)−φ+
AB

∥

∥

1-LOCC
−
∥

∥φ+
AB −TrA′DG(UρU∗)

∥

∥

1-LOCC
(5.34)

≥ 2−22−n/2 −2
√

δ , (5.35)

from which it follows that U is a no-instance of the one-way LOCC version of (α,β )-BIPARTITE

SEPARABLE ISOMETRY OUTPUT.

6 SEPARABLE ISOMETRY OUTPUT is QMA(2)-complete

In Section 5 we showed that the one-way LOCC version of the SEPARABLE ISOMETRY OUTPUT problem

is QMA-complete. By contrast, in this section we show that the trace distance version of this problem

(and some closely related variants of it) are QMA(2)-complete.

We begin by restricting attention to the problem of determining whether an isometry U described by

a quantum circuit can be made to produce a pure product output state from a pure input state.

Problem 6.1 ((α,β , l)-PURE PRODUCT ISOMETRY OUTPUT).
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Input: A description of a quantum circuit that implements an isometry U with an l-partite output

system A1 · · ·Al .

Yes: There is an input state |ψ〉 such that U |ψ〉 is α-close to a pure product state:

min
|ψ〉

min
|φ1〉,...,|φl〉

‖UψU∗−φ1 ⊗·· ·⊗φl‖1 ≤ α. (6.1)

No: For all input states |ψ〉 it holds that U |ψ〉 is β -far from a pure product state:

min
|ψ〉

min
|φ1〉,...,|φl〉

‖UψU∗−φ1 ⊗·· ·⊗φl‖1 ≥ β . (6.2)

The main result of this section is the following theorem:

Theorem 6.2 (PURE PRODUCT ISOMETRY OUTPUT is QMA(2)-complete). The following hold:

1. (α,β , l)-PURE PRODUCT ISOMETRY OUTPUT is in QMA(2) for all l and all α < β .

2. (ε,2−ε)-BIPARTITE PURE PRODUCT ISOMETRY OUTPUT is QMA(2)-hard, even when ε decays

exponentially in the input length.

Thus, the problem is QMA(2)-complete for all l ≥ 2 and all 0 < α < β < 2.

6.1 Containment in QMA(2)

Proposition 6.3. (α,β , l)-PURE PRODUCT ISOMETRY OUTPUT is in QMA(2) for all l and all α < β .

Proof. We prove that the problem is in QMA(l +1), from which it follows that the problem is also in

QMA(2) via the main result of [37]. The verifier witnessing membership of the problem in QMA(l +1)
is as follows:

1. Receive an input state |ψ〉 from one of the provers and a candidate product state |φ1〉⊗ · · ·⊗ |φl〉
from the remaining l provers.

2. Apply U to the input. Perform a swap test between U |ψ〉 and |φ1〉⊗ · · ·⊗ |φl〉. Accept if and only

if the swap test passes.

If U is a yes-instance then the provers can cause the verifier to accept with probability at least 1−α2/8

by an appropriate choice of states |ψ〉, |φ1〉, . . . , |φl〉. It follows from a standard convexity argument that

the provers achieve their maximum probability of success for the swap test when they each send the

verifier a pure state, so we assume that they do so without loss of generality. So if U is a no-instance then

the verifier will accept with probability at most 1−β 2/8 regardless of which states the provers send to

the verifier. As α < β , there is a gap between completeness and soundness for this verifier.
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(a)

D

G

Vx

|0⟩

Prover 1
Input

Prover 2
Input

A

B

W
(b)

D

G

|1⟩

|Φ+⟩

A

B

W

C'

C

Vx
†

Figure 4: (a) A unitary verifier circuit Vx for an arbitrary verifier witnessing membership of L in QMA(2)
on input x. (b) The circuit U produced by our reduction. Dashed lines indicate that the output registers

are to be divided along the bipartite cut A : BCC′W .

6.2 Hardness for QMA(2)

Proposition 6.4. (ε,2− ε)-BIPARTITE PURE PRODUCT ISOMETRY OUTPUT is QMA(2)-hard, even

when ε decays exponentially in the input length.

Proof. Let L be any promise problem in QMA(2) and let {Vx}x be a family of unitary verifier circuits

(indexed by instances x of L) witnessing this fact with completeness 1−δ and soundness δ for sufficiently

small δ to be chosen later. Circuits in this family take the form Vx : ABW → DG. Such a verifier circuit Vx

is depicted in Figure 4(a). The input registers A,B are supplied by the two provers and the input register

W is a workspace register initialized to the |0〉 state. The output register D is a decision qubit indicating

acceptance or rejection of x and the output register G is a garbage register that consists of the remaining

qubits upon which Vx acts.

In this proof we reduce the arbitrary problem L to (α,β )-BIPARTITE PURE PRODUCT ISOMETRY

OUTPUT where

α = 2
√

δ , (6.3)

β = 2

√

1−
(√

δ +2−n/2
)2

, (6.4)

for any desired n. The desired hardness result then follows by an appropriate choice of δ ,n.

