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Abstract. We present the results of a computer simulation study of charged-particle interferometry,
combining features of both the Aharonov-Bohm and Hanbury Brown-Twiss experiment. In contrast to
a previous theoretical analysis of this experiment, we find that the Aharonov-Bohm effect is also pre-
sent in the cross-correlated two-particle intensity. A simple, time-independent scattering theory that
leads to conclusions that are in concert with the simulation data is given.

Keywords: Quantum Interference; Identical Particles; Aharonov-Bohm Effect.

1 I n tr o d u c t io n

A vast amount of interference phenomena can be understood in terms of interference
of classical waves. In quantum mechanics a particle can interfere with itself [1], leading
to interference effects which have no classical analog. Although photons and massive
particles give rise to similar self-interference phenomena, it is of interest to investigate
how the charge or the particle statistics modify the interference effects. In this paper
we analyze a thought experiment, proposed by Silverman [2, 3], that addresses several
important conceptual issues related to the interference of charged, identical quantum
particles. This thought experiment is designed such that both the charge and statistics
can have an effect on the interference. A first theoretical analysis of this thought experi-
ment [2, 3], shows that effects of the charge of the particles are observable in the self-
interference signal whereas they are absent in the correlated two-particle interference si-
gnal.

In this paper we demonstrate that this remarkable conclusion is not correct. We use
a versatile computer simulation technique to perform the thought experiment for
physically different situations. In the simulation of Silverman's thought experiment, ef-
fects of the charge of the particles show up in b o th the self-interference and the two-
particle interference signal. The results we obtain are numerically exact and allow us to
identify limitations of Silverman's analysis.

The remainder of the paper is organized as follows. In Section 2 we briefly review the
Aharonov-Bohm (AB) effect and give an example of how it shows up in a computer
simulation. The basic features of the Hanbury Brown-Twiss (HBT) experiment are
discussed in Section 3, where we also introduce the minor modifications that are
necessary to take the particle statistics into account. The combined AB-HBT thought
experiment is analyzed in Section 4. We demonstrate that earlier theoretical work can-
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not explain the computer simulation results and we also explain why this is so. Finally,
in Section 5 we present a simple, Fraunhofer-like theory that is in qualitative agreement
with the conclusion drawn from the computer simulation results. Technical details on
the simulation technique that we use can be found in the Appendices A and B.

2 A h a r o n o v -B o h m e x p e r im e n t

It is well known that in classical mechanics, the motion of a charged particle is not af-
fected by the presence of electromagnetic fields in regions of space from which the par-
ticle is excluded. In classical physics the vector potential A = (A x ,A y ,A z ) and scalar
potential are merely convenient mathematical tools from which the electric and
magnetic fields may be calculated. In quantum physics the vector potential does ac-
quire physical significance [4,5]. According to Aharonov and Bohm [5], the presence
of a vector potential itself can lead to measurable effects even though the particle never
enters the region where the electromagnetic field is non-zero.

The existence of the AB effect and the interpretation of experiments designed to con-
firm its existence have been the subject of a long debate. A comprehensive review of
the different viewpoints and experimental results is given in Ref. 6. Additional infor-
mation can be found in Refs. 7,8. Ingenious experiments [9, 10], theoretical work [11],
and simulations [12] have given further support to the existence of the AB effect.

A schematic diagram of the AB thought experiment is depicted in Fig. 1. The source
S sends charged particles towards the two-slit interferometer. Within the middle-block
a local, but otherwise constant, magnetic field B = (0, 0, B(x,y)) is present. Outside
this block, B(x,y) = O. In the AB thought experiment, the charged particle can only

Fig.l Schematic diagram of the Aharonov-Bohm thought experiment. Particles leave the source S,
pass through the double-slit and arrive at detector D. The particle does not experience the magnetic
field B enclosed in the double-slit apparatus.
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move in the field-free region of space. Therefore, in classical physics, the motion of
a charged particle would never be affected by the presence of the magnetic field con-
fined to the interior of the two-slit apparatus. However, for a charged quantum particle
AB predict an observable phase shift in the interference pattern recorded at detector
D, resulting from the presence of a non-zero vector potential in the region of space ac-
cessible to the particle. The phase shift itself depends on the flux enclosed by the two
alternative paths S1 and S2·

