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Quantum Interference Crossover-Based Clonal Selection Algorithm
and Its Application to Traveling Salesman Problem

Hongwei DAI†a), Yu YANG†, Cunhua LI†, Jun SHI†, Shangce GAO††, Nonmembers, and Zheng TANG††, Member

SUMMARY Clonal Selection Algorithm (CSA), based on the clonal
selection theory proposed by Burnet, has gained much attention and wide
applications during the last decade. However, the proliferation process in
the case of immune cells is asexual. That is, there is no information ex-
change during different immune cells. As a result the traditional CSA is
often not satisfactory and is easy to be trapped in local optima so as to be
premature convergence. To solve such a problem, inspired by the quantum
interference mechanics, an improved quantum crossover operator is intro-
duced and embedded in the traditional CSA. Simulation results based on
the traveling salesman problems (TSP) have demonstrated the effectiveness
of the quantum crossover-based Clonal Selection Algorithm.
key words: clonal selection algorithm, quantum interference crossover,
traveling salesman problem, hybrid model

1. Introduction

Biology-inspired computing, using the biology system as a
source of inspiration for solving computation problems, has
gained much attention in the past few decades. Unlike the
traditional optimization methods, which emphasize accurate
and exact computation at the cost of spending much more
computation time, the biology-inspired computing, such as
Genetic Algorithm (GA) [26], [34], Evolutionary Algorithm
(EA) [6], [33],and Ant Colony Optimization (ACO) [4], [13]
etc, have better convergence speeds to the optimal or near
optimal results.

More recently however, there has been a growing inter-
est in the use of the natural immune system as a source of in-
spiration to the development of artificial computational sys-
tems. This emerging field of research is known as Artificial
Immune System (AIS) [11]. Based on the different immune
theories, various algorithms such as Danger Theory (DT)
models [2], [3], Negative Selection Algorithms [5], [17], Im-
mune Network Theory-based model [15], Clonal Selection
Algorithms (CSA) [12], [18] are proposed and also applied
on patter recognition [9],intrusion detection [10], [21], opti-
mization problems [1], [14] and so on.

Among those model mentioned above, the CSA [12],
based on the clonal selection principle proposed by Bur-
net [8], has received a rapid increasing interest and has been
verified as having a great number of useful mechanisms.

Although CSA is very attractive from the viewpoint of
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a novel biology-inspired algorithm, this algorithm suffers
from several problems, such as premature convergence and
difficulties in reaching high-quality solutions in reasonable
time [35].

According to the clonal selection theory, only the
high affinity immune cells will be selected to proliferate,
while the immune cells with low affinity must be efficiently
deleted or become anergic (inactive). In addition, hyper-
mutation is allowed to enhance the affinity of the selected
immune cells. However, the random rearrangement of gene
segments during hypermutation process frequently produces
autoreactive immune cells. That is, the random hypermuta-
tion is little effective to improve the affinity. To overcome
the low efficiency problem of the random hypermutation, a
novel clonal selection algorithm [18] has been proposed by
considering the Receptor Editing (RE) mechanisms. The re-
ceptor editing operator allows the immune system to rescue
the low affinity immune cells before deletion. This also pro-
vide a chance to the immune system to enhance its search
performance.

It is no doubt that the receptor editing-based clonal se-
lection algorithm has better searching efficiency and can im-
prove the searching ability within reasonable time. However
both the traditional CSA and receptor editing-based CSA
do not have their cells’ (individuals) information exchanged
due to the asexual proliferation. As an approach for solving
such a problem, crossover operator is known to be useful.

In this paper, the quantum interference crossover [27]
which has been proved for solving multicast routing prob-
lem [24] is introduced and further improved for information
exchanging. It is natural to expect that quantum interference
crossover-based information exchanging would be effective
for premature convergence problems appearing in both CSA
algorithms mentioned above.

The organization of the remaining content is as fol-
lows: Sect. 2 reviews the clonal selection theory and quan-
tum interference crossover. Section 3 describes the quantum
interference crossover-based clonal selection algorithm. In
Sect. 4, simulations based on traveling salesman problem are
performed to demonstrate the performance of the proposed
algorithm. Finally, concluding remarks follow in Sect. 5.