The reduction is as follows. Given an instance x of L we produce a description of the following

isometric circuit U : G → ABCC′W :

1. Given the input register G, prepare a qubit D in the accept state |yes〉 and apply the inverse circuit

V ∗
x to obtain registers ABW .

2. Prepare registers CC′ in a 2n-qubit maximally entangled state such as n EPR pairs, which we

denote by |φ+〉.
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3. Perform a unitary conditional swap gate that swaps registers A and C when W is orthogonal to the

|0〉 state and acts as the identity otherwise. (Here we implicitly pad the register A with |0〉 qubits so

as to have the same size as C.)

See Figure 4(b) for a graphical depiction of this circuit.

Let us argue that this construction has the claimed properties. Suppose first that x is a yes-instance

of L and let |φ〉A|ϕ〉B be a pure product state of registers AB that causes the verifier to accept with

high probability. That is, the state Vx|φ〉A|ϕ〉B|0〉W has squared overlap at least 1−δ with |yes〉|ψ〉 for

some state |ψ〉 of register G. Thus U |ψ〉 is 2
√

δ -close in trace distance to |φ〉A|ϕ〉B|φ+〉CC′ |0〉W , which

is product with respect to the cut A : BCC′W , and so U is a yes-instance of (α,β )-BIPARTITE PURE

PRODUCT ISOMETRY OUTPUT.

Next, suppose that x is a no-instance of L. Fix any pure input state |ψ〉 for register G and observe that

U |ψ〉= Π0U |ψ〉+(I −Π0)U |ψ〉 (6.5)

where Π0 = |0〉〈0|W denotes the projection onto the |0〉 state for register W . From the definition of the

circuit U it is clear that we may write

Π0U |ψ〉= Π0(V
∗
x |yes〉|ψ〉)⊗|φ+〉CC′ (6.6)

= |ζAB〉|0〉W |φ+〉CC′ (6.7)

(I −Π0)U |ψ〉= SwapAC′
(

(I −Π0)(V
∗
x |yes〉|ψ〉)⊗|φ+〉CC′

)

(6.8)

= |ξBC′W 〉|φ+〉AC (6.9)

for some choice of subnormalized pure states |ζAB〉 and |ξBC′W 〉 of registers AB and BC′W , respectively.

Then for any pure product state |φ〉 of registers A : BCC′W it holds that

|〈φ |U |ψ〉| ≤ max
|φ ′〉

∣

∣〈φ ′|Π0U |ψ〉
∣

∣+max
|φ ′′〉

∣

∣〈φ ′′|(I −Π0)U |ψ〉
∣

∣ (6.10)

where the maxima on the right side are also over product states |φ ′〉, |φ ′′〉 of registers A : BCC′W .

First, let us bound the maximum over |φ ′〉. It is clear from (6.7) that this maximum is achieved by

some |φ ′〉 of the form

|φ ′〉= |φ〉A|ϕ〉B|0〉W |φ+〉CC′ , (6.11)

in which case we have

∣

∣〈φ ′|Π0U |ψ〉
∣

∣= |〈φ |A〈ϕ|B〈0|WV ∗
x |yes〉|ψ〉| ≤

√
δ (6.12)

where the inequality follows from the assumption that x is a no-instance of L.

Next, let us bound the maximum over |φ ′′〉. Since (I −Π0)U |ψ〉 is maximally entangled on registers

AC, its squared inner product with any product state |φ ′′〉 is at most 2−n as observed in (3.1) of Section 3.

We have thus shown that

max
|ψ〉

max
product |φ〉

|〈φ |U |ψ〉|2 ≤
(√

δ +2−n/2
)2

(6.13)
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and consequently

min
|ψ〉

min
product |φ〉

‖UψU∗−φ ‖1 ≥ 2

√

1−
(√

δ +2−n/2
)2

. (6.14)

We have thus shown that U is a no-instance of (α,β )-BIPARTITE PURE PRODUCT ISOMETRY OUTPUT.

6.3 Equivalence of separability testing problems

We also consider two variants of PURE PRODUCT ISOMETRY OUTPUT (Problem 6.1) in which the task

is to determine whether an isometry U can be made to produce a (not necessarily pure) product state or a

separable state. Whereas Problem 6.1 restricts attention only to pure input states, in the following variants

of the problem we also allow arbitrary mixed state inputs. Formal specifications of these two variants of

Problem 6.1 are given below.

Problem 6.5 ((α,β , l)-PRODUCT ISOMETRY OUTPUT).

Input: A description of a quantum circuit that implements an isometry U with an l-partite output

system A1 · · ·Al .

Yes: There is an input state ρ such that UρU∗ is α-close to a product state:

min
ρ

min
σ1,...,σl

‖UρU∗−σ1 ⊗·· ·⊗σl‖1 ≤ α. (6.15)

No: For all input states ρ it holds that UρU∗ is β -far from a product state:

min
ρ

min
σ1,...,σl

‖UρU∗−σ1 ⊗·· ·⊗σl‖1 ≥ β . (6.16)

Problem 6.6 ((α,β , l)-SEPARABLE ISOMETRY OUTPUT).