The difference in the relative phase of paths SI and S2 follows directly from the ex-
pression of the propagator K (r ,t ; r ', t ') for a particle to move from r' to r as a sum
over paths [13, 14]

K (r ,t ; r ', t ') = Σ exp { i /ħ (S (A p A a th = O )(r ,t ; r " t ')+ e ∫ A (r " ) 'd r " ) } , (2.1)
paths ħ path }

where S(pAath= 0) is the classical action along "path" with A = 0.
In our numerical work it is convenient to choose a gauge such that the vector poten-

tial takes the form

A = (Ax(y),0,0) , (2.2)

where Ax(y) = - ∫0 yB (x ,y ')d y '. In Appendix A it is shown that for a vector potential
of this form, the motion of the particles is essentially in the (x,y)-plane. From Fig. 1
and (2.2) it is then clear that only particles that pass through the upper slit will ex-
perience a non-zero vector potential. Therefore, since A x = - B d inside the upper slit,
for paths of the type s 1 , there will be an additional phase shift given by φ = e d w B /ħ .

For particles taking route S 2 this phase shift is zero. Therefore the relative phase φ of
the amplitudes for paths of type SI and S2 is modified by an amount

φ B

π Bo'
(2·3)

where Bo = π hied w corresponds to a field that yields the maximum phase shift
φ = π . For convenience we will express the magnetic field in units of Bo in the follow-
ing.

The intensity at the detector D is given by

P (D )= IId t∫d r 'K (D ,t; r ',0 )ψ o (r ') |2 , (2.4)

where ψo(r') is the wave function describing the particles emitted by source S, and D
is the position of the detector D.

Some computer simulation results [12] for the intensity on detector D are shown in
Fig. 2 where the diffraction patterns for B = 0 (solid line) and B = B o (dashed line) are
superimposed. According to AB [5], maxima (minima) in the diffraction pattern for
B = Bo (or φ = π) should appear at the positions of the minima (maxima) in the dif-
fraction pattern for B = 0 and indeed, this (and all other) characteristic features of the
AB effect are reproduced in the simulation [12]. We have also verified that the physical
results do not depend on the choice of the gauge [12].
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Fig. 2 Computer simulation results for the intensity on detector D (see Fig. 1). For this, and for all
other simulation results presented in this paper, the dimensions of the double-slit are s = λF, d = 4λF

and w = λ F, and the angle of incidence θ o = O. Solid line: B = 0, dashed line: B = B o .

Assuming that the source S and detector D are both far away from the two slits, the
qualitative features of the intensity P(θ) recorded by detector D are, to a good approx-
imation, described by [12]

P(θ) = {sin [2dπ (sin θ - sin θo) + φ ]} 2 {sin (sπ sin θ)} 2 ,

sin [dπ(sinθ-sinθo)+φ] sπsinθ
(2.5)

where the position of the source and detector are specified by θo and θ respectively,
s is the slit-size and d the distance between the slits (see Fig. 1). The result (2.5) shows
that the interference pattern will shift by φ , a consequence of the presence of a
magnetic field in a region of space from which the particles are excluded [5]. Note that
the width w of the slit does not enter formula (2.5).

The conditions for the AB effect to be present can be summarized as follows: If there
are at least two topologically different paths for the particle to travel from the source
to the detector and if the integrals of the vector potential along these paths depend on
the path taken, then the intensity pattern measured by detector D is a periodic function
of the magnetic field B with period 2 B o .

3 H a n b u r y B r o w n - T w is s e x p e r im e n t

A schematic representation of the Hanbury Brown-Twiss (HBT) experiment [15] is
shown in Fig. 3. Thermal light emitted by the sources S1 and S2 is received by the
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Fig. 3 Schematic representation of the Hanbury Brown-Twiss experiment. Particles leave the sources
S1 and S2, and arrive at detectors D 1 and D 2 . The signals of these detectors are multiplied in cor-
relator C.

detectors D1 and D2. The signal produced at a detector is proportional to the intensity
of the impinging light. The output of the detectors is multiplied together and the
resulting electrical current is averaged over a substantial period of time. The ex-
periments of HBT demonstrated that this cross-correlated signal exhibits an in-
terference pattern as a function of the separation of the detectors. The results of the
HBT experiment can be entirely understood in terms of classical wave theory. When
extended to include quantum physics, the HBT experiment demonstrates that there are
correlations in the arrival of photons that are emitted randomly from two different
sources. This remarkable observation has been instrumental for the development of the
theory of quantum optics.