2. Clonal Selection Theory and Quantum Interference
Crossover

In this section, we fist introduce the natural immune sys-
tem. Followed by this, clonal selection theory and recep-
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tor editing will be reviewed. Finally, quantum interference
crossover is introduced.

2.1 Immune Cells and Natural Immune Systems [20], [28]

The natural immune system, one of the most intricate bio-
logical systems, is a complex of cells, tissues and organs that
work together to protect the host against attacks by foreign
invaders. Lymphocytes are small leukocytes that possess a
major responsibility in immune system. B lymphocyte and
T lymphocyte are two main types of lymphocytes. We also
call them B cells and T cells. They are rather similar, but
differ with relation to how they recognize antigens and by
their functional roles.

B cells work mainly by secreting substances called an-
tibody (Ab) as a response to antigen. Each B cell is pro-
grammed to make one specific antibody. Once a naive B
cell (a cell that never previously encountered antigen) first
encounters an antigen that matches its membrane-bound an-
tibody, the binding of the antigen to the antibody caused the
cell to divide into memory B cells and effector B cells called
plasma cells. The effector B cells secrete antibodies to deal
with the current antigen, however the memory B cells play
an important role in further response to the same or related
antigens.

Helper T cells (Th) and suppressor T cells (Ts) are two
main types T cells. Th cells are essential to the activation
of other immune cells. Suppressor T cells (Ts) are vital to
normal operation of immune system too. Without their mod-
ulation, the immune system can mistake self for nonself and
launch abnormal activation against the host’s own cells. The
result is called autoimmune disease. On the other hand, the
immune response to a seemingly harmless foreign substance
such as ragweed pollen will result in allergic reactions.

2.2 The Principle of Clonal Selection Theory and Recep-
tor Editing

The clonal selection theory, proposed by Burnet in 1959 [8],
is developed to explain the essential features which contain
sufficient diversity, discrimination of self and non-self and
long-lasting immunologic memory.

When an immune system is exposed to an antigen,
some B cells can recognize the antigen with different cer-
tain affinities which reflect the degree of match and become
active. Activated B cells will be stimulated to proliferate
and eventually mature into terminal antibody secreting cells,
called plasma cells. Proliferation of the B cells is a mitotic
process whereby the cells divide themselves, creating a set
of clones identical to the parent cell. The proliferation rate
is directly proportional to the affinity level, i.e. the higher
affinity levels of B lymphocytes, the more of them will be
readily selected for cloning and cloned in larger numbers.

According to the clonal selection theory, random point
mutation is performed during the maturation process. How-
ever, frequently, a large proportion of the cloned population
becomes dysfunctional or develops into harmful anti-self

Fig. 1 Clonal selection process with receptor editing.

Fig. 2 Classical quantum interference crossover.

cells after the mutation. Moreover, the authors [29] inter-
pret that clonal deletion, previously regarded as the major
mechanism of central B cell tolerance, has been shown to
operate secondarily and only when receptor editing is un-
able to provide a non-autoreactive specificity.

Recent investigations [19], [31], [32] indicate that re-
ceptor editing has played a major role in shaping the lym-
phocyte repertoire. Both B and T lymphocytes that carry
antigen receptors are able to change specificity through
subsequent receptor gene rearrangement. Figure 1 illus-
trates the clonal selection process including receptor editing
mechanisms.

2.3 Quantum Interference Crossover

Quantum computing is a research area that includes con-
cepts like quantum mechanical computers and quantum al-
gorithms. It was proposed by Benioff [7] and Feynman [16]
in the early 1980s. Because of its unique computational per-
formance, there has been a great interest in the application
of the quantum computing.

The classical quantum interference crossover was first
proposed by Narayanan [27]. Figure 2 presents the quantum
interference crossover process.