Input: A description of a quantum circuit that implements an isometry U with an l-partite output

system A1 · · ·Al .

Yes: There is an input state ρ such that UρU∗ is α-close to a separable state:

min
ρ

min
σ∈S(A1:···:Al)

‖UρU∗−σ ‖1 ≤ α. (6.17)

No: For all input states ρ it holds that UρU∗ is β -far from separable:

min
ρ

min
σ∈S(A1:···:Al)

‖UρU∗−σ ‖1 ≥ β . (6.18)

We now argue that, for each l, these problems are equivalent to one another for a wide range of

choices of (α,β ). These equivalences are corollaries of the following proposition, which relates minimal

distance from separable to minimal distance from pure product.
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Proposition 6.7 (Separable-to-pure product reduction). Let U be an isometry with an l-partite output

system A1 · · ·Al and suppose that there is an input state ρ such that UρU∗ is δ -close to some separable

state σ ∈ S(A1 : · · · : Al):
‖UρU∗−σ ‖1 ≤ δ . (6.19)

Then there is a pure input state |ψ〉 such that UψU∗ is 4
√

δ -close to some pure product state |φ1〉⊗ · · ·⊗
|φl〉:

‖UψU∗−φ1 ⊗·· ·⊗φl‖1 ≤ 4
√

δ . (6.20)

Proof. Let

σ = ∑
x

pxφ x
1 ⊗·· ·⊗φ x

l (6.21)

be a decomposition of σ as a probabilistic mixture of pure product states and let

|ζ 〉= ∑
x

√
px|x〉R ⊗|φ x

1 〉⊗ · · ·⊗ |φ x
l 〉 (6.22)

be a purification of σ on registers RA1 · · ·Al .

Let S denote the input register for U . It follows from (2.9) and Uhlmann’s Theorem that there is a

purification |ψ〉 of ρ on registers RS with

‖UψU∗−ζ ‖1 ≤ 2
√

δ . (6.23)

Write |ψ〉 as

|ψ〉= ∑
x

√
qx|x〉R ⊗|ψx〉 (6.24)

for some probability vector q and states {|ψx〉}x (not necessarily orthogonal). Apply a dephasing channel

in the basis {|x〉}x on register R and use contractivity of trace norm under quantum channels to obtain

‖UψU∗−ζ ‖1 ≥
∥

∥

∥

∥

∑
x

qx|x〉〈x|⊗UψxU∗−∑
x

px|x〉〈x|⊗φ x
1 ⊗·· ·⊗φ x

l

∥

∥

∥

∥

1

(6.25)

Combining this bound with the triangle inequality, we have

∑
x

px‖UψxU∗−φ x
1 ⊗·· ·⊗φ x

l ‖1 (6.26)

=

∥

∥

∥

∥

∑
x

px|x〉〈x|⊗ (UψxU∗−φ x
1 ⊗·· ·⊗φ x

l )

∥

∥

∥

∥

1

(6.27)

≤
∥

∥

∥

∥

∑
x

qx|x〉〈x|⊗UψxU∗−∑
x

px|x〉〈x|⊗UψxU∗
∥

∥

∥

∥

1

(6.28)

+

∥

∥

∥

∥

∑
x

qx|x〉〈x|⊗UψxU∗−∑
x

px|x〉〈x|⊗φ x
1 ⊗·· ·⊗φ x

l

∥

∥

∥

∥

1

(6.29)

≤ 4
√

δ . (6.30)

Since this inequality holds for a convex combination over terms indexed by x, it must also hold for at

least one choice of ψx,φ x
1 , . . . ,φ

x
l .
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Corollary 6.8 (Equivalence of problems). The following hold for all l and all α < β :

1. Both (α,β , l)-PRODUCT ISOMETRY OUTPUT and (α,β , l)-SEPARABLE ISOMETRY OUTPUT

trivially reduce to (4
√

α,β , l)-PURE PRODUCT ISOMETRY OUTPUT.

2. Conversely, (α,β , l)-PURE PRODUCT ISOMETRY OUTPUT trivially reduces to both (α,β 2/16, l)-
PRODUCT ISOMETRY OUTPUT and (α,β 2/16, l)-SEPARABLE ISOMETRY OUTPUT.

Proof. By definition, no-instances of both (α,β , l)-PRODUCT ISOMETRY OUTPUT and (α,β , l)-SEPARABLE

ISOMETRY OUTPUT are also no-instances of (4
√

α,β , l)-PURE PRODUCT ISOMETRY OUTPUT. By

Proposition 6.7, yes-instances of both (α,β , l)-PRODUCT ISOMETRY OUTPUT and (α,β , l)-SEPARABLE

ISOMETRY OUTPUT are also yes-instances of (4
√

α,β , l)-PURE PRODUCT ISOMETRY OUTPUT.