Let us now explore the consequences of performing the HBT with massive quantum
particles instead of with light. It is clear that if the particles are fermions, a description
within the framework of classical wave theory is no longer adequate. For reasons that
will become clear in section 4, we will treat the HBT thought experiment with fermions
and bosons simultaneously.

The fermions or bosons emitted by the source S1 generate signals at the detectors D 1

and D 2 as do the particles originating from the source S 2 ' The amplitude at detector
D m generated by the source S n is given by

ψ n (D m ) = ∫ dkg(k)eik'(Sn-Dm); m ,n = 1,2 , (3.1)

where Dm and S n denote the position of the detector Dm and the source S n respective-
ly. For simplicity we assume that g(k) is the same for both sources and is given by
g(k)∝σexp(-σ2(k-kF)2/2), Le. a Gaussian wave packet of width σ and mean
kF = (kF, 0, 0). Here and in the following kF = 2 π / λF whereby λF fixes the length
scale.

The amplitude for the simultaneous arrival of one of the particles at detector D 1

and the other at detector D 2 is given by

Ψ(D1,D2) = ψ1(D1)ψ2(D2)±ψ2(D1)ψ1(D2) , (3.2)
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where the plus or minus sign reflects the fact that the particles are bosons or fermions
respectively. The signal generated by the cross-correlator is

|Ψ(D1,D2)|2 = ∫ dk ∫ dk'g(k)2g(k,)2(1 ±cos (k-k')·(D1-D2» , (3.3)

showing that there is an interference term depending on the relative distance between
the two detectors. From (3.3) it follows that bosons are more likely to arrive in pairs
(D1 = D2). For photons this effect, observed by HBT, is refered to as photon bun-
ching. Fermions on the other hand avoid arriving in pairs, a direct consequence of the
Pauli principle. Note that the interference term in (3.3) vanishes as σ →∞, i·e. when
the waves emerging from the sources can be represented by a single plane wave.

4 A B -H B T th o u g h t e x p e r im e n t

The AB experiment provides information on the effect of the magnetic field on correla-
tions of two a m p li tu d e s . The HBT experiment on the other hand yields direct informa-
tion on the correlations of two in te n s i t ie s , i.e. of correlations of fo u r amplitudes.
Following Silverman [2, 3] we now consider a thought experiment that combines both
the features of the AB and HBT set up and involves both the charge and the statistics
of the particles·

A schematic view of this AB-HBT apparatus is shown in Fig. 4. Charged fermions (or
bosons) are emitted by the source S and impinge on the double slit containing the con-
fined magnetic field B. The particles passing through the slits generate signals at the de-

Fig. 4 Schematic view of the combined Aharonov-Bohm-Hanbury-Brown-Twiss apparatus. Par-
ticles leave the source S, pass through the double-slit and arrive at detectors D 1 and D 2 . The signals
of these detectors are multiplied in correlator C. The particles do not experience the magnetic field
B enclosed in the double-slit apparatus.



H. De Raedt, K. Michielsen, Quantum interference of charged identical particles 685

tectors D 1 and D 2 . In order for the particle statistics to be relevant at all, it is necessary
that in the detection area the wave functions of two individual particles overlap.

The particle statistics may affect the single-particle as well as two-particle properties.
The former can be studied by considering the signal of only one of the two detectors.
Information on the latter is contained in the cross-correlation of the signals of both
detectors.

Let us first reproduce Silverman's analysis [2, 3]. Assume that the double-slit ap-
paratus can be designed such that the probability for two identical particles (fermions
or bosons) to pass through the same slit can be made negligibly small. The two slits
then act as the two sources in the HBT experiment with one modification: Due to the
presence of the vector potential the waves can pick up an extra phase shift. For our
choice of the vector potential (see (2.2)) only the wave emerging from the upper slit
experiences a non-zero vector potential. The corresponding shift can be easily incor-
porated in the theory of the previous section by substituting

Sl → Sl+(φ,0,0), (4.1)

where φ is given by (2.3).
Then, from (3.3) it immediately follows that the signal generated by the cross-cor-

relator will n o t show any dependence on the confined magnetic field. According to
Silverman [2, 3], the AB shifts for the direct process and the one in which the identical
particles have been interchanged mutually cancel. Moreover, this cancelation is inde-
pendent of the fact that the particles are fermions or bosons [16].