Because the method in this paper is just applied for
solving traveling salesman problems, we set the population
size equal the number of cities, i.e. 6. The number of uni-
verses u is also qual to the number of cities. The populations
in each universes obey identical rules to the classical case,
and evolve in parallel. However, there is one difference -
the universes can interfere with one another in each genera-
tion [27]. Unlike other crossover, only genes (cities) in the
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different universes (visiting tour) with the same list index
position have the possibility of crossover.

See Fig. 2, let us consider the following chromosome in
U0: A B C D E F . This chromosome repre-
sents the following visiting tour in traveling salesman prob-
lem: A→ B → C → D → E → F → A. The interference
crossover can be described as follows: take the 1st city of
tour one, 2nd city of tour two, 3rd city of tour three, etc. No
duplicates are permitted within the same universes, if a city
is already presented in the visiting tour, choose the next al-
phabetical city not already contained. This way, we can get
new visiting tours R1 = A→ E→ D→ F→ C→ B→ A,
R2 = C → F → E → A → B → D → C, R3 = B → C →
F→ D→ A→ E→ B, R4 = A→ D→ B→ E→ F→ C
→ A, R5 = B→ C→ D→ E→ A→ F→ B, R6 = F→ B
→ A→ C→ D→ E→ F. For example, in the tour R4, we
select the 1st city A in U3, the 2nd city D in U4. The 3rd city
A in U5 will be replaced by its next alphabetical city B for
duplication. The same way, the 4th city D will be replaced
by E and the 6th city E will be replaced by city C.

Obviously, the classical quantum interference crossover
is just a crossover operator based on the list index position.
Naturally, the city in different visiting tours with the same
list index position can not be expected to reduce the current
tour length.

As an approach for overcoming such a problem, a
distance-based quantum interference crossover is proposed.
Figure 3 illustrates the improved quantum interference
crossover. We will introduce the new crossover operator as
follows.

First, take the 1st city C of tour 1 (U1). Then compare
the two edges DC and CA that conjunct with city C. City
D will be selected if Dis(D,C) < Dis(C,A). Next, compare
the two edges FD and DB and select city F if Dis(F,D) <
Dis(D,B). Like this way, we can get a new tour C→ D→ F
→ E→ C→ B. The 5th city C will be replaced by city A for
duplication. Then a closed visiting tour C→ D→ F→ E→
A→ B→ C is constructed. If the number of duplication city
is greater than one, the duplication cities will be replaced by
the fittest one through distance comparing.

It is clear that new visiting tours generated by both
the classical quantum crossover and the improved quantum
crossover include the information come from different old
tours. As a result, the quantum crossover-based clonal se-

Fig. 3 Improved quantum interference crossover.

lection algorithms is expected to be effective for premature
convergence problems.

3. Quantum Interference Crossover-Based Clonal Se-
lection Algorithm

In this section, according to what mentioned above, we pro-
pose an improved clonal selection algorithm named QCCSA
by combining quantum crossover with clonal selection algo-
rithm. Figure 4 illustrates the new algorithm.

Before explaining the procedure of the proposed
algorithm, we introduce the conception of shape-space
model which is a useful mathematical tool to quantita-
tively describe the interaction among antigens and immune
cells [30]. According to this model, either an antigen or an
immune cell can be represented by a set of coordinates in a
N-dimensional shape-space. So we can express the immune
cell’s receptor gene sequence as S = (s1, s2, . . . , sN). The
random point mutation process described in the clonal se-
lection theory and receptor editing process can be illustrated
as follows:

s1 . . .→ si−1 → sj → si+1 . . . s j−1 → si → s j+1 . . .→ sN

⇑
Random point mutation

‖
s1 . . .→ si−1 → si → si+1 . . . s j−1 → sj → s j+1 . . .→ sN

‖
Receptor editing

‖
Inversion(−−−−−−−−−−−−−−−→si → si+1 . . . s j−1 ⇒ −−−−−−−−−−−−−−−→s j−1 . . . si+1 → si)

⇓
s1 . . .→ si−1 → s j−1 . . . si+1 → si → sj → s j+1 . . .→ sN

It should be noticed that receptor editing on heavy
chains occurs mostly by deletion of the intervening gene se-
quence while in the case of light chain receptor gene editing
can occur either by deletion or by inversion of the interven-
ing gene fragment. Obviously, the deletion operation can

Fig. 4 Flowchart of the proposed algorithm.
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not construct a closed feasible tour in the case of solving
traveling salesman problem. We just use the inversion oper-
ator.