By definition, yes-instances of (α,β , l)-PURE PRODUCT ISOMETRY OUTPUT are also yes-instances

of both (α,β 2/16, l)-PRODUCT ISOMETRY OUTPUT and (α,β 2/16, l)-SEPARABLE ISOMETRY OUT-

PUT. By the contrapositive of Proposition 6.7, no-instances of (α,β , l)-PURE PRODUCT ISOMETRY

OUTPUT are also no-instances of both (α,β 2/16, l)-PRODUCT ISOMETRY OUTPUT and (α,β 2/16, l)-
SEPARABLE ISOMETRY OUTPUT.

Corollary 6.9 (QMA(2)-completeness of equivalent problems). The following hold:

1. Problems 6.5 and 6.6 are in QMA(2) for all l and all α < β 2/16.

2. These two problems are QMA(2)-hard for all l ≥ 2 and all (α,β ) = (ε,1/4− ε), even when ε

decays exponentially in the input length.

Thus, these two problems are QMA(2)-complete for all l ≥ 2 if both 0 < α < β 2/16 and β < 1/4.

Remark 6.10. The fact that Problems 6.5 and 6.6 are QMA(2)-hard only for (α,β ) = (ε,1/4− ε)
instead of the best possible (ε,2− ε) is an artifact of Proposition 6.7. The best possible hardness result

would be obtained if the bound in Proposition 6.7 could somehow be improved from 4
√

δ to
√

2δ .

7 PRODUCT STATE is QSZK-complete

In this section we prove QSZK-completeness of the problem of determining whether the state prepared

by a given quantum circuit is close to a product state.

Problem 7.1 ((α,β )-PRODUCT STATE).

Input: A description of a quantum circuit that prepares an l-partite mixed state ρ .

Yes: ρ is α-close to a product state:

min
ρ

min
σ1,...,σl

‖ρ −σ1 ⊗·· ·⊗σl‖1 ≤ α. (7.1)

No: ρ is β -far from product:

min
ρ

min
σ1,...,σl

‖ρ −σ1 ⊗·· ·⊗σl‖1 ≥ β . (7.2)
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The main result of this section is the following theorem:

Theorem 7.2 (PRODUCT STATE is QSZK-complete). The following hold:

1. (α,β , l)-PRODUCT STATE is in QSZK for all l and all α < β 2/(l +1).

2. (ε,2− ε)-BIPARTITE PRODUCT STATE is QSZK-hard, even when ε decays exponentially in the

input length.

Thus, the problem is QSZK-complete for all l ≥ 2 and all 0 < α < β 2/(l +1) and β < 2.

This result is proven by establishing equivalence between the PRODUCT STATE problem and the

QUANTUM STATE SIMILARITY problem, which is defined as follows:

Problem 7.3 ((α,β )-QUANTUM STATE SIMILARITY).

Input: Descriptions of two quantum circuits that prepare mixed states ρ0,ρ1.

Yes: ρ0 and ρ1 are α-close: ‖ρ0 −ρ1‖1 ≤ α.
No: ρ0 and ρ1 are β -far apart: ‖ρ0 −ρ1‖1 ≥ β .

Problem 7.3 is known to be QSZK-complete. Specifically, (α,β )-QUANTUM STATE SIMILARITY is

contained in QSZK for all α < β 2 and (ε,2− ε)-QUANTUM STATE SIMILARITY is QSZK-hard, even

when ε decays exponentially in the input length [61, 65]. Thus, Theorem 7.2 can be proved by reducing

Problems 7.1 and 7.3 to each other.

7.1 Containment in QSZK

Our reduction from PRODUCT STATE to QUANTUM STATE SIMILARITY employs the fact that if ρ is

close to a product state then ρ is also close to the product of its reduced states. We are not aware of an

explicit proof of this fact in the literature, so we provide a proof.

Lemma 7.4 (Approximation by a product of reduced states). Let ρ be a state of registers A1, . . . ,Al and

suppose there is a product state σ1 ⊗·· ·⊗σl with

‖ρ −σ1 ⊗·· ·⊗σl‖1 ≤ α. (7.3)

Then it follows that

‖ρ −ρA1
⊗·· ·⊗ρAl

‖1 ≤ (l +1)α (7.4)

where ρAi
denotes the reduced state of ρ on register Ai for i = 1, . . . , l.

Proof. By the triangle inequality we have

‖ρ −ρA1
⊗·· ·⊗ρAl

‖1 ≤ ‖ρ −σ1 ⊗·· ·⊗σl‖1 +‖σ1 ⊗·· ·⊗σl −ρA1
⊗·· ·⊗ρAl

‖1. (7.5)

By assumption the first term on the right is no larger than α . For the second term, another application of

the triangle inequality yields

‖σ1 ⊗·· ·⊗σl −ρA1
⊗·· ·⊗ρAl

‖1 (7.6)

≤ ‖σ1 ⊗·· ·⊗σl −ρA1
⊗σ2 ⊗·· ·⊗σl‖1 +‖ρA1

⊗σ2 ⊗·· ·⊗σl −ρA1
⊗·· ·⊗ρAl

‖1 (7.7)

= ‖σ1 −ρA1
‖1 +‖σ2 ⊗·· ·⊗σl −ρA2

⊗·· ·⊗ρAl
‖1 (7.8)
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By the contractivity of the trace norm under partial trace we have

‖σi −ρAi
‖1 ≤ ‖σ1 ⊗·· ·⊗σl −ρ‖1 ≤ α (7.9)

for each i = 1, . . . , l. The lemma then follows by applying (7.6)-(7.8) inductively.