The basic assumption of Silverman's analysis is easily incorporated into a computer
experiment. The initial two-particle wave function is a properly symmetrized product
of single-particle wave functions, as shown schematically in Fig. 5 a. The shaded circles
indicate the extent to which the single-particle wave functions are non-zero (probability
> 10-12). For simplicity the single-particle wave functions are taken to be Gaussians.
Each Gaussian is positioned such that it effectively "hits" only one slit. A typical snap-
shot of the fermion probability is depicted in Fig. 5b. The upper (lower) part shows
the fermion probability for B = 0 (B = B o ) . The colored area in the middle block of
the double slit (lower part) represents the confined magnetic field. The detectors (not
shown) are placed very far at the right of the double slits. The intensity at the detectors
is calculated using the procedure described in Appendix B.

From Fig. 5b it is clear that the fermion (and boson, not shown) probabilities for
B = 0 and B = B o look identical. A more detailed analysis of the simulation results for
the single (top) and correlated (bottom) detector signals for B = 0 for fermions (l.h.s.)
as well as for bosons (r.h.s.) are presented in Fig. 6. For fermions the correlated signal
for θ1 = θ2 vanishes, as required by the Pauli principle. Unfortunately this feature is
hardly visible, due to the resolution we used to generate the pictures but it is present
in the raw data. Within four digit accuracy, the corresponding data for B = B o (or, as
a matter of fact, for any B) are identical to those for B = 0 and therefore they are not
shown. Comparison of the cross-correlated intensities (bottom part) clearly lends sup-
port to Silverman's conclusion [2, 3]. However, it is also clear that the single-detector
signals (upper part) do n o t exhibit the features characteristic of the AB effect. Under
the conditions envisaged by Silverman, not only is there no AB effect in the cross-cor-
related signal: There is no AB effect at all.

The absence of the AB effect can be traced back to Silverman's assumption that the
slits can be regarded as sources, thereby eliminating the second, topologically different,
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b

Fig. 5 a. Schematic diagram showing the extent of the initial single-particle wave functions from
which the wave function for the fermion and bosons are build. Each wave packet is designed such
that it effectively hits only one slit. b. Snapshot of the fermion probability distribution at time
t = 120ħ/ EF. The width of the initial Gaussian wave packets a = λ. Upper part: B = 0, lower part:
B = B o .

alternative for a particle to reach the detector. A different route to arrive at the same
conclusion is to invoke gauge invariance to choose the vector potential such that the
two particles would never experience a non-zero vector potential.

A full treatment of the thought experiment depicted in Fig. 3 requires that a ll

possibilities for both identical particles are included in the analysis. This is easily done
in the computer experiment by changing the position and width of the Gaussians used
to build the initial wave function of the fermions or bosons, as illustrated in Fig. 7 a.
In contrast to the previous case, schematically shown in Fig. 5 a, the wave packets have
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Fig. 6 Simulation results for single- (top) and correlated (bottom) detector signal for B = 0, obtained
from the solution of the TDSE with the initial state sketched in Fig. 5 a. On the left: Signals generated
by fermions. On the right: Signals generated by bosons. The corresponding pictures for B = B o are
identical and not shown.

been "designed" such that they both hit the two slits. A typical snapshot of the fermion
wave function is depicted in Fig. 7b. The upper (lower) part shows the fermion proba-
bility for B = 0 (B = B o ) . A close look at the upper and lower part shows that the
positions of the maxima of the transmitted wave for B = 0 and B = B o are inter-
changed.

The results for the single (top) and correlated (bottom) detector signals for B = 0 and
B = B o are shown in Figs. 8 and 9 respectively. Comparison of the upper parts of
Figs. 8, 9 provides direct evidence of the presence of an AB effect. There is only a small
quantitative difference between the fermion (l.h.s.) and boson (r.h. s. ) signals: The in-
terference fringes of the fermions are less pronounced than in the case of bosons,
another manifestation of the Pauli principle.

The cross-correlated boson intensities (r.h.s. of the bottom part of Figs. 8, 9) clearly
exhibit an AB-like effect. The positions of the maxima and minima are interchanged
if the magnetic field changes from B = 0 to B = B o . We have verified that the shift of
these positions is a periodic function of the field B. These results for the case of boson
statistics cannot be explained on the basis of Silverman's theory [2, 3].