Then the whole produce of the proposed algorithm can
be represented as follows:

Step 1 Initialize the population of cells, that is, creating
an initial pool of m cells (C1,C2, . . . ,Cm) randomly.

Step 2 Compute the affinity of all antibodies (A(C1),
A(C2), . . . , A(Cm)) and then sort them in a descending order,
where A(.) is the function to compute the affinity.

Step 3 Select the n (n ≤ m) best (fittest) cells based on
their affinities from the m original cells. These cells will be
referred to as the elites.

Step 4 Place each of the n selected elites in n sepa-
rate and distinct pools (EP1,EP2, . . . ,EPn). They will be
referred to as the elite pools.

Step 5 Clone the elites in each elite pool with a rate
proportional to its fitness, i.e., the fitter the antibody, the
more clones it will have. The amount of clone generated for
these antibodies is given by Eq. (1):

pi = round

(
(n − i)

n
× M

)
(1)

where i is the ordinal number of the elite pools, M is a mul-
tiplying factor which determines the scope of the clone and
round(.) is the operator that rounds its argument towards
the closest integer. After this step, we can obtain

∑
pi anti-

bodies just as (EP1,1,EP1,2, . . . ,EP1,p1 ; . . . ; EPn,1,EPn,2, . . .,
EPn,pn ).

Step 6 Subject the clones in each pool through either
random point mutation or receptor editing processes. Some
of the clones in each elite pool undergo the random point
mutation process and the remainder of the clones pass the
receptor editing process. The mutation number (Phm and
Pre for random point mutation and receptor editing, respec-
tively) are defined as follows:

Phm = λ · pi (2)

Pre = (1 − λ) · pi (3)

where λ is a user-defined parameter which deter-
mines the complementary intensity between the ran-
dom point mutation and receptor editing. In our pre-
vious work [18], we had demonstrated that an equiva-
lent level of Phm : Pre, that is, λ = 0.5 will lead
the clonal selection algorithm to a better performance.
After this step, we obtain

∑
pi mutated cells just as

(EP′1,1,EP′1,2, . . . ,EP′1,p1
; . . . ; EP′n,1,EP′n,2, . . . ,EP′n,pn

)
Step 7 According to the improved quantum interfer-

ence crossover process described above, subject the selected
n cells (C1,C2, . . . ,Cn) through crossover. We can get n new
cells (QC1,QC2, . . . ,QCn).

Step 8 Select the fittest cell from each elite pool
and quantum crossover generated cells CBi (D(CBi) =
max(D(EPi,1), . . . ,D(EPi,pi ),D(QCi))), i = 1, 2, . . . , n,
where D(.) is the distance function.

Step 9 Update the parent cells in each elite pool with

the fittest cells selected in Step 8 and the probability P(Ci →
CBi) is according to the role followed by:

P =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 D(Ci) < D(CBi)

0 D(C1) ≥ D(CB1)

exp
(

D(CBi)−D(Ci)
α

)
otherwise

(4)

In Eq. (4), α is a user-defined parameter to maintain the
diversity of the population [18].

The produce will be terminated when the iteration
number reaches a pre-specified maximal generation number
Gmax. Otherwise, it returns to Step 3.

4. Simulation on TSP and Discussion

In this section, for testing the performance of the proposed
algorithm, we use the improved quantum crossover-based
clonal selection algorithm (IQCCSA) to solve the Traveling
Salesman Problems taken from TSPLIB [22]. The proposed
IQCCSA algorithm is written in C++ language and run on a
1.8 GHz processor with 512 M memory. Except for special
statement, all simulation results are integer number and over
10 replications. Table 1 lists the TSP instances to be solved
by the proposed algorithm.