We are now ready to reduce PRODUCT STATE to QUANTUM STATE SIMILARITY.

Proposition 7.5. (α,β , l)-PRODUCT STATE is in QSZK for all l and all α < β 2/(l +1).

Proof. We reduce (α,β , l)-PRODUCT STATE to ((l +1)α,β )-QUANTUM STATE SIMILARITY. It then

follows that (α,β , l)-PRODUCT STATE is in QSZK whenever α < β 2/(l +1) as desired.

The reduction is as follows: given an instance ρ of (α,β , l)-PRODUCT STATE, one can construct

circuits that prepare states

ρ0 = ρ (7.10)

ρ1 = ρA1
⊗·· ·⊗ρAl

. (7.11)

Specifically, we use the original circuit to make ρ0 = ρ , and we use the original circuit l times to make

l copies of ρ and then trace over the appropriate subsystems to make ρ1 = ρA1
⊗ ·· ·⊗ρAl

. If ρ is a

yes-instance of (α,β , l)-PRODUCT STATE then by Lemma 7.4 we have that ‖ρ0 − ρ1‖1 ≤ (l + 1)α .

Conversely, if ρ is a no-instance of (α,β , l)-PRODUCT STATE then it must be that ‖ρ0 −ρ1‖1 ≥ β .

7.2 Hardness for QSZK

Proposition 7.6. (ε,2− ε)-BIPARTITE PRODUCT STATE is QSZK-hard, even when ε decays exponen-

tially in the input length.

Proof. We reduce (δ ,2−δ )-QUANTUM STATE SIMILARITY to (α,β )-BIPARTITE PRODUCT STATE for

α = nδ/2 , (7.12)

β = 2−2−Ω(n) , (7.13)

for any desired n. The desired hardness result then follows by an appropriate choice of δ ,n.

The reduction is as follows. Given an instance (ρ0,ρ1) of QUANTUM STATE SIMILARITY we

construct a circuit that prepares n copies of the bipartite state ωA:S of registers AS given by

ωA:S =
1

2
|0〉〈0|A ⊗ρ0 +

1

2
|1〉〈1|A ⊗ρ1. (7.14)

Figure 5 illustrates an isometric circuit for preparing (a purification of) a single copy of ωA:S.

If (ρ0,ρ1) is a yes-instance of (δ ,2− δ )-QUANTUM STATE SIMILARITY then the trace distance

between ωA:S and the product state

σA:S =
1

2
(|0〉〈0|+ |1〉〈1|)A ⊗ρ0 (7.15)
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R

S
Uρi

|0⟩

|Φ+⟩
A

B

Figure 5: The isometric circuit that prepares a purification of ωA:S. This circuit is produced by our

reduction from QUANTUM STATE SIMILARITY to BIPARTITE PRODUCT STATE. Here Uρi
are the unitary

circuits that prepare ρi = TrR(Uρi
|0〉〈0|U∗

ρi
) in register S for i ∈ {0,1}. This same circuit is also produced

by the reduction of [39, 40] from QUANTUM STATE DISTINGUISHABILITY to the one-way LOCC

version of SEPARABLE STATE, except that reduction discards register S instead of R.

is at most 1
2
‖ρ0 −ρ1‖1 ≤ δ/2. It then follows from [61, Lemma 8] that

∥

∥ω⊗n
A:S −σ⊗n

A:S

∥

∥

1
≤ nδ/2. (7.16)

As σ⊗n
A:S is product relative to the bipartite cut A1 · · ·An : S1 · · ·Sn it must be that ω⊗n

A:S is a yes-instance of

(α,β )-BIPARTITE PRODUCT STATE relative to this cut.

By contrast, if (ρ0,ρ1) is a no-instance of (δ ,2−δ )-QUANTUM STATE SIMILARITY then ωA:S is

almost perfectly correlated on A : S and hence far from product. Recall that trace distance is equal to the

maximum probability of distinguishing states over all possible measurements, so we can lower bound

the distance to the nearest product state by considering a particular protocol to distinguish ωA:S from any

product state. In this protocol, we begin by measuring the first qubit (register A) in the computational

basis and by performing the Helstrom measurement {Π0,Π1} on the second system, storing the two

measurement outcomes in classical registers.