The differences in the cross-correlated fermion intensities (l.h.s. of the bottom part
of Figs. 8, 9) are not as clear as in the boson case. Subtracting the B = 0 from the
B = B o signal and plotting the absolute value of this difference yields the patterns
shown in Fig. 10. It is clear that also the cross-correlated fermion intensity exhibits
features that are characteristic of the AB effect.

The high symmetry in all the correlated signals shown is due to our choice B = B o .

The fact that we recover this symmetry in our simulation data provides an extra check
on our method. If B is not a multiple of B o , this high symmetry is lost but the salient
features of the signals remain the same.

Thus, from our numerical experiments, we conclude that in an AB-HBT experiment,
an AB shift of the interference pattern will be observed in both the single and two-
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b

Fig. 7 a. Schematic diagram showing the extent of the initial single-particle wave functions from
which the wave function for the fermion and bosons are build. Each wave packet is designed such
that it effectively hits two slits. b. Snapshot of the fermion probability distribution at time
t = 168ħ/ EF. The width of the initial Gaussian wave packets a = lOA. Upper part: B = 0, lower
part: B = B o .

detector experiments. The AB effect (in both experiments) is more pronounced for
bosons than for fermions.

5 T h e o r y

Within the framework of Fraunhofer diffraction theory [17] it is straightforward to
modify Silverman's analysis and account for all four interfering alternatives for each
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Fig. 8 Simulation results for single- (top) and correlated (bottom) detector signal for B = 0, obtained
from the solution of the TDSE with the initial state sketched in Fig. 7 a. On the left: Signals generated
by fermions. On the right: Signals generated by bosons.

Fig. 9 Same as Fig. 8 except that B = B o .

of the particles to travel from the source to the detector. There is no reason to expect
that the results of such a theory will be in qualitative agreement with the numerical
solution of the full problem [17]. However we will show that qualitatively, this simple
theory is able to reproduce the salient features of the simulation results.

According to Fraunhofer diffraction theory, the amplitude at detector D m resulting
from a Gaussian wave packet impinging on the double slit from the left (see Fig. 4) is
given by

ψ n (D m )∝∫d kg (k )e ik .r n ∫ d y e i(k F s in θ m -k y )y ; m ,n = 1,2 , (5. 1)
slit
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F ig . l0 Absolute value of the difference of the cross-correlated intensities of Figs. 8, 9.

where r n denotes the center of the n - th wave packet at t = 0, and θ m specifies the posi-
tion of the detector m .

I n the presence of the confined magnetic field, our choice (see (2.2» of the vector
potential will modify the phase of the wave emerging from the upper slit. Incorporating
this phase shift into (5. 1), using the fact that the problem is essentially two-dimen-
sional, and performing the Gaussian integrals, the amplitude at detector m is easily
shown to be

s
ψ n (D m )∝ ∫ d y e - iy k F s in θ m e - (y- Y n + d /2 )2 !2 σ 2

o
s

+ e i(d kF s in θ m + φ ) ∫ d y e iy k F S in θ m e - (Y + Y n + d !2 )2 !2 σ 2 ; m ,n = 1,2 . (5.2)
o

The difference with Silverman's analysis is clear: Each of the two particles can con-
tribute to the signal on one of the detectors by following two topologically different
paths. Instead of four there are now sixteen interfering alternatives for the two particles
to contribute to the cross-correlated signal.

From (5.2) and (3. 2) it is clear that the overlap of the two initial wave functions will
explicitly enter the expression of the signal on the cross correlator. I n particular it is
not difficult to see that for fermions, I|ψ l-ψ211 and therefore also the cross-correlat-
ed signal vanishes with 1 r1 - r2| , assuming (as we did so far) that the Gaussian distri-
bution for particle 1 and 2 is the same. I n general, the cross-correlated signal will de-
pend not only on the distance between the detectors, but on all the properties of the
initial wave packets.