4.1 The Traveling Salesman Problem

TSP, one of the typical NP-hard combinatorial optimization
problems, can be described as follows: find an optimal route
(shortest) for visiting n cities and returning to the point of
origin.

As mentioned above, the gene sequence of immune cell
can be expressed as a set of coordinates in a N-dimensional
shape-space. That is C = (c1, c2, . . . , cN). Naturally, we can
use different gene sequences denote the solutions of a N-
city TSP. If d(i, j) denotes the distance between city i and j
which is symmetric and known, the object of TSP is to find
a permutation π of the set {1, 2, 3, . . . ,N} that minimizes the
quantity [23]:

C(π) =
N−1∑
i=1

d(π(i), π(i + 1)) + d(π(N), π(1)) (5)

Table 1 Problems to be solved by the proposed algorithm.

Problem Size Type Optimum Gmax

eil51 51 EUC 2D 426 1000
st70 70 EUC 2D 675 1000
eil76 76 EUC 2D 538 1000
rd100 100 EUC 2D 7910 1000
eil101 101 EUC 2D 629 1000
lin105 105 EUC 2D 14379 1000
pr107 107 EUC 2D 44303 1000
pr124 124 EUC 2D 59030 1000

bier127 127 EUC 2D 118282 2000
pr136 136 EUC 2D 96772 2000
pr152 152 EUC 2D 73682 2000
rat195 195 EUC 2D 2323 2000

kroA200 200 EUC 2D 29368 5000
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Table 2 The meaning of the user-defined parameters and their values.

Parameter Meaning Values

N city number
m number of initial antibodies N
n number of elite pools N
M scope of clone 50
α diversity maintenance parameter 100
λ complementary intensity between 0.5

hypermutation and receptor editing
Gmax maximum number of generation *

*:see Table 1

Fig. 5 Population diversity of different algorithms when solving eil51.

4.2 Diversity vs Balance of Exploration and Exploitation

Premature convergence is one of the main difficulties with
the CSA. It has been observed that this problem is closely
related to the problem of losing diversity in the population.
Here, the diversity is defined as the mean edge-distance be-
tween the best tour and all other tours. Edge-distance means
different edges between two tours [25].

The meaning of the parameters used in the proposed
algorithm and their values are illustrated in Table 2.

The population diversity of a 51-city problem eil51
for different algorithms is shown in Fig. 5. Four algo-
rithms CSA, RECSA, CQCCSA, and IQCCSA mean Classi-
cal Clonal Selection algorithm [12], improved clonal selec-
tion theory by considering Receptor Editing [18], Classical
Quantum Crossover-based RECSA, and Improved Quantum
Crossover-based RECSA respectively.

From Fig. 5, we can easily find that the CSA has a
better population diversity than RECSA. However, simula-
tions on different traveling salesman problems performed in
[18] had demonstrated that the RECSA has a better conver-
gence performance than the CSA and can generate shorter
visiting tour for solving TSPs. It seems that the diversity
is not the only key. Naturally, the question whether the
improved quantum crossover-based CSA (IQCCSA) which
has a worse population diversity than the classical quantum
crossover crossover-based CSA (CQCCSA) is possible to
generate better solutions than CQCCSA would be asked.

Fig. 6 Convergence process of different algorithms when solving eil51.

Fig. 7 Population diversity of different algorithms when solving pr124.

Fig. 8 Convergence process of different algorithms when solving pr124.

Figure 6 illustrates the convergence ability of those
four algorithms. From this picture, it can be seen that the
IQCCSA has a better convergence performance than the
CQCCSA, as well as CSA and RECSA.

We also apply the CQCCSA and the IQCCSA to TSP
pr124. The simulation results of population diversity and
convergence process are shown in Fig. 7 and Fig. 8.

According to the simulation results illustrated in Fig. 5,
Fig. 6, Fig. 7, and Fig. 8, it can be concluded that the im-
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Table 3 Experimental results of RECSA, CQCCSA, and IQCCSA for TSPs from eil51 to kroA200.