It is straightforward to calculate the state ω ′
A:S′ that results after applying the protocol above to the

state ωA:S:

ω ′
A:S′ =

1

2
Tr{Π0ρ0}|00〉〈00|+ 1

2
Tr{Π1ρ1}|11〉〈11|+ 1

2
Tr{Π0ρ1}|10〉〈10|+ 1

2
Tr{Π1ρ0}|01〉〈01|.

(7.17)

Recall that the Helstrom measurement distinguishes two states ρ0 and ρ1 with the following success

probability:

1

2
Tr{Π0ρ0}+

1

2
Tr{Π1ρ1}=

1

2

(

1+
1

2
‖ρ0 −ρ1‖1

)

, (7.18)
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and the following error probability:

1

2
Tr{Π0ρ1}+

1

2
Tr{Π1ρ0}=

1

2

(

1− 1

2
‖ρ0 −ρ1‖1

)

. (7.19)

Using this fact, it is straightforward to establish that the trace distance between ω ′
A:S′ and the perfectly

correlated state ΦA:S′ , defined as

ΦA:S′ ≡
1

2
(|00〉〈00|+ |11〉〈11|), (7.20)

is no larger than

1− 1

2
‖ρ0 −ρ1‖1 ≤

δ

2
. (7.21)

For a product state, the two measurement outcomes must be uncorrelated, and so we can write the

result of applying the above protocol to any product state using the probability p of measuring |0〉〈0| and

the probability q of measuring Π0:

σp,q = pq|00〉〈00|+ p(1−q)|01〉〈01|+q(1− p)|10〉〈10|+(1− p)(1−q)|11〉〈11|. (7.22)

From the monotonocity of trace distance under quantum operations, it follows that

min
σ0,σ1

‖σ0 ⊗σ1 −ωA:S‖1 ≥ min
p,q

‖σp,q −ω ′
A:S‖1 (7.23)

Due to symmetry, we can take p ≤ 1
2

without loss of generality. We can then bound the minimum distance

of σp,q to ω ′
A:S:

min
p,q

‖σp,q −ω ′
A:S‖1 ≥ min

p,q
‖σp,q −ΦA:S‖1 −‖ΦA:S −ω ′

A:S‖1 (7.24)

≥ ‖σp,q −ΦA:S‖1 −
δ

2
(7.25)

=

∣

∣

∣

∣

1

2
− pq

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2
− (1− p)(1−q)

∣

∣

∣

∣

+ |p(1−q)|+ |q(1− p)|− δ

2
(7.26)

=
1

2
− pq+

∣

∣

∣

∣

1

2
− (1− p)(1−q)

∣

∣

∣

∣

+ p(1−q)+q(1− p)− δ

2
(7.27)

≥ 1

2
− pq+ p(1−q)+q(1− p)− δ

2
(7.28)

≥ 1

2
+ p(1−q)− δ

2
(7.29)

≥ 1−δ

2
, (7.30)

where the first line follows from the triangle inequality, and the fourth through last lines follow from

the fact that 0 ≤ p ≤ 1
2

and 0 ≤ q ≤ 1. It then follows from [61, Lemma 8] that for suitably high n we

have that ω⊗n
A:S is at least

(

2−2−Ω(n)
)

-far from any product state and so this state is a no-instance of

(α,β )-BIPARTITE PRODUCT STATE as desired.
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Remark 7.7. Theorem 7.2 provides a different proof that the promise problem ERROR CORRECTABILITY

of [36] is QSZK-complete (with a proof preceding this one given in [41]). Indeed, ERROR CORRECTABIL-

ITY is the task of deciding whether it is possible to decode a maximally entangled state from systems R

and B when a unitary specified as a quantum circuit acts on systems R, B, and E, such that systems R and

B are initialized to the maximally entangled state and system E is initialized to the all-zero state. In this

problem, there is a promise that it is either possible to decode maximal entanglement (approximately) or

impossible to do so. Due to the “decoupling theorem” often used in quantum information theory [38], the

question of whether it is possible to decode maximal entanglement between systems R and B is equivalent

to the question of whether systems R and E are in a product state. Thus, it follows from Theorem 7.2

that ERROR CORRECTABILITY and PRODUCT STATE are reducible to each another and that ERROR

CORRECTABILITY is QSZK-complete.

8 A short quantum game for the one-way LOCC version of SEPARABLE

STATE

In [39, 40] it was shown that the one-way LOCC version of the SEPARABLE STATE problem admits

a two-message quantum interactive proof, so that the problem lies inside QIP(2). In this section we

show that this problem also admits a short quantum game, putting it inside SQG, too. As mentioned in

Section 1.1, this result is not a complexity-theoretic improvement over prior work. But it is interesting

that the one-way LOCC version of SEPARABLE STATE admits a natural, single-message quantum proof

provided that the verifier has help from a second competing prover. Recall the definition of the one-way

LOCC version of the SEPARABLE STATE problem [39, 40]:

Problem 8.1 ((α,β , l)-SEPARABLE STATE, one-way LOCC version).

Input: A description of a quantum circuit that prepares a state ρ of registers A1 · · ·Al .