I n comparison with the simulation technique employed to solve the full problem, it
is a simple matter to combine (3.2) and (5.2) to calculate the single and correlated detec-
tor signals. Adopting the same model parameters as those used to obtain Figs. 8, 9
yields the results shown in Figs. 11, 12. Instead of the angular distribution for fermions
or bosons, the upper part shows the single-particle angular distribution. For normal
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Fig. 11 Theoretical results for single- (top) and correlated (bottom) detector signal for B = 0, as ob-
tained from Fraunhofer diffraction theory. Top part: Signal generated by a single particle. Bottom
left: Signals generated by fermions. Bottom right: Signals generated by bosons.

Fig. 1 2 Same as Fig. 11 except that B = B o .

incidence (which is the case treated here) the agreement between the simulation and
Fraunhofer results for the single-particle single-detector signal is excellent [12].

The main shortcoming of the simple Fraunhofer-based theory becomes evident by
comparing the bottom part of, for instance, Figs. 8 and 11. Except for θ1 ≈ 0 and
θ 2 ≈ 0, diffraction effects are not treated properly, as is well-known [17]. However it
is striking that this limitation of the Fraunhofer approach shows up much more clearly
in the correlated two-particle signal than it does in the single particle signal.

Although (5.2) is only accurate if θ 1 ≈ 0 and θ 2 ≈ 0, it is nevertheless remarkable
that the simple theory reproduces the salient features observed in the simulation. In
particular, for the two-boson signal, there is good qualitative agreement (compare bot-
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tom-right of Figs. 8, 11 and Figs. 9, 12 respectively). For the fermions, the agreement
is not as good (compare bottom-left of Figs. 8, 11 and Figs. 9, 12 respectively). This
is due to the fact that because of the Pauli principle, the cross-correlated signal may
be large if |θ1 | » 0, | θ21 »O and θ1 ≠ θ2, and that is precisely the region where the
Fraunhofer approach is expected to be less accurate. Taking all this into account, on
a qualitative level the overall agreement between theory and numerical experiment is
quite good and gives further support of the fact that the AB effect shows up in both
the single and correlated detector arrangements, independent of the particle statistics.

6 C o n c lu s io n s

The numerically exact solution of the time-dependent Schrödinger equation and the
solution of the time-independent scattering problem for the combined Aharonov-
Bohm-Hanbury-Brown-Twiss apparatus demonstrate that both the single-particle and
correlated two-particle detector signals simultaneously exhibit features characteristic of
the Aharonov-Bohm effect. These effects are more pronounced for bosons than they
are for fermions.

We are grateful to M. Silverman for extensive and stimulating correspondence and discussions and
for a critical reading of the manuscript. It is a pleasure to thank N. Garcia for helpful suggestions.
This work is part of a research programme of the "Stichting voor Fundamenteel Onderzoek der
Materie (FOM)", which is financially supported by the "Nederlandse Organisatie voor Wetenschap-
pelijk Onderzoek (NWO)". Computer simulations were carried out in the context of a project of the
''Stichting Nationale Computer Faciliteiten (NCF)". This work is partially supported by an EEC
Human Capital and Mobility project.

A p p e n d ix A : C o m p u te r s im u la t io n te c h n iq u e

The Hamiltonian for a system of two identical charged but non-interacting particles
in an external, static magnetic field reads

ℋ = ℋ 1+ ℋ 2, (A.1a)

where
1 2

ℋ n=-(Pn-eA(rn)) +V(rn); n=1,2,
2m

(A.1b)

and m is the mass of the particle with charge e , P n = - i Iħ∇V'n is the momentum
operator of particle n , and A represents the vector potential. The potential V = V(x,y)

will be used to specify the geometry of the apparatus. For numerical work, there is no
compelling reason to adopt the Coulomb gauge (div A = 0). A convenient choice for
the vector potential is A = (Ax(x,y),O,O) where

y

Ax(x,y) = - ∫ B(x,y)dy .
o

(A.2)

Then the problem is essentially two-dimensional and the motion of the particles may
be confined to the x - y plane.
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The simulation approach employed in this paper consists of numerically solving the
time-dependent Schrödinger equation (TDSE)

iħ∂ _|Φ(t»= ℋ |Φ(t» ,
a t

(A.3)

where IΦ (t» represents the state of the system described by the Hamiltonian ;If. The
formal solution of the TDSE is given by

IΦ(mτ»=e-imτℋ IΦ (t=O» ,

= e-imτℋ 1e-imτℋ 2 IΦ(t = 0» ,
(A.4a)

(A.4b)

where m = 0, 1, ... counts the number of time-steps τ and use has been made of the
fact that the particles do not interact.