Problem Size Dopt RECSA CQCCSA IQCCSA
PDB PDM T PDB PDM T PDB PDM T

eil51 51 426 1.41 2.63 2.82 0.94 2.28 3.38 0 1.69 6.23
st70 70 675 0.30 2.39 4.90 1.19 2.61 5.92 0.44 1.76 13.94
eil76 76 538 3.35 4.54 5.81 3.16 4.55 7.11 1.30 2.70 16.82
rd100 100 7910 4.55 5.85 9.54 3.24 5.68 11.96 2.28 3.17 34.66
eil101 101 629 5.25 6.60 9.63 4.29 5.93 12.15 3.50 4.59 33.33
lin105 105 14379 2.48 5.39 10.35 1.38 4.64 13.02 0.61 2.12 40.86
pr107 107 44303 2.11 3.40 10.66 2.81 3.69 13.47 2.35 2.94 39.09
pr124 124 59030 1.65 4.42 13.91 0.92 4.48 17.81 0.64 1.33 58.20
bier127 127 118282 1.55 4.41 27.22 3.70 4.91 36.39 1.20 2.24 115.89
pr136 136 96772 4.39 6.28 31.72 4.45 5.86 42.26 6.48 7.36 159.45
pr152 152 73682 2.82 3.50 38.58 2.47 3.58 52.15 0.47 1.33 211.85
rat195 195 2323 10.55 13.12 60.12 12.44 13.42 83.58 2.41 2.91 457.65
kroA200 200 29368 4.46 6.59 158.74 5.11 6.70 217.29 1.32 1.95 1194.98

Average 3.45 4.81 29.54 3.55 5.26 39.73 1.77 2.78 183.30

Fig. 9 Crossover success times when solving eil51 and pr124 (10 runs).

proved quantum crossover-based clonal selection algorithm
IQCCSA has a good balance between exploration and ex-
ploitation.

In addition, in order to compare the improved quantum
crossover with the classical crossover, we also investigate
the crossover effectiveness when solving two TSPs eil51
and pr124. Figure 9 shows the crossover success times of
two algorithms. It is clear that the distance-based improved
quantum crossover is more effective than the position-based
classical quantum crossover.

4.3 Simulation Results on Other TSPs

In addition to the parameters defined in Sect. 4.2, two pa-
rameters PDM and PDB which indicate the percentage de-
viation from the optimal tour length Dopt of the mean dis-
tance Dm and the best distance Db respectively are defined
as follows:

PDM =
Dm − Dopt

Dopt
× 100 (6)

PDB =
Db − Dopt

Dopt
× 100 (7)

The parameter T which denotes the average computation
time for 10 runs is also defined.

In order to confirm the effectiveness and the robust-
ness of our method to TSP, we apply our method to TSPs
from eil51 to kroA200 and also compare our method with
RECSA and CQCCSA. Table 3 shows the experimental re-
sults of the TSPs.

In Table 3, the first three columns indicate the TSP
instance, the problem size, and the optimal solution(Dopt).
In the rest columns, we list the simulation results of
three algorithms - the improved clonal selection algo-
rithm (RECSA) [18], the classical quantum crossover-based
RECSA (CQCCSA), and the improved quantum crossover-
based RECSA (IQCCSA) respectively. T means computa-
tion time. From Table 3, we can find that the proposed al-
gorithm IQCCSA has a superior ability to search better so-
lutions than the RECSA and CQCCSA.

5. Conclusions

In this paper, we proposed an improved quantum crossover-
based clonal selection algorithm (IQCCSA). An improved
quantum interference crossover operator was introduced for
information exchange among different solutions. Unlike
the classical quantum interference crossover which selects
a city in the different solutions with the same list index po-
sition, the improved distance-based quantum interference
crossover has a superior convergence ability. Simulation
was carried out and also compared with other clonal se-
lection algorithms. Experimental results showed that the
improved algorithm is more effective for traveling sales-
man problems and can search the global optimal or near-
optimum solutions. In addition, through comparing the con-
vergence performance with the population diversity, it can
be concluded that the improved algorithm is more effective
for balancing the exploration and exploitation abilities in the
whole searching space.
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