Yes: ρ is α-close in trace distance to a separable state:

min
σ∈S(A1:···:Al)

‖ρ −σ ‖1 ≤ α. (8.1)

No: ρ is β -far in one-way LOCC distance from separable:

min
σ∈S(A1:···:Al)

‖ρ −σ ‖1-LOCC ≥ β . (8.2)

The main result of this section is the following proposition:

Proposition 8.2. The one-way LOCC version of (α,β , l)-SEPARABLE STATE is in SQG for all l and all

α < β .

Proof. Suppose that registers A1 · · ·Al have combined total dimension D. The verifier witnessing mem-

bership of the problem in SQG is described as follows:

1. Receive kl registers from the yes-prover labeled A
j
i for i = 1, . . . , l and j = 1, . . . ,k where

k =

⌈

l +
16l2 logD

(β −α)2

⌉

. (8.3)
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(Intuitively, these registers contain a purported k-extension of ρ .)

2. Perform l permutation tests: one for each group (A1
i , . . . ,A

k
i ) of k registers. Reject immediately if

any test fails. Discard all registers except A1
1, . . . ,A

1
l , letting σ denote the reduced state of these

remaining registers.

3. Prepare a copy of ρ using the input circuit and choose a random bit b ∈ {0,1}. If b = 0 then send

ρ to the no-prover. Otherwise, send σ to the no-prover. (Intuitively, the no-prover is challenged to

identify whether the state he receives from the verifier is ρ or σ .)

4. Receive a single bit b′ from the no-prover. Reject if and only if b′ = b.

Let us argue that this protocol is correct. For yes-instances an optimal strategy for the yes-prover is to

select a separable state σ that is α-close in trace distance to ρ and send the verifier a k-extension of σ .

As σ is separable, such an extension must exist for every choice of k and so the permutation test passes

with certainty. The no-prover is then faced with the task of distinguishing σ from ρ , which he can do

with probability no larger than 1/2+α/4, implying that the verifier accepts with probability at least

1/2−α/4.

For no-instances an optimal strategy for the no-prover is to perform a measurement that distinguishes

ρ from the convex set Ek of k-extendible states with probability at least

1

2
+

1

4
min
σ∈Ek

‖ρ −σ ‖1. (8.4)

(The existence of such a measurement was first shown in [34] and a simple proof can be found in Yu,

Duan, and Xu [71].)

To see that the yes-prover cannot win, observe that if the permutation test of step 2 passes then the

state of all kl registers A
j
i received from the yes-prover is projected into the symmetric subspaces of

(A1
i , . . . ,A

k
i ) for each i = 1, . . . , l. The set of such states is contained in the set Ek of k-extendible states,

and we know from Theorem 5.3 and our choice of k that

min
σ∈Ek

‖ρ −σ ‖1 ≥
β +α

2
. (8.5)

Thus, the no-prover convinces the verifier to reject with probability at least 1/2+(β +α)/8, implying

that the verifier accepts with probability at most 1/2− (β +α)/8. This protocol witnesses membership

in SQG whenever 1/2−α/4 > 1/2− (β +α)/8, which occurs whenever α < β .

9 Operational interpretations of geometric measures of entanglement

Our work has a close connection to several entanglement measures known collectively as the geometric

measure of entanglement—see [66, 18] and references therein. This is also the case with the work in

[37] and we comment briefly on this connection. The original definition of the geometric measure of

entanglement for a pure state |ψ〉 of registers AB is defined as the maximum squared overlap with a pure

product state:

max
|φ〉A,|ϕ〉B

|〈φ ⊗ϕ|ψ〉|2. (9.1)
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This quantity has an operational interpretation as the maximum probability with which the state |ψ〉
would pass a test for being a pure product state. By taking the negative logarithm one obtains an entropic-

like quantity that is equal to the geometric measure of entanglement and satisfies a list of desirable

requirements that any entanglement measure ought to meet.

If one has a promise that the quantity (9.1) is larger than 1−ε or smaller than ε (as in the definition of

the PURE PRODUCT STATE problem, Problem 4.1) then the product test can be used to determine which

is the case. However, this observation does not directly give an operational interpretation of the quantity

in (9.1). Rather, an operational interpretation of (9.1) is given by the quantum interactive proof in [39, 40]

for SEPARABLE STATE, whose maximum acceptance probability for a given state ρ of registers AB is

given by

max
σ∈S(A:B)

F(ρAB,σAB) , (9.2)

of which (9.1) is a special case when ρAB is pure. (This bound holds in the limit of large k, the number of

registers sent by the prover in a purported k-extension of ρ .) The operational interpretation for (9.2) is

that it is the maximum probability with which a prover could convince a verifier that a state ρ is separable

by acting on a purification of ρ .