The initial state IΦ(t = 0» can be written as a properly symmetrized product of
single-particle wave functions

<r1, r2IΦ(O» = φI (r1 )φ2(r2) ± φ2(r1 )φ1 (r2) (A.5)

A convenient choice for φn (r ) is

φn (x,y) ex e2l[ ikF(x cos en + y sin en) e - (X-Xn)2!2σ2 e - ( y - Yn)2!2σ2 , (A.6)

i.e. a Gaussian wave packet centered around (xn,Yn) with energy <φn 1ℋ I φn> = EF and
width σ . In free space, the wave packet (A.6) moves in the (cos θ m sin θn)-direction. In
practice the initial wave packet is normalized such that ∫ IΦ(x,y, t = 0) 1

2
dxdy = 1.

From the formal solution (A.4) of the TDSE it follows that

<r1,r2|Φ(t» = φ1(r1,t)φ2(r2,t)±φ2(r1,t)φ1(r2,t) , (A.7)

showing that the time-dependent wave function of the two-particle system can be con-
structed from the time-dependent wave functions of the individual single-particle
systems. This is a major simplification because we can now solve the two-particle prob-
lem by solving two independent one-particle problems.

A detailed description of the method we use to solve the one-particle TDSE is given
elsewhere [12]. The algorithm is based on a product formula introduced by Suzuki [18].
Important advantages of the TDSE approach are its reliability and flexibility. The
former stems from the mathematical framework underlying the algorithm: The method
is numerically stable and convergent under all circumstances. The latter derives from
the fact that it can handle arbitrary geometries and (vector) potentials, providing a
unified framework to investigate various physical problems.

In practice we solve the TDSE subject to the boundary condition that the wave func-
tion is zero outside the simulation box, i.e. we assume perfectly reflecting boundaries.
The implementation we use is accurate to fourth-order in both the spatial and temporal
mesh size, efficient and runs very efficiently on scalar, vector and parallel computer
architectures [12]. Additional technical details can be found elsewhere [12].

For computational purposes we express distances in units of length λF, wavevectors
are measured in units of k F = 2 π/ λ F, energies in E F = ħ 2 kF 2 1 2 m , time in ħ/E F and
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vector potential in units of eλF/ħ such that all physical quantities become dimen-
sionless.

A p p e n d ix B : D a ta a n a ly s is

The final step is to analyze the wave packet transmitted by the two-slit arrangement.
For the present purposes, it is not of great interest to compute the diffraction pattern
on a screen placed near to the interferometer. Instead it is more appropriate to calculate
the interference fringes on a screen at infinity. This can be done in the following way
[19]. After the scattering event has taken place, the transmitted (and also the reflect)
wave packet moves in free space (for a vector potential of the form (2.2»~. Then the
angular distribution of the intensity p(e) on the screen at infinity can be written in
terms of the Fourier transform of the transmitted wave packet [19]. For the case at
hand the normalized p(e) is given by

p(e) = ∫a |Φ~(qx,qy = qx tan e, t = T ) |2dqx

maxθ∫O' IΦ~(qx,qy=qxtane,t= T)|2dqx '
(B.1)

where |Φ~>is the Fourier transform of |cfJ> with respect to the spatial coordinates and
T is the time required to complete the scattering event.

The expression of the normalized cross-correlated intensity p(e1, e2) is obtained in
a manner completely analogous to the one used to derive (B.1). Starting from the ex-
pression for the amplitude at rl and r2 and at time t

cfJ(rl' r2, t) = φt (r1, t)φ2(r2, t) ± φ2(r1, t)φt (r2, t) , (B.2)

and using the fact that for t≥ Tthe wave moving towards the detectors propagates free-
ly, we obtain

p(e e)= ∫ O 'qx2|Φ~(qx,qy= qxtane1,t = T)Φ~(qx,qy= qxtane2,t= T)1
2

dqx
1, 2 foo 2 ~ ~ 2 .

maxθ1'θ2⌡0 qx|cfJ(qx,qy=qxtanel,t= T)cfJ(qx,qy = qxtane2,t= T)| dqx

(B.3)

The presence of the extra factor qx2 in the two integrals in (B.3) reflects the fact that
we carry out an equal-time coincidence measurement.
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