Our work has also unveiled and provided operational interpretations for other quantifiers of entangle-

ment that fall within the geometric class. Indeed, the maximum acceptance probability of our quantum

witness for the one-way LOCC version of SEPARABLE ISOMETRY OUTPUT is bounded by

max
ρ,σAB∈S

F(U(ρS ⊗|0〉〈0|)U†,σAB), (9.3)

again a bound that holds in the large k limit. Clearly, this quantity is related to the so-called “entangling

power” of the unitary U [72], that is, its ability to take a product state input to an entangled output no

matter what the input is. Furthermore, the quantum interactive proof for the one-way LOCC version

of SEPARABLE CHANNEL OUTPUT given in [39, 40] has the following upper bound on its maximum

acceptance probability:

max
ρ ,σAB∈S

F(NS→AB(ρS),σAB), (9.4)

where NS→AB is a quantum channel with input system S and output systems AB. Again, this bound holds

in the limit of large k. The above measure is related to the entangling capabilities of a quantum channel

no matter what the input is, and the quantum interactive proof provides an operational interpretation for

the above quantity as well.

10 Discussion: Does nondeterminism trump the one-way LOCC distance?

An interesting and surprising comparison emerges in light of the combined results of the present paper

with those of [39, 40]. For isometric channels, it is no surprise that detecting product outputs is easier

than detecting separable outputs when no-instances in the former problem are promised to be far from

product in one-way LOCC distance instead of trace distance: these problems are complete for QMA and

QMA(2), respectively. For states, however, detecting separability is harder than detecting productness,

even when no-instances in the former problem are promised to be far from separable in one-way LOCC

distance: the former is both QSZK- and NP-hard while the latter is QSZK-complete.
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An anonymous reviewer suggests one possible explanation for this phenomenon: the added difficulty

of nondeterminism trumps the reduced difficulty of the one-way LOCC promise. Specifically, detecting

entangled or correlated isometry outputs is inherently “nondeterministic,” as one must guess the proper

input to the isometry. Similarly, detecting separable states is also “nondeterministic,” as one must guess a

mixture of product states. By contrast, product states have no nondeterminism of this form and so we can

expect the corresponding detection problem to be easier, even when one demands a lower error tolerance

via the trace distance.

This explanation is interesting and intuitive. To this explanation we add the following observation:

even product states contain “nondeterminism” in the sense that we must also recognize products of mixed

states, not just pure states, and that the PURE PRODUCT STATE problems (both one-way LOCC and trace

distance versions) are even easier (BQP-complete).

11 Conclusion

We have proved that several separability testing problems are complete for BQP, QMA, QMA(2), and

QSZK. These completeness results build upon the work of [39, 40], which exhibits a separability

testing problem in QIP(2) and another problem complete for QIP. The completeness of these problems

for a wide range of complexity classes illustrates an important connection between entanglement and

quantum computational complexity theory. In hindsight, it is perhaps natural that these entanglement-

related problems capture the expressive power of these classes, since entanglement seems to be the most

prominent feature which distinguishes classical from quantum computational complexity theory.

It is interesting to note the connection between these problems and the differences that give rise to

problems complete for different interactive proof classes. Some patterns emerge: it seems as though

mixed state separability requires two messages to be added onto a proof for pure state separability so

that the prover may act upon the purification of the mixed state, as is the case for both the “state” and

“channel” versions of these problems.

Two-message quantum interactive proofs continue to be somewhat mysterious. Extrapolating from

our results, the one-way LOCC version of SEPARABLE STATE has the qualities that one would intuitively

expect of a QIP(2)-complete problem. Despite this intuition, we do not know whether it is QIP(2)-
complete or even QMA-hard. However, our work here provides some intuition for why the problem

should not be either QSZK- or QMA-complete—there are are other problems very different from it that

are complete for these classes.

Our work can be extended in a number of directions. The trace distance version of SEPARABLE

CHANNEL OUTPUT may help to understand the relation between multi-prover quantum interactive proofs

with and without entanglement among the provers (QMIP versus QMIP∗). Similarly, the trace distance

version of SEPARABLE STATE may provide further insights. It would also be worthwhile to characterize

the channel version of PRODUCT STATE in order to map out more of the space of separability testing

problems. Such an extension may also help to provide a tighter characterization of classes that rely on

“unentanglement,” such as QMA(2).

It is satisfying that each of the separability testing problems (with the possible exception of the

one-way LOCC version of SEPARABLE STATE) is complete for a different complexity class. Perhaps

by studying the remaining related problems and their variants (trace norm versus one-way LOCC norm,
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separable states versus product states, etc.) one may find two different separability testing problems that

are nontrivially reducible to each other.
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We thank Claude Crépeau, Brian Swingle, and John Watrous for helpful conversations and the anonymous

referees for many helpful suggestions. Some of this research was conducted while GG was a visitor at

the School of Computer Science at McGill University, at which time GG’s primary affiliation was the

Institute for Quantum Computing and School of Computer Science, University of Waterloo, Waterloo,

Ontario, Canada. MMW began this project while affiliated with the School of Computer Science, McGill

University.

References

[1] SCOTT AARONSON: Quantum Computing since Democritus. Cambridge University Press, March

2013. 4

[2] SCOTT AARONSON, SALMAN BEIGI, ANDREW DRUCKER, BILL FEFFERMAN, AND PETER

SHOR: The power of unentanglement. Theory of Computing, 5(1):1–42, 2009. arXiv:0804.0802.

[doi:10.4086/toc.2009.v005a001] 9
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